mutex.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971
  1. /*
  2. * kernel/locking/mutex.c
  3. *
  4. * Mutexes: blocking mutual exclusion locks
  5. *
  6. * Started by Ingo Molnar:
  7. *
  8. * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9. *
  10. * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11. * David Howells for suggestions and improvements.
  12. *
  13. * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14. * from the -rt tree, where it was originally implemented for rtmutexes
  15. * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16. * and Sven Dietrich.
  17. *
  18. * Also see Documentation/locking/mutex-design.txt.
  19. */
  20. #include <linux/mutex.h>
  21. #include <linux/ww_mutex.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/rt.h>
  24. #include <linux/export.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/debug_locks.h>
  28. #include "mcs_spinlock.h"
  29. /*
  30. * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  31. * which forces all calls into the slowpath:
  32. */
  33. #ifdef CONFIG_DEBUG_MUTEXES
  34. # include "mutex-debug.h"
  35. # include <asm-generic/mutex-null.h>
  36. /*
  37. * Must be 0 for the debug case so we do not do the unlock outside of the
  38. * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
  39. * case.
  40. */
  41. # undef __mutex_slowpath_needs_to_unlock
  42. # define __mutex_slowpath_needs_to_unlock() 0
  43. #else
  44. # include "mutex.h"
  45. # include <asm/mutex.h>
  46. #endif
  47. void
  48. __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  49. {
  50. atomic_set(&lock->count, 1);
  51. spin_lock_init(&lock->wait_lock);
  52. INIT_LIST_HEAD(&lock->wait_list);
  53. mutex_clear_owner(lock);
  54. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  55. osq_lock_init(&lock->osq);
  56. #endif
  57. debug_mutex_init(lock, name, key);
  58. }
  59. EXPORT_SYMBOL(__mutex_init);
  60. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  61. /*
  62. * We split the mutex lock/unlock logic into separate fastpath and
  63. * slowpath functions, to reduce the register pressure on the fastpath.
  64. * We also put the fastpath first in the kernel image, to make sure the
  65. * branch is predicted by the CPU as default-untaken.
  66. */
  67. __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
  68. /**
  69. * mutex_lock - acquire the mutex
  70. * @lock: the mutex to be acquired
  71. *
  72. * Lock the mutex exclusively for this task. If the mutex is not
  73. * available right now, it will sleep until it can get it.
  74. *
  75. * The mutex must later on be released by the same task that
  76. * acquired it. Recursive locking is not allowed. The task
  77. * may not exit without first unlocking the mutex. Also, kernel
  78. * memory where the mutex resides mutex must not be freed with
  79. * the mutex still locked. The mutex must first be initialized
  80. * (or statically defined) before it can be locked. memset()-ing
  81. * the mutex to 0 is not allowed.
  82. *
  83. * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  84. * checks that will enforce the restrictions and will also do
  85. * deadlock debugging. )
  86. *
  87. * This function is similar to (but not equivalent to) down().
  88. */
  89. void __sched mutex_lock(struct mutex *lock)
  90. {
  91. might_sleep();
  92. /*
  93. * The locking fastpath is the 1->0 transition from
  94. * 'unlocked' into 'locked' state.
  95. */
  96. __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  97. mutex_set_owner(lock);
  98. }
  99. EXPORT_SYMBOL(mutex_lock);
  100. #endif
  101. static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
  102. struct ww_acquire_ctx *ww_ctx)
  103. {
  104. #ifdef CONFIG_DEBUG_MUTEXES
  105. /*
  106. * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
  107. * but released with a normal mutex_unlock in this call.
  108. *
  109. * This should never happen, always use ww_mutex_unlock.
  110. */
  111. DEBUG_LOCKS_WARN_ON(ww->ctx);
  112. /*
  113. * Not quite done after calling ww_acquire_done() ?
  114. */
  115. DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
  116. if (ww_ctx->contending_lock) {
  117. /*
  118. * After -EDEADLK you tried to
  119. * acquire a different ww_mutex? Bad!
  120. */
  121. DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
  122. /*
  123. * You called ww_mutex_lock after receiving -EDEADLK,
  124. * but 'forgot' to unlock everything else first?
  125. */
  126. DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
  127. ww_ctx->contending_lock = NULL;
  128. }
  129. /*
  130. * Naughty, using a different class will lead to undefined behavior!
  131. */
  132. DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
  133. #endif
  134. ww_ctx->acquired++;
  135. }
  136. /*
  137. * after acquiring lock with fastpath or when we lost out in contested
  138. * slowpath, set ctx and wake up any waiters so they can recheck.
  139. *
  140. * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
  141. * as the fastpath and opportunistic spinning are disabled in that case.
  142. */
  143. static __always_inline void
  144. ww_mutex_set_context_fastpath(struct ww_mutex *lock,
  145. struct ww_acquire_ctx *ctx)
  146. {
  147. unsigned long flags;
  148. struct mutex_waiter *cur;
  149. ww_mutex_lock_acquired(lock, ctx);
  150. lock->ctx = ctx;
  151. /*
  152. * The lock->ctx update should be visible on all cores before
  153. * the atomic read is done, otherwise contended waiters might be
  154. * missed. The contended waiters will either see ww_ctx == NULL
  155. * and keep spinning, or it will acquire wait_lock, add itself
  156. * to waiter list and sleep.
  157. */
  158. smp_mb(); /* ^^^ */
  159. /*
  160. * Check if lock is contended, if not there is nobody to wake up
  161. */
  162. if (likely(atomic_read(&lock->base.count) == 0))
  163. return;
  164. /*
  165. * Uh oh, we raced in fastpath, wake up everyone in this case,
  166. * so they can see the new lock->ctx.
  167. */
  168. spin_lock_mutex(&lock->base.wait_lock, flags);
  169. list_for_each_entry(cur, &lock->base.wait_list, list) {
  170. debug_mutex_wake_waiter(&lock->base, cur);
  171. wake_up_process(cur->task);
  172. }
  173. spin_unlock_mutex(&lock->base.wait_lock, flags);
  174. }
  175. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  176. /*
  177. * In order to avoid a stampede of mutex spinners from acquiring the mutex
  178. * more or less simultaneously, the spinners need to acquire a MCS lock
  179. * first before spinning on the owner field.
  180. *
  181. */
  182. /*
  183. * Mutex spinning code migrated from kernel/sched/core.c
  184. */
  185. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  186. {
  187. if (lock->owner != owner)
  188. return false;
  189. /*
  190. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  191. * lock->owner still matches owner, if that fails, owner might
  192. * point to free()d memory, if it still matches, the rcu_read_lock()
  193. * ensures the memory stays valid.
  194. */
  195. barrier();
  196. return owner->on_cpu;
  197. }
  198. /*
  199. * Look out! "owner" is an entirely speculative pointer
  200. * access and not reliable.
  201. */
  202. static noinline
  203. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  204. {
  205. rcu_read_lock();
  206. while (owner_running(lock, owner)) {
  207. if (need_resched())
  208. break;
  209. cpu_relax_lowlatency();
  210. }
  211. rcu_read_unlock();
  212. /*
  213. * We break out the loop above on need_resched() and when the
  214. * owner changed, which is a sign for heavy contention. Return
  215. * success only when lock->owner is NULL.
  216. */
  217. return lock->owner == NULL;
  218. }
  219. /*
  220. * Initial check for entering the mutex spinning loop
  221. */
  222. static inline int mutex_can_spin_on_owner(struct mutex *lock)
  223. {
  224. struct task_struct *owner;
  225. int retval = 1;
  226. if (need_resched())
  227. return 0;
  228. rcu_read_lock();
  229. owner = ACCESS_ONCE(lock->owner);
  230. if (owner)
  231. retval = owner->on_cpu;
  232. rcu_read_unlock();
  233. /*
  234. * if lock->owner is not set, the mutex owner may have just acquired
  235. * it and not set the owner yet or the mutex has been released.
  236. */
  237. return retval;
  238. }
  239. /*
  240. * Atomically try to take the lock when it is available
  241. */
  242. static inline bool mutex_try_to_acquire(struct mutex *lock)
  243. {
  244. return !mutex_is_locked(lock) &&
  245. (atomic_cmpxchg(&lock->count, 1, 0) == 1);
  246. }
  247. /*
  248. * Optimistic spinning.
  249. *
  250. * We try to spin for acquisition when we find that the lock owner
  251. * is currently running on a (different) CPU and while we don't
  252. * need to reschedule. The rationale is that if the lock owner is
  253. * running, it is likely to release the lock soon.
  254. *
  255. * Since this needs the lock owner, and this mutex implementation
  256. * doesn't track the owner atomically in the lock field, we need to
  257. * track it non-atomically.
  258. *
  259. * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
  260. * to serialize everything.
  261. *
  262. * The mutex spinners are queued up using MCS lock so that only one
  263. * spinner can compete for the mutex. However, if mutex spinning isn't
  264. * going to happen, there is no point in going through the lock/unlock
  265. * overhead.
  266. *
  267. * Returns true when the lock was taken, otherwise false, indicating
  268. * that we need to jump to the slowpath and sleep.
  269. */
  270. static bool mutex_optimistic_spin(struct mutex *lock,
  271. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  272. {
  273. struct task_struct *task = current;
  274. if (!mutex_can_spin_on_owner(lock))
  275. goto done;
  276. if (!osq_lock(&lock->osq))
  277. goto done;
  278. while (true) {
  279. struct task_struct *owner;
  280. if (use_ww_ctx && ww_ctx->acquired > 0) {
  281. struct ww_mutex *ww;
  282. ww = container_of(lock, struct ww_mutex, base);
  283. /*
  284. * If ww->ctx is set the contents are undefined, only
  285. * by acquiring wait_lock there is a guarantee that
  286. * they are not invalid when reading.
  287. *
  288. * As such, when deadlock detection needs to be
  289. * performed the optimistic spinning cannot be done.
  290. */
  291. if (ACCESS_ONCE(ww->ctx))
  292. break;
  293. }
  294. /*
  295. * If there's an owner, wait for it to either
  296. * release the lock or go to sleep.
  297. */
  298. owner = ACCESS_ONCE(lock->owner);
  299. if (owner && !mutex_spin_on_owner(lock, owner))
  300. break;
  301. /* Try to acquire the mutex if it is unlocked. */
  302. if (mutex_try_to_acquire(lock)) {
  303. lock_acquired(&lock->dep_map, ip);
  304. if (use_ww_ctx) {
  305. struct ww_mutex *ww;
  306. ww = container_of(lock, struct ww_mutex, base);
  307. ww_mutex_set_context_fastpath(ww, ww_ctx);
  308. }
  309. mutex_set_owner(lock);
  310. osq_unlock(&lock->osq);
  311. return true;
  312. }
  313. /*
  314. * When there's no owner, we might have preempted between the
  315. * owner acquiring the lock and setting the owner field. If
  316. * we're an RT task that will live-lock because we won't let
  317. * the owner complete.
  318. */
  319. if (!owner && (need_resched() || rt_task(task)))
  320. break;
  321. /*
  322. * The cpu_relax() call is a compiler barrier which forces
  323. * everything in this loop to be re-loaded. We don't need
  324. * memory barriers as we'll eventually observe the right
  325. * values at the cost of a few extra spins.
  326. */
  327. cpu_relax_lowlatency();
  328. }
  329. osq_unlock(&lock->osq);
  330. done:
  331. /*
  332. * If we fell out of the spin path because of need_resched(),
  333. * reschedule now, before we try-lock the mutex. This avoids getting
  334. * scheduled out right after we obtained the mutex.
  335. */
  336. if (need_resched())
  337. schedule_preempt_disabled();
  338. return false;
  339. }
  340. #else
  341. static bool mutex_optimistic_spin(struct mutex *lock,
  342. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  343. {
  344. return false;
  345. }
  346. #endif
  347. __visible __used noinline
  348. void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  349. /**
  350. * mutex_unlock - release the mutex
  351. * @lock: the mutex to be released
  352. *
  353. * Unlock a mutex that has been locked by this task previously.
  354. *
  355. * This function must not be used in interrupt context. Unlocking
  356. * of a not locked mutex is not allowed.
  357. *
  358. * This function is similar to (but not equivalent to) up().
  359. */
  360. void __sched mutex_unlock(struct mutex *lock)
  361. {
  362. /*
  363. * The unlocking fastpath is the 0->1 transition from 'locked'
  364. * into 'unlocked' state:
  365. */
  366. #ifndef CONFIG_DEBUG_MUTEXES
  367. /*
  368. * When debugging is enabled we must not clear the owner before time,
  369. * the slow path will always be taken, and that clears the owner field
  370. * after verifying that it was indeed current.
  371. */
  372. mutex_clear_owner(lock);
  373. #endif
  374. __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
  375. }
  376. EXPORT_SYMBOL(mutex_unlock);
  377. /**
  378. * ww_mutex_unlock - release the w/w mutex
  379. * @lock: the mutex to be released
  380. *
  381. * Unlock a mutex that has been locked by this task previously with any of the
  382. * ww_mutex_lock* functions (with or without an acquire context). It is
  383. * forbidden to release the locks after releasing the acquire context.
  384. *
  385. * This function must not be used in interrupt context. Unlocking
  386. * of a unlocked mutex is not allowed.
  387. */
  388. void __sched ww_mutex_unlock(struct ww_mutex *lock)
  389. {
  390. /*
  391. * The unlocking fastpath is the 0->1 transition from 'locked'
  392. * into 'unlocked' state:
  393. */
  394. if (lock->ctx) {
  395. #ifdef CONFIG_DEBUG_MUTEXES
  396. DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
  397. #endif
  398. if (lock->ctx->acquired > 0)
  399. lock->ctx->acquired--;
  400. lock->ctx = NULL;
  401. }
  402. #ifndef CONFIG_DEBUG_MUTEXES
  403. /*
  404. * When debugging is enabled we must not clear the owner before time,
  405. * the slow path will always be taken, and that clears the owner field
  406. * after verifying that it was indeed current.
  407. */
  408. mutex_clear_owner(&lock->base);
  409. #endif
  410. __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
  411. }
  412. EXPORT_SYMBOL(ww_mutex_unlock);
  413. static inline int __sched
  414. __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
  415. {
  416. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  417. struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
  418. if (!hold_ctx)
  419. return 0;
  420. if (unlikely(ctx == hold_ctx))
  421. return -EALREADY;
  422. if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
  423. (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
  424. #ifdef CONFIG_DEBUG_MUTEXES
  425. DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
  426. ctx->contending_lock = ww;
  427. #endif
  428. return -EDEADLK;
  429. }
  430. return 0;
  431. }
  432. /*
  433. * Lock a mutex (possibly interruptible), slowpath:
  434. */
  435. static __always_inline int __sched
  436. __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
  437. struct lockdep_map *nest_lock, unsigned long ip,
  438. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  439. {
  440. struct task_struct *task = current;
  441. struct mutex_waiter waiter;
  442. unsigned long flags;
  443. int ret;
  444. preempt_disable();
  445. mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
  446. if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
  447. /* got the lock, yay! */
  448. preempt_enable();
  449. return 0;
  450. }
  451. spin_lock_mutex(&lock->wait_lock, flags);
  452. /*
  453. * Once more, try to acquire the lock. Only try-lock the mutex if
  454. * it is unlocked to reduce unnecessary xchg() operations.
  455. */
  456. if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
  457. goto skip_wait;
  458. debug_mutex_lock_common(lock, &waiter);
  459. debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
  460. /* add waiting tasks to the end of the waitqueue (FIFO): */
  461. list_add_tail(&waiter.list, &lock->wait_list);
  462. waiter.task = task;
  463. lock_contended(&lock->dep_map, ip);
  464. for (;;) {
  465. /*
  466. * Lets try to take the lock again - this is needed even if
  467. * we get here for the first time (shortly after failing to
  468. * acquire the lock), to make sure that we get a wakeup once
  469. * it's unlocked. Later on, if we sleep, this is the
  470. * operation that gives us the lock. We xchg it to -1, so
  471. * that when we release the lock, we properly wake up the
  472. * other waiters. We only attempt the xchg if the count is
  473. * non-negative in order to avoid unnecessary xchg operations:
  474. */
  475. if (atomic_read(&lock->count) >= 0 &&
  476. (atomic_xchg(&lock->count, -1) == 1))
  477. break;
  478. /*
  479. * got a signal? (This code gets eliminated in the
  480. * TASK_UNINTERRUPTIBLE case.)
  481. */
  482. if (unlikely(signal_pending_state(state, task))) {
  483. ret = -EINTR;
  484. goto err;
  485. }
  486. if (use_ww_ctx && ww_ctx->acquired > 0) {
  487. ret = __mutex_lock_check_stamp(lock, ww_ctx);
  488. if (ret)
  489. goto err;
  490. }
  491. __set_task_state(task, state);
  492. /* didn't get the lock, go to sleep: */
  493. spin_unlock_mutex(&lock->wait_lock, flags);
  494. schedule_preempt_disabled();
  495. spin_lock_mutex(&lock->wait_lock, flags);
  496. }
  497. mutex_remove_waiter(lock, &waiter, current_thread_info());
  498. /* set it to 0 if there are no waiters left: */
  499. if (likely(list_empty(&lock->wait_list)))
  500. atomic_set(&lock->count, 0);
  501. debug_mutex_free_waiter(&waiter);
  502. skip_wait:
  503. /* got the lock - cleanup and rejoice! */
  504. lock_acquired(&lock->dep_map, ip);
  505. mutex_set_owner(lock);
  506. if (use_ww_ctx) {
  507. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  508. struct mutex_waiter *cur;
  509. /*
  510. * This branch gets optimized out for the common case,
  511. * and is only important for ww_mutex_lock.
  512. */
  513. ww_mutex_lock_acquired(ww, ww_ctx);
  514. ww->ctx = ww_ctx;
  515. /*
  516. * Give any possible sleeping processes the chance to wake up,
  517. * so they can recheck if they have to back off.
  518. */
  519. list_for_each_entry(cur, &lock->wait_list, list) {
  520. debug_mutex_wake_waiter(lock, cur);
  521. wake_up_process(cur->task);
  522. }
  523. }
  524. spin_unlock_mutex(&lock->wait_lock, flags);
  525. preempt_enable();
  526. return 0;
  527. err:
  528. mutex_remove_waiter(lock, &waiter, task_thread_info(task));
  529. spin_unlock_mutex(&lock->wait_lock, flags);
  530. debug_mutex_free_waiter(&waiter);
  531. mutex_release(&lock->dep_map, 1, ip);
  532. preempt_enable();
  533. return ret;
  534. }
  535. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  536. void __sched
  537. mutex_lock_nested(struct mutex *lock, unsigned int subclass)
  538. {
  539. might_sleep();
  540. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  541. subclass, NULL, _RET_IP_, NULL, 0);
  542. }
  543. EXPORT_SYMBOL_GPL(mutex_lock_nested);
  544. void __sched
  545. _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
  546. {
  547. might_sleep();
  548. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  549. 0, nest, _RET_IP_, NULL, 0);
  550. }
  551. EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
  552. int __sched
  553. mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
  554. {
  555. might_sleep();
  556. return __mutex_lock_common(lock, TASK_KILLABLE,
  557. subclass, NULL, _RET_IP_, NULL, 0);
  558. }
  559. EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
  560. int __sched
  561. mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
  562. {
  563. might_sleep();
  564. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
  565. subclass, NULL, _RET_IP_, NULL, 0);
  566. }
  567. EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
  568. static inline int
  569. ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  570. {
  571. #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
  572. unsigned tmp;
  573. if (ctx->deadlock_inject_countdown-- == 0) {
  574. tmp = ctx->deadlock_inject_interval;
  575. if (tmp > UINT_MAX/4)
  576. tmp = UINT_MAX;
  577. else
  578. tmp = tmp*2 + tmp + tmp/2;
  579. ctx->deadlock_inject_interval = tmp;
  580. ctx->deadlock_inject_countdown = tmp;
  581. ctx->contending_lock = lock;
  582. ww_mutex_unlock(lock);
  583. return -EDEADLK;
  584. }
  585. #endif
  586. return 0;
  587. }
  588. int __sched
  589. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  590. {
  591. int ret;
  592. might_sleep();
  593. ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
  594. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  595. if (!ret && ctx->acquired > 1)
  596. return ww_mutex_deadlock_injection(lock, ctx);
  597. return ret;
  598. }
  599. EXPORT_SYMBOL_GPL(__ww_mutex_lock);
  600. int __sched
  601. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  602. {
  603. int ret;
  604. might_sleep();
  605. ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
  606. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  607. if (!ret && ctx->acquired > 1)
  608. return ww_mutex_deadlock_injection(lock, ctx);
  609. return ret;
  610. }
  611. EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
  612. #endif
  613. /*
  614. * Release the lock, slowpath:
  615. */
  616. static inline void
  617. __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
  618. {
  619. unsigned long flags;
  620. /*
  621. * As a performance measurement, release the lock before doing other
  622. * wakeup related duties to follow. This allows other tasks to acquire
  623. * the lock sooner, while still handling cleanups in past unlock calls.
  624. * This can be done as we do not enforce strict equivalence between the
  625. * mutex counter and wait_list.
  626. *
  627. *
  628. * Some architectures leave the lock unlocked in the fastpath failure
  629. * case, others need to leave it locked. In the later case we have to
  630. * unlock it here - as the lock counter is currently 0 or negative.
  631. */
  632. if (__mutex_slowpath_needs_to_unlock())
  633. atomic_set(&lock->count, 1);
  634. spin_lock_mutex(&lock->wait_lock, flags);
  635. mutex_release(&lock->dep_map, nested, _RET_IP_);
  636. debug_mutex_unlock(lock);
  637. if (!list_empty(&lock->wait_list)) {
  638. /* get the first entry from the wait-list: */
  639. struct mutex_waiter *waiter =
  640. list_entry(lock->wait_list.next,
  641. struct mutex_waiter, list);
  642. debug_mutex_wake_waiter(lock, waiter);
  643. wake_up_process(waiter->task);
  644. }
  645. spin_unlock_mutex(&lock->wait_lock, flags);
  646. }
  647. /*
  648. * Release the lock, slowpath:
  649. */
  650. __visible void
  651. __mutex_unlock_slowpath(atomic_t *lock_count)
  652. {
  653. struct mutex *lock = container_of(lock_count, struct mutex, count);
  654. __mutex_unlock_common_slowpath(lock, 1);
  655. }
  656. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  657. /*
  658. * Here come the less common (and hence less performance-critical) APIs:
  659. * mutex_lock_interruptible() and mutex_trylock().
  660. */
  661. static noinline int __sched
  662. __mutex_lock_killable_slowpath(struct mutex *lock);
  663. static noinline int __sched
  664. __mutex_lock_interruptible_slowpath(struct mutex *lock);
  665. /**
  666. * mutex_lock_interruptible - acquire the mutex, interruptible
  667. * @lock: the mutex to be acquired
  668. *
  669. * Lock the mutex like mutex_lock(), and return 0 if the mutex has
  670. * been acquired or sleep until the mutex becomes available. If a
  671. * signal arrives while waiting for the lock then this function
  672. * returns -EINTR.
  673. *
  674. * This function is similar to (but not equivalent to) down_interruptible().
  675. */
  676. int __sched mutex_lock_interruptible(struct mutex *lock)
  677. {
  678. int ret;
  679. might_sleep();
  680. ret = __mutex_fastpath_lock_retval(&lock->count);
  681. if (likely(!ret)) {
  682. mutex_set_owner(lock);
  683. return 0;
  684. } else
  685. return __mutex_lock_interruptible_slowpath(lock);
  686. }
  687. EXPORT_SYMBOL(mutex_lock_interruptible);
  688. int __sched mutex_lock_killable(struct mutex *lock)
  689. {
  690. int ret;
  691. might_sleep();
  692. ret = __mutex_fastpath_lock_retval(&lock->count);
  693. if (likely(!ret)) {
  694. mutex_set_owner(lock);
  695. return 0;
  696. } else
  697. return __mutex_lock_killable_slowpath(lock);
  698. }
  699. EXPORT_SYMBOL(mutex_lock_killable);
  700. __visible void __sched
  701. __mutex_lock_slowpath(atomic_t *lock_count)
  702. {
  703. struct mutex *lock = container_of(lock_count, struct mutex, count);
  704. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
  705. NULL, _RET_IP_, NULL, 0);
  706. }
  707. static noinline int __sched
  708. __mutex_lock_killable_slowpath(struct mutex *lock)
  709. {
  710. return __mutex_lock_common(lock, TASK_KILLABLE, 0,
  711. NULL, _RET_IP_, NULL, 0);
  712. }
  713. static noinline int __sched
  714. __mutex_lock_interruptible_slowpath(struct mutex *lock)
  715. {
  716. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
  717. NULL, _RET_IP_, NULL, 0);
  718. }
  719. static noinline int __sched
  720. __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  721. {
  722. return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
  723. NULL, _RET_IP_, ctx, 1);
  724. }
  725. static noinline int __sched
  726. __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
  727. struct ww_acquire_ctx *ctx)
  728. {
  729. return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
  730. NULL, _RET_IP_, ctx, 1);
  731. }
  732. #endif
  733. /*
  734. * Spinlock based trylock, we take the spinlock and check whether we
  735. * can get the lock:
  736. */
  737. static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
  738. {
  739. struct mutex *lock = container_of(lock_count, struct mutex, count);
  740. unsigned long flags;
  741. int prev;
  742. /* No need to trylock if the mutex is locked. */
  743. if (mutex_is_locked(lock))
  744. return 0;
  745. spin_lock_mutex(&lock->wait_lock, flags);
  746. prev = atomic_xchg(&lock->count, -1);
  747. if (likely(prev == 1)) {
  748. mutex_set_owner(lock);
  749. mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
  750. }
  751. /* Set it back to 0 if there are no waiters: */
  752. if (likely(list_empty(&lock->wait_list)))
  753. atomic_set(&lock->count, 0);
  754. spin_unlock_mutex(&lock->wait_lock, flags);
  755. return prev == 1;
  756. }
  757. /**
  758. * mutex_trylock - try to acquire the mutex, without waiting
  759. * @lock: the mutex to be acquired
  760. *
  761. * Try to acquire the mutex atomically. Returns 1 if the mutex
  762. * has been acquired successfully, and 0 on contention.
  763. *
  764. * NOTE: this function follows the spin_trylock() convention, so
  765. * it is negated from the down_trylock() return values! Be careful
  766. * about this when converting semaphore users to mutexes.
  767. *
  768. * This function must not be used in interrupt context. The
  769. * mutex must be released by the same task that acquired it.
  770. */
  771. int __sched mutex_trylock(struct mutex *lock)
  772. {
  773. int ret;
  774. ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
  775. if (ret)
  776. mutex_set_owner(lock);
  777. return ret;
  778. }
  779. EXPORT_SYMBOL(mutex_trylock);
  780. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  781. int __sched
  782. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  783. {
  784. int ret;
  785. might_sleep();
  786. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  787. if (likely(!ret)) {
  788. ww_mutex_set_context_fastpath(lock, ctx);
  789. mutex_set_owner(&lock->base);
  790. } else
  791. ret = __ww_mutex_lock_slowpath(lock, ctx);
  792. return ret;
  793. }
  794. EXPORT_SYMBOL(__ww_mutex_lock);
  795. int __sched
  796. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  797. {
  798. int ret;
  799. might_sleep();
  800. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  801. if (likely(!ret)) {
  802. ww_mutex_set_context_fastpath(lock, ctx);
  803. mutex_set_owner(&lock->base);
  804. } else
  805. ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
  806. return ret;
  807. }
  808. EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
  809. #endif
  810. /**
  811. * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
  812. * @cnt: the atomic which we are to dec
  813. * @lock: the mutex to return holding if we dec to 0
  814. *
  815. * return true and hold lock if we dec to 0, return false otherwise
  816. */
  817. int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
  818. {
  819. /* dec if we can't possibly hit 0 */
  820. if (atomic_add_unless(cnt, -1, 1))
  821. return 0;
  822. /* we might hit 0, so take the lock */
  823. mutex_lock(lock);
  824. if (!atomic_dec_and_test(cnt)) {
  825. /* when we actually did the dec, we didn't hit 0 */
  826. mutex_unlock(lock);
  827. return 0;
  828. }
  829. /* we hit 0, and we hold the lock */
  830. return 1;
  831. }
  832. EXPORT_SYMBOL(atomic_dec_and_mutex_lock);