core.c 194 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. if (rq->skip_clock_update > 0)
  111. return;
  112. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  113. if (delta < 0)
  114. return;
  115. rq->clock += delta;
  116. update_rq_clock_task(rq, delta);
  117. }
  118. /*
  119. * Debugging: various feature bits
  120. */
  121. #define SCHED_FEAT(name, enabled) \
  122. (1UL << __SCHED_FEAT_##name) * enabled |
  123. const_debug unsigned int sysctl_sched_features =
  124. #include "features.h"
  125. 0;
  126. #undef SCHED_FEAT
  127. #ifdef CONFIG_SCHED_DEBUG
  128. #define SCHED_FEAT(name, enabled) \
  129. #name ,
  130. static const char * const sched_feat_names[] = {
  131. #include "features.h"
  132. };
  133. #undef SCHED_FEAT
  134. static int sched_feat_show(struct seq_file *m, void *v)
  135. {
  136. int i;
  137. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  138. if (!(sysctl_sched_features & (1UL << i)))
  139. seq_puts(m, "NO_");
  140. seq_printf(m, "%s ", sched_feat_names[i]);
  141. }
  142. seq_puts(m, "\n");
  143. return 0;
  144. }
  145. #ifdef HAVE_JUMP_LABEL
  146. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  147. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  148. #define SCHED_FEAT(name, enabled) \
  149. jump_label_key__##enabled ,
  150. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  151. #include "features.h"
  152. };
  153. #undef SCHED_FEAT
  154. static void sched_feat_disable(int i)
  155. {
  156. if (static_key_enabled(&sched_feat_keys[i]))
  157. static_key_slow_dec(&sched_feat_keys[i]);
  158. }
  159. static void sched_feat_enable(int i)
  160. {
  161. if (!static_key_enabled(&sched_feat_keys[i]))
  162. static_key_slow_inc(&sched_feat_keys[i]);
  163. }
  164. #else
  165. static void sched_feat_disable(int i) { };
  166. static void sched_feat_enable(int i) { };
  167. #endif /* HAVE_JUMP_LABEL */
  168. static int sched_feat_set(char *cmp)
  169. {
  170. int i;
  171. int neg = 0;
  172. if (strncmp(cmp, "NO_", 3) == 0) {
  173. neg = 1;
  174. cmp += 3;
  175. }
  176. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  177. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  178. if (neg) {
  179. sysctl_sched_features &= ~(1UL << i);
  180. sched_feat_disable(i);
  181. } else {
  182. sysctl_sched_features |= (1UL << i);
  183. sched_feat_enable(i);
  184. }
  185. break;
  186. }
  187. }
  188. return i;
  189. }
  190. static ssize_t
  191. sched_feat_write(struct file *filp, const char __user *ubuf,
  192. size_t cnt, loff_t *ppos)
  193. {
  194. char buf[64];
  195. char *cmp;
  196. int i;
  197. struct inode *inode;
  198. if (cnt > 63)
  199. cnt = 63;
  200. if (copy_from_user(&buf, ubuf, cnt))
  201. return -EFAULT;
  202. buf[cnt] = 0;
  203. cmp = strstrip(buf);
  204. /* Ensure the static_key remains in a consistent state */
  205. inode = file_inode(filp);
  206. mutex_lock(&inode->i_mutex);
  207. i = sched_feat_set(cmp);
  208. mutex_unlock(&inode->i_mutex);
  209. if (i == __SCHED_FEAT_NR)
  210. return -EINVAL;
  211. *ppos += cnt;
  212. return cnt;
  213. }
  214. static int sched_feat_open(struct inode *inode, struct file *filp)
  215. {
  216. return single_open(filp, sched_feat_show, NULL);
  217. }
  218. static const struct file_operations sched_feat_fops = {
  219. .open = sched_feat_open,
  220. .write = sched_feat_write,
  221. .read = seq_read,
  222. .llseek = seq_lseek,
  223. .release = single_release,
  224. };
  225. static __init int sched_init_debug(void)
  226. {
  227. debugfs_create_file("sched_features", 0644, NULL, NULL,
  228. &sched_feat_fops);
  229. return 0;
  230. }
  231. late_initcall(sched_init_debug);
  232. #endif /* CONFIG_SCHED_DEBUG */
  233. /*
  234. * Number of tasks to iterate in a single balance run.
  235. * Limited because this is done with IRQs disabled.
  236. */
  237. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  238. /*
  239. * period over which we average the RT time consumption, measured
  240. * in ms.
  241. *
  242. * default: 1s
  243. */
  244. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  245. /*
  246. * period over which we measure -rt task cpu usage in us.
  247. * default: 1s
  248. */
  249. unsigned int sysctl_sched_rt_period = 1000000;
  250. __read_mostly int scheduler_running;
  251. /*
  252. * part of the period that we allow rt tasks to run in us.
  253. * default: 0.95s
  254. */
  255. int sysctl_sched_rt_runtime = 950000;
  256. /*
  257. * __task_rq_lock - lock the rq @p resides on.
  258. */
  259. static inline struct rq *__task_rq_lock(struct task_struct *p)
  260. __acquires(rq->lock)
  261. {
  262. struct rq *rq;
  263. lockdep_assert_held(&p->pi_lock);
  264. for (;;) {
  265. rq = task_rq(p);
  266. raw_spin_lock(&rq->lock);
  267. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  268. return rq;
  269. raw_spin_unlock(&rq->lock);
  270. while (unlikely(task_on_rq_migrating(p)))
  271. cpu_relax();
  272. }
  273. }
  274. /*
  275. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  276. */
  277. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  278. __acquires(p->pi_lock)
  279. __acquires(rq->lock)
  280. {
  281. struct rq *rq;
  282. for (;;) {
  283. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  284. rq = task_rq(p);
  285. raw_spin_lock(&rq->lock);
  286. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  287. return rq;
  288. raw_spin_unlock(&rq->lock);
  289. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  290. while (unlikely(task_on_rq_migrating(p)))
  291. cpu_relax();
  292. }
  293. }
  294. static void __task_rq_unlock(struct rq *rq)
  295. __releases(rq->lock)
  296. {
  297. raw_spin_unlock(&rq->lock);
  298. }
  299. static inline void
  300. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  301. __releases(rq->lock)
  302. __releases(p->pi_lock)
  303. {
  304. raw_spin_unlock(&rq->lock);
  305. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  306. }
  307. /*
  308. * this_rq_lock - lock this runqueue and disable interrupts.
  309. */
  310. static struct rq *this_rq_lock(void)
  311. __acquires(rq->lock)
  312. {
  313. struct rq *rq;
  314. local_irq_disable();
  315. rq = this_rq();
  316. raw_spin_lock(&rq->lock);
  317. return rq;
  318. }
  319. #ifdef CONFIG_SCHED_HRTICK
  320. /*
  321. * Use HR-timers to deliver accurate preemption points.
  322. */
  323. static void hrtick_clear(struct rq *rq)
  324. {
  325. if (hrtimer_active(&rq->hrtick_timer))
  326. hrtimer_cancel(&rq->hrtick_timer);
  327. }
  328. /*
  329. * High-resolution timer tick.
  330. * Runs from hardirq context with interrupts disabled.
  331. */
  332. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  333. {
  334. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  335. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  336. raw_spin_lock(&rq->lock);
  337. update_rq_clock(rq);
  338. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  339. raw_spin_unlock(&rq->lock);
  340. return HRTIMER_NORESTART;
  341. }
  342. #ifdef CONFIG_SMP
  343. static int __hrtick_restart(struct rq *rq)
  344. {
  345. struct hrtimer *timer = &rq->hrtick_timer;
  346. ktime_t time = hrtimer_get_softexpires(timer);
  347. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  348. }
  349. /*
  350. * called from hardirq (IPI) context
  351. */
  352. static void __hrtick_start(void *arg)
  353. {
  354. struct rq *rq = arg;
  355. raw_spin_lock(&rq->lock);
  356. __hrtick_restart(rq);
  357. rq->hrtick_csd_pending = 0;
  358. raw_spin_unlock(&rq->lock);
  359. }
  360. /*
  361. * Called to set the hrtick timer state.
  362. *
  363. * called with rq->lock held and irqs disabled
  364. */
  365. void hrtick_start(struct rq *rq, u64 delay)
  366. {
  367. struct hrtimer *timer = &rq->hrtick_timer;
  368. ktime_t time;
  369. s64 delta;
  370. /*
  371. * Don't schedule slices shorter than 10000ns, that just
  372. * doesn't make sense and can cause timer DoS.
  373. */
  374. delta = max_t(s64, delay, 10000LL);
  375. time = ktime_add_ns(timer->base->get_time(), delta);
  376. hrtimer_set_expires(timer, time);
  377. if (rq == this_rq()) {
  378. __hrtick_restart(rq);
  379. } else if (!rq->hrtick_csd_pending) {
  380. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  381. rq->hrtick_csd_pending = 1;
  382. }
  383. }
  384. static int
  385. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  386. {
  387. int cpu = (int)(long)hcpu;
  388. switch (action) {
  389. case CPU_UP_CANCELED:
  390. case CPU_UP_CANCELED_FROZEN:
  391. case CPU_DOWN_PREPARE:
  392. case CPU_DOWN_PREPARE_FROZEN:
  393. case CPU_DEAD:
  394. case CPU_DEAD_FROZEN:
  395. hrtick_clear(cpu_rq(cpu));
  396. return NOTIFY_OK;
  397. }
  398. return NOTIFY_DONE;
  399. }
  400. static __init void init_hrtick(void)
  401. {
  402. hotcpu_notifier(hotplug_hrtick, 0);
  403. }
  404. #else
  405. /*
  406. * Called to set the hrtick timer state.
  407. *
  408. * called with rq->lock held and irqs disabled
  409. */
  410. void hrtick_start(struct rq *rq, u64 delay)
  411. {
  412. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  413. HRTIMER_MODE_REL_PINNED, 0);
  414. }
  415. static inline void init_hrtick(void)
  416. {
  417. }
  418. #endif /* CONFIG_SMP */
  419. static void init_rq_hrtick(struct rq *rq)
  420. {
  421. #ifdef CONFIG_SMP
  422. rq->hrtick_csd_pending = 0;
  423. rq->hrtick_csd.flags = 0;
  424. rq->hrtick_csd.func = __hrtick_start;
  425. rq->hrtick_csd.info = rq;
  426. #endif
  427. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  428. rq->hrtick_timer.function = hrtick;
  429. }
  430. #else /* CONFIG_SCHED_HRTICK */
  431. static inline void hrtick_clear(struct rq *rq)
  432. {
  433. }
  434. static inline void init_rq_hrtick(struct rq *rq)
  435. {
  436. }
  437. static inline void init_hrtick(void)
  438. {
  439. }
  440. #endif /* CONFIG_SCHED_HRTICK */
  441. /*
  442. * cmpxchg based fetch_or, macro so it works for different integer types
  443. */
  444. #define fetch_or(ptr, val) \
  445. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  446. for (;;) { \
  447. __old = cmpxchg((ptr), __val, __val | (val)); \
  448. if (__old == __val) \
  449. break; \
  450. __val = __old; \
  451. } \
  452. __old; \
  453. })
  454. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  455. /*
  456. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  457. * this avoids any races wrt polling state changes and thereby avoids
  458. * spurious IPIs.
  459. */
  460. static bool set_nr_and_not_polling(struct task_struct *p)
  461. {
  462. struct thread_info *ti = task_thread_info(p);
  463. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  464. }
  465. /*
  466. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  467. *
  468. * If this returns true, then the idle task promises to call
  469. * sched_ttwu_pending() and reschedule soon.
  470. */
  471. static bool set_nr_if_polling(struct task_struct *p)
  472. {
  473. struct thread_info *ti = task_thread_info(p);
  474. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  475. for (;;) {
  476. if (!(val & _TIF_POLLING_NRFLAG))
  477. return false;
  478. if (val & _TIF_NEED_RESCHED)
  479. return true;
  480. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  481. if (old == val)
  482. break;
  483. val = old;
  484. }
  485. return true;
  486. }
  487. #else
  488. static bool set_nr_and_not_polling(struct task_struct *p)
  489. {
  490. set_tsk_need_resched(p);
  491. return true;
  492. }
  493. #ifdef CONFIG_SMP
  494. static bool set_nr_if_polling(struct task_struct *p)
  495. {
  496. return false;
  497. }
  498. #endif
  499. #endif
  500. /*
  501. * resched_curr - mark rq's current task 'to be rescheduled now'.
  502. *
  503. * On UP this means the setting of the need_resched flag, on SMP it
  504. * might also involve a cross-CPU call to trigger the scheduler on
  505. * the target CPU.
  506. */
  507. void resched_curr(struct rq *rq)
  508. {
  509. struct task_struct *curr = rq->curr;
  510. int cpu;
  511. lockdep_assert_held(&rq->lock);
  512. if (test_tsk_need_resched(curr))
  513. return;
  514. cpu = cpu_of(rq);
  515. if (cpu == smp_processor_id()) {
  516. set_tsk_need_resched(curr);
  517. set_preempt_need_resched();
  518. return;
  519. }
  520. if (set_nr_and_not_polling(curr))
  521. smp_send_reschedule(cpu);
  522. else
  523. trace_sched_wake_idle_without_ipi(cpu);
  524. }
  525. void resched_cpu(int cpu)
  526. {
  527. struct rq *rq = cpu_rq(cpu);
  528. unsigned long flags;
  529. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  530. return;
  531. resched_curr(rq);
  532. raw_spin_unlock_irqrestore(&rq->lock, flags);
  533. }
  534. #ifdef CONFIG_SMP
  535. #ifdef CONFIG_NO_HZ_COMMON
  536. /*
  537. * In the semi idle case, use the nearest busy cpu for migrating timers
  538. * from an idle cpu. This is good for power-savings.
  539. *
  540. * We don't do similar optimization for completely idle system, as
  541. * selecting an idle cpu will add more delays to the timers than intended
  542. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  543. */
  544. int get_nohz_timer_target(int pinned)
  545. {
  546. int cpu = smp_processor_id();
  547. int i;
  548. struct sched_domain *sd;
  549. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  550. return cpu;
  551. rcu_read_lock();
  552. for_each_domain(cpu, sd) {
  553. for_each_cpu(i, sched_domain_span(sd)) {
  554. if (!idle_cpu(i)) {
  555. cpu = i;
  556. goto unlock;
  557. }
  558. }
  559. }
  560. unlock:
  561. rcu_read_unlock();
  562. return cpu;
  563. }
  564. /*
  565. * When add_timer_on() enqueues a timer into the timer wheel of an
  566. * idle CPU then this timer might expire before the next timer event
  567. * which is scheduled to wake up that CPU. In case of a completely
  568. * idle system the next event might even be infinite time into the
  569. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  570. * leaves the inner idle loop so the newly added timer is taken into
  571. * account when the CPU goes back to idle and evaluates the timer
  572. * wheel for the next timer event.
  573. */
  574. static void wake_up_idle_cpu(int cpu)
  575. {
  576. struct rq *rq = cpu_rq(cpu);
  577. if (cpu == smp_processor_id())
  578. return;
  579. if (set_nr_and_not_polling(rq->idle))
  580. smp_send_reschedule(cpu);
  581. else
  582. trace_sched_wake_idle_without_ipi(cpu);
  583. }
  584. static bool wake_up_full_nohz_cpu(int cpu)
  585. {
  586. /*
  587. * We just need the target to call irq_exit() and re-evaluate
  588. * the next tick. The nohz full kick at least implies that.
  589. * If needed we can still optimize that later with an
  590. * empty IRQ.
  591. */
  592. if (tick_nohz_full_cpu(cpu)) {
  593. if (cpu != smp_processor_id() ||
  594. tick_nohz_tick_stopped())
  595. tick_nohz_full_kick_cpu(cpu);
  596. return true;
  597. }
  598. return false;
  599. }
  600. void wake_up_nohz_cpu(int cpu)
  601. {
  602. if (!wake_up_full_nohz_cpu(cpu))
  603. wake_up_idle_cpu(cpu);
  604. }
  605. static inline bool got_nohz_idle_kick(void)
  606. {
  607. int cpu = smp_processor_id();
  608. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  609. return false;
  610. if (idle_cpu(cpu) && !need_resched())
  611. return true;
  612. /*
  613. * We can't run Idle Load Balance on this CPU for this time so we
  614. * cancel it and clear NOHZ_BALANCE_KICK
  615. */
  616. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  617. return false;
  618. }
  619. #else /* CONFIG_NO_HZ_COMMON */
  620. static inline bool got_nohz_idle_kick(void)
  621. {
  622. return false;
  623. }
  624. #endif /* CONFIG_NO_HZ_COMMON */
  625. #ifdef CONFIG_NO_HZ_FULL
  626. bool sched_can_stop_tick(void)
  627. {
  628. /*
  629. * More than one running task need preemption.
  630. * nr_running update is assumed to be visible
  631. * after IPI is sent from wakers.
  632. */
  633. if (this_rq()->nr_running > 1)
  634. return false;
  635. return true;
  636. }
  637. #endif /* CONFIG_NO_HZ_FULL */
  638. void sched_avg_update(struct rq *rq)
  639. {
  640. s64 period = sched_avg_period();
  641. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  642. /*
  643. * Inline assembly required to prevent the compiler
  644. * optimising this loop into a divmod call.
  645. * See __iter_div_u64_rem() for another example of this.
  646. */
  647. asm("" : "+rm" (rq->age_stamp));
  648. rq->age_stamp += period;
  649. rq->rt_avg /= 2;
  650. }
  651. }
  652. #endif /* CONFIG_SMP */
  653. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  654. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  655. /*
  656. * Iterate task_group tree rooted at *from, calling @down when first entering a
  657. * node and @up when leaving it for the final time.
  658. *
  659. * Caller must hold rcu_lock or sufficient equivalent.
  660. */
  661. int walk_tg_tree_from(struct task_group *from,
  662. tg_visitor down, tg_visitor up, void *data)
  663. {
  664. struct task_group *parent, *child;
  665. int ret;
  666. parent = from;
  667. down:
  668. ret = (*down)(parent, data);
  669. if (ret)
  670. goto out;
  671. list_for_each_entry_rcu(child, &parent->children, siblings) {
  672. parent = child;
  673. goto down;
  674. up:
  675. continue;
  676. }
  677. ret = (*up)(parent, data);
  678. if (ret || parent == from)
  679. goto out;
  680. child = parent;
  681. parent = parent->parent;
  682. if (parent)
  683. goto up;
  684. out:
  685. return ret;
  686. }
  687. int tg_nop(struct task_group *tg, void *data)
  688. {
  689. return 0;
  690. }
  691. #endif
  692. static void set_load_weight(struct task_struct *p)
  693. {
  694. int prio = p->static_prio - MAX_RT_PRIO;
  695. struct load_weight *load = &p->se.load;
  696. /*
  697. * SCHED_IDLE tasks get minimal weight:
  698. */
  699. if (p->policy == SCHED_IDLE) {
  700. load->weight = scale_load(WEIGHT_IDLEPRIO);
  701. load->inv_weight = WMULT_IDLEPRIO;
  702. return;
  703. }
  704. load->weight = scale_load(prio_to_weight[prio]);
  705. load->inv_weight = prio_to_wmult[prio];
  706. }
  707. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  708. {
  709. update_rq_clock(rq);
  710. sched_info_queued(rq, p);
  711. p->sched_class->enqueue_task(rq, p, flags);
  712. }
  713. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  714. {
  715. update_rq_clock(rq);
  716. sched_info_dequeued(rq, p);
  717. p->sched_class->dequeue_task(rq, p, flags);
  718. }
  719. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  720. {
  721. if (task_contributes_to_load(p))
  722. rq->nr_uninterruptible--;
  723. enqueue_task(rq, p, flags);
  724. }
  725. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  726. {
  727. if (task_contributes_to_load(p))
  728. rq->nr_uninterruptible++;
  729. dequeue_task(rq, p, flags);
  730. }
  731. static void update_rq_clock_task(struct rq *rq, s64 delta)
  732. {
  733. /*
  734. * In theory, the compile should just see 0 here, and optimize out the call
  735. * to sched_rt_avg_update. But I don't trust it...
  736. */
  737. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  738. s64 steal = 0, irq_delta = 0;
  739. #endif
  740. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  741. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  742. /*
  743. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  744. * this case when a previous update_rq_clock() happened inside a
  745. * {soft,}irq region.
  746. *
  747. * When this happens, we stop ->clock_task and only update the
  748. * prev_irq_time stamp to account for the part that fit, so that a next
  749. * update will consume the rest. This ensures ->clock_task is
  750. * monotonic.
  751. *
  752. * It does however cause some slight miss-attribution of {soft,}irq
  753. * time, a more accurate solution would be to update the irq_time using
  754. * the current rq->clock timestamp, except that would require using
  755. * atomic ops.
  756. */
  757. if (irq_delta > delta)
  758. irq_delta = delta;
  759. rq->prev_irq_time += irq_delta;
  760. delta -= irq_delta;
  761. #endif
  762. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  763. if (static_key_false((&paravirt_steal_rq_enabled))) {
  764. steal = paravirt_steal_clock(cpu_of(rq));
  765. steal -= rq->prev_steal_time_rq;
  766. if (unlikely(steal > delta))
  767. steal = delta;
  768. rq->prev_steal_time_rq += steal;
  769. delta -= steal;
  770. }
  771. #endif
  772. rq->clock_task += delta;
  773. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  774. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  775. sched_rt_avg_update(rq, irq_delta + steal);
  776. #endif
  777. }
  778. void sched_set_stop_task(int cpu, struct task_struct *stop)
  779. {
  780. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  781. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  782. if (stop) {
  783. /*
  784. * Make it appear like a SCHED_FIFO task, its something
  785. * userspace knows about and won't get confused about.
  786. *
  787. * Also, it will make PI more or less work without too
  788. * much confusion -- but then, stop work should not
  789. * rely on PI working anyway.
  790. */
  791. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  792. stop->sched_class = &stop_sched_class;
  793. }
  794. cpu_rq(cpu)->stop = stop;
  795. if (old_stop) {
  796. /*
  797. * Reset it back to a normal scheduling class so that
  798. * it can die in pieces.
  799. */
  800. old_stop->sched_class = &rt_sched_class;
  801. }
  802. }
  803. /*
  804. * __normal_prio - return the priority that is based on the static prio
  805. */
  806. static inline int __normal_prio(struct task_struct *p)
  807. {
  808. return p->static_prio;
  809. }
  810. /*
  811. * Calculate the expected normal priority: i.e. priority
  812. * without taking RT-inheritance into account. Might be
  813. * boosted by interactivity modifiers. Changes upon fork,
  814. * setprio syscalls, and whenever the interactivity
  815. * estimator recalculates.
  816. */
  817. static inline int normal_prio(struct task_struct *p)
  818. {
  819. int prio;
  820. if (task_has_dl_policy(p))
  821. prio = MAX_DL_PRIO-1;
  822. else if (task_has_rt_policy(p))
  823. prio = MAX_RT_PRIO-1 - p->rt_priority;
  824. else
  825. prio = __normal_prio(p);
  826. return prio;
  827. }
  828. /*
  829. * Calculate the current priority, i.e. the priority
  830. * taken into account by the scheduler. This value might
  831. * be boosted by RT tasks, or might be boosted by
  832. * interactivity modifiers. Will be RT if the task got
  833. * RT-boosted. If not then it returns p->normal_prio.
  834. */
  835. static int effective_prio(struct task_struct *p)
  836. {
  837. p->normal_prio = normal_prio(p);
  838. /*
  839. * If we are RT tasks or we were boosted to RT priority,
  840. * keep the priority unchanged. Otherwise, update priority
  841. * to the normal priority:
  842. */
  843. if (!rt_prio(p->prio))
  844. return p->normal_prio;
  845. return p->prio;
  846. }
  847. /**
  848. * task_curr - is this task currently executing on a CPU?
  849. * @p: the task in question.
  850. *
  851. * Return: 1 if the task is currently executing. 0 otherwise.
  852. */
  853. inline int task_curr(const struct task_struct *p)
  854. {
  855. return cpu_curr(task_cpu(p)) == p;
  856. }
  857. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  858. const struct sched_class *prev_class,
  859. int oldprio)
  860. {
  861. if (prev_class != p->sched_class) {
  862. if (prev_class->switched_from)
  863. prev_class->switched_from(rq, p);
  864. p->sched_class->switched_to(rq, p);
  865. } else if (oldprio != p->prio || dl_task(p))
  866. p->sched_class->prio_changed(rq, p, oldprio);
  867. }
  868. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  869. {
  870. const struct sched_class *class;
  871. if (p->sched_class == rq->curr->sched_class) {
  872. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  873. } else {
  874. for_each_class(class) {
  875. if (class == rq->curr->sched_class)
  876. break;
  877. if (class == p->sched_class) {
  878. resched_curr(rq);
  879. break;
  880. }
  881. }
  882. }
  883. /*
  884. * A queue event has occurred, and we're going to schedule. In
  885. * this case, we can save a useless back to back clock update.
  886. */
  887. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  888. rq->skip_clock_update = 1;
  889. }
  890. #ifdef CONFIG_SMP
  891. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  892. {
  893. #ifdef CONFIG_SCHED_DEBUG
  894. /*
  895. * We should never call set_task_cpu() on a blocked task,
  896. * ttwu() will sort out the placement.
  897. */
  898. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  899. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  900. #ifdef CONFIG_LOCKDEP
  901. /*
  902. * The caller should hold either p->pi_lock or rq->lock, when changing
  903. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  904. *
  905. * sched_move_task() holds both and thus holding either pins the cgroup,
  906. * see task_group().
  907. *
  908. * Furthermore, all task_rq users should acquire both locks, see
  909. * task_rq_lock().
  910. */
  911. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  912. lockdep_is_held(&task_rq(p)->lock)));
  913. #endif
  914. #endif
  915. trace_sched_migrate_task(p, new_cpu);
  916. if (task_cpu(p) != new_cpu) {
  917. if (p->sched_class->migrate_task_rq)
  918. p->sched_class->migrate_task_rq(p, new_cpu);
  919. p->se.nr_migrations++;
  920. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  921. }
  922. __set_task_cpu(p, new_cpu);
  923. }
  924. static void __migrate_swap_task(struct task_struct *p, int cpu)
  925. {
  926. if (task_on_rq_queued(p)) {
  927. struct rq *src_rq, *dst_rq;
  928. src_rq = task_rq(p);
  929. dst_rq = cpu_rq(cpu);
  930. deactivate_task(src_rq, p, 0);
  931. set_task_cpu(p, cpu);
  932. activate_task(dst_rq, p, 0);
  933. check_preempt_curr(dst_rq, p, 0);
  934. } else {
  935. /*
  936. * Task isn't running anymore; make it appear like we migrated
  937. * it before it went to sleep. This means on wakeup we make the
  938. * previous cpu our targer instead of where it really is.
  939. */
  940. p->wake_cpu = cpu;
  941. }
  942. }
  943. struct migration_swap_arg {
  944. struct task_struct *src_task, *dst_task;
  945. int src_cpu, dst_cpu;
  946. };
  947. static int migrate_swap_stop(void *data)
  948. {
  949. struct migration_swap_arg *arg = data;
  950. struct rq *src_rq, *dst_rq;
  951. int ret = -EAGAIN;
  952. src_rq = cpu_rq(arg->src_cpu);
  953. dst_rq = cpu_rq(arg->dst_cpu);
  954. double_raw_lock(&arg->src_task->pi_lock,
  955. &arg->dst_task->pi_lock);
  956. double_rq_lock(src_rq, dst_rq);
  957. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  958. goto unlock;
  959. if (task_cpu(arg->src_task) != arg->src_cpu)
  960. goto unlock;
  961. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  962. goto unlock;
  963. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  964. goto unlock;
  965. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  966. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  967. ret = 0;
  968. unlock:
  969. double_rq_unlock(src_rq, dst_rq);
  970. raw_spin_unlock(&arg->dst_task->pi_lock);
  971. raw_spin_unlock(&arg->src_task->pi_lock);
  972. return ret;
  973. }
  974. /*
  975. * Cross migrate two tasks
  976. */
  977. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  978. {
  979. struct migration_swap_arg arg;
  980. int ret = -EINVAL;
  981. arg = (struct migration_swap_arg){
  982. .src_task = cur,
  983. .src_cpu = task_cpu(cur),
  984. .dst_task = p,
  985. .dst_cpu = task_cpu(p),
  986. };
  987. if (arg.src_cpu == arg.dst_cpu)
  988. goto out;
  989. /*
  990. * These three tests are all lockless; this is OK since all of them
  991. * will be re-checked with proper locks held further down the line.
  992. */
  993. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  994. goto out;
  995. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  996. goto out;
  997. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  998. goto out;
  999. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1000. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1001. out:
  1002. return ret;
  1003. }
  1004. struct migration_arg {
  1005. struct task_struct *task;
  1006. int dest_cpu;
  1007. };
  1008. static int migration_cpu_stop(void *data);
  1009. /*
  1010. * wait_task_inactive - wait for a thread to unschedule.
  1011. *
  1012. * If @match_state is nonzero, it's the @p->state value just checked and
  1013. * not expected to change. If it changes, i.e. @p might have woken up,
  1014. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1015. * we return a positive number (its total switch count). If a second call
  1016. * a short while later returns the same number, the caller can be sure that
  1017. * @p has remained unscheduled the whole time.
  1018. *
  1019. * The caller must ensure that the task *will* unschedule sometime soon,
  1020. * else this function might spin for a *long* time. This function can't
  1021. * be called with interrupts off, or it may introduce deadlock with
  1022. * smp_call_function() if an IPI is sent by the same process we are
  1023. * waiting to become inactive.
  1024. */
  1025. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1026. {
  1027. unsigned long flags;
  1028. int running, queued;
  1029. unsigned long ncsw;
  1030. struct rq *rq;
  1031. for (;;) {
  1032. /*
  1033. * We do the initial early heuristics without holding
  1034. * any task-queue locks at all. We'll only try to get
  1035. * the runqueue lock when things look like they will
  1036. * work out!
  1037. */
  1038. rq = task_rq(p);
  1039. /*
  1040. * If the task is actively running on another CPU
  1041. * still, just relax and busy-wait without holding
  1042. * any locks.
  1043. *
  1044. * NOTE! Since we don't hold any locks, it's not
  1045. * even sure that "rq" stays as the right runqueue!
  1046. * But we don't care, since "task_running()" will
  1047. * return false if the runqueue has changed and p
  1048. * is actually now running somewhere else!
  1049. */
  1050. while (task_running(rq, p)) {
  1051. if (match_state && unlikely(p->state != match_state))
  1052. return 0;
  1053. cpu_relax();
  1054. }
  1055. /*
  1056. * Ok, time to look more closely! We need the rq
  1057. * lock now, to be *sure*. If we're wrong, we'll
  1058. * just go back and repeat.
  1059. */
  1060. rq = task_rq_lock(p, &flags);
  1061. trace_sched_wait_task(p);
  1062. running = task_running(rq, p);
  1063. queued = task_on_rq_queued(p);
  1064. ncsw = 0;
  1065. if (!match_state || p->state == match_state)
  1066. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1067. task_rq_unlock(rq, p, &flags);
  1068. /*
  1069. * If it changed from the expected state, bail out now.
  1070. */
  1071. if (unlikely(!ncsw))
  1072. break;
  1073. /*
  1074. * Was it really running after all now that we
  1075. * checked with the proper locks actually held?
  1076. *
  1077. * Oops. Go back and try again..
  1078. */
  1079. if (unlikely(running)) {
  1080. cpu_relax();
  1081. continue;
  1082. }
  1083. /*
  1084. * It's not enough that it's not actively running,
  1085. * it must be off the runqueue _entirely_, and not
  1086. * preempted!
  1087. *
  1088. * So if it was still runnable (but just not actively
  1089. * running right now), it's preempted, and we should
  1090. * yield - it could be a while.
  1091. */
  1092. if (unlikely(queued)) {
  1093. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1094. set_current_state(TASK_UNINTERRUPTIBLE);
  1095. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1096. continue;
  1097. }
  1098. /*
  1099. * Ahh, all good. It wasn't running, and it wasn't
  1100. * runnable, which means that it will never become
  1101. * running in the future either. We're all done!
  1102. */
  1103. break;
  1104. }
  1105. return ncsw;
  1106. }
  1107. /***
  1108. * kick_process - kick a running thread to enter/exit the kernel
  1109. * @p: the to-be-kicked thread
  1110. *
  1111. * Cause a process which is running on another CPU to enter
  1112. * kernel-mode, without any delay. (to get signals handled.)
  1113. *
  1114. * NOTE: this function doesn't have to take the runqueue lock,
  1115. * because all it wants to ensure is that the remote task enters
  1116. * the kernel. If the IPI races and the task has been migrated
  1117. * to another CPU then no harm is done and the purpose has been
  1118. * achieved as well.
  1119. */
  1120. void kick_process(struct task_struct *p)
  1121. {
  1122. int cpu;
  1123. preempt_disable();
  1124. cpu = task_cpu(p);
  1125. if ((cpu != smp_processor_id()) && task_curr(p))
  1126. smp_send_reschedule(cpu);
  1127. preempt_enable();
  1128. }
  1129. EXPORT_SYMBOL_GPL(kick_process);
  1130. #endif /* CONFIG_SMP */
  1131. #ifdef CONFIG_SMP
  1132. /*
  1133. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1134. */
  1135. static int select_fallback_rq(int cpu, struct task_struct *p)
  1136. {
  1137. int nid = cpu_to_node(cpu);
  1138. const struct cpumask *nodemask = NULL;
  1139. enum { cpuset, possible, fail } state = cpuset;
  1140. int dest_cpu;
  1141. /*
  1142. * If the node that the cpu is on has been offlined, cpu_to_node()
  1143. * will return -1. There is no cpu on the node, and we should
  1144. * select the cpu on the other node.
  1145. */
  1146. if (nid != -1) {
  1147. nodemask = cpumask_of_node(nid);
  1148. /* Look for allowed, online CPU in same node. */
  1149. for_each_cpu(dest_cpu, nodemask) {
  1150. if (!cpu_online(dest_cpu))
  1151. continue;
  1152. if (!cpu_active(dest_cpu))
  1153. continue;
  1154. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1155. return dest_cpu;
  1156. }
  1157. }
  1158. for (;;) {
  1159. /* Any allowed, online CPU? */
  1160. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1161. if (!cpu_online(dest_cpu))
  1162. continue;
  1163. if (!cpu_active(dest_cpu))
  1164. continue;
  1165. goto out;
  1166. }
  1167. switch (state) {
  1168. case cpuset:
  1169. /* No more Mr. Nice Guy. */
  1170. cpuset_cpus_allowed_fallback(p);
  1171. state = possible;
  1172. break;
  1173. case possible:
  1174. do_set_cpus_allowed(p, cpu_possible_mask);
  1175. state = fail;
  1176. break;
  1177. case fail:
  1178. BUG();
  1179. break;
  1180. }
  1181. }
  1182. out:
  1183. if (state != cpuset) {
  1184. /*
  1185. * Don't tell them about moving exiting tasks or
  1186. * kernel threads (both mm NULL), since they never
  1187. * leave kernel.
  1188. */
  1189. if (p->mm && printk_ratelimit()) {
  1190. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1191. task_pid_nr(p), p->comm, cpu);
  1192. }
  1193. }
  1194. return dest_cpu;
  1195. }
  1196. /*
  1197. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1198. */
  1199. static inline
  1200. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1201. {
  1202. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1203. /*
  1204. * In order not to call set_task_cpu() on a blocking task we need
  1205. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1206. * cpu.
  1207. *
  1208. * Since this is common to all placement strategies, this lives here.
  1209. *
  1210. * [ this allows ->select_task() to simply return task_cpu(p) and
  1211. * not worry about this generic constraint ]
  1212. */
  1213. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1214. !cpu_online(cpu)))
  1215. cpu = select_fallback_rq(task_cpu(p), p);
  1216. return cpu;
  1217. }
  1218. static void update_avg(u64 *avg, u64 sample)
  1219. {
  1220. s64 diff = sample - *avg;
  1221. *avg += diff >> 3;
  1222. }
  1223. #endif
  1224. static void
  1225. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1226. {
  1227. #ifdef CONFIG_SCHEDSTATS
  1228. struct rq *rq = this_rq();
  1229. #ifdef CONFIG_SMP
  1230. int this_cpu = smp_processor_id();
  1231. if (cpu == this_cpu) {
  1232. schedstat_inc(rq, ttwu_local);
  1233. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1234. } else {
  1235. struct sched_domain *sd;
  1236. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1237. rcu_read_lock();
  1238. for_each_domain(this_cpu, sd) {
  1239. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1240. schedstat_inc(sd, ttwu_wake_remote);
  1241. break;
  1242. }
  1243. }
  1244. rcu_read_unlock();
  1245. }
  1246. if (wake_flags & WF_MIGRATED)
  1247. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1248. #endif /* CONFIG_SMP */
  1249. schedstat_inc(rq, ttwu_count);
  1250. schedstat_inc(p, se.statistics.nr_wakeups);
  1251. if (wake_flags & WF_SYNC)
  1252. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1253. #endif /* CONFIG_SCHEDSTATS */
  1254. }
  1255. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1256. {
  1257. activate_task(rq, p, en_flags);
  1258. p->on_rq = TASK_ON_RQ_QUEUED;
  1259. /* if a worker is waking up, notify workqueue */
  1260. if (p->flags & PF_WQ_WORKER)
  1261. wq_worker_waking_up(p, cpu_of(rq));
  1262. }
  1263. /*
  1264. * Mark the task runnable and perform wakeup-preemption.
  1265. */
  1266. static void
  1267. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1268. {
  1269. check_preempt_curr(rq, p, wake_flags);
  1270. trace_sched_wakeup(p, true);
  1271. p->state = TASK_RUNNING;
  1272. #ifdef CONFIG_SMP
  1273. if (p->sched_class->task_woken)
  1274. p->sched_class->task_woken(rq, p);
  1275. if (rq->idle_stamp) {
  1276. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1277. u64 max = 2*rq->max_idle_balance_cost;
  1278. update_avg(&rq->avg_idle, delta);
  1279. if (rq->avg_idle > max)
  1280. rq->avg_idle = max;
  1281. rq->idle_stamp = 0;
  1282. }
  1283. #endif
  1284. }
  1285. static void
  1286. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1287. {
  1288. #ifdef CONFIG_SMP
  1289. if (p->sched_contributes_to_load)
  1290. rq->nr_uninterruptible--;
  1291. #endif
  1292. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1293. ttwu_do_wakeup(rq, p, wake_flags);
  1294. }
  1295. /*
  1296. * Called in case the task @p isn't fully descheduled from its runqueue,
  1297. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1298. * since all we need to do is flip p->state to TASK_RUNNING, since
  1299. * the task is still ->on_rq.
  1300. */
  1301. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1302. {
  1303. struct rq *rq;
  1304. int ret = 0;
  1305. rq = __task_rq_lock(p);
  1306. if (task_on_rq_queued(p)) {
  1307. /* check_preempt_curr() may use rq clock */
  1308. update_rq_clock(rq);
  1309. ttwu_do_wakeup(rq, p, wake_flags);
  1310. ret = 1;
  1311. }
  1312. __task_rq_unlock(rq);
  1313. return ret;
  1314. }
  1315. #ifdef CONFIG_SMP
  1316. void sched_ttwu_pending(void)
  1317. {
  1318. struct rq *rq = this_rq();
  1319. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1320. struct task_struct *p;
  1321. unsigned long flags;
  1322. if (!llist)
  1323. return;
  1324. raw_spin_lock_irqsave(&rq->lock, flags);
  1325. while (llist) {
  1326. p = llist_entry(llist, struct task_struct, wake_entry);
  1327. llist = llist_next(llist);
  1328. ttwu_do_activate(rq, p, 0);
  1329. }
  1330. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1331. }
  1332. void scheduler_ipi(void)
  1333. {
  1334. /*
  1335. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1336. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1337. * this IPI.
  1338. */
  1339. preempt_fold_need_resched();
  1340. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1341. return;
  1342. /*
  1343. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1344. * traditionally all their work was done from the interrupt return
  1345. * path. Now that we actually do some work, we need to make sure
  1346. * we do call them.
  1347. *
  1348. * Some archs already do call them, luckily irq_enter/exit nest
  1349. * properly.
  1350. *
  1351. * Arguably we should visit all archs and update all handlers,
  1352. * however a fair share of IPIs are still resched only so this would
  1353. * somewhat pessimize the simple resched case.
  1354. */
  1355. irq_enter();
  1356. sched_ttwu_pending();
  1357. /*
  1358. * Check if someone kicked us for doing the nohz idle load balance.
  1359. */
  1360. if (unlikely(got_nohz_idle_kick())) {
  1361. this_rq()->idle_balance = 1;
  1362. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1363. }
  1364. irq_exit();
  1365. }
  1366. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1367. {
  1368. struct rq *rq = cpu_rq(cpu);
  1369. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1370. if (!set_nr_if_polling(rq->idle))
  1371. smp_send_reschedule(cpu);
  1372. else
  1373. trace_sched_wake_idle_without_ipi(cpu);
  1374. }
  1375. }
  1376. void wake_up_if_idle(int cpu)
  1377. {
  1378. struct rq *rq = cpu_rq(cpu);
  1379. unsigned long flags;
  1380. if (!is_idle_task(rq->curr))
  1381. return;
  1382. if (set_nr_if_polling(rq->idle)) {
  1383. trace_sched_wake_idle_without_ipi(cpu);
  1384. } else {
  1385. raw_spin_lock_irqsave(&rq->lock, flags);
  1386. if (is_idle_task(rq->curr))
  1387. smp_send_reschedule(cpu);
  1388. /* Else cpu is not in idle, do nothing here */
  1389. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1390. }
  1391. }
  1392. bool cpus_share_cache(int this_cpu, int that_cpu)
  1393. {
  1394. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1395. }
  1396. #endif /* CONFIG_SMP */
  1397. static void ttwu_queue(struct task_struct *p, int cpu)
  1398. {
  1399. struct rq *rq = cpu_rq(cpu);
  1400. #if defined(CONFIG_SMP)
  1401. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1402. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1403. ttwu_queue_remote(p, cpu);
  1404. return;
  1405. }
  1406. #endif
  1407. raw_spin_lock(&rq->lock);
  1408. ttwu_do_activate(rq, p, 0);
  1409. raw_spin_unlock(&rq->lock);
  1410. }
  1411. /**
  1412. * try_to_wake_up - wake up a thread
  1413. * @p: the thread to be awakened
  1414. * @state: the mask of task states that can be woken
  1415. * @wake_flags: wake modifier flags (WF_*)
  1416. *
  1417. * Put it on the run-queue if it's not already there. The "current"
  1418. * thread is always on the run-queue (except when the actual
  1419. * re-schedule is in progress), and as such you're allowed to do
  1420. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1421. * runnable without the overhead of this.
  1422. *
  1423. * Return: %true if @p was woken up, %false if it was already running.
  1424. * or @state didn't match @p's state.
  1425. */
  1426. static int
  1427. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1428. {
  1429. unsigned long flags;
  1430. int cpu, success = 0;
  1431. /*
  1432. * If we are going to wake up a thread waiting for CONDITION we
  1433. * need to ensure that CONDITION=1 done by the caller can not be
  1434. * reordered with p->state check below. This pairs with mb() in
  1435. * set_current_state() the waiting thread does.
  1436. */
  1437. smp_mb__before_spinlock();
  1438. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1439. if (!(p->state & state))
  1440. goto out;
  1441. success = 1; /* we're going to change ->state */
  1442. cpu = task_cpu(p);
  1443. if (p->on_rq && ttwu_remote(p, wake_flags))
  1444. goto stat;
  1445. #ifdef CONFIG_SMP
  1446. /*
  1447. * If the owning (remote) cpu is still in the middle of schedule() with
  1448. * this task as prev, wait until its done referencing the task.
  1449. */
  1450. while (p->on_cpu)
  1451. cpu_relax();
  1452. /*
  1453. * Pairs with the smp_wmb() in finish_lock_switch().
  1454. */
  1455. smp_rmb();
  1456. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1457. p->state = TASK_WAKING;
  1458. if (p->sched_class->task_waking)
  1459. p->sched_class->task_waking(p);
  1460. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1461. if (task_cpu(p) != cpu) {
  1462. wake_flags |= WF_MIGRATED;
  1463. set_task_cpu(p, cpu);
  1464. }
  1465. #endif /* CONFIG_SMP */
  1466. ttwu_queue(p, cpu);
  1467. stat:
  1468. ttwu_stat(p, cpu, wake_flags);
  1469. out:
  1470. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1471. return success;
  1472. }
  1473. /**
  1474. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1475. * @p: the thread to be awakened
  1476. *
  1477. * Put @p on the run-queue if it's not already there. The caller must
  1478. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1479. * the current task.
  1480. */
  1481. static void try_to_wake_up_local(struct task_struct *p)
  1482. {
  1483. struct rq *rq = task_rq(p);
  1484. if (WARN_ON_ONCE(rq != this_rq()) ||
  1485. WARN_ON_ONCE(p == current))
  1486. return;
  1487. lockdep_assert_held(&rq->lock);
  1488. if (!raw_spin_trylock(&p->pi_lock)) {
  1489. raw_spin_unlock(&rq->lock);
  1490. raw_spin_lock(&p->pi_lock);
  1491. raw_spin_lock(&rq->lock);
  1492. }
  1493. if (!(p->state & TASK_NORMAL))
  1494. goto out;
  1495. if (!task_on_rq_queued(p))
  1496. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1497. ttwu_do_wakeup(rq, p, 0);
  1498. ttwu_stat(p, smp_processor_id(), 0);
  1499. out:
  1500. raw_spin_unlock(&p->pi_lock);
  1501. }
  1502. /**
  1503. * wake_up_process - Wake up a specific process
  1504. * @p: The process to be woken up.
  1505. *
  1506. * Attempt to wake up the nominated process and move it to the set of runnable
  1507. * processes.
  1508. *
  1509. * Return: 1 if the process was woken up, 0 if it was already running.
  1510. *
  1511. * It may be assumed that this function implies a write memory barrier before
  1512. * changing the task state if and only if any tasks are woken up.
  1513. */
  1514. int wake_up_process(struct task_struct *p)
  1515. {
  1516. WARN_ON(task_is_stopped_or_traced(p));
  1517. return try_to_wake_up(p, TASK_NORMAL, 0);
  1518. }
  1519. EXPORT_SYMBOL(wake_up_process);
  1520. int wake_up_state(struct task_struct *p, unsigned int state)
  1521. {
  1522. return try_to_wake_up(p, state, 0);
  1523. }
  1524. /*
  1525. * This function clears the sched_dl_entity static params.
  1526. */
  1527. void __dl_clear_params(struct task_struct *p)
  1528. {
  1529. struct sched_dl_entity *dl_se = &p->dl;
  1530. dl_se->dl_runtime = 0;
  1531. dl_se->dl_deadline = 0;
  1532. dl_se->dl_period = 0;
  1533. dl_se->flags = 0;
  1534. dl_se->dl_bw = 0;
  1535. }
  1536. /*
  1537. * Perform scheduler related setup for a newly forked process p.
  1538. * p is forked by current.
  1539. *
  1540. * __sched_fork() is basic setup used by init_idle() too:
  1541. */
  1542. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1543. {
  1544. p->on_rq = 0;
  1545. p->se.on_rq = 0;
  1546. p->se.exec_start = 0;
  1547. p->se.sum_exec_runtime = 0;
  1548. p->se.prev_sum_exec_runtime = 0;
  1549. p->se.nr_migrations = 0;
  1550. p->se.vruntime = 0;
  1551. INIT_LIST_HEAD(&p->se.group_node);
  1552. #ifdef CONFIG_SCHEDSTATS
  1553. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1554. #endif
  1555. RB_CLEAR_NODE(&p->dl.rb_node);
  1556. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1557. __dl_clear_params(p);
  1558. INIT_LIST_HEAD(&p->rt.run_list);
  1559. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1560. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1561. #endif
  1562. #ifdef CONFIG_NUMA_BALANCING
  1563. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1564. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1565. p->mm->numa_scan_seq = 0;
  1566. }
  1567. if (clone_flags & CLONE_VM)
  1568. p->numa_preferred_nid = current->numa_preferred_nid;
  1569. else
  1570. p->numa_preferred_nid = -1;
  1571. p->node_stamp = 0ULL;
  1572. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1573. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1574. p->numa_work.next = &p->numa_work;
  1575. p->numa_faults_memory = NULL;
  1576. p->numa_faults_buffer_memory = NULL;
  1577. p->last_task_numa_placement = 0;
  1578. p->last_sum_exec_runtime = 0;
  1579. INIT_LIST_HEAD(&p->numa_entry);
  1580. p->numa_group = NULL;
  1581. #endif /* CONFIG_NUMA_BALANCING */
  1582. }
  1583. #ifdef CONFIG_NUMA_BALANCING
  1584. #ifdef CONFIG_SCHED_DEBUG
  1585. void set_numabalancing_state(bool enabled)
  1586. {
  1587. if (enabled)
  1588. sched_feat_set("NUMA");
  1589. else
  1590. sched_feat_set("NO_NUMA");
  1591. }
  1592. #else
  1593. __read_mostly bool numabalancing_enabled;
  1594. void set_numabalancing_state(bool enabled)
  1595. {
  1596. numabalancing_enabled = enabled;
  1597. }
  1598. #endif /* CONFIG_SCHED_DEBUG */
  1599. #ifdef CONFIG_PROC_SYSCTL
  1600. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1601. void __user *buffer, size_t *lenp, loff_t *ppos)
  1602. {
  1603. struct ctl_table t;
  1604. int err;
  1605. int state = numabalancing_enabled;
  1606. if (write && !capable(CAP_SYS_ADMIN))
  1607. return -EPERM;
  1608. t = *table;
  1609. t.data = &state;
  1610. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1611. if (err < 0)
  1612. return err;
  1613. if (write)
  1614. set_numabalancing_state(state);
  1615. return err;
  1616. }
  1617. #endif
  1618. #endif
  1619. /*
  1620. * fork()/clone()-time setup:
  1621. */
  1622. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1623. {
  1624. unsigned long flags;
  1625. int cpu = get_cpu();
  1626. __sched_fork(clone_flags, p);
  1627. /*
  1628. * We mark the process as running here. This guarantees that
  1629. * nobody will actually run it, and a signal or other external
  1630. * event cannot wake it up and insert it on the runqueue either.
  1631. */
  1632. p->state = TASK_RUNNING;
  1633. /*
  1634. * Make sure we do not leak PI boosting priority to the child.
  1635. */
  1636. p->prio = current->normal_prio;
  1637. /*
  1638. * Revert to default priority/policy on fork if requested.
  1639. */
  1640. if (unlikely(p->sched_reset_on_fork)) {
  1641. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1642. p->policy = SCHED_NORMAL;
  1643. p->static_prio = NICE_TO_PRIO(0);
  1644. p->rt_priority = 0;
  1645. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1646. p->static_prio = NICE_TO_PRIO(0);
  1647. p->prio = p->normal_prio = __normal_prio(p);
  1648. set_load_weight(p);
  1649. /*
  1650. * We don't need the reset flag anymore after the fork. It has
  1651. * fulfilled its duty:
  1652. */
  1653. p->sched_reset_on_fork = 0;
  1654. }
  1655. if (dl_prio(p->prio)) {
  1656. put_cpu();
  1657. return -EAGAIN;
  1658. } else if (rt_prio(p->prio)) {
  1659. p->sched_class = &rt_sched_class;
  1660. } else {
  1661. p->sched_class = &fair_sched_class;
  1662. }
  1663. if (p->sched_class->task_fork)
  1664. p->sched_class->task_fork(p);
  1665. /*
  1666. * The child is not yet in the pid-hash so no cgroup attach races,
  1667. * and the cgroup is pinned to this child due to cgroup_fork()
  1668. * is ran before sched_fork().
  1669. *
  1670. * Silence PROVE_RCU.
  1671. */
  1672. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1673. set_task_cpu(p, cpu);
  1674. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1675. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1676. if (likely(sched_info_on()))
  1677. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1678. #endif
  1679. #if defined(CONFIG_SMP)
  1680. p->on_cpu = 0;
  1681. #endif
  1682. init_task_preempt_count(p);
  1683. #ifdef CONFIG_SMP
  1684. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1685. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1686. #endif
  1687. put_cpu();
  1688. return 0;
  1689. }
  1690. unsigned long to_ratio(u64 period, u64 runtime)
  1691. {
  1692. if (runtime == RUNTIME_INF)
  1693. return 1ULL << 20;
  1694. /*
  1695. * Doing this here saves a lot of checks in all
  1696. * the calling paths, and returning zero seems
  1697. * safe for them anyway.
  1698. */
  1699. if (period == 0)
  1700. return 0;
  1701. return div64_u64(runtime << 20, period);
  1702. }
  1703. #ifdef CONFIG_SMP
  1704. inline struct dl_bw *dl_bw_of(int i)
  1705. {
  1706. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1707. "sched RCU must be held");
  1708. return &cpu_rq(i)->rd->dl_bw;
  1709. }
  1710. static inline int dl_bw_cpus(int i)
  1711. {
  1712. struct root_domain *rd = cpu_rq(i)->rd;
  1713. int cpus = 0;
  1714. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1715. "sched RCU must be held");
  1716. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1717. cpus++;
  1718. return cpus;
  1719. }
  1720. #else
  1721. inline struct dl_bw *dl_bw_of(int i)
  1722. {
  1723. return &cpu_rq(i)->dl.dl_bw;
  1724. }
  1725. static inline int dl_bw_cpus(int i)
  1726. {
  1727. return 1;
  1728. }
  1729. #endif
  1730. static inline
  1731. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1732. {
  1733. dl_b->total_bw -= tsk_bw;
  1734. }
  1735. static inline
  1736. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1737. {
  1738. dl_b->total_bw += tsk_bw;
  1739. }
  1740. static inline
  1741. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1742. {
  1743. return dl_b->bw != -1 &&
  1744. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1745. }
  1746. /*
  1747. * We must be sure that accepting a new task (or allowing changing the
  1748. * parameters of an existing one) is consistent with the bandwidth
  1749. * constraints. If yes, this function also accordingly updates the currently
  1750. * allocated bandwidth to reflect the new situation.
  1751. *
  1752. * This function is called while holding p's rq->lock.
  1753. */
  1754. static int dl_overflow(struct task_struct *p, int policy,
  1755. const struct sched_attr *attr)
  1756. {
  1757. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1758. u64 period = attr->sched_period ?: attr->sched_deadline;
  1759. u64 runtime = attr->sched_runtime;
  1760. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1761. int cpus, err = -1;
  1762. if (new_bw == p->dl.dl_bw)
  1763. return 0;
  1764. /*
  1765. * Either if a task, enters, leave, or stays -deadline but changes
  1766. * its parameters, we may need to update accordingly the total
  1767. * allocated bandwidth of the container.
  1768. */
  1769. raw_spin_lock(&dl_b->lock);
  1770. cpus = dl_bw_cpus(task_cpu(p));
  1771. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1772. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1773. __dl_add(dl_b, new_bw);
  1774. err = 0;
  1775. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1776. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1777. __dl_clear(dl_b, p->dl.dl_bw);
  1778. __dl_add(dl_b, new_bw);
  1779. err = 0;
  1780. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1781. __dl_clear(dl_b, p->dl.dl_bw);
  1782. err = 0;
  1783. }
  1784. raw_spin_unlock(&dl_b->lock);
  1785. return err;
  1786. }
  1787. extern void init_dl_bw(struct dl_bw *dl_b);
  1788. /*
  1789. * wake_up_new_task - wake up a newly created task for the first time.
  1790. *
  1791. * This function will do some initial scheduler statistics housekeeping
  1792. * that must be done for every newly created context, then puts the task
  1793. * on the runqueue and wakes it.
  1794. */
  1795. void wake_up_new_task(struct task_struct *p)
  1796. {
  1797. unsigned long flags;
  1798. struct rq *rq;
  1799. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1800. #ifdef CONFIG_SMP
  1801. /*
  1802. * Fork balancing, do it here and not earlier because:
  1803. * - cpus_allowed can change in the fork path
  1804. * - any previously selected cpu might disappear through hotplug
  1805. */
  1806. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1807. #endif
  1808. /* Initialize new task's runnable average */
  1809. init_task_runnable_average(p);
  1810. rq = __task_rq_lock(p);
  1811. activate_task(rq, p, 0);
  1812. p->on_rq = TASK_ON_RQ_QUEUED;
  1813. trace_sched_wakeup_new(p, true);
  1814. check_preempt_curr(rq, p, WF_FORK);
  1815. #ifdef CONFIG_SMP
  1816. if (p->sched_class->task_woken)
  1817. p->sched_class->task_woken(rq, p);
  1818. #endif
  1819. task_rq_unlock(rq, p, &flags);
  1820. }
  1821. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1822. /**
  1823. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1824. * @notifier: notifier struct to register
  1825. */
  1826. void preempt_notifier_register(struct preempt_notifier *notifier)
  1827. {
  1828. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1829. }
  1830. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1831. /**
  1832. * preempt_notifier_unregister - no longer interested in preemption notifications
  1833. * @notifier: notifier struct to unregister
  1834. *
  1835. * This is safe to call from within a preemption notifier.
  1836. */
  1837. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1838. {
  1839. hlist_del(&notifier->link);
  1840. }
  1841. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1842. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1843. {
  1844. struct preempt_notifier *notifier;
  1845. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1846. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1847. }
  1848. static void
  1849. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1850. struct task_struct *next)
  1851. {
  1852. struct preempt_notifier *notifier;
  1853. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1854. notifier->ops->sched_out(notifier, next);
  1855. }
  1856. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1857. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1858. {
  1859. }
  1860. static void
  1861. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1862. struct task_struct *next)
  1863. {
  1864. }
  1865. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1866. /**
  1867. * prepare_task_switch - prepare to switch tasks
  1868. * @rq: the runqueue preparing to switch
  1869. * @prev: the current task that is being switched out
  1870. * @next: the task we are going to switch to.
  1871. *
  1872. * This is called with the rq lock held and interrupts off. It must
  1873. * be paired with a subsequent finish_task_switch after the context
  1874. * switch.
  1875. *
  1876. * prepare_task_switch sets up locking and calls architecture specific
  1877. * hooks.
  1878. */
  1879. static inline void
  1880. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1881. struct task_struct *next)
  1882. {
  1883. trace_sched_switch(prev, next);
  1884. sched_info_switch(rq, prev, next);
  1885. perf_event_task_sched_out(prev, next);
  1886. fire_sched_out_preempt_notifiers(prev, next);
  1887. prepare_lock_switch(rq, next);
  1888. prepare_arch_switch(next);
  1889. }
  1890. /**
  1891. * finish_task_switch - clean up after a task-switch
  1892. * @rq: runqueue associated with task-switch
  1893. * @prev: the thread we just switched away from.
  1894. *
  1895. * finish_task_switch must be called after the context switch, paired
  1896. * with a prepare_task_switch call before the context switch.
  1897. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1898. * and do any other architecture-specific cleanup actions.
  1899. *
  1900. * Note that we may have delayed dropping an mm in context_switch(). If
  1901. * so, we finish that here outside of the runqueue lock. (Doing it
  1902. * with the lock held can cause deadlocks; see schedule() for
  1903. * details.)
  1904. */
  1905. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1906. __releases(rq->lock)
  1907. {
  1908. struct mm_struct *mm = rq->prev_mm;
  1909. long prev_state;
  1910. rq->prev_mm = NULL;
  1911. /*
  1912. * A task struct has one reference for the use as "current".
  1913. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1914. * schedule one last time. The schedule call will never return, and
  1915. * the scheduled task must drop that reference.
  1916. * The test for TASK_DEAD must occur while the runqueue locks are
  1917. * still held, otherwise prev could be scheduled on another cpu, die
  1918. * there before we look at prev->state, and then the reference would
  1919. * be dropped twice.
  1920. * Manfred Spraul <manfred@colorfullife.com>
  1921. */
  1922. prev_state = prev->state;
  1923. vtime_task_switch(prev);
  1924. finish_arch_switch(prev);
  1925. perf_event_task_sched_in(prev, current);
  1926. finish_lock_switch(rq, prev);
  1927. finish_arch_post_lock_switch();
  1928. fire_sched_in_preempt_notifiers(current);
  1929. if (mm)
  1930. mmdrop(mm);
  1931. if (unlikely(prev_state == TASK_DEAD)) {
  1932. if (prev->sched_class->task_dead)
  1933. prev->sched_class->task_dead(prev);
  1934. /*
  1935. * Remove function-return probe instances associated with this
  1936. * task and put them back on the free list.
  1937. */
  1938. kprobe_flush_task(prev);
  1939. put_task_struct(prev);
  1940. }
  1941. tick_nohz_task_switch(current);
  1942. }
  1943. #ifdef CONFIG_SMP
  1944. /* rq->lock is NOT held, but preemption is disabled */
  1945. static inline void post_schedule(struct rq *rq)
  1946. {
  1947. if (rq->post_schedule) {
  1948. unsigned long flags;
  1949. raw_spin_lock_irqsave(&rq->lock, flags);
  1950. if (rq->curr->sched_class->post_schedule)
  1951. rq->curr->sched_class->post_schedule(rq);
  1952. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1953. rq->post_schedule = 0;
  1954. }
  1955. }
  1956. #else
  1957. static inline void post_schedule(struct rq *rq)
  1958. {
  1959. }
  1960. #endif
  1961. /**
  1962. * schedule_tail - first thing a freshly forked thread must call.
  1963. * @prev: the thread we just switched away from.
  1964. */
  1965. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1966. __releases(rq->lock)
  1967. {
  1968. struct rq *rq = this_rq();
  1969. finish_task_switch(rq, prev);
  1970. /*
  1971. * FIXME: do we need to worry about rq being invalidated by the
  1972. * task_switch?
  1973. */
  1974. post_schedule(rq);
  1975. if (current->set_child_tid)
  1976. put_user(task_pid_vnr(current), current->set_child_tid);
  1977. }
  1978. /*
  1979. * context_switch - switch to the new MM and the new
  1980. * thread's register state.
  1981. */
  1982. static inline void
  1983. context_switch(struct rq *rq, struct task_struct *prev,
  1984. struct task_struct *next)
  1985. {
  1986. struct mm_struct *mm, *oldmm;
  1987. prepare_task_switch(rq, prev, next);
  1988. mm = next->mm;
  1989. oldmm = prev->active_mm;
  1990. /*
  1991. * For paravirt, this is coupled with an exit in switch_to to
  1992. * combine the page table reload and the switch backend into
  1993. * one hypercall.
  1994. */
  1995. arch_start_context_switch(prev);
  1996. if (!mm) {
  1997. next->active_mm = oldmm;
  1998. atomic_inc(&oldmm->mm_count);
  1999. enter_lazy_tlb(oldmm, next);
  2000. } else
  2001. switch_mm(oldmm, mm, next);
  2002. if (!prev->mm) {
  2003. prev->active_mm = NULL;
  2004. rq->prev_mm = oldmm;
  2005. }
  2006. /*
  2007. * Since the runqueue lock will be released by the next
  2008. * task (which is an invalid locking op but in the case
  2009. * of the scheduler it's an obvious special-case), so we
  2010. * do an early lockdep release here:
  2011. */
  2012. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2013. context_tracking_task_switch(prev, next);
  2014. /* Here we just switch the register state and the stack. */
  2015. switch_to(prev, next, prev);
  2016. barrier();
  2017. /*
  2018. * this_rq must be evaluated again because prev may have moved
  2019. * CPUs since it called schedule(), thus the 'rq' on its stack
  2020. * frame will be invalid.
  2021. */
  2022. finish_task_switch(this_rq(), prev);
  2023. }
  2024. /*
  2025. * nr_running and nr_context_switches:
  2026. *
  2027. * externally visible scheduler statistics: current number of runnable
  2028. * threads, total number of context switches performed since bootup.
  2029. */
  2030. unsigned long nr_running(void)
  2031. {
  2032. unsigned long i, sum = 0;
  2033. for_each_online_cpu(i)
  2034. sum += cpu_rq(i)->nr_running;
  2035. return sum;
  2036. }
  2037. /*
  2038. * Check if only the current task is running on the cpu.
  2039. */
  2040. bool single_task_running(void)
  2041. {
  2042. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2043. return true;
  2044. else
  2045. return false;
  2046. }
  2047. EXPORT_SYMBOL(single_task_running);
  2048. unsigned long long nr_context_switches(void)
  2049. {
  2050. int i;
  2051. unsigned long long sum = 0;
  2052. for_each_possible_cpu(i)
  2053. sum += cpu_rq(i)->nr_switches;
  2054. return sum;
  2055. }
  2056. unsigned long nr_iowait(void)
  2057. {
  2058. unsigned long i, sum = 0;
  2059. for_each_possible_cpu(i)
  2060. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2061. return sum;
  2062. }
  2063. unsigned long nr_iowait_cpu(int cpu)
  2064. {
  2065. struct rq *this = cpu_rq(cpu);
  2066. return atomic_read(&this->nr_iowait);
  2067. }
  2068. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2069. {
  2070. struct rq *this = this_rq();
  2071. *nr_waiters = atomic_read(&this->nr_iowait);
  2072. *load = this->cpu_load[0];
  2073. }
  2074. #ifdef CONFIG_SMP
  2075. /*
  2076. * sched_exec - execve() is a valuable balancing opportunity, because at
  2077. * this point the task has the smallest effective memory and cache footprint.
  2078. */
  2079. void sched_exec(void)
  2080. {
  2081. struct task_struct *p = current;
  2082. unsigned long flags;
  2083. int dest_cpu;
  2084. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2085. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2086. if (dest_cpu == smp_processor_id())
  2087. goto unlock;
  2088. if (likely(cpu_active(dest_cpu))) {
  2089. struct migration_arg arg = { p, dest_cpu };
  2090. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2091. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2092. return;
  2093. }
  2094. unlock:
  2095. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2096. }
  2097. #endif
  2098. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2099. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2100. EXPORT_PER_CPU_SYMBOL(kstat);
  2101. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2102. /*
  2103. * Return any ns on the sched_clock that have not yet been accounted in
  2104. * @p in case that task is currently running.
  2105. *
  2106. * Called with task_rq_lock() held on @rq.
  2107. */
  2108. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2109. {
  2110. u64 ns = 0;
  2111. /*
  2112. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2113. * project cycles that may never be accounted to this
  2114. * thread, breaking clock_gettime().
  2115. */
  2116. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2117. update_rq_clock(rq);
  2118. ns = rq_clock_task(rq) - p->se.exec_start;
  2119. if ((s64)ns < 0)
  2120. ns = 0;
  2121. }
  2122. return ns;
  2123. }
  2124. unsigned long long task_delta_exec(struct task_struct *p)
  2125. {
  2126. unsigned long flags;
  2127. struct rq *rq;
  2128. u64 ns = 0;
  2129. rq = task_rq_lock(p, &flags);
  2130. ns = do_task_delta_exec(p, rq);
  2131. task_rq_unlock(rq, p, &flags);
  2132. return ns;
  2133. }
  2134. /*
  2135. * Return accounted runtime for the task.
  2136. * In case the task is currently running, return the runtime plus current's
  2137. * pending runtime that have not been accounted yet.
  2138. */
  2139. unsigned long long task_sched_runtime(struct task_struct *p)
  2140. {
  2141. unsigned long flags;
  2142. struct rq *rq;
  2143. u64 ns = 0;
  2144. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2145. /*
  2146. * 64-bit doesn't need locks to atomically read a 64bit value.
  2147. * So we have a optimization chance when the task's delta_exec is 0.
  2148. * Reading ->on_cpu is racy, but this is ok.
  2149. *
  2150. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2151. * If we race with it entering cpu, unaccounted time is 0. This is
  2152. * indistinguishable from the read occurring a few cycles earlier.
  2153. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2154. * been accounted, so we're correct here as well.
  2155. */
  2156. if (!p->on_cpu || !task_on_rq_queued(p))
  2157. return p->se.sum_exec_runtime;
  2158. #endif
  2159. rq = task_rq_lock(p, &flags);
  2160. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2161. task_rq_unlock(rq, p, &flags);
  2162. return ns;
  2163. }
  2164. /*
  2165. * This function gets called by the timer code, with HZ frequency.
  2166. * We call it with interrupts disabled.
  2167. */
  2168. void scheduler_tick(void)
  2169. {
  2170. int cpu = smp_processor_id();
  2171. struct rq *rq = cpu_rq(cpu);
  2172. struct task_struct *curr = rq->curr;
  2173. sched_clock_tick();
  2174. raw_spin_lock(&rq->lock);
  2175. update_rq_clock(rq);
  2176. curr->sched_class->task_tick(rq, curr, 0);
  2177. update_cpu_load_active(rq);
  2178. raw_spin_unlock(&rq->lock);
  2179. perf_event_task_tick();
  2180. #ifdef CONFIG_SMP
  2181. rq->idle_balance = idle_cpu(cpu);
  2182. trigger_load_balance(rq);
  2183. #endif
  2184. rq_last_tick_reset(rq);
  2185. }
  2186. #ifdef CONFIG_NO_HZ_FULL
  2187. /**
  2188. * scheduler_tick_max_deferment
  2189. *
  2190. * Keep at least one tick per second when a single
  2191. * active task is running because the scheduler doesn't
  2192. * yet completely support full dynticks environment.
  2193. *
  2194. * This makes sure that uptime, CFS vruntime, load
  2195. * balancing, etc... continue to move forward, even
  2196. * with a very low granularity.
  2197. *
  2198. * Return: Maximum deferment in nanoseconds.
  2199. */
  2200. u64 scheduler_tick_max_deferment(void)
  2201. {
  2202. struct rq *rq = this_rq();
  2203. unsigned long next, now = ACCESS_ONCE(jiffies);
  2204. next = rq->last_sched_tick + HZ;
  2205. if (time_before_eq(next, now))
  2206. return 0;
  2207. return jiffies_to_nsecs(next - now);
  2208. }
  2209. #endif
  2210. notrace unsigned long get_parent_ip(unsigned long addr)
  2211. {
  2212. if (in_lock_functions(addr)) {
  2213. addr = CALLER_ADDR2;
  2214. if (in_lock_functions(addr))
  2215. addr = CALLER_ADDR3;
  2216. }
  2217. return addr;
  2218. }
  2219. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2220. defined(CONFIG_PREEMPT_TRACER))
  2221. void preempt_count_add(int val)
  2222. {
  2223. #ifdef CONFIG_DEBUG_PREEMPT
  2224. /*
  2225. * Underflow?
  2226. */
  2227. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2228. return;
  2229. #endif
  2230. __preempt_count_add(val);
  2231. #ifdef CONFIG_DEBUG_PREEMPT
  2232. /*
  2233. * Spinlock count overflowing soon?
  2234. */
  2235. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2236. PREEMPT_MASK - 10);
  2237. #endif
  2238. if (preempt_count() == val) {
  2239. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2240. #ifdef CONFIG_DEBUG_PREEMPT
  2241. current->preempt_disable_ip = ip;
  2242. #endif
  2243. trace_preempt_off(CALLER_ADDR0, ip);
  2244. }
  2245. }
  2246. EXPORT_SYMBOL(preempt_count_add);
  2247. NOKPROBE_SYMBOL(preempt_count_add);
  2248. void preempt_count_sub(int val)
  2249. {
  2250. #ifdef CONFIG_DEBUG_PREEMPT
  2251. /*
  2252. * Underflow?
  2253. */
  2254. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2255. return;
  2256. /*
  2257. * Is the spinlock portion underflowing?
  2258. */
  2259. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2260. !(preempt_count() & PREEMPT_MASK)))
  2261. return;
  2262. #endif
  2263. if (preempt_count() == val)
  2264. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2265. __preempt_count_sub(val);
  2266. }
  2267. EXPORT_SYMBOL(preempt_count_sub);
  2268. NOKPROBE_SYMBOL(preempt_count_sub);
  2269. #endif
  2270. /*
  2271. * Print scheduling while atomic bug:
  2272. */
  2273. static noinline void __schedule_bug(struct task_struct *prev)
  2274. {
  2275. if (oops_in_progress)
  2276. return;
  2277. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2278. prev->comm, prev->pid, preempt_count());
  2279. debug_show_held_locks(prev);
  2280. print_modules();
  2281. if (irqs_disabled())
  2282. print_irqtrace_events(prev);
  2283. #ifdef CONFIG_DEBUG_PREEMPT
  2284. if (in_atomic_preempt_off()) {
  2285. pr_err("Preemption disabled at:");
  2286. print_ip_sym(current->preempt_disable_ip);
  2287. pr_cont("\n");
  2288. }
  2289. #endif
  2290. dump_stack();
  2291. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2292. }
  2293. /*
  2294. * Various schedule()-time debugging checks and statistics:
  2295. */
  2296. static inline void schedule_debug(struct task_struct *prev)
  2297. {
  2298. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2299. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2300. #endif
  2301. /*
  2302. * Test if we are atomic. Since do_exit() needs to call into
  2303. * schedule() atomically, we ignore that path. Otherwise whine
  2304. * if we are scheduling when we should not.
  2305. */
  2306. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2307. __schedule_bug(prev);
  2308. rcu_sleep_check();
  2309. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2310. schedstat_inc(this_rq(), sched_count);
  2311. }
  2312. /*
  2313. * Pick up the highest-prio task:
  2314. */
  2315. static inline struct task_struct *
  2316. pick_next_task(struct rq *rq, struct task_struct *prev)
  2317. {
  2318. const struct sched_class *class = &fair_sched_class;
  2319. struct task_struct *p;
  2320. /*
  2321. * Optimization: we know that if all tasks are in
  2322. * the fair class we can call that function directly:
  2323. */
  2324. if (likely(prev->sched_class == class &&
  2325. rq->nr_running == rq->cfs.h_nr_running)) {
  2326. p = fair_sched_class.pick_next_task(rq, prev);
  2327. if (unlikely(p == RETRY_TASK))
  2328. goto again;
  2329. /* assumes fair_sched_class->next == idle_sched_class */
  2330. if (unlikely(!p))
  2331. p = idle_sched_class.pick_next_task(rq, prev);
  2332. return p;
  2333. }
  2334. again:
  2335. for_each_class(class) {
  2336. p = class->pick_next_task(rq, prev);
  2337. if (p) {
  2338. if (unlikely(p == RETRY_TASK))
  2339. goto again;
  2340. return p;
  2341. }
  2342. }
  2343. BUG(); /* the idle class will always have a runnable task */
  2344. }
  2345. /*
  2346. * __schedule() is the main scheduler function.
  2347. *
  2348. * The main means of driving the scheduler and thus entering this function are:
  2349. *
  2350. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2351. *
  2352. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2353. * paths. For example, see arch/x86/entry_64.S.
  2354. *
  2355. * To drive preemption between tasks, the scheduler sets the flag in timer
  2356. * interrupt handler scheduler_tick().
  2357. *
  2358. * 3. Wakeups don't really cause entry into schedule(). They add a
  2359. * task to the run-queue and that's it.
  2360. *
  2361. * Now, if the new task added to the run-queue preempts the current
  2362. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2363. * called on the nearest possible occasion:
  2364. *
  2365. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2366. *
  2367. * - in syscall or exception context, at the next outmost
  2368. * preempt_enable(). (this might be as soon as the wake_up()'s
  2369. * spin_unlock()!)
  2370. *
  2371. * - in IRQ context, return from interrupt-handler to
  2372. * preemptible context
  2373. *
  2374. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2375. * then at the next:
  2376. *
  2377. * - cond_resched() call
  2378. * - explicit schedule() call
  2379. * - return from syscall or exception to user-space
  2380. * - return from interrupt-handler to user-space
  2381. */
  2382. static void __sched __schedule(void)
  2383. {
  2384. struct task_struct *prev, *next;
  2385. unsigned long *switch_count;
  2386. struct rq *rq;
  2387. int cpu;
  2388. need_resched:
  2389. preempt_disable();
  2390. cpu = smp_processor_id();
  2391. rq = cpu_rq(cpu);
  2392. rcu_note_context_switch(cpu);
  2393. prev = rq->curr;
  2394. schedule_debug(prev);
  2395. if (sched_feat(HRTICK))
  2396. hrtick_clear(rq);
  2397. /*
  2398. * Make sure that signal_pending_state()->signal_pending() below
  2399. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2400. * done by the caller to avoid the race with signal_wake_up().
  2401. */
  2402. smp_mb__before_spinlock();
  2403. raw_spin_lock_irq(&rq->lock);
  2404. switch_count = &prev->nivcsw;
  2405. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2406. if (unlikely(signal_pending_state(prev->state, prev))) {
  2407. prev->state = TASK_RUNNING;
  2408. } else {
  2409. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2410. prev->on_rq = 0;
  2411. /*
  2412. * If a worker went to sleep, notify and ask workqueue
  2413. * whether it wants to wake up a task to maintain
  2414. * concurrency.
  2415. */
  2416. if (prev->flags & PF_WQ_WORKER) {
  2417. struct task_struct *to_wakeup;
  2418. to_wakeup = wq_worker_sleeping(prev, cpu);
  2419. if (to_wakeup)
  2420. try_to_wake_up_local(to_wakeup);
  2421. }
  2422. }
  2423. switch_count = &prev->nvcsw;
  2424. }
  2425. if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
  2426. update_rq_clock(rq);
  2427. next = pick_next_task(rq, prev);
  2428. clear_tsk_need_resched(prev);
  2429. clear_preempt_need_resched();
  2430. rq->skip_clock_update = 0;
  2431. if (likely(prev != next)) {
  2432. rq->nr_switches++;
  2433. rq->curr = next;
  2434. ++*switch_count;
  2435. context_switch(rq, prev, next); /* unlocks the rq */
  2436. /*
  2437. * The context switch have flipped the stack from under us
  2438. * and restored the local variables which were saved when
  2439. * this task called schedule() in the past. prev == current
  2440. * is still correct, but it can be moved to another cpu/rq.
  2441. */
  2442. cpu = smp_processor_id();
  2443. rq = cpu_rq(cpu);
  2444. } else
  2445. raw_spin_unlock_irq(&rq->lock);
  2446. post_schedule(rq);
  2447. sched_preempt_enable_no_resched();
  2448. if (need_resched())
  2449. goto need_resched;
  2450. }
  2451. static inline void sched_submit_work(struct task_struct *tsk)
  2452. {
  2453. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2454. return;
  2455. /*
  2456. * If we are going to sleep and we have plugged IO queued,
  2457. * make sure to submit it to avoid deadlocks.
  2458. */
  2459. if (blk_needs_flush_plug(tsk))
  2460. blk_schedule_flush_plug(tsk);
  2461. }
  2462. asmlinkage __visible void __sched schedule(void)
  2463. {
  2464. struct task_struct *tsk = current;
  2465. sched_submit_work(tsk);
  2466. __schedule();
  2467. }
  2468. EXPORT_SYMBOL(schedule);
  2469. #ifdef CONFIG_CONTEXT_TRACKING
  2470. asmlinkage __visible void __sched schedule_user(void)
  2471. {
  2472. /*
  2473. * If we come here after a random call to set_need_resched(),
  2474. * or we have been woken up remotely but the IPI has not yet arrived,
  2475. * we haven't yet exited the RCU idle mode. Do it here manually until
  2476. * we find a better solution.
  2477. */
  2478. user_exit();
  2479. schedule();
  2480. user_enter();
  2481. }
  2482. #endif
  2483. /**
  2484. * schedule_preempt_disabled - called with preemption disabled
  2485. *
  2486. * Returns with preemption disabled. Note: preempt_count must be 1
  2487. */
  2488. void __sched schedule_preempt_disabled(void)
  2489. {
  2490. sched_preempt_enable_no_resched();
  2491. schedule();
  2492. preempt_disable();
  2493. }
  2494. #ifdef CONFIG_PREEMPT
  2495. /*
  2496. * this is the entry point to schedule() from in-kernel preemption
  2497. * off of preempt_enable. Kernel preemptions off return from interrupt
  2498. * occur there and call schedule directly.
  2499. */
  2500. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2501. {
  2502. /*
  2503. * If there is a non-zero preempt_count or interrupts are disabled,
  2504. * we do not want to preempt the current task. Just return..
  2505. */
  2506. if (likely(!preemptible()))
  2507. return;
  2508. do {
  2509. __preempt_count_add(PREEMPT_ACTIVE);
  2510. __schedule();
  2511. __preempt_count_sub(PREEMPT_ACTIVE);
  2512. /*
  2513. * Check again in case we missed a preemption opportunity
  2514. * between schedule and now.
  2515. */
  2516. barrier();
  2517. } while (need_resched());
  2518. }
  2519. NOKPROBE_SYMBOL(preempt_schedule);
  2520. EXPORT_SYMBOL(preempt_schedule);
  2521. #endif /* CONFIG_PREEMPT */
  2522. /*
  2523. * this is the entry point to schedule() from kernel preemption
  2524. * off of irq context.
  2525. * Note, that this is called and return with irqs disabled. This will
  2526. * protect us against recursive calling from irq.
  2527. */
  2528. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2529. {
  2530. enum ctx_state prev_state;
  2531. /* Catch callers which need to be fixed */
  2532. BUG_ON(preempt_count() || !irqs_disabled());
  2533. prev_state = exception_enter();
  2534. do {
  2535. __preempt_count_add(PREEMPT_ACTIVE);
  2536. local_irq_enable();
  2537. __schedule();
  2538. local_irq_disable();
  2539. __preempt_count_sub(PREEMPT_ACTIVE);
  2540. /*
  2541. * Check again in case we missed a preemption opportunity
  2542. * between schedule and now.
  2543. */
  2544. barrier();
  2545. } while (need_resched());
  2546. exception_exit(prev_state);
  2547. }
  2548. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2549. void *key)
  2550. {
  2551. return try_to_wake_up(curr->private, mode, wake_flags);
  2552. }
  2553. EXPORT_SYMBOL(default_wake_function);
  2554. #ifdef CONFIG_RT_MUTEXES
  2555. /*
  2556. * rt_mutex_setprio - set the current priority of a task
  2557. * @p: task
  2558. * @prio: prio value (kernel-internal form)
  2559. *
  2560. * This function changes the 'effective' priority of a task. It does
  2561. * not touch ->normal_prio like __setscheduler().
  2562. *
  2563. * Used by the rt_mutex code to implement priority inheritance
  2564. * logic. Call site only calls if the priority of the task changed.
  2565. */
  2566. void rt_mutex_setprio(struct task_struct *p, int prio)
  2567. {
  2568. int oldprio, queued, running, enqueue_flag = 0;
  2569. struct rq *rq;
  2570. const struct sched_class *prev_class;
  2571. BUG_ON(prio > MAX_PRIO);
  2572. rq = __task_rq_lock(p);
  2573. /*
  2574. * Idle task boosting is a nono in general. There is one
  2575. * exception, when PREEMPT_RT and NOHZ is active:
  2576. *
  2577. * The idle task calls get_next_timer_interrupt() and holds
  2578. * the timer wheel base->lock on the CPU and another CPU wants
  2579. * to access the timer (probably to cancel it). We can safely
  2580. * ignore the boosting request, as the idle CPU runs this code
  2581. * with interrupts disabled and will complete the lock
  2582. * protected section without being interrupted. So there is no
  2583. * real need to boost.
  2584. */
  2585. if (unlikely(p == rq->idle)) {
  2586. WARN_ON(p != rq->curr);
  2587. WARN_ON(p->pi_blocked_on);
  2588. goto out_unlock;
  2589. }
  2590. trace_sched_pi_setprio(p, prio);
  2591. oldprio = p->prio;
  2592. prev_class = p->sched_class;
  2593. queued = task_on_rq_queued(p);
  2594. running = task_current(rq, p);
  2595. if (queued)
  2596. dequeue_task(rq, p, 0);
  2597. if (running)
  2598. put_prev_task(rq, p);
  2599. /*
  2600. * Boosting condition are:
  2601. * 1. -rt task is running and holds mutex A
  2602. * --> -dl task blocks on mutex A
  2603. *
  2604. * 2. -dl task is running and holds mutex A
  2605. * --> -dl task blocks on mutex A and could preempt the
  2606. * running task
  2607. */
  2608. if (dl_prio(prio)) {
  2609. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2610. if (!dl_prio(p->normal_prio) ||
  2611. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2612. p->dl.dl_boosted = 1;
  2613. p->dl.dl_throttled = 0;
  2614. enqueue_flag = ENQUEUE_REPLENISH;
  2615. } else
  2616. p->dl.dl_boosted = 0;
  2617. p->sched_class = &dl_sched_class;
  2618. } else if (rt_prio(prio)) {
  2619. if (dl_prio(oldprio))
  2620. p->dl.dl_boosted = 0;
  2621. if (oldprio < prio)
  2622. enqueue_flag = ENQUEUE_HEAD;
  2623. p->sched_class = &rt_sched_class;
  2624. } else {
  2625. if (dl_prio(oldprio))
  2626. p->dl.dl_boosted = 0;
  2627. p->sched_class = &fair_sched_class;
  2628. }
  2629. p->prio = prio;
  2630. if (running)
  2631. p->sched_class->set_curr_task(rq);
  2632. if (queued)
  2633. enqueue_task(rq, p, enqueue_flag);
  2634. check_class_changed(rq, p, prev_class, oldprio);
  2635. out_unlock:
  2636. __task_rq_unlock(rq);
  2637. }
  2638. #endif
  2639. void set_user_nice(struct task_struct *p, long nice)
  2640. {
  2641. int old_prio, delta, queued;
  2642. unsigned long flags;
  2643. struct rq *rq;
  2644. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2645. return;
  2646. /*
  2647. * We have to be careful, if called from sys_setpriority(),
  2648. * the task might be in the middle of scheduling on another CPU.
  2649. */
  2650. rq = task_rq_lock(p, &flags);
  2651. /*
  2652. * The RT priorities are set via sched_setscheduler(), but we still
  2653. * allow the 'normal' nice value to be set - but as expected
  2654. * it wont have any effect on scheduling until the task is
  2655. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2656. */
  2657. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2658. p->static_prio = NICE_TO_PRIO(nice);
  2659. goto out_unlock;
  2660. }
  2661. queued = task_on_rq_queued(p);
  2662. if (queued)
  2663. dequeue_task(rq, p, 0);
  2664. p->static_prio = NICE_TO_PRIO(nice);
  2665. set_load_weight(p);
  2666. old_prio = p->prio;
  2667. p->prio = effective_prio(p);
  2668. delta = p->prio - old_prio;
  2669. if (queued) {
  2670. enqueue_task(rq, p, 0);
  2671. /*
  2672. * If the task increased its priority or is running and
  2673. * lowered its priority, then reschedule its CPU:
  2674. */
  2675. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2676. resched_curr(rq);
  2677. }
  2678. out_unlock:
  2679. task_rq_unlock(rq, p, &flags);
  2680. }
  2681. EXPORT_SYMBOL(set_user_nice);
  2682. /*
  2683. * can_nice - check if a task can reduce its nice value
  2684. * @p: task
  2685. * @nice: nice value
  2686. */
  2687. int can_nice(const struct task_struct *p, const int nice)
  2688. {
  2689. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2690. int nice_rlim = nice_to_rlimit(nice);
  2691. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2692. capable(CAP_SYS_NICE));
  2693. }
  2694. #ifdef __ARCH_WANT_SYS_NICE
  2695. /*
  2696. * sys_nice - change the priority of the current process.
  2697. * @increment: priority increment
  2698. *
  2699. * sys_setpriority is a more generic, but much slower function that
  2700. * does similar things.
  2701. */
  2702. SYSCALL_DEFINE1(nice, int, increment)
  2703. {
  2704. long nice, retval;
  2705. /*
  2706. * Setpriority might change our priority at the same moment.
  2707. * We don't have to worry. Conceptually one call occurs first
  2708. * and we have a single winner.
  2709. */
  2710. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2711. nice = task_nice(current) + increment;
  2712. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2713. if (increment < 0 && !can_nice(current, nice))
  2714. return -EPERM;
  2715. retval = security_task_setnice(current, nice);
  2716. if (retval)
  2717. return retval;
  2718. set_user_nice(current, nice);
  2719. return 0;
  2720. }
  2721. #endif
  2722. /**
  2723. * task_prio - return the priority value of a given task.
  2724. * @p: the task in question.
  2725. *
  2726. * Return: The priority value as seen by users in /proc.
  2727. * RT tasks are offset by -200. Normal tasks are centered
  2728. * around 0, value goes from -16 to +15.
  2729. */
  2730. int task_prio(const struct task_struct *p)
  2731. {
  2732. return p->prio - MAX_RT_PRIO;
  2733. }
  2734. /**
  2735. * idle_cpu - is a given cpu idle currently?
  2736. * @cpu: the processor in question.
  2737. *
  2738. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2739. */
  2740. int idle_cpu(int cpu)
  2741. {
  2742. struct rq *rq = cpu_rq(cpu);
  2743. if (rq->curr != rq->idle)
  2744. return 0;
  2745. if (rq->nr_running)
  2746. return 0;
  2747. #ifdef CONFIG_SMP
  2748. if (!llist_empty(&rq->wake_list))
  2749. return 0;
  2750. #endif
  2751. return 1;
  2752. }
  2753. /**
  2754. * idle_task - return the idle task for a given cpu.
  2755. * @cpu: the processor in question.
  2756. *
  2757. * Return: The idle task for the cpu @cpu.
  2758. */
  2759. struct task_struct *idle_task(int cpu)
  2760. {
  2761. return cpu_rq(cpu)->idle;
  2762. }
  2763. /**
  2764. * find_process_by_pid - find a process with a matching PID value.
  2765. * @pid: the pid in question.
  2766. *
  2767. * The task of @pid, if found. %NULL otherwise.
  2768. */
  2769. static struct task_struct *find_process_by_pid(pid_t pid)
  2770. {
  2771. return pid ? find_task_by_vpid(pid) : current;
  2772. }
  2773. /*
  2774. * This function initializes the sched_dl_entity of a newly becoming
  2775. * SCHED_DEADLINE task.
  2776. *
  2777. * Only the static values are considered here, the actual runtime and the
  2778. * absolute deadline will be properly calculated when the task is enqueued
  2779. * for the first time with its new policy.
  2780. */
  2781. static void
  2782. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2783. {
  2784. struct sched_dl_entity *dl_se = &p->dl;
  2785. init_dl_task_timer(dl_se);
  2786. dl_se->dl_runtime = attr->sched_runtime;
  2787. dl_se->dl_deadline = attr->sched_deadline;
  2788. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2789. dl_se->flags = attr->sched_flags;
  2790. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2791. dl_se->dl_throttled = 0;
  2792. dl_se->dl_new = 1;
  2793. dl_se->dl_yielded = 0;
  2794. }
  2795. /*
  2796. * sched_setparam() passes in -1 for its policy, to let the functions
  2797. * it calls know not to change it.
  2798. */
  2799. #define SETPARAM_POLICY -1
  2800. static void __setscheduler_params(struct task_struct *p,
  2801. const struct sched_attr *attr)
  2802. {
  2803. int policy = attr->sched_policy;
  2804. if (policy == SETPARAM_POLICY)
  2805. policy = p->policy;
  2806. p->policy = policy;
  2807. if (dl_policy(policy))
  2808. __setparam_dl(p, attr);
  2809. else if (fair_policy(policy))
  2810. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2811. /*
  2812. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2813. * !rt_policy. Always setting this ensures that things like
  2814. * getparam()/getattr() don't report silly values for !rt tasks.
  2815. */
  2816. p->rt_priority = attr->sched_priority;
  2817. p->normal_prio = normal_prio(p);
  2818. set_load_weight(p);
  2819. }
  2820. /* Actually do priority change: must hold pi & rq lock. */
  2821. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2822. const struct sched_attr *attr)
  2823. {
  2824. __setscheduler_params(p, attr);
  2825. /*
  2826. * If we get here, there was no pi waiters boosting the
  2827. * task. It is safe to use the normal prio.
  2828. */
  2829. p->prio = normal_prio(p);
  2830. if (dl_prio(p->prio))
  2831. p->sched_class = &dl_sched_class;
  2832. else if (rt_prio(p->prio))
  2833. p->sched_class = &rt_sched_class;
  2834. else
  2835. p->sched_class = &fair_sched_class;
  2836. }
  2837. static void
  2838. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2839. {
  2840. struct sched_dl_entity *dl_se = &p->dl;
  2841. attr->sched_priority = p->rt_priority;
  2842. attr->sched_runtime = dl_se->dl_runtime;
  2843. attr->sched_deadline = dl_se->dl_deadline;
  2844. attr->sched_period = dl_se->dl_period;
  2845. attr->sched_flags = dl_se->flags;
  2846. }
  2847. /*
  2848. * This function validates the new parameters of a -deadline task.
  2849. * We ask for the deadline not being zero, and greater or equal
  2850. * than the runtime, as well as the period of being zero or
  2851. * greater than deadline. Furthermore, we have to be sure that
  2852. * user parameters are above the internal resolution of 1us (we
  2853. * check sched_runtime only since it is always the smaller one) and
  2854. * below 2^63 ns (we have to check both sched_deadline and
  2855. * sched_period, as the latter can be zero).
  2856. */
  2857. static bool
  2858. __checkparam_dl(const struct sched_attr *attr)
  2859. {
  2860. /* deadline != 0 */
  2861. if (attr->sched_deadline == 0)
  2862. return false;
  2863. /*
  2864. * Since we truncate DL_SCALE bits, make sure we're at least
  2865. * that big.
  2866. */
  2867. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2868. return false;
  2869. /*
  2870. * Since we use the MSB for wrap-around and sign issues, make
  2871. * sure it's not set (mind that period can be equal to zero).
  2872. */
  2873. if (attr->sched_deadline & (1ULL << 63) ||
  2874. attr->sched_period & (1ULL << 63))
  2875. return false;
  2876. /* runtime <= deadline <= period (if period != 0) */
  2877. if ((attr->sched_period != 0 &&
  2878. attr->sched_period < attr->sched_deadline) ||
  2879. attr->sched_deadline < attr->sched_runtime)
  2880. return false;
  2881. return true;
  2882. }
  2883. /*
  2884. * check the target process has a UID that matches the current process's
  2885. */
  2886. static bool check_same_owner(struct task_struct *p)
  2887. {
  2888. const struct cred *cred = current_cred(), *pcred;
  2889. bool match;
  2890. rcu_read_lock();
  2891. pcred = __task_cred(p);
  2892. match = (uid_eq(cred->euid, pcred->euid) ||
  2893. uid_eq(cred->euid, pcred->uid));
  2894. rcu_read_unlock();
  2895. return match;
  2896. }
  2897. static int __sched_setscheduler(struct task_struct *p,
  2898. const struct sched_attr *attr,
  2899. bool user)
  2900. {
  2901. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2902. MAX_RT_PRIO - 1 - attr->sched_priority;
  2903. int retval, oldprio, oldpolicy = -1, queued, running;
  2904. int policy = attr->sched_policy;
  2905. unsigned long flags;
  2906. const struct sched_class *prev_class;
  2907. struct rq *rq;
  2908. int reset_on_fork;
  2909. /* may grab non-irq protected spin_locks */
  2910. BUG_ON(in_interrupt());
  2911. recheck:
  2912. /* double check policy once rq lock held */
  2913. if (policy < 0) {
  2914. reset_on_fork = p->sched_reset_on_fork;
  2915. policy = oldpolicy = p->policy;
  2916. } else {
  2917. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2918. if (policy != SCHED_DEADLINE &&
  2919. policy != SCHED_FIFO && policy != SCHED_RR &&
  2920. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2921. policy != SCHED_IDLE)
  2922. return -EINVAL;
  2923. }
  2924. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2925. return -EINVAL;
  2926. /*
  2927. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2928. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2929. * SCHED_BATCH and SCHED_IDLE is 0.
  2930. */
  2931. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2932. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2933. return -EINVAL;
  2934. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2935. (rt_policy(policy) != (attr->sched_priority != 0)))
  2936. return -EINVAL;
  2937. /*
  2938. * Allow unprivileged RT tasks to decrease priority:
  2939. */
  2940. if (user && !capable(CAP_SYS_NICE)) {
  2941. if (fair_policy(policy)) {
  2942. if (attr->sched_nice < task_nice(p) &&
  2943. !can_nice(p, attr->sched_nice))
  2944. return -EPERM;
  2945. }
  2946. if (rt_policy(policy)) {
  2947. unsigned long rlim_rtprio =
  2948. task_rlimit(p, RLIMIT_RTPRIO);
  2949. /* can't set/change the rt policy */
  2950. if (policy != p->policy && !rlim_rtprio)
  2951. return -EPERM;
  2952. /* can't increase priority */
  2953. if (attr->sched_priority > p->rt_priority &&
  2954. attr->sched_priority > rlim_rtprio)
  2955. return -EPERM;
  2956. }
  2957. /*
  2958. * Can't set/change SCHED_DEADLINE policy at all for now
  2959. * (safest behavior); in the future we would like to allow
  2960. * unprivileged DL tasks to increase their relative deadline
  2961. * or reduce their runtime (both ways reducing utilization)
  2962. */
  2963. if (dl_policy(policy))
  2964. return -EPERM;
  2965. /*
  2966. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2967. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2968. */
  2969. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2970. if (!can_nice(p, task_nice(p)))
  2971. return -EPERM;
  2972. }
  2973. /* can't change other user's priorities */
  2974. if (!check_same_owner(p))
  2975. return -EPERM;
  2976. /* Normal users shall not reset the sched_reset_on_fork flag */
  2977. if (p->sched_reset_on_fork && !reset_on_fork)
  2978. return -EPERM;
  2979. }
  2980. if (user) {
  2981. retval = security_task_setscheduler(p);
  2982. if (retval)
  2983. return retval;
  2984. }
  2985. /*
  2986. * make sure no PI-waiters arrive (or leave) while we are
  2987. * changing the priority of the task:
  2988. *
  2989. * To be able to change p->policy safely, the appropriate
  2990. * runqueue lock must be held.
  2991. */
  2992. rq = task_rq_lock(p, &flags);
  2993. /*
  2994. * Changing the policy of the stop threads its a very bad idea
  2995. */
  2996. if (p == rq->stop) {
  2997. task_rq_unlock(rq, p, &flags);
  2998. return -EINVAL;
  2999. }
  3000. /*
  3001. * If not changing anything there's no need to proceed further,
  3002. * but store a possible modification of reset_on_fork.
  3003. */
  3004. if (unlikely(policy == p->policy)) {
  3005. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3006. goto change;
  3007. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3008. goto change;
  3009. if (dl_policy(policy))
  3010. goto change;
  3011. p->sched_reset_on_fork = reset_on_fork;
  3012. task_rq_unlock(rq, p, &flags);
  3013. return 0;
  3014. }
  3015. change:
  3016. if (user) {
  3017. #ifdef CONFIG_RT_GROUP_SCHED
  3018. /*
  3019. * Do not allow realtime tasks into groups that have no runtime
  3020. * assigned.
  3021. */
  3022. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3023. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3024. !task_group_is_autogroup(task_group(p))) {
  3025. task_rq_unlock(rq, p, &flags);
  3026. return -EPERM;
  3027. }
  3028. #endif
  3029. #ifdef CONFIG_SMP
  3030. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3031. cpumask_t *span = rq->rd->span;
  3032. /*
  3033. * Don't allow tasks with an affinity mask smaller than
  3034. * the entire root_domain to become SCHED_DEADLINE. We
  3035. * will also fail if there's no bandwidth available.
  3036. */
  3037. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3038. rq->rd->dl_bw.bw == 0) {
  3039. task_rq_unlock(rq, p, &flags);
  3040. return -EPERM;
  3041. }
  3042. }
  3043. #endif
  3044. }
  3045. /* recheck policy now with rq lock held */
  3046. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3047. policy = oldpolicy = -1;
  3048. task_rq_unlock(rq, p, &flags);
  3049. goto recheck;
  3050. }
  3051. /*
  3052. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3053. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3054. * is available.
  3055. */
  3056. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3057. task_rq_unlock(rq, p, &flags);
  3058. return -EBUSY;
  3059. }
  3060. p->sched_reset_on_fork = reset_on_fork;
  3061. oldprio = p->prio;
  3062. /*
  3063. * Special case for priority boosted tasks.
  3064. *
  3065. * If the new priority is lower or equal (user space view)
  3066. * than the current (boosted) priority, we just store the new
  3067. * normal parameters and do not touch the scheduler class and
  3068. * the runqueue. This will be done when the task deboost
  3069. * itself.
  3070. */
  3071. if (rt_mutex_check_prio(p, newprio)) {
  3072. __setscheduler_params(p, attr);
  3073. task_rq_unlock(rq, p, &flags);
  3074. return 0;
  3075. }
  3076. queued = task_on_rq_queued(p);
  3077. running = task_current(rq, p);
  3078. if (queued)
  3079. dequeue_task(rq, p, 0);
  3080. if (running)
  3081. put_prev_task(rq, p);
  3082. prev_class = p->sched_class;
  3083. __setscheduler(rq, p, attr);
  3084. if (running)
  3085. p->sched_class->set_curr_task(rq);
  3086. if (queued) {
  3087. /*
  3088. * We enqueue to tail when the priority of a task is
  3089. * increased (user space view).
  3090. */
  3091. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3092. }
  3093. check_class_changed(rq, p, prev_class, oldprio);
  3094. task_rq_unlock(rq, p, &flags);
  3095. rt_mutex_adjust_pi(p);
  3096. return 0;
  3097. }
  3098. static int _sched_setscheduler(struct task_struct *p, int policy,
  3099. const struct sched_param *param, bool check)
  3100. {
  3101. struct sched_attr attr = {
  3102. .sched_policy = policy,
  3103. .sched_priority = param->sched_priority,
  3104. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3105. };
  3106. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3107. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3108. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3109. policy &= ~SCHED_RESET_ON_FORK;
  3110. attr.sched_policy = policy;
  3111. }
  3112. return __sched_setscheduler(p, &attr, check);
  3113. }
  3114. /**
  3115. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3116. * @p: the task in question.
  3117. * @policy: new policy.
  3118. * @param: structure containing the new RT priority.
  3119. *
  3120. * Return: 0 on success. An error code otherwise.
  3121. *
  3122. * NOTE that the task may be already dead.
  3123. */
  3124. int sched_setscheduler(struct task_struct *p, int policy,
  3125. const struct sched_param *param)
  3126. {
  3127. return _sched_setscheduler(p, policy, param, true);
  3128. }
  3129. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3130. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3131. {
  3132. return __sched_setscheduler(p, attr, true);
  3133. }
  3134. EXPORT_SYMBOL_GPL(sched_setattr);
  3135. /**
  3136. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3137. * @p: the task in question.
  3138. * @policy: new policy.
  3139. * @param: structure containing the new RT priority.
  3140. *
  3141. * Just like sched_setscheduler, only don't bother checking if the
  3142. * current context has permission. For example, this is needed in
  3143. * stop_machine(): we create temporary high priority worker threads,
  3144. * but our caller might not have that capability.
  3145. *
  3146. * Return: 0 on success. An error code otherwise.
  3147. */
  3148. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3149. const struct sched_param *param)
  3150. {
  3151. return _sched_setscheduler(p, policy, param, false);
  3152. }
  3153. static int
  3154. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3155. {
  3156. struct sched_param lparam;
  3157. struct task_struct *p;
  3158. int retval;
  3159. if (!param || pid < 0)
  3160. return -EINVAL;
  3161. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3162. return -EFAULT;
  3163. rcu_read_lock();
  3164. retval = -ESRCH;
  3165. p = find_process_by_pid(pid);
  3166. if (p != NULL)
  3167. retval = sched_setscheduler(p, policy, &lparam);
  3168. rcu_read_unlock();
  3169. return retval;
  3170. }
  3171. /*
  3172. * Mimics kernel/events/core.c perf_copy_attr().
  3173. */
  3174. static int sched_copy_attr(struct sched_attr __user *uattr,
  3175. struct sched_attr *attr)
  3176. {
  3177. u32 size;
  3178. int ret;
  3179. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3180. return -EFAULT;
  3181. /*
  3182. * zero the full structure, so that a short copy will be nice.
  3183. */
  3184. memset(attr, 0, sizeof(*attr));
  3185. ret = get_user(size, &uattr->size);
  3186. if (ret)
  3187. return ret;
  3188. if (size > PAGE_SIZE) /* silly large */
  3189. goto err_size;
  3190. if (!size) /* abi compat */
  3191. size = SCHED_ATTR_SIZE_VER0;
  3192. if (size < SCHED_ATTR_SIZE_VER0)
  3193. goto err_size;
  3194. /*
  3195. * If we're handed a bigger struct than we know of,
  3196. * ensure all the unknown bits are 0 - i.e. new
  3197. * user-space does not rely on any kernel feature
  3198. * extensions we dont know about yet.
  3199. */
  3200. if (size > sizeof(*attr)) {
  3201. unsigned char __user *addr;
  3202. unsigned char __user *end;
  3203. unsigned char val;
  3204. addr = (void __user *)uattr + sizeof(*attr);
  3205. end = (void __user *)uattr + size;
  3206. for (; addr < end; addr++) {
  3207. ret = get_user(val, addr);
  3208. if (ret)
  3209. return ret;
  3210. if (val)
  3211. goto err_size;
  3212. }
  3213. size = sizeof(*attr);
  3214. }
  3215. ret = copy_from_user(attr, uattr, size);
  3216. if (ret)
  3217. return -EFAULT;
  3218. /*
  3219. * XXX: do we want to be lenient like existing syscalls; or do we want
  3220. * to be strict and return an error on out-of-bounds values?
  3221. */
  3222. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3223. return 0;
  3224. err_size:
  3225. put_user(sizeof(*attr), &uattr->size);
  3226. return -E2BIG;
  3227. }
  3228. /**
  3229. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3230. * @pid: the pid in question.
  3231. * @policy: new policy.
  3232. * @param: structure containing the new RT priority.
  3233. *
  3234. * Return: 0 on success. An error code otherwise.
  3235. */
  3236. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3237. struct sched_param __user *, param)
  3238. {
  3239. /* negative values for policy are not valid */
  3240. if (policy < 0)
  3241. return -EINVAL;
  3242. return do_sched_setscheduler(pid, policy, param);
  3243. }
  3244. /**
  3245. * sys_sched_setparam - set/change the RT priority of a thread
  3246. * @pid: the pid in question.
  3247. * @param: structure containing the new RT priority.
  3248. *
  3249. * Return: 0 on success. An error code otherwise.
  3250. */
  3251. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3252. {
  3253. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3254. }
  3255. /**
  3256. * sys_sched_setattr - same as above, but with extended sched_attr
  3257. * @pid: the pid in question.
  3258. * @uattr: structure containing the extended parameters.
  3259. * @flags: for future extension.
  3260. */
  3261. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3262. unsigned int, flags)
  3263. {
  3264. struct sched_attr attr;
  3265. struct task_struct *p;
  3266. int retval;
  3267. if (!uattr || pid < 0 || flags)
  3268. return -EINVAL;
  3269. retval = sched_copy_attr(uattr, &attr);
  3270. if (retval)
  3271. return retval;
  3272. if ((int)attr.sched_policy < 0)
  3273. return -EINVAL;
  3274. rcu_read_lock();
  3275. retval = -ESRCH;
  3276. p = find_process_by_pid(pid);
  3277. if (p != NULL)
  3278. retval = sched_setattr(p, &attr);
  3279. rcu_read_unlock();
  3280. return retval;
  3281. }
  3282. /**
  3283. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3284. * @pid: the pid in question.
  3285. *
  3286. * Return: On success, the policy of the thread. Otherwise, a negative error
  3287. * code.
  3288. */
  3289. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3290. {
  3291. struct task_struct *p;
  3292. int retval;
  3293. if (pid < 0)
  3294. return -EINVAL;
  3295. retval = -ESRCH;
  3296. rcu_read_lock();
  3297. p = find_process_by_pid(pid);
  3298. if (p) {
  3299. retval = security_task_getscheduler(p);
  3300. if (!retval)
  3301. retval = p->policy
  3302. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3303. }
  3304. rcu_read_unlock();
  3305. return retval;
  3306. }
  3307. /**
  3308. * sys_sched_getparam - get the RT priority of a thread
  3309. * @pid: the pid in question.
  3310. * @param: structure containing the RT priority.
  3311. *
  3312. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3313. * code.
  3314. */
  3315. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3316. {
  3317. struct sched_param lp = { .sched_priority = 0 };
  3318. struct task_struct *p;
  3319. int retval;
  3320. if (!param || pid < 0)
  3321. return -EINVAL;
  3322. rcu_read_lock();
  3323. p = find_process_by_pid(pid);
  3324. retval = -ESRCH;
  3325. if (!p)
  3326. goto out_unlock;
  3327. retval = security_task_getscheduler(p);
  3328. if (retval)
  3329. goto out_unlock;
  3330. if (task_has_rt_policy(p))
  3331. lp.sched_priority = p->rt_priority;
  3332. rcu_read_unlock();
  3333. /*
  3334. * This one might sleep, we cannot do it with a spinlock held ...
  3335. */
  3336. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3337. return retval;
  3338. out_unlock:
  3339. rcu_read_unlock();
  3340. return retval;
  3341. }
  3342. static int sched_read_attr(struct sched_attr __user *uattr,
  3343. struct sched_attr *attr,
  3344. unsigned int usize)
  3345. {
  3346. int ret;
  3347. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3348. return -EFAULT;
  3349. /*
  3350. * If we're handed a smaller struct than we know of,
  3351. * ensure all the unknown bits are 0 - i.e. old
  3352. * user-space does not get uncomplete information.
  3353. */
  3354. if (usize < sizeof(*attr)) {
  3355. unsigned char *addr;
  3356. unsigned char *end;
  3357. addr = (void *)attr + usize;
  3358. end = (void *)attr + sizeof(*attr);
  3359. for (; addr < end; addr++) {
  3360. if (*addr)
  3361. return -EFBIG;
  3362. }
  3363. attr->size = usize;
  3364. }
  3365. ret = copy_to_user(uattr, attr, attr->size);
  3366. if (ret)
  3367. return -EFAULT;
  3368. return 0;
  3369. }
  3370. /**
  3371. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3372. * @pid: the pid in question.
  3373. * @uattr: structure containing the extended parameters.
  3374. * @size: sizeof(attr) for fwd/bwd comp.
  3375. * @flags: for future extension.
  3376. */
  3377. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3378. unsigned int, size, unsigned int, flags)
  3379. {
  3380. struct sched_attr attr = {
  3381. .size = sizeof(struct sched_attr),
  3382. };
  3383. struct task_struct *p;
  3384. int retval;
  3385. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3386. size < SCHED_ATTR_SIZE_VER0 || flags)
  3387. return -EINVAL;
  3388. rcu_read_lock();
  3389. p = find_process_by_pid(pid);
  3390. retval = -ESRCH;
  3391. if (!p)
  3392. goto out_unlock;
  3393. retval = security_task_getscheduler(p);
  3394. if (retval)
  3395. goto out_unlock;
  3396. attr.sched_policy = p->policy;
  3397. if (p->sched_reset_on_fork)
  3398. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3399. if (task_has_dl_policy(p))
  3400. __getparam_dl(p, &attr);
  3401. else if (task_has_rt_policy(p))
  3402. attr.sched_priority = p->rt_priority;
  3403. else
  3404. attr.sched_nice = task_nice(p);
  3405. rcu_read_unlock();
  3406. retval = sched_read_attr(uattr, &attr, size);
  3407. return retval;
  3408. out_unlock:
  3409. rcu_read_unlock();
  3410. return retval;
  3411. }
  3412. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3413. {
  3414. cpumask_var_t cpus_allowed, new_mask;
  3415. struct task_struct *p;
  3416. int retval;
  3417. rcu_read_lock();
  3418. p = find_process_by_pid(pid);
  3419. if (!p) {
  3420. rcu_read_unlock();
  3421. return -ESRCH;
  3422. }
  3423. /* Prevent p going away */
  3424. get_task_struct(p);
  3425. rcu_read_unlock();
  3426. if (p->flags & PF_NO_SETAFFINITY) {
  3427. retval = -EINVAL;
  3428. goto out_put_task;
  3429. }
  3430. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3431. retval = -ENOMEM;
  3432. goto out_put_task;
  3433. }
  3434. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3435. retval = -ENOMEM;
  3436. goto out_free_cpus_allowed;
  3437. }
  3438. retval = -EPERM;
  3439. if (!check_same_owner(p)) {
  3440. rcu_read_lock();
  3441. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3442. rcu_read_unlock();
  3443. goto out_free_new_mask;
  3444. }
  3445. rcu_read_unlock();
  3446. }
  3447. retval = security_task_setscheduler(p);
  3448. if (retval)
  3449. goto out_free_new_mask;
  3450. cpuset_cpus_allowed(p, cpus_allowed);
  3451. cpumask_and(new_mask, in_mask, cpus_allowed);
  3452. /*
  3453. * Since bandwidth control happens on root_domain basis,
  3454. * if admission test is enabled, we only admit -deadline
  3455. * tasks allowed to run on all the CPUs in the task's
  3456. * root_domain.
  3457. */
  3458. #ifdef CONFIG_SMP
  3459. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3460. rcu_read_lock();
  3461. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3462. retval = -EBUSY;
  3463. rcu_read_unlock();
  3464. goto out_free_new_mask;
  3465. }
  3466. rcu_read_unlock();
  3467. }
  3468. #endif
  3469. again:
  3470. retval = set_cpus_allowed_ptr(p, new_mask);
  3471. if (!retval) {
  3472. cpuset_cpus_allowed(p, cpus_allowed);
  3473. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3474. /*
  3475. * We must have raced with a concurrent cpuset
  3476. * update. Just reset the cpus_allowed to the
  3477. * cpuset's cpus_allowed
  3478. */
  3479. cpumask_copy(new_mask, cpus_allowed);
  3480. goto again;
  3481. }
  3482. }
  3483. out_free_new_mask:
  3484. free_cpumask_var(new_mask);
  3485. out_free_cpus_allowed:
  3486. free_cpumask_var(cpus_allowed);
  3487. out_put_task:
  3488. put_task_struct(p);
  3489. return retval;
  3490. }
  3491. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3492. struct cpumask *new_mask)
  3493. {
  3494. if (len < cpumask_size())
  3495. cpumask_clear(new_mask);
  3496. else if (len > cpumask_size())
  3497. len = cpumask_size();
  3498. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3499. }
  3500. /**
  3501. * sys_sched_setaffinity - set the cpu affinity of a process
  3502. * @pid: pid of the process
  3503. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3504. * @user_mask_ptr: user-space pointer to the new cpu mask
  3505. *
  3506. * Return: 0 on success. An error code otherwise.
  3507. */
  3508. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3509. unsigned long __user *, user_mask_ptr)
  3510. {
  3511. cpumask_var_t new_mask;
  3512. int retval;
  3513. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3514. return -ENOMEM;
  3515. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3516. if (retval == 0)
  3517. retval = sched_setaffinity(pid, new_mask);
  3518. free_cpumask_var(new_mask);
  3519. return retval;
  3520. }
  3521. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3522. {
  3523. struct task_struct *p;
  3524. unsigned long flags;
  3525. int retval;
  3526. rcu_read_lock();
  3527. retval = -ESRCH;
  3528. p = find_process_by_pid(pid);
  3529. if (!p)
  3530. goto out_unlock;
  3531. retval = security_task_getscheduler(p);
  3532. if (retval)
  3533. goto out_unlock;
  3534. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3535. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3536. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3537. out_unlock:
  3538. rcu_read_unlock();
  3539. return retval;
  3540. }
  3541. /**
  3542. * sys_sched_getaffinity - get the cpu affinity of a process
  3543. * @pid: pid of the process
  3544. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3545. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3546. *
  3547. * Return: 0 on success. An error code otherwise.
  3548. */
  3549. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3550. unsigned long __user *, user_mask_ptr)
  3551. {
  3552. int ret;
  3553. cpumask_var_t mask;
  3554. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3555. return -EINVAL;
  3556. if (len & (sizeof(unsigned long)-1))
  3557. return -EINVAL;
  3558. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3559. return -ENOMEM;
  3560. ret = sched_getaffinity(pid, mask);
  3561. if (ret == 0) {
  3562. size_t retlen = min_t(size_t, len, cpumask_size());
  3563. if (copy_to_user(user_mask_ptr, mask, retlen))
  3564. ret = -EFAULT;
  3565. else
  3566. ret = retlen;
  3567. }
  3568. free_cpumask_var(mask);
  3569. return ret;
  3570. }
  3571. /**
  3572. * sys_sched_yield - yield the current processor to other threads.
  3573. *
  3574. * This function yields the current CPU to other tasks. If there are no
  3575. * other threads running on this CPU then this function will return.
  3576. *
  3577. * Return: 0.
  3578. */
  3579. SYSCALL_DEFINE0(sched_yield)
  3580. {
  3581. struct rq *rq = this_rq_lock();
  3582. schedstat_inc(rq, yld_count);
  3583. current->sched_class->yield_task(rq);
  3584. /*
  3585. * Since we are going to call schedule() anyway, there's
  3586. * no need to preempt or enable interrupts:
  3587. */
  3588. __release(rq->lock);
  3589. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3590. do_raw_spin_unlock(&rq->lock);
  3591. sched_preempt_enable_no_resched();
  3592. schedule();
  3593. return 0;
  3594. }
  3595. static void __cond_resched(void)
  3596. {
  3597. __preempt_count_add(PREEMPT_ACTIVE);
  3598. __schedule();
  3599. __preempt_count_sub(PREEMPT_ACTIVE);
  3600. }
  3601. int __sched _cond_resched(void)
  3602. {
  3603. if (should_resched()) {
  3604. __cond_resched();
  3605. return 1;
  3606. }
  3607. return 0;
  3608. }
  3609. EXPORT_SYMBOL(_cond_resched);
  3610. /*
  3611. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3612. * call schedule, and on return reacquire the lock.
  3613. *
  3614. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3615. * operations here to prevent schedule() from being called twice (once via
  3616. * spin_unlock(), once by hand).
  3617. */
  3618. int __cond_resched_lock(spinlock_t *lock)
  3619. {
  3620. int resched = should_resched();
  3621. int ret = 0;
  3622. lockdep_assert_held(lock);
  3623. if (spin_needbreak(lock) || resched) {
  3624. spin_unlock(lock);
  3625. if (resched)
  3626. __cond_resched();
  3627. else
  3628. cpu_relax();
  3629. ret = 1;
  3630. spin_lock(lock);
  3631. }
  3632. return ret;
  3633. }
  3634. EXPORT_SYMBOL(__cond_resched_lock);
  3635. int __sched __cond_resched_softirq(void)
  3636. {
  3637. BUG_ON(!in_softirq());
  3638. if (should_resched()) {
  3639. local_bh_enable();
  3640. __cond_resched();
  3641. local_bh_disable();
  3642. return 1;
  3643. }
  3644. return 0;
  3645. }
  3646. EXPORT_SYMBOL(__cond_resched_softirq);
  3647. /**
  3648. * yield - yield the current processor to other threads.
  3649. *
  3650. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3651. *
  3652. * The scheduler is at all times free to pick the calling task as the most
  3653. * eligible task to run, if removing the yield() call from your code breaks
  3654. * it, its already broken.
  3655. *
  3656. * Typical broken usage is:
  3657. *
  3658. * while (!event)
  3659. * yield();
  3660. *
  3661. * where one assumes that yield() will let 'the other' process run that will
  3662. * make event true. If the current task is a SCHED_FIFO task that will never
  3663. * happen. Never use yield() as a progress guarantee!!
  3664. *
  3665. * If you want to use yield() to wait for something, use wait_event().
  3666. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3667. * If you still want to use yield(), do not!
  3668. */
  3669. void __sched yield(void)
  3670. {
  3671. set_current_state(TASK_RUNNING);
  3672. sys_sched_yield();
  3673. }
  3674. EXPORT_SYMBOL(yield);
  3675. /**
  3676. * yield_to - yield the current processor to another thread in
  3677. * your thread group, or accelerate that thread toward the
  3678. * processor it's on.
  3679. * @p: target task
  3680. * @preempt: whether task preemption is allowed or not
  3681. *
  3682. * It's the caller's job to ensure that the target task struct
  3683. * can't go away on us before we can do any checks.
  3684. *
  3685. * Return:
  3686. * true (>0) if we indeed boosted the target task.
  3687. * false (0) if we failed to boost the target.
  3688. * -ESRCH if there's no task to yield to.
  3689. */
  3690. int __sched yield_to(struct task_struct *p, bool preempt)
  3691. {
  3692. struct task_struct *curr = current;
  3693. struct rq *rq, *p_rq;
  3694. unsigned long flags;
  3695. int yielded = 0;
  3696. local_irq_save(flags);
  3697. rq = this_rq();
  3698. again:
  3699. p_rq = task_rq(p);
  3700. /*
  3701. * If we're the only runnable task on the rq and target rq also
  3702. * has only one task, there's absolutely no point in yielding.
  3703. */
  3704. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3705. yielded = -ESRCH;
  3706. goto out_irq;
  3707. }
  3708. double_rq_lock(rq, p_rq);
  3709. if (task_rq(p) != p_rq) {
  3710. double_rq_unlock(rq, p_rq);
  3711. goto again;
  3712. }
  3713. if (!curr->sched_class->yield_to_task)
  3714. goto out_unlock;
  3715. if (curr->sched_class != p->sched_class)
  3716. goto out_unlock;
  3717. if (task_running(p_rq, p) || p->state)
  3718. goto out_unlock;
  3719. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3720. if (yielded) {
  3721. schedstat_inc(rq, yld_count);
  3722. /*
  3723. * Make p's CPU reschedule; pick_next_entity takes care of
  3724. * fairness.
  3725. */
  3726. if (preempt && rq != p_rq)
  3727. resched_curr(p_rq);
  3728. }
  3729. out_unlock:
  3730. double_rq_unlock(rq, p_rq);
  3731. out_irq:
  3732. local_irq_restore(flags);
  3733. if (yielded > 0)
  3734. schedule();
  3735. return yielded;
  3736. }
  3737. EXPORT_SYMBOL_GPL(yield_to);
  3738. /*
  3739. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3740. * that process accounting knows that this is a task in IO wait state.
  3741. */
  3742. void __sched io_schedule(void)
  3743. {
  3744. struct rq *rq = raw_rq();
  3745. delayacct_blkio_start();
  3746. atomic_inc(&rq->nr_iowait);
  3747. blk_flush_plug(current);
  3748. current->in_iowait = 1;
  3749. schedule();
  3750. current->in_iowait = 0;
  3751. atomic_dec(&rq->nr_iowait);
  3752. delayacct_blkio_end();
  3753. }
  3754. EXPORT_SYMBOL(io_schedule);
  3755. long __sched io_schedule_timeout(long timeout)
  3756. {
  3757. struct rq *rq = raw_rq();
  3758. long ret;
  3759. delayacct_blkio_start();
  3760. atomic_inc(&rq->nr_iowait);
  3761. blk_flush_plug(current);
  3762. current->in_iowait = 1;
  3763. ret = schedule_timeout(timeout);
  3764. current->in_iowait = 0;
  3765. atomic_dec(&rq->nr_iowait);
  3766. delayacct_blkio_end();
  3767. return ret;
  3768. }
  3769. /**
  3770. * sys_sched_get_priority_max - return maximum RT priority.
  3771. * @policy: scheduling class.
  3772. *
  3773. * Return: On success, this syscall returns the maximum
  3774. * rt_priority that can be used by a given scheduling class.
  3775. * On failure, a negative error code is returned.
  3776. */
  3777. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3778. {
  3779. int ret = -EINVAL;
  3780. switch (policy) {
  3781. case SCHED_FIFO:
  3782. case SCHED_RR:
  3783. ret = MAX_USER_RT_PRIO-1;
  3784. break;
  3785. case SCHED_DEADLINE:
  3786. case SCHED_NORMAL:
  3787. case SCHED_BATCH:
  3788. case SCHED_IDLE:
  3789. ret = 0;
  3790. break;
  3791. }
  3792. return ret;
  3793. }
  3794. /**
  3795. * sys_sched_get_priority_min - return minimum RT priority.
  3796. * @policy: scheduling class.
  3797. *
  3798. * Return: On success, this syscall returns the minimum
  3799. * rt_priority that can be used by a given scheduling class.
  3800. * On failure, a negative error code is returned.
  3801. */
  3802. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3803. {
  3804. int ret = -EINVAL;
  3805. switch (policy) {
  3806. case SCHED_FIFO:
  3807. case SCHED_RR:
  3808. ret = 1;
  3809. break;
  3810. case SCHED_DEADLINE:
  3811. case SCHED_NORMAL:
  3812. case SCHED_BATCH:
  3813. case SCHED_IDLE:
  3814. ret = 0;
  3815. }
  3816. return ret;
  3817. }
  3818. /**
  3819. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3820. * @pid: pid of the process.
  3821. * @interval: userspace pointer to the timeslice value.
  3822. *
  3823. * this syscall writes the default timeslice value of a given process
  3824. * into the user-space timespec buffer. A value of '0' means infinity.
  3825. *
  3826. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3827. * an error code.
  3828. */
  3829. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3830. struct timespec __user *, interval)
  3831. {
  3832. struct task_struct *p;
  3833. unsigned int time_slice;
  3834. unsigned long flags;
  3835. struct rq *rq;
  3836. int retval;
  3837. struct timespec t;
  3838. if (pid < 0)
  3839. return -EINVAL;
  3840. retval = -ESRCH;
  3841. rcu_read_lock();
  3842. p = find_process_by_pid(pid);
  3843. if (!p)
  3844. goto out_unlock;
  3845. retval = security_task_getscheduler(p);
  3846. if (retval)
  3847. goto out_unlock;
  3848. rq = task_rq_lock(p, &flags);
  3849. time_slice = 0;
  3850. if (p->sched_class->get_rr_interval)
  3851. time_slice = p->sched_class->get_rr_interval(rq, p);
  3852. task_rq_unlock(rq, p, &flags);
  3853. rcu_read_unlock();
  3854. jiffies_to_timespec(time_slice, &t);
  3855. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3856. return retval;
  3857. out_unlock:
  3858. rcu_read_unlock();
  3859. return retval;
  3860. }
  3861. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3862. void sched_show_task(struct task_struct *p)
  3863. {
  3864. unsigned long free = 0;
  3865. int ppid;
  3866. unsigned state;
  3867. state = p->state ? __ffs(p->state) + 1 : 0;
  3868. printk(KERN_INFO "%-15.15s %c", p->comm,
  3869. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3870. #if BITS_PER_LONG == 32
  3871. if (state == TASK_RUNNING)
  3872. printk(KERN_CONT " running ");
  3873. else
  3874. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3875. #else
  3876. if (state == TASK_RUNNING)
  3877. printk(KERN_CONT " running task ");
  3878. else
  3879. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3880. #endif
  3881. #ifdef CONFIG_DEBUG_STACK_USAGE
  3882. free = stack_not_used(p);
  3883. #endif
  3884. rcu_read_lock();
  3885. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3886. rcu_read_unlock();
  3887. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3888. task_pid_nr(p), ppid,
  3889. (unsigned long)task_thread_info(p)->flags);
  3890. print_worker_info(KERN_INFO, p);
  3891. show_stack(p, NULL);
  3892. }
  3893. void show_state_filter(unsigned long state_filter)
  3894. {
  3895. struct task_struct *g, *p;
  3896. #if BITS_PER_LONG == 32
  3897. printk(KERN_INFO
  3898. " task PC stack pid father\n");
  3899. #else
  3900. printk(KERN_INFO
  3901. " task PC stack pid father\n");
  3902. #endif
  3903. rcu_read_lock();
  3904. for_each_process_thread(g, p) {
  3905. /*
  3906. * reset the NMI-timeout, listing all files on a slow
  3907. * console might take a lot of time:
  3908. */
  3909. touch_nmi_watchdog();
  3910. if (!state_filter || (p->state & state_filter))
  3911. sched_show_task(p);
  3912. }
  3913. touch_all_softlockup_watchdogs();
  3914. #ifdef CONFIG_SCHED_DEBUG
  3915. sysrq_sched_debug_show();
  3916. #endif
  3917. rcu_read_unlock();
  3918. /*
  3919. * Only show locks if all tasks are dumped:
  3920. */
  3921. if (!state_filter)
  3922. debug_show_all_locks();
  3923. }
  3924. void init_idle_bootup_task(struct task_struct *idle)
  3925. {
  3926. idle->sched_class = &idle_sched_class;
  3927. }
  3928. /**
  3929. * init_idle - set up an idle thread for a given CPU
  3930. * @idle: task in question
  3931. * @cpu: cpu the idle task belongs to
  3932. *
  3933. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3934. * flag, to make booting more robust.
  3935. */
  3936. void init_idle(struct task_struct *idle, int cpu)
  3937. {
  3938. struct rq *rq = cpu_rq(cpu);
  3939. unsigned long flags;
  3940. raw_spin_lock_irqsave(&rq->lock, flags);
  3941. __sched_fork(0, idle);
  3942. idle->state = TASK_RUNNING;
  3943. idle->se.exec_start = sched_clock();
  3944. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3945. /*
  3946. * We're having a chicken and egg problem, even though we are
  3947. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3948. * lockdep check in task_group() will fail.
  3949. *
  3950. * Similar case to sched_fork(). / Alternatively we could
  3951. * use task_rq_lock() here and obtain the other rq->lock.
  3952. *
  3953. * Silence PROVE_RCU
  3954. */
  3955. rcu_read_lock();
  3956. __set_task_cpu(idle, cpu);
  3957. rcu_read_unlock();
  3958. rq->curr = rq->idle = idle;
  3959. idle->on_rq = TASK_ON_RQ_QUEUED;
  3960. #if defined(CONFIG_SMP)
  3961. idle->on_cpu = 1;
  3962. #endif
  3963. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3964. /* Set the preempt count _outside_ the spinlocks! */
  3965. init_idle_preempt_count(idle, cpu);
  3966. /*
  3967. * The idle tasks have their own, simple scheduling class:
  3968. */
  3969. idle->sched_class = &idle_sched_class;
  3970. ftrace_graph_init_idle_task(idle, cpu);
  3971. vtime_init_idle(idle, cpu);
  3972. #if defined(CONFIG_SMP)
  3973. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3974. #endif
  3975. }
  3976. #ifdef CONFIG_SMP
  3977. /*
  3978. * move_queued_task - move a queued task to new rq.
  3979. *
  3980. * Returns (locked) new rq. Old rq's lock is released.
  3981. */
  3982. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  3983. {
  3984. struct rq *rq = task_rq(p);
  3985. lockdep_assert_held(&rq->lock);
  3986. dequeue_task(rq, p, 0);
  3987. p->on_rq = TASK_ON_RQ_MIGRATING;
  3988. set_task_cpu(p, new_cpu);
  3989. raw_spin_unlock(&rq->lock);
  3990. rq = cpu_rq(new_cpu);
  3991. raw_spin_lock(&rq->lock);
  3992. BUG_ON(task_cpu(p) != new_cpu);
  3993. p->on_rq = TASK_ON_RQ_QUEUED;
  3994. enqueue_task(rq, p, 0);
  3995. check_preempt_curr(rq, p, 0);
  3996. return rq;
  3997. }
  3998. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3999. {
  4000. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4001. p->sched_class->set_cpus_allowed(p, new_mask);
  4002. cpumask_copy(&p->cpus_allowed, new_mask);
  4003. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4004. }
  4005. /*
  4006. * This is how migration works:
  4007. *
  4008. * 1) we invoke migration_cpu_stop() on the target CPU using
  4009. * stop_one_cpu().
  4010. * 2) stopper starts to run (implicitly forcing the migrated thread
  4011. * off the CPU)
  4012. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4013. * 4) if it's in the wrong runqueue then the migration thread removes
  4014. * it and puts it into the right queue.
  4015. * 5) stopper completes and stop_one_cpu() returns and the migration
  4016. * is done.
  4017. */
  4018. /*
  4019. * Change a given task's CPU affinity. Migrate the thread to a
  4020. * proper CPU and schedule it away if the CPU it's executing on
  4021. * is removed from the allowed bitmask.
  4022. *
  4023. * NOTE: the caller must have a valid reference to the task, the
  4024. * task must not exit() & deallocate itself prematurely. The
  4025. * call is not atomic; no spinlocks may be held.
  4026. */
  4027. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4028. {
  4029. unsigned long flags;
  4030. struct rq *rq;
  4031. unsigned int dest_cpu;
  4032. int ret = 0;
  4033. rq = task_rq_lock(p, &flags);
  4034. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4035. goto out;
  4036. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4037. ret = -EINVAL;
  4038. goto out;
  4039. }
  4040. do_set_cpus_allowed(p, new_mask);
  4041. /* Can the task run on the task's current CPU? If so, we're done */
  4042. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4043. goto out;
  4044. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4045. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4046. struct migration_arg arg = { p, dest_cpu };
  4047. /* Need help from migration thread: drop lock and wait. */
  4048. task_rq_unlock(rq, p, &flags);
  4049. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4050. tlb_migrate_finish(p->mm);
  4051. return 0;
  4052. } else if (task_on_rq_queued(p))
  4053. rq = move_queued_task(p, dest_cpu);
  4054. out:
  4055. task_rq_unlock(rq, p, &flags);
  4056. return ret;
  4057. }
  4058. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4059. /*
  4060. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4061. * this because either it can't run here any more (set_cpus_allowed()
  4062. * away from this CPU, or CPU going down), or because we're
  4063. * attempting to rebalance this task on exec (sched_exec).
  4064. *
  4065. * So we race with normal scheduler movements, but that's OK, as long
  4066. * as the task is no longer on this CPU.
  4067. *
  4068. * Returns non-zero if task was successfully migrated.
  4069. */
  4070. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4071. {
  4072. struct rq *rq;
  4073. int ret = 0;
  4074. if (unlikely(!cpu_active(dest_cpu)))
  4075. return ret;
  4076. rq = cpu_rq(src_cpu);
  4077. raw_spin_lock(&p->pi_lock);
  4078. raw_spin_lock(&rq->lock);
  4079. /* Already moved. */
  4080. if (task_cpu(p) != src_cpu)
  4081. goto done;
  4082. /* Affinity changed (again). */
  4083. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4084. goto fail;
  4085. /*
  4086. * If we're not on a rq, the next wake-up will ensure we're
  4087. * placed properly.
  4088. */
  4089. if (task_on_rq_queued(p))
  4090. rq = move_queued_task(p, dest_cpu);
  4091. done:
  4092. ret = 1;
  4093. fail:
  4094. raw_spin_unlock(&rq->lock);
  4095. raw_spin_unlock(&p->pi_lock);
  4096. return ret;
  4097. }
  4098. #ifdef CONFIG_NUMA_BALANCING
  4099. /* Migrate current task p to target_cpu */
  4100. int migrate_task_to(struct task_struct *p, int target_cpu)
  4101. {
  4102. struct migration_arg arg = { p, target_cpu };
  4103. int curr_cpu = task_cpu(p);
  4104. if (curr_cpu == target_cpu)
  4105. return 0;
  4106. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4107. return -EINVAL;
  4108. /* TODO: This is not properly updating schedstats */
  4109. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4110. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4111. }
  4112. /*
  4113. * Requeue a task on a given node and accurately track the number of NUMA
  4114. * tasks on the runqueues
  4115. */
  4116. void sched_setnuma(struct task_struct *p, int nid)
  4117. {
  4118. struct rq *rq;
  4119. unsigned long flags;
  4120. bool queued, running;
  4121. rq = task_rq_lock(p, &flags);
  4122. queued = task_on_rq_queued(p);
  4123. running = task_current(rq, p);
  4124. if (queued)
  4125. dequeue_task(rq, p, 0);
  4126. if (running)
  4127. put_prev_task(rq, p);
  4128. p->numa_preferred_nid = nid;
  4129. if (running)
  4130. p->sched_class->set_curr_task(rq);
  4131. if (queued)
  4132. enqueue_task(rq, p, 0);
  4133. task_rq_unlock(rq, p, &flags);
  4134. }
  4135. #endif
  4136. /*
  4137. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4138. * and performs thread migration by bumping thread off CPU then
  4139. * 'pushing' onto another runqueue.
  4140. */
  4141. static int migration_cpu_stop(void *data)
  4142. {
  4143. struct migration_arg *arg = data;
  4144. /*
  4145. * The original target cpu might have gone down and we might
  4146. * be on another cpu but it doesn't matter.
  4147. */
  4148. local_irq_disable();
  4149. /*
  4150. * We need to explicitly wake pending tasks before running
  4151. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4152. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4153. */
  4154. sched_ttwu_pending();
  4155. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4156. local_irq_enable();
  4157. return 0;
  4158. }
  4159. #ifdef CONFIG_HOTPLUG_CPU
  4160. /*
  4161. * Ensures that the idle task is using init_mm right before its cpu goes
  4162. * offline.
  4163. */
  4164. void idle_task_exit(void)
  4165. {
  4166. struct mm_struct *mm = current->active_mm;
  4167. BUG_ON(cpu_online(smp_processor_id()));
  4168. if (mm != &init_mm) {
  4169. switch_mm(mm, &init_mm, current);
  4170. finish_arch_post_lock_switch();
  4171. }
  4172. mmdrop(mm);
  4173. }
  4174. /*
  4175. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4176. * we might have. Assumes we're called after migrate_tasks() so that the
  4177. * nr_active count is stable.
  4178. *
  4179. * Also see the comment "Global load-average calculations".
  4180. */
  4181. static void calc_load_migrate(struct rq *rq)
  4182. {
  4183. long delta = calc_load_fold_active(rq);
  4184. if (delta)
  4185. atomic_long_add(delta, &calc_load_tasks);
  4186. }
  4187. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4188. {
  4189. }
  4190. static const struct sched_class fake_sched_class = {
  4191. .put_prev_task = put_prev_task_fake,
  4192. };
  4193. static struct task_struct fake_task = {
  4194. /*
  4195. * Avoid pull_{rt,dl}_task()
  4196. */
  4197. .prio = MAX_PRIO + 1,
  4198. .sched_class = &fake_sched_class,
  4199. };
  4200. /*
  4201. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4202. * try_to_wake_up()->select_task_rq().
  4203. *
  4204. * Called with rq->lock held even though we'er in stop_machine() and
  4205. * there's no concurrency possible, we hold the required locks anyway
  4206. * because of lock validation efforts.
  4207. */
  4208. static void migrate_tasks(unsigned int dead_cpu)
  4209. {
  4210. struct rq *rq = cpu_rq(dead_cpu);
  4211. struct task_struct *next, *stop = rq->stop;
  4212. int dest_cpu;
  4213. /*
  4214. * Fudge the rq selection such that the below task selection loop
  4215. * doesn't get stuck on the currently eligible stop task.
  4216. *
  4217. * We're currently inside stop_machine() and the rq is either stuck
  4218. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4219. * either way we should never end up calling schedule() until we're
  4220. * done here.
  4221. */
  4222. rq->stop = NULL;
  4223. /*
  4224. * put_prev_task() and pick_next_task() sched
  4225. * class method both need to have an up-to-date
  4226. * value of rq->clock[_task]
  4227. */
  4228. update_rq_clock(rq);
  4229. for ( ; ; ) {
  4230. /*
  4231. * There's this thread running, bail when that's the only
  4232. * remaining thread.
  4233. */
  4234. if (rq->nr_running == 1)
  4235. break;
  4236. next = pick_next_task(rq, &fake_task);
  4237. BUG_ON(!next);
  4238. next->sched_class->put_prev_task(rq, next);
  4239. /* Find suitable destination for @next, with force if needed. */
  4240. dest_cpu = select_fallback_rq(dead_cpu, next);
  4241. raw_spin_unlock(&rq->lock);
  4242. __migrate_task(next, dead_cpu, dest_cpu);
  4243. raw_spin_lock(&rq->lock);
  4244. }
  4245. rq->stop = stop;
  4246. }
  4247. #endif /* CONFIG_HOTPLUG_CPU */
  4248. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4249. static struct ctl_table sd_ctl_dir[] = {
  4250. {
  4251. .procname = "sched_domain",
  4252. .mode = 0555,
  4253. },
  4254. {}
  4255. };
  4256. static struct ctl_table sd_ctl_root[] = {
  4257. {
  4258. .procname = "kernel",
  4259. .mode = 0555,
  4260. .child = sd_ctl_dir,
  4261. },
  4262. {}
  4263. };
  4264. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4265. {
  4266. struct ctl_table *entry =
  4267. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4268. return entry;
  4269. }
  4270. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4271. {
  4272. struct ctl_table *entry;
  4273. /*
  4274. * In the intermediate directories, both the child directory and
  4275. * procname are dynamically allocated and could fail but the mode
  4276. * will always be set. In the lowest directory the names are
  4277. * static strings and all have proc handlers.
  4278. */
  4279. for (entry = *tablep; entry->mode; entry++) {
  4280. if (entry->child)
  4281. sd_free_ctl_entry(&entry->child);
  4282. if (entry->proc_handler == NULL)
  4283. kfree(entry->procname);
  4284. }
  4285. kfree(*tablep);
  4286. *tablep = NULL;
  4287. }
  4288. static int min_load_idx = 0;
  4289. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4290. static void
  4291. set_table_entry(struct ctl_table *entry,
  4292. const char *procname, void *data, int maxlen,
  4293. umode_t mode, proc_handler *proc_handler,
  4294. bool load_idx)
  4295. {
  4296. entry->procname = procname;
  4297. entry->data = data;
  4298. entry->maxlen = maxlen;
  4299. entry->mode = mode;
  4300. entry->proc_handler = proc_handler;
  4301. if (load_idx) {
  4302. entry->extra1 = &min_load_idx;
  4303. entry->extra2 = &max_load_idx;
  4304. }
  4305. }
  4306. static struct ctl_table *
  4307. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4308. {
  4309. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4310. if (table == NULL)
  4311. return NULL;
  4312. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4313. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4314. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4315. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4316. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4317. sizeof(int), 0644, proc_dointvec_minmax, true);
  4318. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4319. sizeof(int), 0644, proc_dointvec_minmax, true);
  4320. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4321. sizeof(int), 0644, proc_dointvec_minmax, true);
  4322. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4323. sizeof(int), 0644, proc_dointvec_minmax, true);
  4324. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4325. sizeof(int), 0644, proc_dointvec_minmax, true);
  4326. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4327. sizeof(int), 0644, proc_dointvec_minmax, false);
  4328. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4329. sizeof(int), 0644, proc_dointvec_minmax, false);
  4330. set_table_entry(&table[9], "cache_nice_tries",
  4331. &sd->cache_nice_tries,
  4332. sizeof(int), 0644, proc_dointvec_minmax, false);
  4333. set_table_entry(&table[10], "flags", &sd->flags,
  4334. sizeof(int), 0644, proc_dointvec_minmax, false);
  4335. set_table_entry(&table[11], "max_newidle_lb_cost",
  4336. &sd->max_newidle_lb_cost,
  4337. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4338. set_table_entry(&table[12], "name", sd->name,
  4339. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4340. /* &table[13] is terminator */
  4341. return table;
  4342. }
  4343. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4344. {
  4345. struct ctl_table *entry, *table;
  4346. struct sched_domain *sd;
  4347. int domain_num = 0, i;
  4348. char buf[32];
  4349. for_each_domain(cpu, sd)
  4350. domain_num++;
  4351. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4352. if (table == NULL)
  4353. return NULL;
  4354. i = 0;
  4355. for_each_domain(cpu, sd) {
  4356. snprintf(buf, 32, "domain%d", i);
  4357. entry->procname = kstrdup(buf, GFP_KERNEL);
  4358. entry->mode = 0555;
  4359. entry->child = sd_alloc_ctl_domain_table(sd);
  4360. entry++;
  4361. i++;
  4362. }
  4363. return table;
  4364. }
  4365. static struct ctl_table_header *sd_sysctl_header;
  4366. static void register_sched_domain_sysctl(void)
  4367. {
  4368. int i, cpu_num = num_possible_cpus();
  4369. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4370. char buf[32];
  4371. WARN_ON(sd_ctl_dir[0].child);
  4372. sd_ctl_dir[0].child = entry;
  4373. if (entry == NULL)
  4374. return;
  4375. for_each_possible_cpu(i) {
  4376. snprintf(buf, 32, "cpu%d", i);
  4377. entry->procname = kstrdup(buf, GFP_KERNEL);
  4378. entry->mode = 0555;
  4379. entry->child = sd_alloc_ctl_cpu_table(i);
  4380. entry++;
  4381. }
  4382. WARN_ON(sd_sysctl_header);
  4383. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4384. }
  4385. /* may be called multiple times per register */
  4386. static void unregister_sched_domain_sysctl(void)
  4387. {
  4388. if (sd_sysctl_header)
  4389. unregister_sysctl_table(sd_sysctl_header);
  4390. sd_sysctl_header = NULL;
  4391. if (sd_ctl_dir[0].child)
  4392. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4393. }
  4394. #else
  4395. static void register_sched_domain_sysctl(void)
  4396. {
  4397. }
  4398. static void unregister_sched_domain_sysctl(void)
  4399. {
  4400. }
  4401. #endif
  4402. static void set_rq_online(struct rq *rq)
  4403. {
  4404. if (!rq->online) {
  4405. const struct sched_class *class;
  4406. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4407. rq->online = 1;
  4408. for_each_class(class) {
  4409. if (class->rq_online)
  4410. class->rq_online(rq);
  4411. }
  4412. }
  4413. }
  4414. static void set_rq_offline(struct rq *rq)
  4415. {
  4416. if (rq->online) {
  4417. const struct sched_class *class;
  4418. for_each_class(class) {
  4419. if (class->rq_offline)
  4420. class->rq_offline(rq);
  4421. }
  4422. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4423. rq->online = 0;
  4424. }
  4425. }
  4426. /*
  4427. * migration_call - callback that gets triggered when a CPU is added.
  4428. * Here we can start up the necessary migration thread for the new CPU.
  4429. */
  4430. static int
  4431. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4432. {
  4433. int cpu = (long)hcpu;
  4434. unsigned long flags;
  4435. struct rq *rq = cpu_rq(cpu);
  4436. switch (action & ~CPU_TASKS_FROZEN) {
  4437. case CPU_UP_PREPARE:
  4438. rq->calc_load_update = calc_load_update;
  4439. break;
  4440. case CPU_ONLINE:
  4441. /* Update our root-domain */
  4442. raw_spin_lock_irqsave(&rq->lock, flags);
  4443. if (rq->rd) {
  4444. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4445. set_rq_online(rq);
  4446. }
  4447. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4448. break;
  4449. #ifdef CONFIG_HOTPLUG_CPU
  4450. case CPU_DYING:
  4451. sched_ttwu_pending();
  4452. /* Update our root-domain */
  4453. raw_spin_lock_irqsave(&rq->lock, flags);
  4454. if (rq->rd) {
  4455. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4456. set_rq_offline(rq);
  4457. }
  4458. migrate_tasks(cpu);
  4459. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4460. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4461. break;
  4462. case CPU_DEAD:
  4463. calc_load_migrate(rq);
  4464. break;
  4465. #endif
  4466. }
  4467. update_max_interval();
  4468. return NOTIFY_OK;
  4469. }
  4470. /*
  4471. * Register at high priority so that task migration (migrate_all_tasks)
  4472. * happens before everything else. This has to be lower priority than
  4473. * the notifier in the perf_event subsystem, though.
  4474. */
  4475. static struct notifier_block migration_notifier = {
  4476. .notifier_call = migration_call,
  4477. .priority = CPU_PRI_MIGRATION,
  4478. };
  4479. static void __cpuinit set_cpu_rq_start_time(void)
  4480. {
  4481. int cpu = smp_processor_id();
  4482. struct rq *rq = cpu_rq(cpu);
  4483. rq->age_stamp = sched_clock_cpu(cpu);
  4484. }
  4485. static int sched_cpu_active(struct notifier_block *nfb,
  4486. unsigned long action, void *hcpu)
  4487. {
  4488. switch (action & ~CPU_TASKS_FROZEN) {
  4489. case CPU_STARTING:
  4490. set_cpu_rq_start_time();
  4491. return NOTIFY_OK;
  4492. case CPU_DOWN_FAILED:
  4493. set_cpu_active((long)hcpu, true);
  4494. return NOTIFY_OK;
  4495. default:
  4496. return NOTIFY_DONE;
  4497. }
  4498. }
  4499. static int sched_cpu_inactive(struct notifier_block *nfb,
  4500. unsigned long action, void *hcpu)
  4501. {
  4502. unsigned long flags;
  4503. long cpu = (long)hcpu;
  4504. struct dl_bw *dl_b;
  4505. switch (action & ~CPU_TASKS_FROZEN) {
  4506. case CPU_DOWN_PREPARE:
  4507. set_cpu_active(cpu, false);
  4508. /* explicitly allow suspend */
  4509. if (!(action & CPU_TASKS_FROZEN)) {
  4510. bool overflow;
  4511. int cpus;
  4512. rcu_read_lock_sched();
  4513. dl_b = dl_bw_of(cpu);
  4514. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4515. cpus = dl_bw_cpus(cpu);
  4516. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4517. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4518. rcu_read_unlock_sched();
  4519. if (overflow)
  4520. return notifier_from_errno(-EBUSY);
  4521. }
  4522. return NOTIFY_OK;
  4523. }
  4524. return NOTIFY_DONE;
  4525. }
  4526. static int __init migration_init(void)
  4527. {
  4528. void *cpu = (void *)(long)smp_processor_id();
  4529. int err;
  4530. /* Initialize migration for the boot CPU */
  4531. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4532. BUG_ON(err == NOTIFY_BAD);
  4533. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4534. register_cpu_notifier(&migration_notifier);
  4535. /* Register cpu active notifiers */
  4536. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4537. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4538. return 0;
  4539. }
  4540. early_initcall(migration_init);
  4541. #endif
  4542. #ifdef CONFIG_SMP
  4543. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4544. #ifdef CONFIG_SCHED_DEBUG
  4545. static __read_mostly int sched_debug_enabled;
  4546. static int __init sched_debug_setup(char *str)
  4547. {
  4548. sched_debug_enabled = 1;
  4549. return 0;
  4550. }
  4551. early_param("sched_debug", sched_debug_setup);
  4552. static inline bool sched_debug(void)
  4553. {
  4554. return sched_debug_enabled;
  4555. }
  4556. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4557. struct cpumask *groupmask)
  4558. {
  4559. struct sched_group *group = sd->groups;
  4560. char str[256];
  4561. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4562. cpumask_clear(groupmask);
  4563. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4564. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4565. printk("does not load-balance\n");
  4566. if (sd->parent)
  4567. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4568. " has parent");
  4569. return -1;
  4570. }
  4571. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4572. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4573. printk(KERN_ERR "ERROR: domain->span does not contain "
  4574. "CPU%d\n", cpu);
  4575. }
  4576. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4577. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4578. " CPU%d\n", cpu);
  4579. }
  4580. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4581. do {
  4582. if (!group) {
  4583. printk("\n");
  4584. printk(KERN_ERR "ERROR: group is NULL\n");
  4585. break;
  4586. }
  4587. /*
  4588. * Even though we initialize ->capacity to something semi-sane,
  4589. * we leave capacity_orig unset. This allows us to detect if
  4590. * domain iteration is still funny without causing /0 traps.
  4591. */
  4592. if (!group->sgc->capacity_orig) {
  4593. printk(KERN_CONT "\n");
  4594. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4595. break;
  4596. }
  4597. if (!cpumask_weight(sched_group_cpus(group))) {
  4598. printk(KERN_CONT "\n");
  4599. printk(KERN_ERR "ERROR: empty group\n");
  4600. break;
  4601. }
  4602. if (!(sd->flags & SD_OVERLAP) &&
  4603. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4604. printk(KERN_CONT "\n");
  4605. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4606. break;
  4607. }
  4608. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4609. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4610. printk(KERN_CONT " %s", str);
  4611. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4612. printk(KERN_CONT " (cpu_capacity = %d)",
  4613. group->sgc->capacity);
  4614. }
  4615. group = group->next;
  4616. } while (group != sd->groups);
  4617. printk(KERN_CONT "\n");
  4618. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4619. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4620. if (sd->parent &&
  4621. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4622. printk(KERN_ERR "ERROR: parent span is not a superset "
  4623. "of domain->span\n");
  4624. return 0;
  4625. }
  4626. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4627. {
  4628. int level = 0;
  4629. if (!sched_debug_enabled)
  4630. return;
  4631. if (!sd) {
  4632. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4633. return;
  4634. }
  4635. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4636. for (;;) {
  4637. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4638. break;
  4639. level++;
  4640. sd = sd->parent;
  4641. if (!sd)
  4642. break;
  4643. }
  4644. }
  4645. #else /* !CONFIG_SCHED_DEBUG */
  4646. # define sched_domain_debug(sd, cpu) do { } while (0)
  4647. static inline bool sched_debug(void)
  4648. {
  4649. return false;
  4650. }
  4651. #endif /* CONFIG_SCHED_DEBUG */
  4652. static int sd_degenerate(struct sched_domain *sd)
  4653. {
  4654. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4655. return 1;
  4656. /* Following flags need at least 2 groups */
  4657. if (sd->flags & (SD_LOAD_BALANCE |
  4658. SD_BALANCE_NEWIDLE |
  4659. SD_BALANCE_FORK |
  4660. SD_BALANCE_EXEC |
  4661. SD_SHARE_CPUCAPACITY |
  4662. SD_SHARE_PKG_RESOURCES |
  4663. SD_SHARE_POWERDOMAIN)) {
  4664. if (sd->groups != sd->groups->next)
  4665. return 0;
  4666. }
  4667. /* Following flags don't use groups */
  4668. if (sd->flags & (SD_WAKE_AFFINE))
  4669. return 0;
  4670. return 1;
  4671. }
  4672. static int
  4673. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4674. {
  4675. unsigned long cflags = sd->flags, pflags = parent->flags;
  4676. if (sd_degenerate(parent))
  4677. return 1;
  4678. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4679. return 0;
  4680. /* Flags needing groups don't count if only 1 group in parent */
  4681. if (parent->groups == parent->groups->next) {
  4682. pflags &= ~(SD_LOAD_BALANCE |
  4683. SD_BALANCE_NEWIDLE |
  4684. SD_BALANCE_FORK |
  4685. SD_BALANCE_EXEC |
  4686. SD_SHARE_CPUCAPACITY |
  4687. SD_SHARE_PKG_RESOURCES |
  4688. SD_PREFER_SIBLING |
  4689. SD_SHARE_POWERDOMAIN);
  4690. if (nr_node_ids == 1)
  4691. pflags &= ~SD_SERIALIZE;
  4692. }
  4693. if (~cflags & pflags)
  4694. return 0;
  4695. return 1;
  4696. }
  4697. static void free_rootdomain(struct rcu_head *rcu)
  4698. {
  4699. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4700. cpupri_cleanup(&rd->cpupri);
  4701. cpudl_cleanup(&rd->cpudl);
  4702. free_cpumask_var(rd->dlo_mask);
  4703. free_cpumask_var(rd->rto_mask);
  4704. free_cpumask_var(rd->online);
  4705. free_cpumask_var(rd->span);
  4706. kfree(rd);
  4707. }
  4708. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4709. {
  4710. struct root_domain *old_rd = NULL;
  4711. unsigned long flags;
  4712. raw_spin_lock_irqsave(&rq->lock, flags);
  4713. if (rq->rd) {
  4714. old_rd = rq->rd;
  4715. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4716. set_rq_offline(rq);
  4717. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4718. /*
  4719. * If we dont want to free the old_rd yet then
  4720. * set old_rd to NULL to skip the freeing later
  4721. * in this function:
  4722. */
  4723. if (!atomic_dec_and_test(&old_rd->refcount))
  4724. old_rd = NULL;
  4725. }
  4726. atomic_inc(&rd->refcount);
  4727. rq->rd = rd;
  4728. cpumask_set_cpu(rq->cpu, rd->span);
  4729. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4730. set_rq_online(rq);
  4731. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4732. if (old_rd)
  4733. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4734. }
  4735. static int init_rootdomain(struct root_domain *rd)
  4736. {
  4737. memset(rd, 0, sizeof(*rd));
  4738. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4739. goto out;
  4740. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4741. goto free_span;
  4742. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4743. goto free_online;
  4744. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4745. goto free_dlo_mask;
  4746. init_dl_bw(&rd->dl_bw);
  4747. if (cpudl_init(&rd->cpudl) != 0)
  4748. goto free_dlo_mask;
  4749. if (cpupri_init(&rd->cpupri) != 0)
  4750. goto free_rto_mask;
  4751. return 0;
  4752. free_rto_mask:
  4753. free_cpumask_var(rd->rto_mask);
  4754. free_dlo_mask:
  4755. free_cpumask_var(rd->dlo_mask);
  4756. free_online:
  4757. free_cpumask_var(rd->online);
  4758. free_span:
  4759. free_cpumask_var(rd->span);
  4760. out:
  4761. return -ENOMEM;
  4762. }
  4763. /*
  4764. * By default the system creates a single root-domain with all cpus as
  4765. * members (mimicking the global state we have today).
  4766. */
  4767. struct root_domain def_root_domain;
  4768. static void init_defrootdomain(void)
  4769. {
  4770. init_rootdomain(&def_root_domain);
  4771. atomic_set(&def_root_domain.refcount, 1);
  4772. }
  4773. static struct root_domain *alloc_rootdomain(void)
  4774. {
  4775. struct root_domain *rd;
  4776. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4777. if (!rd)
  4778. return NULL;
  4779. if (init_rootdomain(rd) != 0) {
  4780. kfree(rd);
  4781. return NULL;
  4782. }
  4783. return rd;
  4784. }
  4785. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4786. {
  4787. struct sched_group *tmp, *first;
  4788. if (!sg)
  4789. return;
  4790. first = sg;
  4791. do {
  4792. tmp = sg->next;
  4793. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4794. kfree(sg->sgc);
  4795. kfree(sg);
  4796. sg = tmp;
  4797. } while (sg != first);
  4798. }
  4799. static void free_sched_domain(struct rcu_head *rcu)
  4800. {
  4801. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4802. /*
  4803. * If its an overlapping domain it has private groups, iterate and
  4804. * nuke them all.
  4805. */
  4806. if (sd->flags & SD_OVERLAP) {
  4807. free_sched_groups(sd->groups, 1);
  4808. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4809. kfree(sd->groups->sgc);
  4810. kfree(sd->groups);
  4811. }
  4812. kfree(sd);
  4813. }
  4814. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4815. {
  4816. call_rcu(&sd->rcu, free_sched_domain);
  4817. }
  4818. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4819. {
  4820. for (; sd; sd = sd->parent)
  4821. destroy_sched_domain(sd, cpu);
  4822. }
  4823. /*
  4824. * Keep a special pointer to the highest sched_domain that has
  4825. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4826. * allows us to avoid some pointer chasing select_idle_sibling().
  4827. *
  4828. * Also keep a unique ID per domain (we use the first cpu number in
  4829. * the cpumask of the domain), this allows us to quickly tell if
  4830. * two cpus are in the same cache domain, see cpus_share_cache().
  4831. */
  4832. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4833. DEFINE_PER_CPU(int, sd_llc_size);
  4834. DEFINE_PER_CPU(int, sd_llc_id);
  4835. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4836. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4837. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4838. static void update_top_cache_domain(int cpu)
  4839. {
  4840. struct sched_domain *sd;
  4841. struct sched_domain *busy_sd = NULL;
  4842. int id = cpu;
  4843. int size = 1;
  4844. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4845. if (sd) {
  4846. id = cpumask_first(sched_domain_span(sd));
  4847. size = cpumask_weight(sched_domain_span(sd));
  4848. busy_sd = sd->parent; /* sd_busy */
  4849. }
  4850. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4851. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4852. per_cpu(sd_llc_size, cpu) = size;
  4853. per_cpu(sd_llc_id, cpu) = id;
  4854. sd = lowest_flag_domain(cpu, SD_NUMA);
  4855. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4856. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4857. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4858. }
  4859. /*
  4860. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4861. * hold the hotplug lock.
  4862. */
  4863. static void
  4864. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4865. {
  4866. struct rq *rq = cpu_rq(cpu);
  4867. struct sched_domain *tmp;
  4868. /* Remove the sched domains which do not contribute to scheduling. */
  4869. for (tmp = sd; tmp; ) {
  4870. struct sched_domain *parent = tmp->parent;
  4871. if (!parent)
  4872. break;
  4873. if (sd_parent_degenerate(tmp, parent)) {
  4874. tmp->parent = parent->parent;
  4875. if (parent->parent)
  4876. parent->parent->child = tmp;
  4877. /*
  4878. * Transfer SD_PREFER_SIBLING down in case of a
  4879. * degenerate parent; the spans match for this
  4880. * so the property transfers.
  4881. */
  4882. if (parent->flags & SD_PREFER_SIBLING)
  4883. tmp->flags |= SD_PREFER_SIBLING;
  4884. destroy_sched_domain(parent, cpu);
  4885. } else
  4886. tmp = tmp->parent;
  4887. }
  4888. if (sd && sd_degenerate(sd)) {
  4889. tmp = sd;
  4890. sd = sd->parent;
  4891. destroy_sched_domain(tmp, cpu);
  4892. if (sd)
  4893. sd->child = NULL;
  4894. }
  4895. sched_domain_debug(sd, cpu);
  4896. rq_attach_root(rq, rd);
  4897. tmp = rq->sd;
  4898. rcu_assign_pointer(rq->sd, sd);
  4899. destroy_sched_domains(tmp, cpu);
  4900. update_top_cache_domain(cpu);
  4901. }
  4902. /* cpus with isolated domains */
  4903. static cpumask_var_t cpu_isolated_map;
  4904. /* Setup the mask of cpus configured for isolated domains */
  4905. static int __init isolated_cpu_setup(char *str)
  4906. {
  4907. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4908. cpulist_parse(str, cpu_isolated_map);
  4909. return 1;
  4910. }
  4911. __setup("isolcpus=", isolated_cpu_setup);
  4912. struct s_data {
  4913. struct sched_domain ** __percpu sd;
  4914. struct root_domain *rd;
  4915. };
  4916. enum s_alloc {
  4917. sa_rootdomain,
  4918. sa_sd,
  4919. sa_sd_storage,
  4920. sa_none,
  4921. };
  4922. /*
  4923. * Build an iteration mask that can exclude certain CPUs from the upwards
  4924. * domain traversal.
  4925. *
  4926. * Asymmetric node setups can result in situations where the domain tree is of
  4927. * unequal depth, make sure to skip domains that already cover the entire
  4928. * range.
  4929. *
  4930. * In that case build_sched_domains() will have terminated the iteration early
  4931. * and our sibling sd spans will be empty. Domains should always include the
  4932. * cpu they're built on, so check that.
  4933. *
  4934. */
  4935. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4936. {
  4937. const struct cpumask *span = sched_domain_span(sd);
  4938. struct sd_data *sdd = sd->private;
  4939. struct sched_domain *sibling;
  4940. int i;
  4941. for_each_cpu(i, span) {
  4942. sibling = *per_cpu_ptr(sdd->sd, i);
  4943. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4944. continue;
  4945. cpumask_set_cpu(i, sched_group_mask(sg));
  4946. }
  4947. }
  4948. /*
  4949. * Return the canonical balance cpu for this group, this is the first cpu
  4950. * of this group that's also in the iteration mask.
  4951. */
  4952. int group_balance_cpu(struct sched_group *sg)
  4953. {
  4954. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4955. }
  4956. static int
  4957. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4958. {
  4959. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4960. const struct cpumask *span = sched_domain_span(sd);
  4961. struct cpumask *covered = sched_domains_tmpmask;
  4962. struct sd_data *sdd = sd->private;
  4963. struct sched_domain *sibling;
  4964. int i;
  4965. cpumask_clear(covered);
  4966. for_each_cpu(i, span) {
  4967. struct cpumask *sg_span;
  4968. if (cpumask_test_cpu(i, covered))
  4969. continue;
  4970. sibling = *per_cpu_ptr(sdd->sd, i);
  4971. /* See the comment near build_group_mask(). */
  4972. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4973. continue;
  4974. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4975. GFP_KERNEL, cpu_to_node(cpu));
  4976. if (!sg)
  4977. goto fail;
  4978. sg_span = sched_group_cpus(sg);
  4979. if (sibling->child)
  4980. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  4981. else
  4982. cpumask_set_cpu(i, sg_span);
  4983. cpumask_or(covered, covered, sg_span);
  4984. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  4985. if (atomic_inc_return(&sg->sgc->ref) == 1)
  4986. build_group_mask(sd, sg);
  4987. /*
  4988. * Initialize sgc->capacity such that even if we mess up the
  4989. * domains and no possible iteration will get us here, we won't
  4990. * die on a /0 trap.
  4991. */
  4992. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  4993. sg->sgc->capacity_orig = sg->sgc->capacity;
  4994. /*
  4995. * Make sure the first group of this domain contains the
  4996. * canonical balance cpu. Otherwise the sched_domain iteration
  4997. * breaks. See update_sg_lb_stats().
  4998. */
  4999. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5000. group_balance_cpu(sg) == cpu)
  5001. groups = sg;
  5002. if (!first)
  5003. first = sg;
  5004. if (last)
  5005. last->next = sg;
  5006. last = sg;
  5007. last->next = first;
  5008. }
  5009. sd->groups = groups;
  5010. return 0;
  5011. fail:
  5012. free_sched_groups(first, 0);
  5013. return -ENOMEM;
  5014. }
  5015. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5016. {
  5017. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5018. struct sched_domain *child = sd->child;
  5019. if (child)
  5020. cpu = cpumask_first(sched_domain_span(child));
  5021. if (sg) {
  5022. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5023. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5024. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5025. }
  5026. return cpu;
  5027. }
  5028. /*
  5029. * build_sched_groups will build a circular linked list of the groups
  5030. * covered by the given span, and will set each group's ->cpumask correctly,
  5031. * and ->cpu_capacity to 0.
  5032. *
  5033. * Assumes the sched_domain tree is fully constructed
  5034. */
  5035. static int
  5036. build_sched_groups(struct sched_domain *sd, int cpu)
  5037. {
  5038. struct sched_group *first = NULL, *last = NULL;
  5039. struct sd_data *sdd = sd->private;
  5040. const struct cpumask *span = sched_domain_span(sd);
  5041. struct cpumask *covered;
  5042. int i;
  5043. get_group(cpu, sdd, &sd->groups);
  5044. atomic_inc(&sd->groups->ref);
  5045. if (cpu != cpumask_first(span))
  5046. return 0;
  5047. lockdep_assert_held(&sched_domains_mutex);
  5048. covered = sched_domains_tmpmask;
  5049. cpumask_clear(covered);
  5050. for_each_cpu(i, span) {
  5051. struct sched_group *sg;
  5052. int group, j;
  5053. if (cpumask_test_cpu(i, covered))
  5054. continue;
  5055. group = get_group(i, sdd, &sg);
  5056. cpumask_setall(sched_group_mask(sg));
  5057. for_each_cpu(j, span) {
  5058. if (get_group(j, sdd, NULL) != group)
  5059. continue;
  5060. cpumask_set_cpu(j, covered);
  5061. cpumask_set_cpu(j, sched_group_cpus(sg));
  5062. }
  5063. if (!first)
  5064. first = sg;
  5065. if (last)
  5066. last->next = sg;
  5067. last = sg;
  5068. }
  5069. last->next = first;
  5070. return 0;
  5071. }
  5072. /*
  5073. * Initialize sched groups cpu_capacity.
  5074. *
  5075. * cpu_capacity indicates the capacity of sched group, which is used while
  5076. * distributing the load between different sched groups in a sched domain.
  5077. * Typically cpu_capacity for all the groups in a sched domain will be same
  5078. * unless there are asymmetries in the topology. If there are asymmetries,
  5079. * group having more cpu_capacity will pickup more load compared to the
  5080. * group having less cpu_capacity.
  5081. */
  5082. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5083. {
  5084. struct sched_group *sg = sd->groups;
  5085. WARN_ON(!sg);
  5086. do {
  5087. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5088. sg = sg->next;
  5089. } while (sg != sd->groups);
  5090. if (cpu != group_balance_cpu(sg))
  5091. return;
  5092. update_group_capacity(sd, cpu);
  5093. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5094. }
  5095. /*
  5096. * Initializers for schedule domains
  5097. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5098. */
  5099. static int default_relax_domain_level = -1;
  5100. int sched_domain_level_max;
  5101. static int __init setup_relax_domain_level(char *str)
  5102. {
  5103. if (kstrtoint(str, 0, &default_relax_domain_level))
  5104. pr_warn("Unable to set relax_domain_level\n");
  5105. return 1;
  5106. }
  5107. __setup("relax_domain_level=", setup_relax_domain_level);
  5108. static void set_domain_attribute(struct sched_domain *sd,
  5109. struct sched_domain_attr *attr)
  5110. {
  5111. int request;
  5112. if (!attr || attr->relax_domain_level < 0) {
  5113. if (default_relax_domain_level < 0)
  5114. return;
  5115. else
  5116. request = default_relax_domain_level;
  5117. } else
  5118. request = attr->relax_domain_level;
  5119. if (request < sd->level) {
  5120. /* turn off idle balance on this domain */
  5121. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5122. } else {
  5123. /* turn on idle balance on this domain */
  5124. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5125. }
  5126. }
  5127. static void __sdt_free(const struct cpumask *cpu_map);
  5128. static int __sdt_alloc(const struct cpumask *cpu_map);
  5129. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5130. const struct cpumask *cpu_map)
  5131. {
  5132. switch (what) {
  5133. case sa_rootdomain:
  5134. if (!atomic_read(&d->rd->refcount))
  5135. free_rootdomain(&d->rd->rcu); /* fall through */
  5136. case sa_sd:
  5137. free_percpu(d->sd); /* fall through */
  5138. case sa_sd_storage:
  5139. __sdt_free(cpu_map); /* fall through */
  5140. case sa_none:
  5141. break;
  5142. }
  5143. }
  5144. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5145. const struct cpumask *cpu_map)
  5146. {
  5147. memset(d, 0, sizeof(*d));
  5148. if (__sdt_alloc(cpu_map))
  5149. return sa_sd_storage;
  5150. d->sd = alloc_percpu(struct sched_domain *);
  5151. if (!d->sd)
  5152. return sa_sd_storage;
  5153. d->rd = alloc_rootdomain();
  5154. if (!d->rd)
  5155. return sa_sd;
  5156. return sa_rootdomain;
  5157. }
  5158. /*
  5159. * NULL the sd_data elements we've used to build the sched_domain and
  5160. * sched_group structure so that the subsequent __free_domain_allocs()
  5161. * will not free the data we're using.
  5162. */
  5163. static void claim_allocations(int cpu, struct sched_domain *sd)
  5164. {
  5165. struct sd_data *sdd = sd->private;
  5166. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5167. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5168. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5169. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5170. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5171. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5172. }
  5173. #ifdef CONFIG_NUMA
  5174. static int sched_domains_numa_levels;
  5175. static int *sched_domains_numa_distance;
  5176. static struct cpumask ***sched_domains_numa_masks;
  5177. static int sched_domains_curr_level;
  5178. #endif
  5179. /*
  5180. * SD_flags allowed in topology descriptions.
  5181. *
  5182. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5183. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5184. * SD_NUMA - describes NUMA topologies
  5185. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5186. *
  5187. * Odd one out:
  5188. * SD_ASYM_PACKING - describes SMT quirks
  5189. */
  5190. #define TOPOLOGY_SD_FLAGS \
  5191. (SD_SHARE_CPUCAPACITY | \
  5192. SD_SHARE_PKG_RESOURCES | \
  5193. SD_NUMA | \
  5194. SD_ASYM_PACKING | \
  5195. SD_SHARE_POWERDOMAIN)
  5196. static struct sched_domain *
  5197. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5198. {
  5199. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5200. int sd_weight, sd_flags = 0;
  5201. #ifdef CONFIG_NUMA
  5202. /*
  5203. * Ugly hack to pass state to sd_numa_mask()...
  5204. */
  5205. sched_domains_curr_level = tl->numa_level;
  5206. #endif
  5207. sd_weight = cpumask_weight(tl->mask(cpu));
  5208. if (tl->sd_flags)
  5209. sd_flags = (*tl->sd_flags)();
  5210. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5211. "wrong sd_flags in topology description\n"))
  5212. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5213. *sd = (struct sched_domain){
  5214. .min_interval = sd_weight,
  5215. .max_interval = 2*sd_weight,
  5216. .busy_factor = 32,
  5217. .imbalance_pct = 125,
  5218. .cache_nice_tries = 0,
  5219. .busy_idx = 0,
  5220. .idle_idx = 0,
  5221. .newidle_idx = 0,
  5222. .wake_idx = 0,
  5223. .forkexec_idx = 0,
  5224. .flags = 1*SD_LOAD_BALANCE
  5225. | 1*SD_BALANCE_NEWIDLE
  5226. | 1*SD_BALANCE_EXEC
  5227. | 1*SD_BALANCE_FORK
  5228. | 0*SD_BALANCE_WAKE
  5229. | 1*SD_WAKE_AFFINE
  5230. | 0*SD_SHARE_CPUCAPACITY
  5231. | 0*SD_SHARE_PKG_RESOURCES
  5232. | 0*SD_SERIALIZE
  5233. | 0*SD_PREFER_SIBLING
  5234. | 0*SD_NUMA
  5235. | sd_flags
  5236. ,
  5237. .last_balance = jiffies,
  5238. .balance_interval = sd_weight,
  5239. .smt_gain = 0,
  5240. .max_newidle_lb_cost = 0,
  5241. .next_decay_max_lb_cost = jiffies,
  5242. #ifdef CONFIG_SCHED_DEBUG
  5243. .name = tl->name,
  5244. #endif
  5245. };
  5246. /*
  5247. * Convert topological properties into behaviour.
  5248. */
  5249. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5250. sd->imbalance_pct = 110;
  5251. sd->smt_gain = 1178; /* ~15% */
  5252. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5253. sd->imbalance_pct = 117;
  5254. sd->cache_nice_tries = 1;
  5255. sd->busy_idx = 2;
  5256. #ifdef CONFIG_NUMA
  5257. } else if (sd->flags & SD_NUMA) {
  5258. sd->cache_nice_tries = 2;
  5259. sd->busy_idx = 3;
  5260. sd->idle_idx = 2;
  5261. sd->flags |= SD_SERIALIZE;
  5262. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5263. sd->flags &= ~(SD_BALANCE_EXEC |
  5264. SD_BALANCE_FORK |
  5265. SD_WAKE_AFFINE);
  5266. }
  5267. #endif
  5268. } else {
  5269. sd->flags |= SD_PREFER_SIBLING;
  5270. sd->cache_nice_tries = 1;
  5271. sd->busy_idx = 2;
  5272. sd->idle_idx = 1;
  5273. }
  5274. sd->private = &tl->data;
  5275. return sd;
  5276. }
  5277. /*
  5278. * Topology list, bottom-up.
  5279. */
  5280. static struct sched_domain_topology_level default_topology[] = {
  5281. #ifdef CONFIG_SCHED_SMT
  5282. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5283. #endif
  5284. #ifdef CONFIG_SCHED_MC
  5285. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5286. #endif
  5287. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5288. { NULL, },
  5289. };
  5290. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5291. #define for_each_sd_topology(tl) \
  5292. for (tl = sched_domain_topology; tl->mask; tl++)
  5293. void set_sched_topology(struct sched_domain_topology_level *tl)
  5294. {
  5295. sched_domain_topology = tl;
  5296. }
  5297. #ifdef CONFIG_NUMA
  5298. static const struct cpumask *sd_numa_mask(int cpu)
  5299. {
  5300. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5301. }
  5302. static void sched_numa_warn(const char *str)
  5303. {
  5304. static int done = false;
  5305. int i,j;
  5306. if (done)
  5307. return;
  5308. done = true;
  5309. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5310. for (i = 0; i < nr_node_ids; i++) {
  5311. printk(KERN_WARNING " ");
  5312. for (j = 0; j < nr_node_ids; j++)
  5313. printk(KERN_CONT "%02d ", node_distance(i,j));
  5314. printk(KERN_CONT "\n");
  5315. }
  5316. printk(KERN_WARNING "\n");
  5317. }
  5318. static bool find_numa_distance(int distance)
  5319. {
  5320. int i;
  5321. if (distance == node_distance(0, 0))
  5322. return true;
  5323. for (i = 0; i < sched_domains_numa_levels; i++) {
  5324. if (sched_domains_numa_distance[i] == distance)
  5325. return true;
  5326. }
  5327. return false;
  5328. }
  5329. static void sched_init_numa(void)
  5330. {
  5331. int next_distance, curr_distance = node_distance(0, 0);
  5332. struct sched_domain_topology_level *tl;
  5333. int level = 0;
  5334. int i, j, k;
  5335. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5336. if (!sched_domains_numa_distance)
  5337. return;
  5338. /*
  5339. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5340. * unique distances in the node_distance() table.
  5341. *
  5342. * Assumes node_distance(0,j) includes all distances in
  5343. * node_distance(i,j) in order to avoid cubic time.
  5344. */
  5345. next_distance = curr_distance;
  5346. for (i = 0; i < nr_node_ids; i++) {
  5347. for (j = 0; j < nr_node_ids; j++) {
  5348. for (k = 0; k < nr_node_ids; k++) {
  5349. int distance = node_distance(i, k);
  5350. if (distance > curr_distance &&
  5351. (distance < next_distance ||
  5352. next_distance == curr_distance))
  5353. next_distance = distance;
  5354. /*
  5355. * While not a strong assumption it would be nice to know
  5356. * about cases where if node A is connected to B, B is not
  5357. * equally connected to A.
  5358. */
  5359. if (sched_debug() && node_distance(k, i) != distance)
  5360. sched_numa_warn("Node-distance not symmetric");
  5361. if (sched_debug() && i && !find_numa_distance(distance))
  5362. sched_numa_warn("Node-0 not representative");
  5363. }
  5364. if (next_distance != curr_distance) {
  5365. sched_domains_numa_distance[level++] = next_distance;
  5366. sched_domains_numa_levels = level;
  5367. curr_distance = next_distance;
  5368. } else break;
  5369. }
  5370. /*
  5371. * In case of sched_debug() we verify the above assumption.
  5372. */
  5373. if (!sched_debug())
  5374. break;
  5375. }
  5376. /*
  5377. * 'level' contains the number of unique distances, excluding the
  5378. * identity distance node_distance(i,i).
  5379. *
  5380. * The sched_domains_numa_distance[] array includes the actual distance
  5381. * numbers.
  5382. */
  5383. /*
  5384. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5385. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5386. * the array will contain less then 'level' members. This could be
  5387. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5388. * in other functions.
  5389. *
  5390. * We reset it to 'level' at the end of this function.
  5391. */
  5392. sched_domains_numa_levels = 0;
  5393. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5394. if (!sched_domains_numa_masks)
  5395. return;
  5396. /*
  5397. * Now for each level, construct a mask per node which contains all
  5398. * cpus of nodes that are that many hops away from us.
  5399. */
  5400. for (i = 0; i < level; i++) {
  5401. sched_domains_numa_masks[i] =
  5402. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5403. if (!sched_domains_numa_masks[i])
  5404. return;
  5405. for (j = 0; j < nr_node_ids; j++) {
  5406. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5407. if (!mask)
  5408. return;
  5409. sched_domains_numa_masks[i][j] = mask;
  5410. for (k = 0; k < nr_node_ids; k++) {
  5411. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5412. continue;
  5413. cpumask_or(mask, mask, cpumask_of_node(k));
  5414. }
  5415. }
  5416. }
  5417. /* Compute default topology size */
  5418. for (i = 0; sched_domain_topology[i].mask; i++);
  5419. tl = kzalloc((i + level + 1) *
  5420. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5421. if (!tl)
  5422. return;
  5423. /*
  5424. * Copy the default topology bits..
  5425. */
  5426. for (i = 0; sched_domain_topology[i].mask; i++)
  5427. tl[i] = sched_domain_topology[i];
  5428. /*
  5429. * .. and append 'j' levels of NUMA goodness.
  5430. */
  5431. for (j = 0; j < level; i++, j++) {
  5432. tl[i] = (struct sched_domain_topology_level){
  5433. .mask = sd_numa_mask,
  5434. .sd_flags = cpu_numa_flags,
  5435. .flags = SDTL_OVERLAP,
  5436. .numa_level = j,
  5437. SD_INIT_NAME(NUMA)
  5438. };
  5439. }
  5440. sched_domain_topology = tl;
  5441. sched_domains_numa_levels = level;
  5442. }
  5443. static void sched_domains_numa_masks_set(int cpu)
  5444. {
  5445. int i, j;
  5446. int node = cpu_to_node(cpu);
  5447. for (i = 0; i < sched_domains_numa_levels; i++) {
  5448. for (j = 0; j < nr_node_ids; j++) {
  5449. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5450. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5451. }
  5452. }
  5453. }
  5454. static void sched_domains_numa_masks_clear(int cpu)
  5455. {
  5456. int i, j;
  5457. for (i = 0; i < sched_domains_numa_levels; i++) {
  5458. for (j = 0; j < nr_node_ids; j++)
  5459. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5460. }
  5461. }
  5462. /*
  5463. * Update sched_domains_numa_masks[level][node] array when new cpus
  5464. * are onlined.
  5465. */
  5466. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5467. unsigned long action,
  5468. void *hcpu)
  5469. {
  5470. int cpu = (long)hcpu;
  5471. switch (action & ~CPU_TASKS_FROZEN) {
  5472. case CPU_ONLINE:
  5473. sched_domains_numa_masks_set(cpu);
  5474. break;
  5475. case CPU_DEAD:
  5476. sched_domains_numa_masks_clear(cpu);
  5477. break;
  5478. default:
  5479. return NOTIFY_DONE;
  5480. }
  5481. return NOTIFY_OK;
  5482. }
  5483. #else
  5484. static inline void sched_init_numa(void)
  5485. {
  5486. }
  5487. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5488. unsigned long action,
  5489. void *hcpu)
  5490. {
  5491. return 0;
  5492. }
  5493. #endif /* CONFIG_NUMA */
  5494. static int __sdt_alloc(const struct cpumask *cpu_map)
  5495. {
  5496. struct sched_domain_topology_level *tl;
  5497. int j;
  5498. for_each_sd_topology(tl) {
  5499. struct sd_data *sdd = &tl->data;
  5500. sdd->sd = alloc_percpu(struct sched_domain *);
  5501. if (!sdd->sd)
  5502. return -ENOMEM;
  5503. sdd->sg = alloc_percpu(struct sched_group *);
  5504. if (!sdd->sg)
  5505. return -ENOMEM;
  5506. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5507. if (!sdd->sgc)
  5508. return -ENOMEM;
  5509. for_each_cpu(j, cpu_map) {
  5510. struct sched_domain *sd;
  5511. struct sched_group *sg;
  5512. struct sched_group_capacity *sgc;
  5513. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5514. GFP_KERNEL, cpu_to_node(j));
  5515. if (!sd)
  5516. return -ENOMEM;
  5517. *per_cpu_ptr(sdd->sd, j) = sd;
  5518. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5519. GFP_KERNEL, cpu_to_node(j));
  5520. if (!sg)
  5521. return -ENOMEM;
  5522. sg->next = sg;
  5523. *per_cpu_ptr(sdd->sg, j) = sg;
  5524. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5525. GFP_KERNEL, cpu_to_node(j));
  5526. if (!sgc)
  5527. return -ENOMEM;
  5528. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5529. }
  5530. }
  5531. return 0;
  5532. }
  5533. static void __sdt_free(const struct cpumask *cpu_map)
  5534. {
  5535. struct sched_domain_topology_level *tl;
  5536. int j;
  5537. for_each_sd_topology(tl) {
  5538. struct sd_data *sdd = &tl->data;
  5539. for_each_cpu(j, cpu_map) {
  5540. struct sched_domain *sd;
  5541. if (sdd->sd) {
  5542. sd = *per_cpu_ptr(sdd->sd, j);
  5543. if (sd && (sd->flags & SD_OVERLAP))
  5544. free_sched_groups(sd->groups, 0);
  5545. kfree(*per_cpu_ptr(sdd->sd, j));
  5546. }
  5547. if (sdd->sg)
  5548. kfree(*per_cpu_ptr(sdd->sg, j));
  5549. if (sdd->sgc)
  5550. kfree(*per_cpu_ptr(sdd->sgc, j));
  5551. }
  5552. free_percpu(sdd->sd);
  5553. sdd->sd = NULL;
  5554. free_percpu(sdd->sg);
  5555. sdd->sg = NULL;
  5556. free_percpu(sdd->sgc);
  5557. sdd->sgc = NULL;
  5558. }
  5559. }
  5560. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5561. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5562. struct sched_domain *child, int cpu)
  5563. {
  5564. struct sched_domain *sd = sd_init(tl, cpu);
  5565. if (!sd)
  5566. return child;
  5567. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5568. if (child) {
  5569. sd->level = child->level + 1;
  5570. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5571. child->parent = sd;
  5572. sd->child = child;
  5573. if (!cpumask_subset(sched_domain_span(child),
  5574. sched_domain_span(sd))) {
  5575. pr_err("BUG: arch topology borken\n");
  5576. #ifdef CONFIG_SCHED_DEBUG
  5577. pr_err(" the %s domain not a subset of the %s domain\n",
  5578. child->name, sd->name);
  5579. #endif
  5580. /* Fixup, ensure @sd has at least @child cpus. */
  5581. cpumask_or(sched_domain_span(sd),
  5582. sched_domain_span(sd),
  5583. sched_domain_span(child));
  5584. }
  5585. }
  5586. set_domain_attribute(sd, attr);
  5587. return sd;
  5588. }
  5589. /*
  5590. * Build sched domains for a given set of cpus and attach the sched domains
  5591. * to the individual cpus
  5592. */
  5593. static int build_sched_domains(const struct cpumask *cpu_map,
  5594. struct sched_domain_attr *attr)
  5595. {
  5596. enum s_alloc alloc_state;
  5597. struct sched_domain *sd;
  5598. struct s_data d;
  5599. int i, ret = -ENOMEM;
  5600. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5601. if (alloc_state != sa_rootdomain)
  5602. goto error;
  5603. /* Set up domains for cpus specified by the cpu_map. */
  5604. for_each_cpu(i, cpu_map) {
  5605. struct sched_domain_topology_level *tl;
  5606. sd = NULL;
  5607. for_each_sd_topology(tl) {
  5608. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5609. if (tl == sched_domain_topology)
  5610. *per_cpu_ptr(d.sd, i) = sd;
  5611. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5612. sd->flags |= SD_OVERLAP;
  5613. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5614. break;
  5615. }
  5616. }
  5617. /* Build the groups for the domains */
  5618. for_each_cpu(i, cpu_map) {
  5619. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5620. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5621. if (sd->flags & SD_OVERLAP) {
  5622. if (build_overlap_sched_groups(sd, i))
  5623. goto error;
  5624. } else {
  5625. if (build_sched_groups(sd, i))
  5626. goto error;
  5627. }
  5628. }
  5629. }
  5630. /* Calculate CPU capacity for physical packages and nodes */
  5631. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5632. if (!cpumask_test_cpu(i, cpu_map))
  5633. continue;
  5634. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5635. claim_allocations(i, sd);
  5636. init_sched_groups_capacity(i, sd);
  5637. }
  5638. }
  5639. /* Attach the domains */
  5640. rcu_read_lock();
  5641. for_each_cpu(i, cpu_map) {
  5642. sd = *per_cpu_ptr(d.sd, i);
  5643. cpu_attach_domain(sd, d.rd, i);
  5644. }
  5645. rcu_read_unlock();
  5646. ret = 0;
  5647. error:
  5648. __free_domain_allocs(&d, alloc_state, cpu_map);
  5649. return ret;
  5650. }
  5651. static cpumask_var_t *doms_cur; /* current sched domains */
  5652. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5653. static struct sched_domain_attr *dattr_cur;
  5654. /* attribues of custom domains in 'doms_cur' */
  5655. /*
  5656. * Special case: If a kmalloc of a doms_cur partition (array of
  5657. * cpumask) fails, then fallback to a single sched domain,
  5658. * as determined by the single cpumask fallback_doms.
  5659. */
  5660. static cpumask_var_t fallback_doms;
  5661. /*
  5662. * arch_update_cpu_topology lets virtualized architectures update the
  5663. * cpu core maps. It is supposed to return 1 if the topology changed
  5664. * or 0 if it stayed the same.
  5665. */
  5666. int __weak arch_update_cpu_topology(void)
  5667. {
  5668. return 0;
  5669. }
  5670. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5671. {
  5672. int i;
  5673. cpumask_var_t *doms;
  5674. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5675. if (!doms)
  5676. return NULL;
  5677. for (i = 0; i < ndoms; i++) {
  5678. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5679. free_sched_domains(doms, i);
  5680. return NULL;
  5681. }
  5682. }
  5683. return doms;
  5684. }
  5685. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5686. {
  5687. unsigned int i;
  5688. for (i = 0; i < ndoms; i++)
  5689. free_cpumask_var(doms[i]);
  5690. kfree(doms);
  5691. }
  5692. /*
  5693. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5694. * For now this just excludes isolated cpus, but could be used to
  5695. * exclude other special cases in the future.
  5696. */
  5697. static int init_sched_domains(const struct cpumask *cpu_map)
  5698. {
  5699. int err;
  5700. arch_update_cpu_topology();
  5701. ndoms_cur = 1;
  5702. doms_cur = alloc_sched_domains(ndoms_cur);
  5703. if (!doms_cur)
  5704. doms_cur = &fallback_doms;
  5705. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5706. err = build_sched_domains(doms_cur[0], NULL);
  5707. register_sched_domain_sysctl();
  5708. return err;
  5709. }
  5710. /*
  5711. * Detach sched domains from a group of cpus specified in cpu_map
  5712. * These cpus will now be attached to the NULL domain
  5713. */
  5714. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5715. {
  5716. int i;
  5717. rcu_read_lock();
  5718. for_each_cpu(i, cpu_map)
  5719. cpu_attach_domain(NULL, &def_root_domain, i);
  5720. rcu_read_unlock();
  5721. }
  5722. /* handle null as "default" */
  5723. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5724. struct sched_domain_attr *new, int idx_new)
  5725. {
  5726. struct sched_domain_attr tmp;
  5727. /* fast path */
  5728. if (!new && !cur)
  5729. return 1;
  5730. tmp = SD_ATTR_INIT;
  5731. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5732. new ? (new + idx_new) : &tmp,
  5733. sizeof(struct sched_domain_attr));
  5734. }
  5735. /*
  5736. * Partition sched domains as specified by the 'ndoms_new'
  5737. * cpumasks in the array doms_new[] of cpumasks. This compares
  5738. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5739. * It destroys each deleted domain and builds each new domain.
  5740. *
  5741. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5742. * The masks don't intersect (don't overlap.) We should setup one
  5743. * sched domain for each mask. CPUs not in any of the cpumasks will
  5744. * not be load balanced. If the same cpumask appears both in the
  5745. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5746. * it as it is.
  5747. *
  5748. * The passed in 'doms_new' should be allocated using
  5749. * alloc_sched_domains. This routine takes ownership of it and will
  5750. * free_sched_domains it when done with it. If the caller failed the
  5751. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5752. * and partition_sched_domains() will fallback to the single partition
  5753. * 'fallback_doms', it also forces the domains to be rebuilt.
  5754. *
  5755. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5756. * ndoms_new == 0 is a special case for destroying existing domains,
  5757. * and it will not create the default domain.
  5758. *
  5759. * Call with hotplug lock held
  5760. */
  5761. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5762. struct sched_domain_attr *dattr_new)
  5763. {
  5764. int i, j, n;
  5765. int new_topology;
  5766. mutex_lock(&sched_domains_mutex);
  5767. /* always unregister in case we don't destroy any domains */
  5768. unregister_sched_domain_sysctl();
  5769. /* Let architecture update cpu core mappings. */
  5770. new_topology = arch_update_cpu_topology();
  5771. n = doms_new ? ndoms_new : 0;
  5772. /* Destroy deleted domains */
  5773. for (i = 0; i < ndoms_cur; i++) {
  5774. for (j = 0; j < n && !new_topology; j++) {
  5775. if (cpumask_equal(doms_cur[i], doms_new[j])
  5776. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5777. goto match1;
  5778. }
  5779. /* no match - a current sched domain not in new doms_new[] */
  5780. detach_destroy_domains(doms_cur[i]);
  5781. match1:
  5782. ;
  5783. }
  5784. n = ndoms_cur;
  5785. if (doms_new == NULL) {
  5786. n = 0;
  5787. doms_new = &fallback_doms;
  5788. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5789. WARN_ON_ONCE(dattr_new);
  5790. }
  5791. /* Build new domains */
  5792. for (i = 0; i < ndoms_new; i++) {
  5793. for (j = 0; j < n && !new_topology; j++) {
  5794. if (cpumask_equal(doms_new[i], doms_cur[j])
  5795. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5796. goto match2;
  5797. }
  5798. /* no match - add a new doms_new */
  5799. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5800. match2:
  5801. ;
  5802. }
  5803. /* Remember the new sched domains */
  5804. if (doms_cur != &fallback_doms)
  5805. free_sched_domains(doms_cur, ndoms_cur);
  5806. kfree(dattr_cur); /* kfree(NULL) is safe */
  5807. doms_cur = doms_new;
  5808. dattr_cur = dattr_new;
  5809. ndoms_cur = ndoms_new;
  5810. register_sched_domain_sysctl();
  5811. mutex_unlock(&sched_domains_mutex);
  5812. }
  5813. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5814. /*
  5815. * Update cpusets according to cpu_active mask. If cpusets are
  5816. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5817. * around partition_sched_domains().
  5818. *
  5819. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5820. * want to restore it back to its original state upon resume anyway.
  5821. */
  5822. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5823. void *hcpu)
  5824. {
  5825. switch (action) {
  5826. case CPU_ONLINE_FROZEN:
  5827. case CPU_DOWN_FAILED_FROZEN:
  5828. /*
  5829. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5830. * resume sequence. As long as this is not the last online
  5831. * operation in the resume sequence, just build a single sched
  5832. * domain, ignoring cpusets.
  5833. */
  5834. num_cpus_frozen--;
  5835. if (likely(num_cpus_frozen)) {
  5836. partition_sched_domains(1, NULL, NULL);
  5837. break;
  5838. }
  5839. /*
  5840. * This is the last CPU online operation. So fall through and
  5841. * restore the original sched domains by considering the
  5842. * cpuset configurations.
  5843. */
  5844. case CPU_ONLINE:
  5845. case CPU_DOWN_FAILED:
  5846. cpuset_update_active_cpus(true);
  5847. break;
  5848. default:
  5849. return NOTIFY_DONE;
  5850. }
  5851. return NOTIFY_OK;
  5852. }
  5853. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5854. void *hcpu)
  5855. {
  5856. switch (action) {
  5857. case CPU_DOWN_PREPARE:
  5858. cpuset_update_active_cpus(false);
  5859. break;
  5860. case CPU_DOWN_PREPARE_FROZEN:
  5861. num_cpus_frozen++;
  5862. partition_sched_domains(1, NULL, NULL);
  5863. break;
  5864. default:
  5865. return NOTIFY_DONE;
  5866. }
  5867. return NOTIFY_OK;
  5868. }
  5869. void __init sched_init_smp(void)
  5870. {
  5871. cpumask_var_t non_isolated_cpus;
  5872. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5873. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5874. sched_init_numa();
  5875. /*
  5876. * There's no userspace yet to cause hotplug operations; hence all the
  5877. * cpu masks are stable and all blatant races in the below code cannot
  5878. * happen.
  5879. */
  5880. mutex_lock(&sched_domains_mutex);
  5881. init_sched_domains(cpu_active_mask);
  5882. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5883. if (cpumask_empty(non_isolated_cpus))
  5884. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5885. mutex_unlock(&sched_domains_mutex);
  5886. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5887. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5888. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5889. init_hrtick();
  5890. /* Move init over to a non-isolated CPU */
  5891. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5892. BUG();
  5893. sched_init_granularity();
  5894. free_cpumask_var(non_isolated_cpus);
  5895. init_sched_rt_class();
  5896. init_sched_dl_class();
  5897. }
  5898. #else
  5899. void __init sched_init_smp(void)
  5900. {
  5901. sched_init_granularity();
  5902. }
  5903. #endif /* CONFIG_SMP */
  5904. const_debug unsigned int sysctl_timer_migration = 1;
  5905. int in_sched_functions(unsigned long addr)
  5906. {
  5907. return in_lock_functions(addr) ||
  5908. (addr >= (unsigned long)__sched_text_start
  5909. && addr < (unsigned long)__sched_text_end);
  5910. }
  5911. #ifdef CONFIG_CGROUP_SCHED
  5912. /*
  5913. * Default task group.
  5914. * Every task in system belongs to this group at bootup.
  5915. */
  5916. struct task_group root_task_group;
  5917. LIST_HEAD(task_groups);
  5918. #endif
  5919. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5920. void __init sched_init(void)
  5921. {
  5922. int i, j;
  5923. unsigned long alloc_size = 0, ptr;
  5924. #ifdef CONFIG_FAIR_GROUP_SCHED
  5925. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5926. #endif
  5927. #ifdef CONFIG_RT_GROUP_SCHED
  5928. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5929. #endif
  5930. #ifdef CONFIG_CPUMASK_OFFSTACK
  5931. alloc_size += num_possible_cpus() * cpumask_size();
  5932. #endif
  5933. if (alloc_size) {
  5934. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5935. #ifdef CONFIG_FAIR_GROUP_SCHED
  5936. root_task_group.se = (struct sched_entity **)ptr;
  5937. ptr += nr_cpu_ids * sizeof(void **);
  5938. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5939. ptr += nr_cpu_ids * sizeof(void **);
  5940. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5941. #ifdef CONFIG_RT_GROUP_SCHED
  5942. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5943. ptr += nr_cpu_ids * sizeof(void **);
  5944. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5945. ptr += nr_cpu_ids * sizeof(void **);
  5946. #endif /* CONFIG_RT_GROUP_SCHED */
  5947. #ifdef CONFIG_CPUMASK_OFFSTACK
  5948. for_each_possible_cpu(i) {
  5949. per_cpu(load_balance_mask, i) = (void *)ptr;
  5950. ptr += cpumask_size();
  5951. }
  5952. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5953. }
  5954. init_rt_bandwidth(&def_rt_bandwidth,
  5955. global_rt_period(), global_rt_runtime());
  5956. init_dl_bandwidth(&def_dl_bandwidth,
  5957. global_rt_period(), global_rt_runtime());
  5958. #ifdef CONFIG_SMP
  5959. init_defrootdomain();
  5960. #endif
  5961. #ifdef CONFIG_RT_GROUP_SCHED
  5962. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5963. global_rt_period(), global_rt_runtime());
  5964. #endif /* CONFIG_RT_GROUP_SCHED */
  5965. #ifdef CONFIG_CGROUP_SCHED
  5966. list_add(&root_task_group.list, &task_groups);
  5967. INIT_LIST_HEAD(&root_task_group.children);
  5968. INIT_LIST_HEAD(&root_task_group.siblings);
  5969. autogroup_init(&init_task);
  5970. #endif /* CONFIG_CGROUP_SCHED */
  5971. for_each_possible_cpu(i) {
  5972. struct rq *rq;
  5973. rq = cpu_rq(i);
  5974. raw_spin_lock_init(&rq->lock);
  5975. rq->nr_running = 0;
  5976. rq->calc_load_active = 0;
  5977. rq->calc_load_update = jiffies + LOAD_FREQ;
  5978. init_cfs_rq(&rq->cfs);
  5979. init_rt_rq(&rq->rt, rq);
  5980. init_dl_rq(&rq->dl, rq);
  5981. #ifdef CONFIG_FAIR_GROUP_SCHED
  5982. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5983. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5984. /*
  5985. * How much cpu bandwidth does root_task_group get?
  5986. *
  5987. * In case of task-groups formed thr' the cgroup filesystem, it
  5988. * gets 100% of the cpu resources in the system. This overall
  5989. * system cpu resource is divided among the tasks of
  5990. * root_task_group and its child task-groups in a fair manner,
  5991. * based on each entity's (task or task-group's) weight
  5992. * (se->load.weight).
  5993. *
  5994. * In other words, if root_task_group has 10 tasks of weight
  5995. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5996. * then A0's share of the cpu resource is:
  5997. *
  5998. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5999. *
  6000. * We achieve this by letting root_task_group's tasks sit
  6001. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6002. */
  6003. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6004. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6005. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6006. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6007. #ifdef CONFIG_RT_GROUP_SCHED
  6008. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6009. #endif
  6010. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6011. rq->cpu_load[j] = 0;
  6012. rq->last_load_update_tick = jiffies;
  6013. #ifdef CONFIG_SMP
  6014. rq->sd = NULL;
  6015. rq->rd = NULL;
  6016. rq->cpu_capacity = SCHED_CAPACITY_SCALE;
  6017. rq->post_schedule = 0;
  6018. rq->active_balance = 0;
  6019. rq->next_balance = jiffies;
  6020. rq->push_cpu = 0;
  6021. rq->cpu = i;
  6022. rq->online = 0;
  6023. rq->idle_stamp = 0;
  6024. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6025. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6026. INIT_LIST_HEAD(&rq->cfs_tasks);
  6027. rq_attach_root(rq, &def_root_domain);
  6028. #ifdef CONFIG_NO_HZ_COMMON
  6029. rq->nohz_flags = 0;
  6030. #endif
  6031. #ifdef CONFIG_NO_HZ_FULL
  6032. rq->last_sched_tick = 0;
  6033. #endif
  6034. #endif
  6035. init_rq_hrtick(rq);
  6036. atomic_set(&rq->nr_iowait, 0);
  6037. }
  6038. set_load_weight(&init_task);
  6039. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6040. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6041. #endif
  6042. /*
  6043. * The boot idle thread does lazy MMU switching as well:
  6044. */
  6045. atomic_inc(&init_mm.mm_count);
  6046. enter_lazy_tlb(&init_mm, current);
  6047. /*
  6048. * Make us the idle thread. Technically, schedule() should not be
  6049. * called from this thread, however somewhere below it might be,
  6050. * but because we are the idle thread, we just pick up running again
  6051. * when this runqueue becomes "idle".
  6052. */
  6053. init_idle(current, smp_processor_id());
  6054. calc_load_update = jiffies + LOAD_FREQ;
  6055. /*
  6056. * During early bootup we pretend to be a normal task:
  6057. */
  6058. current->sched_class = &fair_sched_class;
  6059. #ifdef CONFIG_SMP
  6060. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6061. /* May be allocated at isolcpus cmdline parse time */
  6062. if (cpu_isolated_map == NULL)
  6063. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6064. idle_thread_set_boot_cpu();
  6065. set_cpu_rq_start_time();
  6066. #endif
  6067. init_sched_fair_class();
  6068. scheduler_running = 1;
  6069. }
  6070. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6071. static inline int preempt_count_equals(int preempt_offset)
  6072. {
  6073. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6074. return (nested == preempt_offset);
  6075. }
  6076. void __might_sleep(const char *file, int line, int preempt_offset)
  6077. {
  6078. static unsigned long prev_jiffy; /* ratelimiting */
  6079. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6080. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6081. !is_idle_task(current)) ||
  6082. system_state != SYSTEM_RUNNING || oops_in_progress)
  6083. return;
  6084. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6085. return;
  6086. prev_jiffy = jiffies;
  6087. printk(KERN_ERR
  6088. "BUG: sleeping function called from invalid context at %s:%d\n",
  6089. file, line);
  6090. printk(KERN_ERR
  6091. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6092. in_atomic(), irqs_disabled(),
  6093. current->pid, current->comm);
  6094. debug_show_held_locks(current);
  6095. if (irqs_disabled())
  6096. print_irqtrace_events(current);
  6097. #ifdef CONFIG_DEBUG_PREEMPT
  6098. if (!preempt_count_equals(preempt_offset)) {
  6099. pr_err("Preemption disabled at:");
  6100. print_ip_sym(current->preempt_disable_ip);
  6101. pr_cont("\n");
  6102. }
  6103. #endif
  6104. dump_stack();
  6105. }
  6106. EXPORT_SYMBOL(__might_sleep);
  6107. #endif
  6108. #ifdef CONFIG_MAGIC_SYSRQ
  6109. static void normalize_task(struct rq *rq, struct task_struct *p)
  6110. {
  6111. const struct sched_class *prev_class = p->sched_class;
  6112. struct sched_attr attr = {
  6113. .sched_policy = SCHED_NORMAL,
  6114. };
  6115. int old_prio = p->prio;
  6116. int queued;
  6117. queued = task_on_rq_queued(p);
  6118. if (queued)
  6119. dequeue_task(rq, p, 0);
  6120. __setscheduler(rq, p, &attr);
  6121. if (queued) {
  6122. enqueue_task(rq, p, 0);
  6123. resched_curr(rq);
  6124. }
  6125. check_class_changed(rq, p, prev_class, old_prio);
  6126. }
  6127. void normalize_rt_tasks(void)
  6128. {
  6129. struct task_struct *g, *p;
  6130. unsigned long flags;
  6131. struct rq *rq;
  6132. read_lock(&tasklist_lock);
  6133. for_each_process_thread(g, p) {
  6134. /*
  6135. * Only normalize user tasks:
  6136. */
  6137. if (p->flags & PF_KTHREAD)
  6138. continue;
  6139. p->se.exec_start = 0;
  6140. #ifdef CONFIG_SCHEDSTATS
  6141. p->se.statistics.wait_start = 0;
  6142. p->se.statistics.sleep_start = 0;
  6143. p->se.statistics.block_start = 0;
  6144. #endif
  6145. if (!dl_task(p) && !rt_task(p)) {
  6146. /*
  6147. * Renice negative nice level userspace
  6148. * tasks back to 0:
  6149. */
  6150. if (task_nice(p) < 0)
  6151. set_user_nice(p, 0);
  6152. continue;
  6153. }
  6154. rq = task_rq_lock(p, &flags);
  6155. normalize_task(rq, p);
  6156. task_rq_unlock(rq, p, &flags);
  6157. }
  6158. read_unlock(&tasklist_lock);
  6159. }
  6160. #endif /* CONFIG_MAGIC_SYSRQ */
  6161. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6162. /*
  6163. * These functions are only useful for the IA64 MCA handling, or kdb.
  6164. *
  6165. * They can only be called when the whole system has been
  6166. * stopped - every CPU needs to be quiescent, and no scheduling
  6167. * activity can take place. Using them for anything else would
  6168. * be a serious bug, and as a result, they aren't even visible
  6169. * under any other configuration.
  6170. */
  6171. /**
  6172. * curr_task - return the current task for a given cpu.
  6173. * @cpu: the processor in question.
  6174. *
  6175. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6176. *
  6177. * Return: The current task for @cpu.
  6178. */
  6179. struct task_struct *curr_task(int cpu)
  6180. {
  6181. return cpu_curr(cpu);
  6182. }
  6183. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6184. #ifdef CONFIG_IA64
  6185. /**
  6186. * set_curr_task - set the current task for a given cpu.
  6187. * @cpu: the processor in question.
  6188. * @p: the task pointer to set.
  6189. *
  6190. * Description: This function must only be used when non-maskable interrupts
  6191. * are serviced on a separate stack. It allows the architecture to switch the
  6192. * notion of the current task on a cpu in a non-blocking manner. This function
  6193. * must be called with all CPU's synchronized, and interrupts disabled, the
  6194. * and caller must save the original value of the current task (see
  6195. * curr_task() above) and restore that value before reenabling interrupts and
  6196. * re-starting the system.
  6197. *
  6198. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6199. */
  6200. void set_curr_task(int cpu, struct task_struct *p)
  6201. {
  6202. cpu_curr(cpu) = p;
  6203. }
  6204. #endif
  6205. #ifdef CONFIG_CGROUP_SCHED
  6206. /* task_group_lock serializes the addition/removal of task groups */
  6207. static DEFINE_SPINLOCK(task_group_lock);
  6208. static void free_sched_group(struct task_group *tg)
  6209. {
  6210. free_fair_sched_group(tg);
  6211. free_rt_sched_group(tg);
  6212. autogroup_free(tg);
  6213. kfree(tg);
  6214. }
  6215. /* allocate runqueue etc for a new task group */
  6216. struct task_group *sched_create_group(struct task_group *parent)
  6217. {
  6218. struct task_group *tg;
  6219. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6220. if (!tg)
  6221. return ERR_PTR(-ENOMEM);
  6222. if (!alloc_fair_sched_group(tg, parent))
  6223. goto err;
  6224. if (!alloc_rt_sched_group(tg, parent))
  6225. goto err;
  6226. return tg;
  6227. err:
  6228. free_sched_group(tg);
  6229. return ERR_PTR(-ENOMEM);
  6230. }
  6231. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6232. {
  6233. unsigned long flags;
  6234. spin_lock_irqsave(&task_group_lock, flags);
  6235. list_add_rcu(&tg->list, &task_groups);
  6236. WARN_ON(!parent); /* root should already exist */
  6237. tg->parent = parent;
  6238. INIT_LIST_HEAD(&tg->children);
  6239. list_add_rcu(&tg->siblings, &parent->children);
  6240. spin_unlock_irqrestore(&task_group_lock, flags);
  6241. }
  6242. /* rcu callback to free various structures associated with a task group */
  6243. static void free_sched_group_rcu(struct rcu_head *rhp)
  6244. {
  6245. /* now it should be safe to free those cfs_rqs */
  6246. free_sched_group(container_of(rhp, struct task_group, rcu));
  6247. }
  6248. /* Destroy runqueue etc associated with a task group */
  6249. void sched_destroy_group(struct task_group *tg)
  6250. {
  6251. /* wait for possible concurrent references to cfs_rqs complete */
  6252. call_rcu(&tg->rcu, free_sched_group_rcu);
  6253. }
  6254. void sched_offline_group(struct task_group *tg)
  6255. {
  6256. unsigned long flags;
  6257. int i;
  6258. /* end participation in shares distribution */
  6259. for_each_possible_cpu(i)
  6260. unregister_fair_sched_group(tg, i);
  6261. spin_lock_irqsave(&task_group_lock, flags);
  6262. list_del_rcu(&tg->list);
  6263. list_del_rcu(&tg->siblings);
  6264. spin_unlock_irqrestore(&task_group_lock, flags);
  6265. }
  6266. /* change task's runqueue when it moves between groups.
  6267. * The caller of this function should have put the task in its new group
  6268. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6269. * reflect its new group.
  6270. */
  6271. void sched_move_task(struct task_struct *tsk)
  6272. {
  6273. struct task_group *tg;
  6274. int queued, running;
  6275. unsigned long flags;
  6276. struct rq *rq;
  6277. rq = task_rq_lock(tsk, &flags);
  6278. running = task_current(rq, tsk);
  6279. queued = task_on_rq_queued(tsk);
  6280. if (queued)
  6281. dequeue_task(rq, tsk, 0);
  6282. if (unlikely(running))
  6283. put_prev_task(rq, tsk);
  6284. tg = container_of(task_css_check(tsk, cpu_cgrp_id,
  6285. lockdep_is_held(&tsk->sighand->siglock)),
  6286. struct task_group, css);
  6287. tg = autogroup_task_group(tsk, tg);
  6288. tsk->sched_task_group = tg;
  6289. #ifdef CONFIG_FAIR_GROUP_SCHED
  6290. if (tsk->sched_class->task_move_group)
  6291. tsk->sched_class->task_move_group(tsk, queued);
  6292. else
  6293. #endif
  6294. set_task_rq(tsk, task_cpu(tsk));
  6295. if (unlikely(running))
  6296. tsk->sched_class->set_curr_task(rq);
  6297. if (queued)
  6298. enqueue_task(rq, tsk, 0);
  6299. task_rq_unlock(rq, tsk, &flags);
  6300. }
  6301. #endif /* CONFIG_CGROUP_SCHED */
  6302. #ifdef CONFIG_RT_GROUP_SCHED
  6303. /*
  6304. * Ensure that the real time constraints are schedulable.
  6305. */
  6306. static DEFINE_MUTEX(rt_constraints_mutex);
  6307. /* Must be called with tasklist_lock held */
  6308. static inline int tg_has_rt_tasks(struct task_group *tg)
  6309. {
  6310. struct task_struct *g, *p;
  6311. for_each_process_thread(g, p) {
  6312. if (rt_task(p) && task_group(p) == tg)
  6313. return 1;
  6314. }
  6315. return 0;
  6316. }
  6317. struct rt_schedulable_data {
  6318. struct task_group *tg;
  6319. u64 rt_period;
  6320. u64 rt_runtime;
  6321. };
  6322. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6323. {
  6324. struct rt_schedulable_data *d = data;
  6325. struct task_group *child;
  6326. unsigned long total, sum = 0;
  6327. u64 period, runtime;
  6328. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6329. runtime = tg->rt_bandwidth.rt_runtime;
  6330. if (tg == d->tg) {
  6331. period = d->rt_period;
  6332. runtime = d->rt_runtime;
  6333. }
  6334. /*
  6335. * Cannot have more runtime than the period.
  6336. */
  6337. if (runtime > period && runtime != RUNTIME_INF)
  6338. return -EINVAL;
  6339. /*
  6340. * Ensure we don't starve existing RT tasks.
  6341. */
  6342. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6343. return -EBUSY;
  6344. total = to_ratio(period, runtime);
  6345. /*
  6346. * Nobody can have more than the global setting allows.
  6347. */
  6348. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6349. return -EINVAL;
  6350. /*
  6351. * The sum of our children's runtime should not exceed our own.
  6352. */
  6353. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6354. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6355. runtime = child->rt_bandwidth.rt_runtime;
  6356. if (child == d->tg) {
  6357. period = d->rt_period;
  6358. runtime = d->rt_runtime;
  6359. }
  6360. sum += to_ratio(period, runtime);
  6361. }
  6362. if (sum > total)
  6363. return -EINVAL;
  6364. return 0;
  6365. }
  6366. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6367. {
  6368. int ret;
  6369. struct rt_schedulable_data data = {
  6370. .tg = tg,
  6371. .rt_period = period,
  6372. .rt_runtime = runtime,
  6373. };
  6374. rcu_read_lock();
  6375. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6376. rcu_read_unlock();
  6377. return ret;
  6378. }
  6379. static int tg_set_rt_bandwidth(struct task_group *tg,
  6380. u64 rt_period, u64 rt_runtime)
  6381. {
  6382. int i, err = 0;
  6383. mutex_lock(&rt_constraints_mutex);
  6384. read_lock(&tasklist_lock);
  6385. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6386. if (err)
  6387. goto unlock;
  6388. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6389. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6390. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6391. for_each_possible_cpu(i) {
  6392. struct rt_rq *rt_rq = tg->rt_rq[i];
  6393. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6394. rt_rq->rt_runtime = rt_runtime;
  6395. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6396. }
  6397. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6398. unlock:
  6399. read_unlock(&tasklist_lock);
  6400. mutex_unlock(&rt_constraints_mutex);
  6401. return err;
  6402. }
  6403. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6404. {
  6405. u64 rt_runtime, rt_period;
  6406. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6407. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6408. if (rt_runtime_us < 0)
  6409. rt_runtime = RUNTIME_INF;
  6410. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6411. }
  6412. static long sched_group_rt_runtime(struct task_group *tg)
  6413. {
  6414. u64 rt_runtime_us;
  6415. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6416. return -1;
  6417. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6418. do_div(rt_runtime_us, NSEC_PER_USEC);
  6419. return rt_runtime_us;
  6420. }
  6421. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6422. {
  6423. u64 rt_runtime, rt_period;
  6424. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6425. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6426. if (rt_period == 0)
  6427. return -EINVAL;
  6428. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6429. }
  6430. static long sched_group_rt_period(struct task_group *tg)
  6431. {
  6432. u64 rt_period_us;
  6433. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6434. do_div(rt_period_us, NSEC_PER_USEC);
  6435. return rt_period_us;
  6436. }
  6437. #endif /* CONFIG_RT_GROUP_SCHED */
  6438. #ifdef CONFIG_RT_GROUP_SCHED
  6439. static int sched_rt_global_constraints(void)
  6440. {
  6441. int ret = 0;
  6442. mutex_lock(&rt_constraints_mutex);
  6443. read_lock(&tasklist_lock);
  6444. ret = __rt_schedulable(NULL, 0, 0);
  6445. read_unlock(&tasklist_lock);
  6446. mutex_unlock(&rt_constraints_mutex);
  6447. return ret;
  6448. }
  6449. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6450. {
  6451. /* Don't accept realtime tasks when there is no way for them to run */
  6452. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6453. return 0;
  6454. return 1;
  6455. }
  6456. #else /* !CONFIG_RT_GROUP_SCHED */
  6457. static int sched_rt_global_constraints(void)
  6458. {
  6459. unsigned long flags;
  6460. int i, ret = 0;
  6461. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6462. for_each_possible_cpu(i) {
  6463. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6464. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6465. rt_rq->rt_runtime = global_rt_runtime();
  6466. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6467. }
  6468. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6469. return ret;
  6470. }
  6471. #endif /* CONFIG_RT_GROUP_SCHED */
  6472. static int sched_dl_global_constraints(void)
  6473. {
  6474. u64 runtime = global_rt_runtime();
  6475. u64 period = global_rt_period();
  6476. u64 new_bw = to_ratio(period, runtime);
  6477. struct dl_bw *dl_b;
  6478. int cpu, ret = 0;
  6479. unsigned long flags;
  6480. /*
  6481. * Here we want to check the bandwidth not being set to some
  6482. * value smaller than the currently allocated bandwidth in
  6483. * any of the root_domains.
  6484. *
  6485. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6486. * cycling on root_domains... Discussion on different/better
  6487. * solutions is welcome!
  6488. */
  6489. for_each_possible_cpu(cpu) {
  6490. rcu_read_lock_sched();
  6491. dl_b = dl_bw_of(cpu);
  6492. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6493. if (new_bw < dl_b->total_bw)
  6494. ret = -EBUSY;
  6495. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6496. rcu_read_unlock_sched();
  6497. if (ret)
  6498. break;
  6499. }
  6500. return ret;
  6501. }
  6502. static void sched_dl_do_global(void)
  6503. {
  6504. u64 new_bw = -1;
  6505. struct dl_bw *dl_b;
  6506. int cpu;
  6507. unsigned long flags;
  6508. def_dl_bandwidth.dl_period = global_rt_period();
  6509. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6510. if (global_rt_runtime() != RUNTIME_INF)
  6511. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6512. /*
  6513. * FIXME: As above...
  6514. */
  6515. for_each_possible_cpu(cpu) {
  6516. rcu_read_lock_sched();
  6517. dl_b = dl_bw_of(cpu);
  6518. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6519. dl_b->bw = new_bw;
  6520. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6521. rcu_read_unlock_sched();
  6522. }
  6523. }
  6524. static int sched_rt_global_validate(void)
  6525. {
  6526. if (sysctl_sched_rt_period <= 0)
  6527. return -EINVAL;
  6528. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6529. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6530. return -EINVAL;
  6531. return 0;
  6532. }
  6533. static void sched_rt_do_global(void)
  6534. {
  6535. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6536. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6537. }
  6538. int sched_rt_handler(struct ctl_table *table, int write,
  6539. void __user *buffer, size_t *lenp,
  6540. loff_t *ppos)
  6541. {
  6542. int old_period, old_runtime;
  6543. static DEFINE_MUTEX(mutex);
  6544. int ret;
  6545. mutex_lock(&mutex);
  6546. old_period = sysctl_sched_rt_period;
  6547. old_runtime = sysctl_sched_rt_runtime;
  6548. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6549. if (!ret && write) {
  6550. ret = sched_rt_global_validate();
  6551. if (ret)
  6552. goto undo;
  6553. ret = sched_rt_global_constraints();
  6554. if (ret)
  6555. goto undo;
  6556. ret = sched_dl_global_constraints();
  6557. if (ret)
  6558. goto undo;
  6559. sched_rt_do_global();
  6560. sched_dl_do_global();
  6561. }
  6562. if (0) {
  6563. undo:
  6564. sysctl_sched_rt_period = old_period;
  6565. sysctl_sched_rt_runtime = old_runtime;
  6566. }
  6567. mutex_unlock(&mutex);
  6568. return ret;
  6569. }
  6570. int sched_rr_handler(struct ctl_table *table, int write,
  6571. void __user *buffer, size_t *lenp,
  6572. loff_t *ppos)
  6573. {
  6574. int ret;
  6575. static DEFINE_MUTEX(mutex);
  6576. mutex_lock(&mutex);
  6577. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6578. /* make sure that internally we keep jiffies */
  6579. /* also, writing zero resets timeslice to default */
  6580. if (!ret && write) {
  6581. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6582. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6583. }
  6584. mutex_unlock(&mutex);
  6585. return ret;
  6586. }
  6587. #ifdef CONFIG_CGROUP_SCHED
  6588. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6589. {
  6590. return css ? container_of(css, struct task_group, css) : NULL;
  6591. }
  6592. static struct cgroup_subsys_state *
  6593. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6594. {
  6595. struct task_group *parent = css_tg(parent_css);
  6596. struct task_group *tg;
  6597. if (!parent) {
  6598. /* This is early initialization for the top cgroup */
  6599. return &root_task_group.css;
  6600. }
  6601. tg = sched_create_group(parent);
  6602. if (IS_ERR(tg))
  6603. return ERR_PTR(-ENOMEM);
  6604. return &tg->css;
  6605. }
  6606. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6607. {
  6608. struct task_group *tg = css_tg(css);
  6609. struct task_group *parent = css_tg(css->parent);
  6610. if (parent)
  6611. sched_online_group(tg, parent);
  6612. return 0;
  6613. }
  6614. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6615. {
  6616. struct task_group *tg = css_tg(css);
  6617. sched_destroy_group(tg);
  6618. }
  6619. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6620. {
  6621. struct task_group *tg = css_tg(css);
  6622. sched_offline_group(tg);
  6623. }
  6624. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6625. struct cgroup_taskset *tset)
  6626. {
  6627. struct task_struct *task;
  6628. cgroup_taskset_for_each(task, tset) {
  6629. #ifdef CONFIG_RT_GROUP_SCHED
  6630. if (!sched_rt_can_attach(css_tg(css), task))
  6631. return -EINVAL;
  6632. #else
  6633. /* We don't support RT-tasks being in separate groups */
  6634. if (task->sched_class != &fair_sched_class)
  6635. return -EINVAL;
  6636. #endif
  6637. }
  6638. return 0;
  6639. }
  6640. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6641. struct cgroup_taskset *tset)
  6642. {
  6643. struct task_struct *task;
  6644. cgroup_taskset_for_each(task, tset)
  6645. sched_move_task(task);
  6646. }
  6647. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6648. struct cgroup_subsys_state *old_css,
  6649. struct task_struct *task)
  6650. {
  6651. /*
  6652. * cgroup_exit() is called in the copy_process() failure path.
  6653. * Ignore this case since the task hasn't ran yet, this avoids
  6654. * trying to poke a half freed task state from generic code.
  6655. */
  6656. if (!(task->flags & PF_EXITING))
  6657. return;
  6658. sched_move_task(task);
  6659. }
  6660. #ifdef CONFIG_FAIR_GROUP_SCHED
  6661. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6662. struct cftype *cftype, u64 shareval)
  6663. {
  6664. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6665. }
  6666. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6667. struct cftype *cft)
  6668. {
  6669. struct task_group *tg = css_tg(css);
  6670. return (u64) scale_load_down(tg->shares);
  6671. }
  6672. #ifdef CONFIG_CFS_BANDWIDTH
  6673. static DEFINE_MUTEX(cfs_constraints_mutex);
  6674. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6675. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6676. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6677. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6678. {
  6679. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6680. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6681. if (tg == &root_task_group)
  6682. return -EINVAL;
  6683. /*
  6684. * Ensure we have at some amount of bandwidth every period. This is
  6685. * to prevent reaching a state of large arrears when throttled via
  6686. * entity_tick() resulting in prolonged exit starvation.
  6687. */
  6688. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6689. return -EINVAL;
  6690. /*
  6691. * Likewise, bound things on the otherside by preventing insane quota
  6692. * periods. This also allows us to normalize in computing quota
  6693. * feasibility.
  6694. */
  6695. if (period > max_cfs_quota_period)
  6696. return -EINVAL;
  6697. /*
  6698. * Prevent race between setting of cfs_rq->runtime_enabled and
  6699. * unthrottle_offline_cfs_rqs().
  6700. */
  6701. get_online_cpus();
  6702. mutex_lock(&cfs_constraints_mutex);
  6703. ret = __cfs_schedulable(tg, period, quota);
  6704. if (ret)
  6705. goto out_unlock;
  6706. runtime_enabled = quota != RUNTIME_INF;
  6707. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6708. /*
  6709. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6710. * before making related changes, and on->off must occur afterwards
  6711. */
  6712. if (runtime_enabled && !runtime_was_enabled)
  6713. cfs_bandwidth_usage_inc();
  6714. raw_spin_lock_irq(&cfs_b->lock);
  6715. cfs_b->period = ns_to_ktime(period);
  6716. cfs_b->quota = quota;
  6717. __refill_cfs_bandwidth_runtime(cfs_b);
  6718. /* restart the period timer (if active) to handle new period expiry */
  6719. if (runtime_enabled && cfs_b->timer_active) {
  6720. /* force a reprogram */
  6721. __start_cfs_bandwidth(cfs_b, true);
  6722. }
  6723. raw_spin_unlock_irq(&cfs_b->lock);
  6724. for_each_online_cpu(i) {
  6725. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6726. struct rq *rq = cfs_rq->rq;
  6727. raw_spin_lock_irq(&rq->lock);
  6728. cfs_rq->runtime_enabled = runtime_enabled;
  6729. cfs_rq->runtime_remaining = 0;
  6730. if (cfs_rq->throttled)
  6731. unthrottle_cfs_rq(cfs_rq);
  6732. raw_spin_unlock_irq(&rq->lock);
  6733. }
  6734. if (runtime_was_enabled && !runtime_enabled)
  6735. cfs_bandwidth_usage_dec();
  6736. out_unlock:
  6737. mutex_unlock(&cfs_constraints_mutex);
  6738. put_online_cpus();
  6739. return ret;
  6740. }
  6741. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6742. {
  6743. u64 quota, period;
  6744. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6745. if (cfs_quota_us < 0)
  6746. quota = RUNTIME_INF;
  6747. else
  6748. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6749. return tg_set_cfs_bandwidth(tg, period, quota);
  6750. }
  6751. long tg_get_cfs_quota(struct task_group *tg)
  6752. {
  6753. u64 quota_us;
  6754. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6755. return -1;
  6756. quota_us = tg->cfs_bandwidth.quota;
  6757. do_div(quota_us, NSEC_PER_USEC);
  6758. return quota_us;
  6759. }
  6760. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6761. {
  6762. u64 quota, period;
  6763. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6764. quota = tg->cfs_bandwidth.quota;
  6765. return tg_set_cfs_bandwidth(tg, period, quota);
  6766. }
  6767. long tg_get_cfs_period(struct task_group *tg)
  6768. {
  6769. u64 cfs_period_us;
  6770. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6771. do_div(cfs_period_us, NSEC_PER_USEC);
  6772. return cfs_period_us;
  6773. }
  6774. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6775. struct cftype *cft)
  6776. {
  6777. return tg_get_cfs_quota(css_tg(css));
  6778. }
  6779. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6780. struct cftype *cftype, s64 cfs_quota_us)
  6781. {
  6782. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6783. }
  6784. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6785. struct cftype *cft)
  6786. {
  6787. return tg_get_cfs_period(css_tg(css));
  6788. }
  6789. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6790. struct cftype *cftype, u64 cfs_period_us)
  6791. {
  6792. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6793. }
  6794. struct cfs_schedulable_data {
  6795. struct task_group *tg;
  6796. u64 period, quota;
  6797. };
  6798. /*
  6799. * normalize group quota/period to be quota/max_period
  6800. * note: units are usecs
  6801. */
  6802. static u64 normalize_cfs_quota(struct task_group *tg,
  6803. struct cfs_schedulable_data *d)
  6804. {
  6805. u64 quota, period;
  6806. if (tg == d->tg) {
  6807. period = d->period;
  6808. quota = d->quota;
  6809. } else {
  6810. period = tg_get_cfs_period(tg);
  6811. quota = tg_get_cfs_quota(tg);
  6812. }
  6813. /* note: these should typically be equivalent */
  6814. if (quota == RUNTIME_INF || quota == -1)
  6815. return RUNTIME_INF;
  6816. return to_ratio(period, quota);
  6817. }
  6818. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6819. {
  6820. struct cfs_schedulable_data *d = data;
  6821. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6822. s64 quota = 0, parent_quota = -1;
  6823. if (!tg->parent) {
  6824. quota = RUNTIME_INF;
  6825. } else {
  6826. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6827. quota = normalize_cfs_quota(tg, d);
  6828. parent_quota = parent_b->hierarchical_quota;
  6829. /*
  6830. * ensure max(child_quota) <= parent_quota, inherit when no
  6831. * limit is set
  6832. */
  6833. if (quota == RUNTIME_INF)
  6834. quota = parent_quota;
  6835. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6836. return -EINVAL;
  6837. }
  6838. cfs_b->hierarchical_quota = quota;
  6839. return 0;
  6840. }
  6841. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6842. {
  6843. int ret;
  6844. struct cfs_schedulable_data data = {
  6845. .tg = tg,
  6846. .period = period,
  6847. .quota = quota,
  6848. };
  6849. if (quota != RUNTIME_INF) {
  6850. do_div(data.period, NSEC_PER_USEC);
  6851. do_div(data.quota, NSEC_PER_USEC);
  6852. }
  6853. rcu_read_lock();
  6854. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6855. rcu_read_unlock();
  6856. return ret;
  6857. }
  6858. static int cpu_stats_show(struct seq_file *sf, void *v)
  6859. {
  6860. struct task_group *tg = css_tg(seq_css(sf));
  6861. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6862. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6863. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6864. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6865. return 0;
  6866. }
  6867. #endif /* CONFIG_CFS_BANDWIDTH */
  6868. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6869. #ifdef CONFIG_RT_GROUP_SCHED
  6870. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6871. struct cftype *cft, s64 val)
  6872. {
  6873. return sched_group_set_rt_runtime(css_tg(css), val);
  6874. }
  6875. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6876. struct cftype *cft)
  6877. {
  6878. return sched_group_rt_runtime(css_tg(css));
  6879. }
  6880. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6881. struct cftype *cftype, u64 rt_period_us)
  6882. {
  6883. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6884. }
  6885. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6886. struct cftype *cft)
  6887. {
  6888. return sched_group_rt_period(css_tg(css));
  6889. }
  6890. #endif /* CONFIG_RT_GROUP_SCHED */
  6891. static struct cftype cpu_files[] = {
  6892. #ifdef CONFIG_FAIR_GROUP_SCHED
  6893. {
  6894. .name = "shares",
  6895. .read_u64 = cpu_shares_read_u64,
  6896. .write_u64 = cpu_shares_write_u64,
  6897. },
  6898. #endif
  6899. #ifdef CONFIG_CFS_BANDWIDTH
  6900. {
  6901. .name = "cfs_quota_us",
  6902. .read_s64 = cpu_cfs_quota_read_s64,
  6903. .write_s64 = cpu_cfs_quota_write_s64,
  6904. },
  6905. {
  6906. .name = "cfs_period_us",
  6907. .read_u64 = cpu_cfs_period_read_u64,
  6908. .write_u64 = cpu_cfs_period_write_u64,
  6909. },
  6910. {
  6911. .name = "stat",
  6912. .seq_show = cpu_stats_show,
  6913. },
  6914. #endif
  6915. #ifdef CONFIG_RT_GROUP_SCHED
  6916. {
  6917. .name = "rt_runtime_us",
  6918. .read_s64 = cpu_rt_runtime_read,
  6919. .write_s64 = cpu_rt_runtime_write,
  6920. },
  6921. {
  6922. .name = "rt_period_us",
  6923. .read_u64 = cpu_rt_period_read_uint,
  6924. .write_u64 = cpu_rt_period_write_uint,
  6925. },
  6926. #endif
  6927. { } /* terminate */
  6928. };
  6929. struct cgroup_subsys cpu_cgrp_subsys = {
  6930. .css_alloc = cpu_cgroup_css_alloc,
  6931. .css_free = cpu_cgroup_css_free,
  6932. .css_online = cpu_cgroup_css_online,
  6933. .css_offline = cpu_cgroup_css_offline,
  6934. .can_attach = cpu_cgroup_can_attach,
  6935. .attach = cpu_cgroup_attach,
  6936. .exit = cpu_cgroup_exit,
  6937. .legacy_cftypes = cpu_files,
  6938. .early_init = 1,
  6939. };
  6940. #endif /* CONFIG_CGROUP_SCHED */
  6941. void dump_cpu_task(int cpu)
  6942. {
  6943. pr_info("Task dump for CPU %d:\n", cpu);
  6944. sched_show_task(cpu_curr(cpu));
  6945. }