sched.h 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/sched/deadline.h>
  5. #include <linux/mutex.h>
  6. #include <linux/spinlock.h>
  7. #include <linux/stop_machine.h>
  8. #include <linux/tick.h>
  9. #include <linux/slab.h>
  10. #include "cpupri.h"
  11. #include "cpudeadline.h"
  12. #include "cpuacct.h"
  13. struct rq;
  14. struct cpuidle_state;
  15. /* task_struct::on_rq states: */
  16. #define TASK_ON_RQ_QUEUED 1
  17. #define TASK_ON_RQ_MIGRATING 2
  18. extern __read_mostly int scheduler_running;
  19. extern unsigned long calc_load_update;
  20. extern atomic_long_t calc_load_tasks;
  21. extern long calc_load_fold_active(struct rq *this_rq);
  22. extern void update_cpu_load_active(struct rq *this_rq);
  23. /*
  24. * Helpers for converting nanosecond timing to jiffy resolution
  25. */
  26. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  27. /*
  28. * Increase resolution of nice-level calculations for 64-bit architectures.
  29. * The extra resolution improves shares distribution and load balancing of
  30. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  31. * hierarchies, especially on larger systems. This is not a user-visible change
  32. * and does not change the user-interface for setting shares/weights.
  33. *
  34. * We increase resolution only if we have enough bits to allow this increased
  35. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  36. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  37. * increased costs.
  38. */
  39. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  40. # define SCHED_LOAD_RESOLUTION 10
  41. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  42. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  43. #else
  44. # define SCHED_LOAD_RESOLUTION 0
  45. # define scale_load(w) (w)
  46. # define scale_load_down(w) (w)
  47. #endif
  48. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  49. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  50. #define NICE_0_LOAD SCHED_LOAD_SCALE
  51. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  52. /*
  53. * Single value that decides SCHED_DEADLINE internal math precision.
  54. * 10 -> just above 1us
  55. * 9 -> just above 0.5us
  56. */
  57. #define DL_SCALE (10)
  58. /*
  59. * These are the 'tuning knobs' of the scheduler:
  60. */
  61. /*
  62. * single value that denotes runtime == period, ie unlimited time.
  63. */
  64. #define RUNTIME_INF ((u64)~0ULL)
  65. static inline int fair_policy(int policy)
  66. {
  67. return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  68. }
  69. static inline int rt_policy(int policy)
  70. {
  71. return policy == SCHED_FIFO || policy == SCHED_RR;
  72. }
  73. static inline int dl_policy(int policy)
  74. {
  75. return policy == SCHED_DEADLINE;
  76. }
  77. static inline int task_has_rt_policy(struct task_struct *p)
  78. {
  79. return rt_policy(p->policy);
  80. }
  81. static inline int task_has_dl_policy(struct task_struct *p)
  82. {
  83. return dl_policy(p->policy);
  84. }
  85. static inline bool dl_time_before(u64 a, u64 b)
  86. {
  87. return (s64)(a - b) < 0;
  88. }
  89. /*
  90. * Tells if entity @a should preempt entity @b.
  91. */
  92. static inline bool
  93. dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
  94. {
  95. return dl_time_before(a->deadline, b->deadline);
  96. }
  97. /*
  98. * This is the priority-queue data structure of the RT scheduling class:
  99. */
  100. struct rt_prio_array {
  101. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  102. struct list_head queue[MAX_RT_PRIO];
  103. };
  104. struct rt_bandwidth {
  105. /* nests inside the rq lock: */
  106. raw_spinlock_t rt_runtime_lock;
  107. ktime_t rt_period;
  108. u64 rt_runtime;
  109. struct hrtimer rt_period_timer;
  110. };
  111. void __dl_clear_params(struct task_struct *p);
  112. /*
  113. * To keep the bandwidth of -deadline tasks and groups under control
  114. * we need some place where:
  115. * - store the maximum -deadline bandwidth of the system (the group);
  116. * - cache the fraction of that bandwidth that is currently allocated.
  117. *
  118. * This is all done in the data structure below. It is similar to the
  119. * one used for RT-throttling (rt_bandwidth), with the main difference
  120. * that, since here we are only interested in admission control, we
  121. * do not decrease any runtime while the group "executes", neither we
  122. * need a timer to replenish it.
  123. *
  124. * With respect to SMP, the bandwidth is given on a per-CPU basis,
  125. * meaning that:
  126. * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
  127. * - dl_total_bw array contains, in the i-eth element, the currently
  128. * allocated bandwidth on the i-eth CPU.
  129. * Moreover, groups consume bandwidth on each CPU, while tasks only
  130. * consume bandwidth on the CPU they're running on.
  131. * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
  132. * that will be shown the next time the proc or cgroup controls will
  133. * be red. It on its turn can be changed by writing on its own
  134. * control.
  135. */
  136. struct dl_bandwidth {
  137. raw_spinlock_t dl_runtime_lock;
  138. u64 dl_runtime;
  139. u64 dl_period;
  140. };
  141. static inline int dl_bandwidth_enabled(void)
  142. {
  143. return sysctl_sched_rt_runtime >= 0;
  144. }
  145. extern struct dl_bw *dl_bw_of(int i);
  146. struct dl_bw {
  147. raw_spinlock_t lock;
  148. u64 bw, total_bw;
  149. };
  150. extern struct mutex sched_domains_mutex;
  151. #ifdef CONFIG_CGROUP_SCHED
  152. #include <linux/cgroup.h>
  153. struct cfs_rq;
  154. struct rt_rq;
  155. extern struct list_head task_groups;
  156. struct cfs_bandwidth {
  157. #ifdef CONFIG_CFS_BANDWIDTH
  158. raw_spinlock_t lock;
  159. ktime_t period;
  160. u64 quota, runtime;
  161. s64 hierarchical_quota;
  162. u64 runtime_expires;
  163. int idle, timer_active;
  164. struct hrtimer period_timer, slack_timer;
  165. struct list_head throttled_cfs_rq;
  166. /* statistics */
  167. int nr_periods, nr_throttled;
  168. u64 throttled_time;
  169. #endif
  170. };
  171. /* task group related information */
  172. struct task_group {
  173. struct cgroup_subsys_state css;
  174. #ifdef CONFIG_FAIR_GROUP_SCHED
  175. /* schedulable entities of this group on each cpu */
  176. struct sched_entity **se;
  177. /* runqueue "owned" by this group on each cpu */
  178. struct cfs_rq **cfs_rq;
  179. unsigned long shares;
  180. #ifdef CONFIG_SMP
  181. atomic_long_t load_avg;
  182. atomic_t runnable_avg;
  183. #endif
  184. #endif
  185. #ifdef CONFIG_RT_GROUP_SCHED
  186. struct sched_rt_entity **rt_se;
  187. struct rt_rq **rt_rq;
  188. struct rt_bandwidth rt_bandwidth;
  189. #endif
  190. struct rcu_head rcu;
  191. struct list_head list;
  192. struct task_group *parent;
  193. struct list_head siblings;
  194. struct list_head children;
  195. #ifdef CONFIG_SCHED_AUTOGROUP
  196. struct autogroup *autogroup;
  197. #endif
  198. struct cfs_bandwidth cfs_bandwidth;
  199. };
  200. #ifdef CONFIG_FAIR_GROUP_SCHED
  201. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  202. /*
  203. * A weight of 0 or 1 can cause arithmetics problems.
  204. * A weight of a cfs_rq is the sum of weights of which entities
  205. * are queued on this cfs_rq, so a weight of a entity should not be
  206. * too large, so as the shares value of a task group.
  207. * (The default weight is 1024 - so there's no practical
  208. * limitation from this.)
  209. */
  210. #define MIN_SHARES (1UL << 1)
  211. #define MAX_SHARES (1UL << 18)
  212. #endif
  213. typedef int (*tg_visitor)(struct task_group *, void *);
  214. extern int walk_tg_tree_from(struct task_group *from,
  215. tg_visitor down, tg_visitor up, void *data);
  216. /*
  217. * Iterate the full tree, calling @down when first entering a node and @up when
  218. * leaving it for the final time.
  219. *
  220. * Caller must hold rcu_lock or sufficient equivalent.
  221. */
  222. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  223. {
  224. return walk_tg_tree_from(&root_task_group, down, up, data);
  225. }
  226. extern int tg_nop(struct task_group *tg, void *data);
  227. extern void free_fair_sched_group(struct task_group *tg);
  228. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  229. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  230. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  231. struct sched_entity *se, int cpu,
  232. struct sched_entity *parent);
  233. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  234. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  235. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  236. extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
  237. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  238. extern void free_rt_sched_group(struct task_group *tg);
  239. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  240. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  241. struct sched_rt_entity *rt_se, int cpu,
  242. struct sched_rt_entity *parent);
  243. extern struct task_group *sched_create_group(struct task_group *parent);
  244. extern void sched_online_group(struct task_group *tg,
  245. struct task_group *parent);
  246. extern void sched_destroy_group(struct task_group *tg);
  247. extern void sched_offline_group(struct task_group *tg);
  248. extern void sched_move_task(struct task_struct *tsk);
  249. #ifdef CONFIG_FAIR_GROUP_SCHED
  250. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  251. #endif
  252. #else /* CONFIG_CGROUP_SCHED */
  253. struct cfs_bandwidth { };
  254. #endif /* CONFIG_CGROUP_SCHED */
  255. /* CFS-related fields in a runqueue */
  256. struct cfs_rq {
  257. struct load_weight load;
  258. unsigned int nr_running, h_nr_running;
  259. u64 exec_clock;
  260. u64 min_vruntime;
  261. #ifndef CONFIG_64BIT
  262. u64 min_vruntime_copy;
  263. #endif
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. /*
  267. * 'curr' points to currently running entity on this cfs_rq.
  268. * It is set to NULL otherwise (i.e when none are currently running).
  269. */
  270. struct sched_entity *curr, *next, *last, *skip;
  271. #ifdef CONFIG_SCHED_DEBUG
  272. unsigned int nr_spread_over;
  273. #endif
  274. #ifdef CONFIG_SMP
  275. /*
  276. * CFS Load tracking
  277. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  278. * This allows for the description of both thread and group usage (in
  279. * the FAIR_GROUP_SCHED case).
  280. */
  281. unsigned long runnable_load_avg, blocked_load_avg;
  282. atomic64_t decay_counter;
  283. u64 last_decay;
  284. atomic_long_t removed_load;
  285. #ifdef CONFIG_FAIR_GROUP_SCHED
  286. /* Required to track per-cpu representation of a task_group */
  287. u32 tg_runnable_contrib;
  288. unsigned long tg_load_contrib;
  289. /*
  290. * h_load = weight * f(tg)
  291. *
  292. * Where f(tg) is the recursive weight fraction assigned to
  293. * this group.
  294. */
  295. unsigned long h_load;
  296. u64 last_h_load_update;
  297. struct sched_entity *h_load_next;
  298. #endif /* CONFIG_FAIR_GROUP_SCHED */
  299. #endif /* CONFIG_SMP */
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  302. /*
  303. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  304. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  305. * (like users, containers etc.)
  306. *
  307. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  308. * list is used during load balance.
  309. */
  310. int on_list;
  311. struct list_head leaf_cfs_rq_list;
  312. struct task_group *tg; /* group that "owns" this runqueue */
  313. #ifdef CONFIG_CFS_BANDWIDTH
  314. int runtime_enabled;
  315. u64 runtime_expires;
  316. s64 runtime_remaining;
  317. u64 throttled_clock, throttled_clock_task;
  318. u64 throttled_clock_task_time;
  319. int throttled, throttle_count;
  320. struct list_head throttled_list;
  321. #endif /* CONFIG_CFS_BANDWIDTH */
  322. #endif /* CONFIG_FAIR_GROUP_SCHED */
  323. };
  324. static inline int rt_bandwidth_enabled(void)
  325. {
  326. return sysctl_sched_rt_runtime >= 0;
  327. }
  328. /* Real-Time classes' related field in a runqueue: */
  329. struct rt_rq {
  330. struct rt_prio_array active;
  331. unsigned int rt_nr_running;
  332. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  333. struct {
  334. int curr; /* highest queued rt task prio */
  335. #ifdef CONFIG_SMP
  336. int next; /* next highest */
  337. #endif
  338. } highest_prio;
  339. #endif
  340. #ifdef CONFIG_SMP
  341. unsigned long rt_nr_migratory;
  342. unsigned long rt_nr_total;
  343. int overloaded;
  344. struct plist_head pushable_tasks;
  345. #endif
  346. int rt_queued;
  347. int rt_throttled;
  348. u64 rt_time;
  349. u64 rt_runtime;
  350. /* Nests inside the rq lock: */
  351. raw_spinlock_t rt_runtime_lock;
  352. #ifdef CONFIG_RT_GROUP_SCHED
  353. unsigned long rt_nr_boosted;
  354. struct rq *rq;
  355. struct task_group *tg;
  356. #endif
  357. };
  358. /* Deadline class' related fields in a runqueue */
  359. struct dl_rq {
  360. /* runqueue is an rbtree, ordered by deadline */
  361. struct rb_root rb_root;
  362. struct rb_node *rb_leftmost;
  363. unsigned long dl_nr_running;
  364. #ifdef CONFIG_SMP
  365. /*
  366. * Deadline values of the currently executing and the
  367. * earliest ready task on this rq. Caching these facilitates
  368. * the decision wether or not a ready but not running task
  369. * should migrate somewhere else.
  370. */
  371. struct {
  372. u64 curr;
  373. u64 next;
  374. } earliest_dl;
  375. unsigned long dl_nr_migratory;
  376. int overloaded;
  377. /*
  378. * Tasks on this rq that can be pushed away. They are kept in
  379. * an rb-tree, ordered by tasks' deadlines, with caching
  380. * of the leftmost (earliest deadline) element.
  381. */
  382. struct rb_root pushable_dl_tasks_root;
  383. struct rb_node *pushable_dl_tasks_leftmost;
  384. #else
  385. struct dl_bw dl_bw;
  386. #endif
  387. };
  388. #ifdef CONFIG_SMP
  389. /*
  390. * We add the notion of a root-domain which will be used to define per-domain
  391. * variables. Each exclusive cpuset essentially defines an island domain by
  392. * fully partitioning the member cpus from any other cpuset. Whenever a new
  393. * exclusive cpuset is created, we also create and attach a new root-domain
  394. * object.
  395. *
  396. */
  397. struct root_domain {
  398. atomic_t refcount;
  399. atomic_t rto_count;
  400. struct rcu_head rcu;
  401. cpumask_var_t span;
  402. cpumask_var_t online;
  403. /* Indicate more than one runnable task for any CPU */
  404. bool overload;
  405. /*
  406. * The bit corresponding to a CPU gets set here if such CPU has more
  407. * than one runnable -deadline task (as it is below for RT tasks).
  408. */
  409. cpumask_var_t dlo_mask;
  410. atomic_t dlo_count;
  411. struct dl_bw dl_bw;
  412. struct cpudl cpudl;
  413. /*
  414. * The "RT overload" flag: it gets set if a CPU has more than
  415. * one runnable RT task.
  416. */
  417. cpumask_var_t rto_mask;
  418. struct cpupri cpupri;
  419. };
  420. extern struct root_domain def_root_domain;
  421. #endif /* CONFIG_SMP */
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. raw_spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned int nr_running;
  437. #ifdef CONFIG_NUMA_BALANCING
  438. unsigned int nr_numa_running;
  439. unsigned int nr_preferred_running;
  440. #endif
  441. #define CPU_LOAD_IDX_MAX 5
  442. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  443. unsigned long last_load_update_tick;
  444. #ifdef CONFIG_NO_HZ_COMMON
  445. u64 nohz_stamp;
  446. unsigned long nohz_flags;
  447. #endif
  448. #ifdef CONFIG_NO_HZ_FULL
  449. unsigned long last_sched_tick;
  450. #endif
  451. int skip_clock_update;
  452. /* capture load from *all* tasks on this cpu: */
  453. struct load_weight load;
  454. unsigned long nr_load_updates;
  455. u64 nr_switches;
  456. struct cfs_rq cfs;
  457. struct rt_rq rt;
  458. struct dl_rq dl;
  459. #ifdef CONFIG_FAIR_GROUP_SCHED
  460. /* list of leaf cfs_rq on this cpu: */
  461. struct list_head leaf_cfs_rq_list;
  462. struct sched_avg avg;
  463. #endif /* CONFIG_FAIR_GROUP_SCHED */
  464. /*
  465. * This is part of a global counter where only the total sum
  466. * over all CPUs matters. A task can increase this counter on
  467. * one CPU and if it got migrated afterwards it may decrease
  468. * it on another CPU. Always updated under the runqueue lock:
  469. */
  470. unsigned long nr_uninterruptible;
  471. struct task_struct *curr, *idle, *stop;
  472. unsigned long next_balance;
  473. struct mm_struct *prev_mm;
  474. u64 clock;
  475. u64 clock_task;
  476. atomic_t nr_iowait;
  477. #ifdef CONFIG_SMP
  478. struct root_domain *rd;
  479. struct sched_domain *sd;
  480. unsigned long cpu_capacity;
  481. unsigned char idle_balance;
  482. /* For active balancing */
  483. int post_schedule;
  484. int active_balance;
  485. int push_cpu;
  486. struct cpu_stop_work active_balance_work;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. struct list_head cfs_tasks;
  491. u64 rt_avg;
  492. u64 age_stamp;
  493. u64 idle_stamp;
  494. u64 avg_idle;
  495. /* This is used to determine avg_idle's max value */
  496. u64 max_idle_balance_cost;
  497. #endif
  498. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  499. u64 prev_irq_time;
  500. #endif
  501. #ifdef CONFIG_PARAVIRT
  502. u64 prev_steal_time;
  503. #endif
  504. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  505. u64 prev_steal_time_rq;
  506. #endif
  507. /* calc_load related fields */
  508. unsigned long calc_load_update;
  509. long calc_load_active;
  510. #ifdef CONFIG_SCHED_HRTICK
  511. #ifdef CONFIG_SMP
  512. int hrtick_csd_pending;
  513. struct call_single_data hrtick_csd;
  514. #endif
  515. struct hrtimer hrtick_timer;
  516. #endif
  517. #ifdef CONFIG_SCHEDSTATS
  518. /* latency stats */
  519. struct sched_info rq_sched_info;
  520. unsigned long long rq_cpu_time;
  521. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  522. /* sys_sched_yield() stats */
  523. unsigned int yld_count;
  524. /* schedule() stats */
  525. unsigned int sched_count;
  526. unsigned int sched_goidle;
  527. /* try_to_wake_up() stats */
  528. unsigned int ttwu_count;
  529. unsigned int ttwu_local;
  530. #endif
  531. #ifdef CONFIG_SMP
  532. struct llist_head wake_list;
  533. #endif
  534. #ifdef CONFIG_CPU_IDLE
  535. /* Must be inspected within a rcu lock section */
  536. struct cpuidle_state *idle_state;
  537. #endif
  538. };
  539. static inline int cpu_of(struct rq *rq)
  540. {
  541. #ifdef CONFIG_SMP
  542. return rq->cpu;
  543. #else
  544. return 0;
  545. #endif
  546. }
  547. DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  548. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  549. #define this_rq() this_cpu_ptr(&runqueues)
  550. #define task_rq(p) cpu_rq(task_cpu(p))
  551. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  552. #define raw_rq() raw_cpu_ptr(&runqueues)
  553. static inline u64 rq_clock(struct rq *rq)
  554. {
  555. return rq->clock;
  556. }
  557. static inline u64 rq_clock_task(struct rq *rq)
  558. {
  559. return rq->clock_task;
  560. }
  561. #ifdef CONFIG_NUMA_BALANCING
  562. extern void sched_setnuma(struct task_struct *p, int node);
  563. extern int migrate_task_to(struct task_struct *p, int cpu);
  564. extern int migrate_swap(struct task_struct *, struct task_struct *);
  565. #endif /* CONFIG_NUMA_BALANCING */
  566. #ifdef CONFIG_SMP
  567. extern void sched_ttwu_pending(void);
  568. #define rcu_dereference_check_sched_domain(p) \
  569. rcu_dereference_check((p), \
  570. lockdep_is_held(&sched_domains_mutex))
  571. /*
  572. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  573. * See detach_destroy_domains: synchronize_sched for details.
  574. *
  575. * The domain tree of any CPU may only be accessed from within
  576. * preempt-disabled sections.
  577. */
  578. #define for_each_domain(cpu, __sd) \
  579. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  580. __sd; __sd = __sd->parent)
  581. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  582. /**
  583. * highest_flag_domain - Return highest sched_domain containing flag.
  584. * @cpu: The cpu whose highest level of sched domain is to
  585. * be returned.
  586. * @flag: The flag to check for the highest sched_domain
  587. * for the given cpu.
  588. *
  589. * Returns the highest sched_domain of a cpu which contains the given flag.
  590. */
  591. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  592. {
  593. struct sched_domain *sd, *hsd = NULL;
  594. for_each_domain(cpu, sd) {
  595. if (!(sd->flags & flag))
  596. break;
  597. hsd = sd;
  598. }
  599. return hsd;
  600. }
  601. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  602. {
  603. struct sched_domain *sd;
  604. for_each_domain(cpu, sd) {
  605. if (sd->flags & flag)
  606. break;
  607. }
  608. return sd;
  609. }
  610. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  611. DECLARE_PER_CPU(int, sd_llc_size);
  612. DECLARE_PER_CPU(int, sd_llc_id);
  613. DECLARE_PER_CPU(struct sched_domain *, sd_numa);
  614. DECLARE_PER_CPU(struct sched_domain *, sd_busy);
  615. DECLARE_PER_CPU(struct sched_domain *, sd_asym);
  616. struct sched_group_capacity {
  617. atomic_t ref;
  618. /*
  619. * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
  620. * for a single CPU.
  621. */
  622. unsigned int capacity, capacity_orig;
  623. unsigned long next_update;
  624. int imbalance; /* XXX unrelated to capacity but shared group state */
  625. /*
  626. * Number of busy cpus in this group.
  627. */
  628. atomic_t nr_busy_cpus;
  629. unsigned long cpumask[0]; /* iteration mask */
  630. };
  631. struct sched_group {
  632. struct sched_group *next; /* Must be a circular list */
  633. atomic_t ref;
  634. unsigned int group_weight;
  635. struct sched_group_capacity *sgc;
  636. /*
  637. * The CPUs this group covers.
  638. *
  639. * NOTE: this field is variable length. (Allocated dynamically
  640. * by attaching extra space to the end of the structure,
  641. * depending on how many CPUs the kernel has booted up with)
  642. */
  643. unsigned long cpumask[0];
  644. };
  645. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  646. {
  647. return to_cpumask(sg->cpumask);
  648. }
  649. /*
  650. * cpumask masking which cpus in the group are allowed to iterate up the domain
  651. * tree.
  652. */
  653. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  654. {
  655. return to_cpumask(sg->sgc->cpumask);
  656. }
  657. /**
  658. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  659. * @group: The group whose first cpu is to be returned.
  660. */
  661. static inline unsigned int group_first_cpu(struct sched_group *group)
  662. {
  663. return cpumask_first(sched_group_cpus(group));
  664. }
  665. extern int group_balance_cpu(struct sched_group *sg);
  666. #else
  667. static inline void sched_ttwu_pending(void) { }
  668. #endif /* CONFIG_SMP */
  669. #include "stats.h"
  670. #include "auto_group.h"
  671. #ifdef CONFIG_CGROUP_SCHED
  672. /*
  673. * Return the group to which this tasks belongs.
  674. *
  675. * We cannot use task_css() and friends because the cgroup subsystem
  676. * changes that value before the cgroup_subsys::attach() method is called,
  677. * therefore we cannot pin it and might observe the wrong value.
  678. *
  679. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  680. * core changes this before calling sched_move_task().
  681. *
  682. * Instead we use a 'copy' which is updated from sched_move_task() while
  683. * holding both task_struct::pi_lock and rq::lock.
  684. */
  685. static inline struct task_group *task_group(struct task_struct *p)
  686. {
  687. return p->sched_task_group;
  688. }
  689. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  690. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  691. {
  692. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  693. struct task_group *tg = task_group(p);
  694. #endif
  695. #ifdef CONFIG_FAIR_GROUP_SCHED
  696. p->se.cfs_rq = tg->cfs_rq[cpu];
  697. p->se.parent = tg->se[cpu];
  698. #endif
  699. #ifdef CONFIG_RT_GROUP_SCHED
  700. p->rt.rt_rq = tg->rt_rq[cpu];
  701. p->rt.parent = tg->rt_se[cpu];
  702. #endif
  703. }
  704. #else /* CONFIG_CGROUP_SCHED */
  705. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  706. static inline struct task_group *task_group(struct task_struct *p)
  707. {
  708. return NULL;
  709. }
  710. #endif /* CONFIG_CGROUP_SCHED */
  711. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  712. {
  713. set_task_rq(p, cpu);
  714. #ifdef CONFIG_SMP
  715. /*
  716. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  717. * successfuly executed on another CPU. We must ensure that updates of
  718. * per-task data have been completed by this moment.
  719. */
  720. smp_wmb();
  721. task_thread_info(p)->cpu = cpu;
  722. p->wake_cpu = cpu;
  723. #endif
  724. }
  725. /*
  726. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  727. */
  728. #ifdef CONFIG_SCHED_DEBUG
  729. # include <linux/static_key.h>
  730. # define const_debug __read_mostly
  731. #else
  732. # define const_debug const
  733. #endif
  734. extern const_debug unsigned int sysctl_sched_features;
  735. #define SCHED_FEAT(name, enabled) \
  736. __SCHED_FEAT_##name ,
  737. enum {
  738. #include "features.h"
  739. __SCHED_FEAT_NR,
  740. };
  741. #undef SCHED_FEAT
  742. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  743. #define SCHED_FEAT(name, enabled) \
  744. static __always_inline bool static_branch_##name(struct static_key *key) \
  745. { \
  746. return static_key_##enabled(key); \
  747. }
  748. #include "features.h"
  749. #undef SCHED_FEAT
  750. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  751. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  752. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  753. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  754. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  755. #ifdef CONFIG_NUMA_BALANCING
  756. #define sched_feat_numa(x) sched_feat(x)
  757. #ifdef CONFIG_SCHED_DEBUG
  758. #define numabalancing_enabled sched_feat_numa(NUMA)
  759. #else
  760. extern bool numabalancing_enabled;
  761. #endif /* CONFIG_SCHED_DEBUG */
  762. #else
  763. #define sched_feat_numa(x) (0)
  764. #define numabalancing_enabled (0)
  765. #endif /* CONFIG_NUMA_BALANCING */
  766. static inline u64 global_rt_period(void)
  767. {
  768. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  769. }
  770. static inline u64 global_rt_runtime(void)
  771. {
  772. if (sysctl_sched_rt_runtime < 0)
  773. return RUNTIME_INF;
  774. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  775. }
  776. static inline int task_current(struct rq *rq, struct task_struct *p)
  777. {
  778. return rq->curr == p;
  779. }
  780. static inline int task_running(struct rq *rq, struct task_struct *p)
  781. {
  782. #ifdef CONFIG_SMP
  783. return p->on_cpu;
  784. #else
  785. return task_current(rq, p);
  786. #endif
  787. }
  788. static inline int task_on_rq_queued(struct task_struct *p)
  789. {
  790. return p->on_rq == TASK_ON_RQ_QUEUED;
  791. }
  792. static inline int task_on_rq_migrating(struct task_struct *p)
  793. {
  794. return p->on_rq == TASK_ON_RQ_MIGRATING;
  795. }
  796. #ifndef prepare_arch_switch
  797. # define prepare_arch_switch(next) do { } while (0)
  798. #endif
  799. #ifndef finish_arch_switch
  800. # define finish_arch_switch(prev) do { } while (0)
  801. #endif
  802. #ifndef finish_arch_post_lock_switch
  803. # define finish_arch_post_lock_switch() do { } while (0)
  804. #endif
  805. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  806. {
  807. #ifdef CONFIG_SMP
  808. /*
  809. * We can optimise this out completely for !SMP, because the
  810. * SMP rebalancing from interrupt is the only thing that cares
  811. * here.
  812. */
  813. next->on_cpu = 1;
  814. #endif
  815. }
  816. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  817. {
  818. #ifdef CONFIG_SMP
  819. /*
  820. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  821. * We must ensure this doesn't happen until the switch is completely
  822. * finished.
  823. */
  824. smp_wmb();
  825. prev->on_cpu = 0;
  826. #endif
  827. #ifdef CONFIG_DEBUG_SPINLOCK
  828. /* this is a valid case when another task releases the spinlock */
  829. rq->lock.owner = current;
  830. #endif
  831. /*
  832. * If we are tracking spinlock dependencies then we have to
  833. * fix up the runqueue lock - which gets 'carried over' from
  834. * prev into current:
  835. */
  836. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  837. raw_spin_unlock_irq(&rq->lock);
  838. }
  839. /*
  840. * wake flags
  841. */
  842. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  843. #define WF_FORK 0x02 /* child wakeup after fork */
  844. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  845. /*
  846. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  847. * of tasks with abnormal "nice" values across CPUs the contribution that
  848. * each task makes to its run queue's load is weighted according to its
  849. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  850. * scaled version of the new time slice allocation that they receive on time
  851. * slice expiry etc.
  852. */
  853. #define WEIGHT_IDLEPRIO 3
  854. #define WMULT_IDLEPRIO 1431655765
  855. /*
  856. * Nice levels are multiplicative, with a gentle 10% change for every
  857. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  858. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  859. * that remained on nice 0.
  860. *
  861. * The "10% effect" is relative and cumulative: from _any_ nice level,
  862. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  863. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  864. * If a task goes up by ~10% and another task goes down by ~10% then
  865. * the relative distance between them is ~25%.)
  866. */
  867. static const int prio_to_weight[40] = {
  868. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  869. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  870. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  871. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  872. /* 0 */ 1024, 820, 655, 526, 423,
  873. /* 5 */ 335, 272, 215, 172, 137,
  874. /* 10 */ 110, 87, 70, 56, 45,
  875. /* 15 */ 36, 29, 23, 18, 15,
  876. };
  877. /*
  878. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  879. *
  880. * In cases where the weight does not change often, we can use the
  881. * precalculated inverse to speed up arithmetics by turning divisions
  882. * into multiplications:
  883. */
  884. static const u32 prio_to_wmult[40] = {
  885. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  886. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  887. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  888. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  889. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  890. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  891. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  892. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  893. };
  894. #define ENQUEUE_WAKEUP 1
  895. #define ENQUEUE_HEAD 2
  896. #ifdef CONFIG_SMP
  897. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  898. #else
  899. #define ENQUEUE_WAKING 0
  900. #endif
  901. #define ENQUEUE_REPLENISH 8
  902. #define DEQUEUE_SLEEP 1
  903. #define RETRY_TASK ((void *)-1UL)
  904. struct sched_class {
  905. const struct sched_class *next;
  906. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  907. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  908. void (*yield_task) (struct rq *rq);
  909. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  910. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  911. /*
  912. * It is the responsibility of the pick_next_task() method that will
  913. * return the next task to call put_prev_task() on the @prev task or
  914. * something equivalent.
  915. *
  916. * May return RETRY_TASK when it finds a higher prio class has runnable
  917. * tasks.
  918. */
  919. struct task_struct * (*pick_next_task) (struct rq *rq,
  920. struct task_struct *prev);
  921. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  922. #ifdef CONFIG_SMP
  923. int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
  924. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  925. void (*post_schedule) (struct rq *this_rq);
  926. void (*task_waking) (struct task_struct *task);
  927. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  928. void (*set_cpus_allowed)(struct task_struct *p,
  929. const struct cpumask *newmask);
  930. void (*rq_online)(struct rq *rq);
  931. void (*rq_offline)(struct rq *rq);
  932. #endif
  933. void (*set_curr_task) (struct rq *rq);
  934. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  935. void (*task_fork) (struct task_struct *p);
  936. void (*task_dead) (struct task_struct *p);
  937. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  938. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  939. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  940. int oldprio);
  941. unsigned int (*get_rr_interval) (struct rq *rq,
  942. struct task_struct *task);
  943. #ifdef CONFIG_FAIR_GROUP_SCHED
  944. void (*task_move_group) (struct task_struct *p, int on_rq);
  945. #endif
  946. };
  947. static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
  948. {
  949. prev->sched_class->put_prev_task(rq, prev);
  950. }
  951. #define sched_class_highest (&stop_sched_class)
  952. #define for_each_class(class) \
  953. for (class = sched_class_highest; class; class = class->next)
  954. extern const struct sched_class stop_sched_class;
  955. extern const struct sched_class dl_sched_class;
  956. extern const struct sched_class rt_sched_class;
  957. extern const struct sched_class fair_sched_class;
  958. extern const struct sched_class idle_sched_class;
  959. #ifdef CONFIG_SMP
  960. extern void update_group_capacity(struct sched_domain *sd, int cpu);
  961. extern void trigger_load_balance(struct rq *rq);
  962. extern void idle_enter_fair(struct rq *this_rq);
  963. extern void idle_exit_fair(struct rq *this_rq);
  964. #else
  965. static inline void idle_enter_fair(struct rq *rq) { }
  966. static inline void idle_exit_fair(struct rq *rq) { }
  967. #endif
  968. #ifdef CONFIG_CPU_IDLE
  969. static inline void idle_set_state(struct rq *rq,
  970. struct cpuidle_state *idle_state)
  971. {
  972. rq->idle_state = idle_state;
  973. }
  974. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  975. {
  976. WARN_ON(!rcu_read_lock_held());
  977. return rq->idle_state;
  978. }
  979. #else
  980. static inline void idle_set_state(struct rq *rq,
  981. struct cpuidle_state *idle_state)
  982. {
  983. }
  984. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  985. {
  986. return NULL;
  987. }
  988. #endif
  989. extern void sysrq_sched_debug_show(void);
  990. extern void sched_init_granularity(void);
  991. extern void update_max_interval(void);
  992. extern void init_sched_dl_class(void);
  993. extern void init_sched_rt_class(void);
  994. extern void init_sched_fair_class(void);
  995. extern void init_sched_dl_class(void);
  996. extern void resched_curr(struct rq *rq);
  997. extern void resched_cpu(int cpu);
  998. extern struct rt_bandwidth def_rt_bandwidth;
  999. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  1000. extern struct dl_bandwidth def_dl_bandwidth;
  1001. extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
  1002. extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
  1003. unsigned long to_ratio(u64 period, u64 runtime);
  1004. extern void update_idle_cpu_load(struct rq *this_rq);
  1005. extern void init_task_runnable_average(struct task_struct *p);
  1006. static inline void add_nr_running(struct rq *rq, unsigned count)
  1007. {
  1008. unsigned prev_nr = rq->nr_running;
  1009. rq->nr_running = prev_nr + count;
  1010. if (prev_nr < 2 && rq->nr_running >= 2) {
  1011. #ifdef CONFIG_SMP
  1012. if (!rq->rd->overload)
  1013. rq->rd->overload = true;
  1014. #endif
  1015. #ifdef CONFIG_NO_HZ_FULL
  1016. if (tick_nohz_full_cpu(rq->cpu)) {
  1017. /*
  1018. * Tick is needed if more than one task runs on a CPU.
  1019. * Send the target an IPI to kick it out of nohz mode.
  1020. *
  1021. * We assume that IPI implies full memory barrier and the
  1022. * new value of rq->nr_running is visible on reception
  1023. * from the target.
  1024. */
  1025. tick_nohz_full_kick_cpu(rq->cpu);
  1026. }
  1027. #endif
  1028. }
  1029. }
  1030. static inline void sub_nr_running(struct rq *rq, unsigned count)
  1031. {
  1032. rq->nr_running -= count;
  1033. }
  1034. static inline void rq_last_tick_reset(struct rq *rq)
  1035. {
  1036. #ifdef CONFIG_NO_HZ_FULL
  1037. rq->last_sched_tick = jiffies;
  1038. #endif
  1039. }
  1040. extern void update_rq_clock(struct rq *rq);
  1041. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  1042. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  1043. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  1044. extern const_debug unsigned int sysctl_sched_time_avg;
  1045. extern const_debug unsigned int sysctl_sched_nr_migrate;
  1046. extern const_debug unsigned int sysctl_sched_migration_cost;
  1047. static inline u64 sched_avg_period(void)
  1048. {
  1049. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1050. }
  1051. #ifdef CONFIG_SCHED_HRTICK
  1052. /*
  1053. * Use hrtick when:
  1054. * - enabled by features
  1055. * - hrtimer is actually high res
  1056. */
  1057. static inline int hrtick_enabled(struct rq *rq)
  1058. {
  1059. if (!sched_feat(HRTICK))
  1060. return 0;
  1061. if (!cpu_active(cpu_of(rq)))
  1062. return 0;
  1063. return hrtimer_is_hres_active(&rq->hrtick_timer);
  1064. }
  1065. void hrtick_start(struct rq *rq, u64 delay);
  1066. #else
  1067. static inline int hrtick_enabled(struct rq *rq)
  1068. {
  1069. return 0;
  1070. }
  1071. #endif /* CONFIG_SCHED_HRTICK */
  1072. #ifdef CONFIG_SMP
  1073. extern void sched_avg_update(struct rq *rq);
  1074. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1075. {
  1076. rq->rt_avg += rt_delta;
  1077. sched_avg_update(rq);
  1078. }
  1079. #else
  1080. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  1081. static inline void sched_avg_update(struct rq *rq) { }
  1082. #endif
  1083. extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
  1084. #ifdef CONFIG_SMP
  1085. #ifdef CONFIG_PREEMPT
  1086. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1087. /*
  1088. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1089. * way at the expense of forcing extra atomic operations in all
  1090. * invocations. This assures that the double_lock is acquired using the
  1091. * same underlying policy as the spinlock_t on this architecture, which
  1092. * reduces latency compared to the unfair variant below. However, it
  1093. * also adds more overhead and therefore may reduce throughput.
  1094. */
  1095. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1096. __releases(this_rq->lock)
  1097. __acquires(busiest->lock)
  1098. __acquires(this_rq->lock)
  1099. {
  1100. raw_spin_unlock(&this_rq->lock);
  1101. double_rq_lock(this_rq, busiest);
  1102. return 1;
  1103. }
  1104. #else
  1105. /*
  1106. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1107. * latency by eliminating extra atomic operations when the locks are
  1108. * already in proper order on entry. This favors lower cpu-ids and will
  1109. * grant the double lock to lower cpus over higher ids under contention,
  1110. * regardless of entry order into the function.
  1111. */
  1112. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1113. __releases(this_rq->lock)
  1114. __acquires(busiest->lock)
  1115. __acquires(this_rq->lock)
  1116. {
  1117. int ret = 0;
  1118. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1119. if (busiest < this_rq) {
  1120. raw_spin_unlock(&this_rq->lock);
  1121. raw_spin_lock(&busiest->lock);
  1122. raw_spin_lock_nested(&this_rq->lock,
  1123. SINGLE_DEPTH_NESTING);
  1124. ret = 1;
  1125. } else
  1126. raw_spin_lock_nested(&busiest->lock,
  1127. SINGLE_DEPTH_NESTING);
  1128. }
  1129. return ret;
  1130. }
  1131. #endif /* CONFIG_PREEMPT */
  1132. /*
  1133. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1134. */
  1135. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1136. {
  1137. if (unlikely(!irqs_disabled())) {
  1138. /* printk() doesn't work good under rq->lock */
  1139. raw_spin_unlock(&this_rq->lock);
  1140. BUG_ON(1);
  1141. }
  1142. return _double_lock_balance(this_rq, busiest);
  1143. }
  1144. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1145. __releases(busiest->lock)
  1146. {
  1147. raw_spin_unlock(&busiest->lock);
  1148. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1149. }
  1150. static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
  1151. {
  1152. if (l1 > l2)
  1153. swap(l1, l2);
  1154. spin_lock(l1);
  1155. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1156. }
  1157. static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
  1158. {
  1159. if (l1 > l2)
  1160. swap(l1, l2);
  1161. spin_lock_irq(l1);
  1162. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1163. }
  1164. static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
  1165. {
  1166. if (l1 > l2)
  1167. swap(l1, l2);
  1168. raw_spin_lock(l1);
  1169. raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1170. }
  1171. /*
  1172. * double_rq_lock - safely lock two runqueues
  1173. *
  1174. * Note this does not disable interrupts like task_rq_lock,
  1175. * you need to do so manually before calling.
  1176. */
  1177. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1178. __acquires(rq1->lock)
  1179. __acquires(rq2->lock)
  1180. {
  1181. BUG_ON(!irqs_disabled());
  1182. if (rq1 == rq2) {
  1183. raw_spin_lock(&rq1->lock);
  1184. __acquire(rq2->lock); /* Fake it out ;) */
  1185. } else {
  1186. if (rq1 < rq2) {
  1187. raw_spin_lock(&rq1->lock);
  1188. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1189. } else {
  1190. raw_spin_lock(&rq2->lock);
  1191. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1192. }
  1193. }
  1194. }
  1195. /*
  1196. * double_rq_unlock - safely unlock two runqueues
  1197. *
  1198. * Note this does not restore interrupts like task_rq_unlock,
  1199. * you need to do so manually after calling.
  1200. */
  1201. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1202. __releases(rq1->lock)
  1203. __releases(rq2->lock)
  1204. {
  1205. raw_spin_unlock(&rq1->lock);
  1206. if (rq1 != rq2)
  1207. raw_spin_unlock(&rq2->lock);
  1208. else
  1209. __release(rq2->lock);
  1210. }
  1211. #else /* CONFIG_SMP */
  1212. /*
  1213. * double_rq_lock - safely lock two runqueues
  1214. *
  1215. * Note this does not disable interrupts like task_rq_lock,
  1216. * you need to do so manually before calling.
  1217. */
  1218. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1219. __acquires(rq1->lock)
  1220. __acquires(rq2->lock)
  1221. {
  1222. BUG_ON(!irqs_disabled());
  1223. BUG_ON(rq1 != rq2);
  1224. raw_spin_lock(&rq1->lock);
  1225. __acquire(rq2->lock); /* Fake it out ;) */
  1226. }
  1227. /*
  1228. * double_rq_unlock - safely unlock two runqueues
  1229. *
  1230. * Note this does not restore interrupts like task_rq_unlock,
  1231. * you need to do so manually after calling.
  1232. */
  1233. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1234. __releases(rq1->lock)
  1235. __releases(rq2->lock)
  1236. {
  1237. BUG_ON(rq1 != rq2);
  1238. raw_spin_unlock(&rq1->lock);
  1239. __release(rq2->lock);
  1240. }
  1241. #endif
  1242. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1243. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1244. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1245. extern void print_rt_stats(struct seq_file *m, int cpu);
  1246. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1247. extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
  1248. extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
  1249. extern void cfs_bandwidth_usage_inc(void);
  1250. extern void cfs_bandwidth_usage_dec(void);
  1251. #ifdef CONFIG_NO_HZ_COMMON
  1252. enum rq_nohz_flag_bits {
  1253. NOHZ_TICK_STOPPED,
  1254. NOHZ_BALANCE_KICK,
  1255. };
  1256. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1257. #endif
  1258. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1259. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1260. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1261. #ifndef CONFIG_64BIT
  1262. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1263. static inline void irq_time_write_begin(void)
  1264. {
  1265. __this_cpu_inc(irq_time_seq.sequence);
  1266. smp_wmb();
  1267. }
  1268. static inline void irq_time_write_end(void)
  1269. {
  1270. smp_wmb();
  1271. __this_cpu_inc(irq_time_seq.sequence);
  1272. }
  1273. static inline u64 irq_time_read(int cpu)
  1274. {
  1275. u64 irq_time;
  1276. unsigned seq;
  1277. do {
  1278. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1279. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1280. per_cpu(cpu_hardirq_time, cpu);
  1281. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1282. return irq_time;
  1283. }
  1284. #else /* CONFIG_64BIT */
  1285. static inline void irq_time_write_begin(void)
  1286. {
  1287. }
  1288. static inline void irq_time_write_end(void)
  1289. {
  1290. }
  1291. static inline u64 irq_time_read(int cpu)
  1292. {
  1293. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1294. }
  1295. #endif /* CONFIG_64BIT */
  1296. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */