futex.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/hugetlb.h>
  65. #include <linux/freezer.h>
  66. #include <linux/bootmem.h>
  67. #include <asm/futex.h>
  68. #include "locking/rtmutex_common.h"
  69. /*
  70. * READ this before attempting to hack on futexes!
  71. *
  72. * Basic futex operation and ordering guarantees
  73. * =============================================
  74. *
  75. * The waiter reads the futex value in user space and calls
  76. * futex_wait(). This function computes the hash bucket and acquires
  77. * the hash bucket lock. After that it reads the futex user space value
  78. * again and verifies that the data has not changed. If it has not changed
  79. * it enqueues itself into the hash bucket, releases the hash bucket lock
  80. * and schedules.
  81. *
  82. * The waker side modifies the user space value of the futex and calls
  83. * futex_wake(). This function computes the hash bucket and acquires the
  84. * hash bucket lock. Then it looks for waiters on that futex in the hash
  85. * bucket and wakes them.
  86. *
  87. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  88. * the hb spinlock can be avoided and simply return. In order for this
  89. * optimization to work, ordering guarantees must exist so that the waiter
  90. * being added to the list is acknowledged when the list is concurrently being
  91. * checked by the waker, avoiding scenarios like the following:
  92. *
  93. * CPU 0 CPU 1
  94. * val = *futex;
  95. * sys_futex(WAIT, futex, val);
  96. * futex_wait(futex, val);
  97. * uval = *futex;
  98. * *futex = newval;
  99. * sys_futex(WAKE, futex);
  100. * futex_wake(futex);
  101. * if (queue_empty())
  102. * return;
  103. * if (uval == val)
  104. * lock(hash_bucket(futex));
  105. * queue();
  106. * unlock(hash_bucket(futex));
  107. * schedule();
  108. *
  109. * This would cause the waiter on CPU 0 to wait forever because it
  110. * missed the transition of the user space value from val to newval
  111. * and the waker did not find the waiter in the hash bucket queue.
  112. *
  113. * The correct serialization ensures that a waiter either observes
  114. * the changed user space value before blocking or is woken by a
  115. * concurrent waker:
  116. *
  117. * CPU 0 CPU 1
  118. * val = *futex;
  119. * sys_futex(WAIT, futex, val);
  120. * futex_wait(futex, val);
  121. *
  122. * waiters++; (a)
  123. * mb(); (A) <-- paired with -.
  124. * |
  125. * lock(hash_bucket(futex)); |
  126. * |
  127. * uval = *futex; |
  128. * | *futex = newval;
  129. * | sys_futex(WAKE, futex);
  130. * | futex_wake(futex);
  131. * |
  132. * `-------> mb(); (B)
  133. * if (uval == val)
  134. * queue();
  135. * unlock(hash_bucket(futex));
  136. * schedule(); if (waiters)
  137. * lock(hash_bucket(futex));
  138. * else wake_waiters(futex);
  139. * waiters--; (b) unlock(hash_bucket(futex));
  140. *
  141. * Where (A) orders the waiters increment and the futex value read through
  142. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  143. * to futex and the waiters read -- this is done by the barriers in
  144. * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
  145. * futex type.
  146. *
  147. * This yields the following case (where X:=waiters, Y:=futex):
  148. *
  149. * X = Y = 0
  150. *
  151. * w[X]=1 w[Y]=1
  152. * MB MB
  153. * r[Y]=y r[X]=x
  154. *
  155. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  156. * the guarantee that we cannot both miss the futex variable change and the
  157. * enqueue.
  158. *
  159. * Note that a new waiter is accounted for in (a) even when it is possible that
  160. * the wait call can return error, in which case we backtrack from it in (b).
  161. * Refer to the comment in queue_lock().
  162. *
  163. * Similarly, in order to account for waiters being requeued on another
  164. * address we always increment the waiters for the destination bucket before
  165. * acquiring the lock. It then decrements them again after releasing it -
  166. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  167. * will do the additional required waiter count housekeeping. This is done for
  168. * double_lock_hb() and double_unlock_hb(), respectively.
  169. */
  170. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  171. int __read_mostly futex_cmpxchg_enabled;
  172. #endif
  173. /*
  174. * Futex flags used to encode options to functions and preserve them across
  175. * restarts.
  176. */
  177. #define FLAGS_SHARED 0x01
  178. #define FLAGS_CLOCKRT 0x02
  179. #define FLAGS_HAS_TIMEOUT 0x04
  180. /*
  181. * Priority Inheritance state:
  182. */
  183. struct futex_pi_state {
  184. /*
  185. * list of 'owned' pi_state instances - these have to be
  186. * cleaned up in do_exit() if the task exits prematurely:
  187. */
  188. struct list_head list;
  189. /*
  190. * The PI object:
  191. */
  192. struct rt_mutex pi_mutex;
  193. struct task_struct *owner;
  194. atomic_t refcount;
  195. union futex_key key;
  196. };
  197. /**
  198. * struct futex_q - The hashed futex queue entry, one per waiting task
  199. * @list: priority-sorted list of tasks waiting on this futex
  200. * @task: the task waiting on the futex
  201. * @lock_ptr: the hash bucket lock
  202. * @key: the key the futex is hashed on
  203. * @pi_state: optional priority inheritance state
  204. * @rt_waiter: rt_waiter storage for use with requeue_pi
  205. * @requeue_pi_key: the requeue_pi target futex key
  206. * @bitset: bitset for the optional bitmasked wakeup
  207. *
  208. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  209. * we can wake only the relevant ones (hashed queues may be shared).
  210. *
  211. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  212. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  213. * The order of wakeup is always to make the first condition true, then
  214. * the second.
  215. *
  216. * PI futexes are typically woken before they are removed from the hash list via
  217. * the rt_mutex code. See unqueue_me_pi().
  218. */
  219. struct futex_q {
  220. struct plist_node list;
  221. struct task_struct *task;
  222. spinlock_t *lock_ptr;
  223. union futex_key key;
  224. struct futex_pi_state *pi_state;
  225. struct rt_mutex_waiter *rt_waiter;
  226. union futex_key *requeue_pi_key;
  227. u32 bitset;
  228. };
  229. static const struct futex_q futex_q_init = {
  230. /* list gets initialized in queue_me()*/
  231. .key = FUTEX_KEY_INIT,
  232. .bitset = FUTEX_BITSET_MATCH_ANY
  233. };
  234. /*
  235. * Hash buckets are shared by all the futex_keys that hash to the same
  236. * location. Each key may have multiple futex_q structures, one for each task
  237. * waiting on a futex.
  238. */
  239. struct futex_hash_bucket {
  240. atomic_t waiters;
  241. spinlock_t lock;
  242. struct plist_head chain;
  243. } ____cacheline_aligned_in_smp;
  244. static unsigned long __read_mostly futex_hashsize;
  245. static struct futex_hash_bucket *futex_queues;
  246. static inline void futex_get_mm(union futex_key *key)
  247. {
  248. atomic_inc(&key->private.mm->mm_count);
  249. /*
  250. * Ensure futex_get_mm() implies a full barrier such that
  251. * get_futex_key() implies a full barrier. This is relied upon
  252. * as full barrier (B), see the ordering comment above.
  253. */
  254. smp_mb__after_atomic();
  255. }
  256. /*
  257. * Reflects a new waiter being added to the waitqueue.
  258. */
  259. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  260. {
  261. #ifdef CONFIG_SMP
  262. atomic_inc(&hb->waiters);
  263. /*
  264. * Full barrier (A), see the ordering comment above.
  265. */
  266. smp_mb__after_atomic();
  267. #endif
  268. }
  269. /*
  270. * Reflects a waiter being removed from the waitqueue by wakeup
  271. * paths.
  272. */
  273. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  274. {
  275. #ifdef CONFIG_SMP
  276. atomic_dec(&hb->waiters);
  277. #endif
  278. }
  279. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  280. {
  281. #ifdef CONFIG_SMP
  282. return atomic_read(&hb->waiters);
  283. #else
  284. return 1;
  285. #endif
  286. }
  287. /*
  288. * We hash on the keys returned from get_futex_key (see below).
  289. */
  290. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  291. {
  292. u32 hash = jhash2((u32*)&key->both.word,
  293. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  294. key->both.offset);
  295. return &futex_queues[hash & (futex_hashsize - 1)];
  296. }
  297. /*
  298. * Return 1 if two futex_keys are equal, 0 otherwise.
  299. */
  300. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  301. {
  302. return (key1 && key2
  303. && key1->both.word == key2->both.word
  304. && key1->both.ptr == key2->both.ptr
  305. && key1->both.offset == key2->both.offset);
  306. }
  307. /*
  308. * Take a reference to the resource addressed by a key.
  309. * Can be called while holding spinlocks.
  310. *
  311. */
  312. static void get_futex_key_refs(union futex_key *key)
  313. {
  314. if (!key->both.ptr)
  315. return;
  316. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  317. case FUT_OFF_INODE:
  318. ihold(key->shared.inode); /* implies MB (B) */
  319. break;
  320. case FUT_OFF_MMSHARED:
  321. futex_get_mm(key); /* implies MB (B) */
  322. break;
  323. default:
  324. smp_mb(); /* explicit MB (B) */
  325. }
  326. }
  327. /*
  328. * Drop a reference to the resource addressed by a key.
  329. * The hash bucket spinlock must not be held.
  330. */
  331. static void drop_futex_key_refs(union futex_key *key)
  332. {
  333. if (!key->both.ptr) {
  334. /* If we're here then we tried to put a key we failed to get */
  335. WARN_ON_ONCE(1);
  336. return;
  337. }
  338. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  339. case FUT_OFF_INODE:
  340. iput(key->shared.inode);
  341. break;
  342. case FUT_OFF_MMSHARED:
  343. mmdrop(key->private.mm);
  344. break;
  345. }
  346. }
  347. /**
  348. * get_futex_key() - Get parameters which are the keys for a futex
  349. * @uaddr: virtual address of the futex
  350. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  351. * @key: address where result is stored.
  352. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  353. * VERIFY_WRITE)
  354. *
  355. * Return: a negative error code or 0
  356. *
  357. * The key words are stored in *key on success.
  358. *
  359. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  360. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  361. * We can usually work out the index without swapping in the page.
  362. *
  363. * lock_page() might sleep, the caller should not hold a spinlock.
  364. */
  365. static int
  366. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  367. {
  368. unsigned long address = (unsigned long)uaddr;
  369. struct mm_struct *mm = current->mm;
  370. struct page *page, *page_head;
  371. int err, ro = 0;
  372. /*
  373. * The futex address must be "naturally" aligned.
  374. */
  375. key->both.offset = address % PAGE_SIZE;
  376. if (unlikely((address % sizeof(u32)) != 0))
  377. return -EINVAL;
  378. address -= key->both.offset;
  379. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  380. return -EFAULT;
  381. /*
  382. * PROCESS_PRIVATE futexes are fast.
  383. * As the mm cannot disappear under us and the 'key' only needs
  384. * virtual address, we dont even have to find the underlying vma.
  385. * Note : We do have to check 'uaddr' is a valid user address,
  386. * but access_ok() should be faster than find_vma()
  387. */
  388. if (!fshared) {
  389. key->private.mm = mm;
  390. key->private.address = address;
  391. get_futex_key_refs(key); /* implies MB (B) */
  392. return 0;
  393. }
  394. again:
  395. err = get_user_pages_fast(address, 1, 1, &page);
  396. /*
  397. * If write access is not required (eg. FUTEX_WAIT), try
  398. * and get read-only access.
  399. */
  400. if (err == -EFAULT && rw == VERIFY_READ) {
  401. err = get_user_pages_fast(address, 1, 0, &page);
  402. ro = 1;
  403. }
  404. if (err < 0)
  405. return err;
  406. else
  407. err = 0;
  408. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  409. page_head = page;
  410. if (unlikely(PageTail(page))) {
  411. put_page(page);
  412. /* serialize against __split_huge_page_splitting() */
  413. local_irq_disable();
  414. if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
  415. page_head = compound_head(page);
  416. /*
  417. * page_head is valid pointer but we must pin
  418. * it before taking the PG_lock and/or
  419. * PG_compound_lock. The moment we re-enable
  420. * irqs __split_huge_page_splitting() can
  421. * return and the head page can be freed from
  422. * under us. We can't take the PG_lock and/or
  423. * PG_compound_lock on a page that could be
  424. * freed from under us.
  425. */
  426. if (page != page_head) {
  427. get_page(page_head);
  428. put_page(page);
  429. }
  430. local_irq_enable();
  431. } else {
  432. local_irq_enable();
  433. goto again;
  434. }
  435. }
  436. #else
  437. page_head = compound_head(page);
  438. if (page != page_head) {
  439. get_page(page_head);
  440. put_page(page);
  441. }
  442. #endif
  443. lock_page(page_head);
  444. /*
  445. * If page_head->mapping is NULL, then it cannot be a PageAnon
  446. * page; but it might be the ZERO_PAGE or in the gate area or
  447. * in a special mapping (all cases which we are happy to fail);
  448. * or it may have been a good file page when get_user_pages_fast
  449. * found it, but truncated or holepunched or subjected to
  450. * invalidate_complete_page2 before we got the page lock (also
  451. * cases which we are happy to fail). And we hold a reference,
  452. * so refcount care in invalidate_complete_page's remove_mapping
  453. * prevents drop_caches from setting mapping to NULL beneath us.
  454. *
  455. * The case we do have to guard against is when memory pressure made
  456. * shmem_writepage move it from filecache to swapcache beneath us:
  457. * an unlikely race, but we do need to retry for page_head->mapping.
  458. */
  459. if (!page_head->mapping) {
  460. int shmem_swizzled = PageSwapCache(page_head);
  461. unlock_page(page_head);
  462. put_page(page_head);
  463. if (shmem_swizzled)
  464. goto again;
  465. return -EFAULT;
  466. }
  467. /*
  468. * Private mappings are handled in a simple way.
  469. *
  470. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  471. * it's a read-only handle, it's expected that futexes attach to
  472. * the object not the particular process.
  473. */
  474. if (PageAnon(page_head)) {
  475. /*
  476. * A RO anonymous page will never change and thus doesn't make
  477. * sense for futex operations.
  478. */
  479. if (ro) {
  480. err = -EFAULT;
  481. goto out;
  482. }
  483. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  484. key->private.mm = mm;
  485. key->private.address = address;
  486. } else {
  487. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  488. key->shared.inode = page_head->mapping->host;
  489. key->shared.pgoff = basepage_index(page);
  490. }
  491. get_futex_key_refs(key); /* implies MB (B) */
  492. out:
  493. unlock_page(page_head);
  494. put_page(page_head);
  495. return err;
  496. }
  497. static inline void put_futex_key(union futex_key *key)
  498. {
  499. drop_futex_key_refs(key);
  500. }
  501. /**
  502. * fault_in_user_writeable() - Fault in user address and verify RW access
  503. * @uaddr: pointer to faulting user space address
  504. *
  505. * Slow path to fixup the fault we just took in the atomic write
  506. * access to @uaddr.
  507. *
  508. * We have no generic implementation of a non-destructive write to the
  509. * user address. We know that we faulted in the atomic pagefault
  510. * disabled section so we can as well avoid the #PF overhead by
  511. * calling get_user_pages() right away.
  512. */
  513. static int fault_in_user_writeable(u32 __user *uaddr)
  514. {
  515. struct mm_struct *mm = current->mm;
  516. int ret;
  517. down_read(&mm->mmap_sem);
  518. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  519. FAULT_FLAG_WRITE);
  520. up_read(&mm->mmap_sem);
  521. return ret < 0 ? ret : 0;
  522. }
  523. /**
  524. * futex_top_waiter() - Return the highest priority waiter on a futex
  525. * @hb: the hash bucket the futex_q's reside in
  526. * @key: the futex key (to distinguish it from other futex futex_q's)
  527. *
  528. * Must be called with the hb lock held.
  529. */
  530. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  531. union futex_key *key)
  532. {
  533. struct futex_q *this;
  534. plist_for_each_entry(this, &hb->chain, list) {
  535. if (match_futex(&this->key, key))
  536. return this;
  537. }
  538. return NULL;
  539. }
  540. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  541. u32 uval, u32 newval)
  542. {
  543. int ret;
  544. pagefault_disable();
  545. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  546. pagefault_enable();
  547. return ret;
  548. }
  549. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  550. {
  551. int ret;
  552. pagefault_disable();
  553. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  554. pagefault_enable();
  555. return ret ? -EFAULT : 0;
  556. }
  557. /*
  558. * PI code:
  559. */
  560. static int refill_pi_state_cache(void)
  561. {
  562. struct futex_pi_state *pi_state;
  563. if (likely(current->pi_state_cache))
  564. return 0;
  565. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  566. if (!pi_state)
  567. return -ENOMEM;
  568. INIT_LIST_HEAD(&pi_state->list);
  569. /* pi_mutex gets initialized later */
  570. pi_state->owner = NULL;
  571. atomic_set(&pi_state->refcount, 1);
  572. pi_state->key = FUTEX_KEY_INIT;
  573. current->pi_state_cache = pi_state;
  574. return 0;
  575. }
  576. static struct futex_pi_state * alloc_pi_state(void)
  577. {
  578. struct futex_pi_state *pi_state = current->pi_state_cache;
  579. WARN_ON(!pi_state);
  580. current->pi_state_cache = NULL;
  581. return pi_state;
  582. }
  583. static void free_pi_state(struct futex_pi_state *pi_state)
  584. {
  585. if (!atomic_dec_and_test(&pi_state->refcount))
  586. return;
  587. /*
  588. * If pi_state->owner is NULL, the owner is most probably dying
  589. * and has cleaned up the pi_state already
  590. */
  591. if (pi_state->owner) {
  592. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  593. list_del_init(&pi_state->list);
  594. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  595. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  596. }
  597. if (current->pi_state_cache)
  598. kfree(pi_state);
  599. else {
  600. /*
  601. * pi_state->list is already empty.
  602. * clear pi_state->owner.
  603. * refcount is at 0 - put it back to 1.
  604. */
  605. pi_state->owner = NULL;
  606. atomic_set(&pi_state->refcount, 1);
  607. current->pi_state_cache = pi_state;
  608. }
  609. }
  610. /*
  611. * Look up the task based on what TID userspace gave us.
  612. * We dont trust it.
  613. */
  614. static struct task_struct * futex_find_get_task(pid_t pid)
  615. {
  616. struct task_struct *p;
  617. rcu_read_lock();
  618. p = find_task_by_vpid(pid);
  619. if (p)
  620. get_task_struct(p);
  621. rcu_read_unlock();
  622. return p;
  623. }
  624. /*
  625. * This task is holding PI mutexes at exit time => bad.
  626. * Kernel cleans up PI-state, but userspace is likely hosed.
  627. * (Robust-futex cleanup is separate and might save the day for userspace.)
  628. */
  629. void exit_pi_state_list(struct task_struct *curr)
  630. {
  631. struct list_head *next, *head = &curr->pi_state_list;
  632. struct futex_pi_state *pi_state;
  633. struct futex_hash_bucket *hb;
  634. union futex_key key = FUTEX_KEY_INIT;
  635. if (!futex_cmpxchg_enabled)
  636. return;
  637. /*
  638. * We are a ZOMBIE and nobody can enqueue itself on
  639. * pi_state_list anymore, but we have to be careful
  640. * versus waiters unqueueing themselves:
  641. */
  642. raw_spin_lock_irq(&curr->pi_lock);
  643. while (!list_empty(head)) {
  644. next = head->next;
  645. pi_state = list_entry(next, struct futex_pi_state, list);
  646. key = pi_state->key;
  647. hb = hash_futex(&key);
  648. raw_spin_unlock_irq(&curr->pi_lock);
  649. spin_lock(&hb->lock);
  650. raw_spin_lock_irq(&curr->pi_lock);
  651. /*
  652. * We dropped the pi-lock, so re-check whether this
  653. * task still owns the PI-state:
  654. */
  655. if (head->next != next) {
  656. spin_unlock(&hb->lock);
  657. continue;
  658. }
  659. WARN_ON(pi_state->owner != curr);
  660. WARN_ON(list_empty(&pi_state->list));
  661. list_del_init(&pi_state->list);
  662. pi_state->owner = NULL;
  663. raw_spin_unlock_irq(&curr->pi_lock);
  664. rt_mutex_unlock(&pi_state->pi_mutex);
  665. spin_unlock(&hb->lock);
  666. raw_spin_lock_irq(&curr->pi_lock);
  667. }
  668. raw_spin_unlock_irq(&curr->pi_lock);
  669. }
  670. /*
  671. * We need to check the following states:
  672. *
  673. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  674. *
  675. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  676. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  677. *
  678. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  679. *
  680. * [4] Found | Found | NULL | 0 | 1 | Valid
  681. * [5] Found | Found | NULL | >0 | 1 | Invalid
  682. *
  683. * [6] Found | Found | task | 0 | 1 | Valid
  684. *
  685. * [7] Found | Found | NULL | Any | 0 | Invalid
  686. *
  687. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  688. * [9] Found | Found | task | 0 | 0 | Invalid
  689. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  690. *
  691. * [1] Indicates that the kernel can acquire the futex atomically. We
  692. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  693. *
  694. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  695. * thread is found then it indicates that the owner TID has died.
  696. *
  697. * [3] Invalid. The waiter is queued on a non PI futex
  698. *
  699. * [4] Valid state after exit_robust_list(), which sets the user space
  700. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  701. *
  702. * [5] The user space value got manipulated between exit_robust_list()
  703. * and exit_pi_state_list()
  704. *
  705. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  706. * the pi_state but cannot access the user space value.
  707. *
  708. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  709. *
  710. * [8] Owner and user space value match
  711. *
  712. * [9] There is no transient state which sets the user space TID to 0
  713. * except exit_robust_list(), but this is indicated by the
  714. * FUTEX_OWNER_DIED bit. See [4]
  715. *
  716. * [10] There is no transient state which leaves owner and user space
  717. * TID out of sync.
  718. */
  719. /*
  720. * Validate that the existing waiter has a pi_state and sanity check
  721. * the pi_state against the user space value. If correct, attach to
  722. * it.
  723. */
  724. static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
  725. struct futex_pi_state **ps)
  726. {
  727. pid_t pid = uval & FUTEX_TID_MASK;
  728. /*
  729. * Userspace might have messed up non-PI and PI futexes [3]
  730. */
  731. if (unlikely(!pi_state))
  732. return -EINVAL;
  733. WARN_ON(!atomic_read(&pi_state->refcount));
  734. /*
  735. * Handle the owner died case:
  736. */
  737. if (uval & FUTEX_OWNER_DIED) {
  738. /*
  739. * exit_pi_state_list sets owner to NULL and wakes the
  740. * topmost waiter. The task which acquires the
  741. * pi_state->rt_mutex will fixup owner.
  742. */
  743. if (!pi_state->owner) {
  744. /*
  745. * No pi state owner, but the user space TID
  746. * is not 0. Inconsistent state. [5]
  747. */
  748. if (pid)
  749. return -EINVAL;
  750. /*
  751. * Take a ref on the state and return success. [4]
  752. */
  753. goto out_state;
  754. }
  755. /*
  756. * If TID is 0, then either the dying owner has not
  757. * yet executed exit_pi_state_list() or some waiter
  758. * acquired the rtmutex in the pi state, but did not
  759. * yet fixup the TID in user space.
  760. *
  761. * Take a ref on the state and return success. [6]
  762. */
  763. if (!pid)
  764. goto out_state;
  765. } else {
  766. /*
  767. * If the owner died bit is not set, then the pi_state
  768. * must have an owner. [7]
  769. */
  770. if (!pi_state->owner)
  771. return -EINVAL;
  772. }
  773. /*
  774. * Bail out if user space manipulated the futex value. If pi
  775. * state exists then the owner TID must be the same as the
  776. * user space TID. [9/10]
  777. */
  778. if (pid != task_pid_vnr(pi_state->owner))
  779. return -EINVAL;
  780. out_state:
  781. atomic_inc(&pi_state->refcount);
  782. *ps = pi_state;
  783. return 0;
  784. }
  785. /*
  786. * Lookup the task for the TID provided from user space and attach to
  787. * it after doing proper sanity checks.
  788. */
  789. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  790. struct futex_pi_state **ps)
  791. {
  792. pid_t pid = uval & FUTEX_TID_MASK;
  793. struct futex_pi_state *pi_state;
  794. struct task_struct *p;
  795. /*
  796. * We are the first waiter - try to look up the real owner and attach
  797. * the new pi_state to it, but bail out when TID = 0 [1]
  798. */
  799. if (!pid)
  800. return -ESRCH;
  801. p = futex_find_get_task(pid);
  802. if (!p)
  803. return -ESRCH;
  804. if (!p->mm) {
  805. put_task_struct(p);
  806. return -EPERM;
  807. }
  808. /*
  809. * We need to look at the task state flags to figure out,
  810. * whether the task is exiting. To protect against the do_exit
  811. * change of the task flags, we do this protected by
  812. * p->pi_lock:
  813. */
  814. raw_spin_lock_irq(&p->pi_lock);
  815. if (unlikely(p->flags & PF_EXITING)) {
  816. /*
  817. * The task is on the way out. When PF_EXITPIDONE is
  818. * set, we know that the task has finished the
  819. * cleanup:
  820. */
  821. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  822. raw_spin_unlock_irq(&p->pi_lock);
  823. put_task_struct(p);
  824. return ret;
  825. }
  826. /*
  827. * No existing pi state. First waiter. [2]
  828. */
  829. pi_state = alloc_pi_state();
  830. /*
  831. * Initialize the pi_mutex in locked state and make @p
  832. * the owner of it:
  833. */
  834. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  835. /* Store the key for possible exit cleanups: */
  836. pi_state->key = *key;
  837. WARN_ON(!list_empty(&pi_state->list));
  838. list_add(&pi_state->list, &p->pi_state_list);
  839. pi_state->owner = p;
  840. raw_spin_unlock_irq(&p->pi_lock);
  841. put_task_struct(p);
  842. *ps = pi_state;
  843. return 0;
  844. }
  845. static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  846. union futex_key *key, struct futex_pi_state **ps)
  847. {
  848. struct futex_q *match = futex_top_waiter(hb, key);
  849. /*
  850. * If there is a waiter on that futex, validate it and
  851. * attach to the pi_state when the validation succeeds.
  852. */
  853. if (match)
  854. return attach_to_pi_state(uval, match->pi_state, ps);
  855. /*
  856. * We are the first waiter - try to look up the owner based on
  857. * @uval and attach to it.
  858. */
  859. return attach_to_pi_owner(uval, key, ps);
  860. }
  861. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  862. {
  863. u32 uninitialized_var(curval);
  864. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  865. return -EFAULT;
  866. /*If user space value changed, let the caller retry */
  867. return curval != uval ? -EAGAIN : 0;
  868. }
  869. /**
  870. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  871. * @uaddr: the pi futex user address
  872. * @hb: the pi futex hash bucket
  873. * @key: the futex key associated with uaddr and hb
  874. * @ps: the pi_state pointer where we store the result of the
  875. * lookup
  876. * @task: the task to perform the atomic lock work for. This will
  877. * be "current" except in the case of requeue pi.
  878. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  879. *
  880. * Return:
  881. * 0 - ready to wait;
  882. * 1 - acquired the lock;
  883. * <0 - error
  884. *
  885. * The hb->lock and futex_key refs shall be held by the caller.
  886. */
  887. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  888. union futex_key *key,
  889. struct futex_pi_state **ps,
  890. struct task_struct *task, int set_waiters)
  891. {
  892. u32 uval, newval, vpid = task_pid_vnr(task);
  893. struct futex_q *match;
  894. int ret;
  895. /*
  896. * Read the user space value first so we can validate a few
  897. * things before proceeding further.
  898. */
  899. if (get_futex_value_locked(&uval, uaddr))
  900. return -EFAULT;
  901. /*
  902. * Detect deadlocks.
  903. */
  904. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  905. return -EDEADLK;
  906. /*
  907. * Lookup existing state first. If it exists, try to attach to
  908. * its pi_state.
  909. */
  910. match = futex_top_waiter(hb, key);
  911. if (match)
  912. return attach_to_pi_state(uval, match->pi_state, ps);
  913. /*
  914. * No waiter and user TID is 0. We are here because the
  915. * waiters or the owner died bit is set or called from
  916. * requeue_cmp_pi or for whatever reason something took the
  917. * syscall.
  918. */
  919. if (!(uval & FUTEX_TID_MASK)) {
  920. /*
  921. * We take over the futex. No other waiters and the user space
  922. * TID is 0. We preserve the owner died bit.
  923. */
  924. newval = uval & FUTEX_OWNER_DIED;
  925. newval |= vpid;
  926. /* The futex requeue_pi code can enforce the waiters bit */
  927. if (set_waiters)
  928. newval |= FUTEX_WAITERS;
  929. ret = lock_pi_update_atomic(uaddr, uval, newval);
  930. /* If the take over worked, return 1 */
  931. return ret < 0 ? ret : 1;
  932. }
  933. /*
  934. * First waiter. Set the waiters bit before attaching ourself to
  935. * the owner. If owner tries to unlock, it will be forced into
  936. * the kernel and blocked on hb->lock.
  937. */
  938. newval = uval | FUTEX_WAITERS;
  939. ret = lock_pi_update_atomic(uaddr, uval, newval);
  940. if (ret)
  941. return ret;
  942. /*
  943. * If the update of the user space value succeeded, we try to
  944. * attach to the owner. If that fails, no harm done, we only
  945. * set the FUTEX_WAITERS bit in the user space variable.
  946. */
  947. return attach_to_pi_owner(uval, key, ps);
  948. }
  949. /**
  950. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  951. * @q: The futex_q to unqueue
  952. *
  953. * The q->lock_ptr must not be NULL and must be held by the caller.
  954. */
  955. static void __unqueue_futex(struct futex_q *q)
  956. {
  957. struct futex_hash_bucket *hb;
  958. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  959. || WARN_ON(plist_node_empty(&q->list)))
  960. return;
  961. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  962. plist_del(&q->list, &hb->chain);
  963. hb_waiters_dec(hb);
  964. }
  965. /*
  966. * The hash bucket lock must be held when this is called.
  967. * Afterwards, the futex_q must not be accessed.
  968. */
  969. static void wake_futex(struct futex_q *q)
  970. {
  971. struct task_struct *p = q->task;
  972. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  973. return;
  974. /*
  975. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  976. * a non-futex wake up happens on another CPU then the task
  977. * might exit and p would dereference a non-existing task
  978. * struct. Prevent this by holding a reference on p across the
  979. * wake up.
  980. */
  981. get_task_struct(p);
  982. __unqueue_futex(q);
  983. /*
  984. * The waiting task can free the futex_q as soon as
  985. * q->lock_ptr = NULL is written, without taking any locks. A
  986. * memory barrier is required here to prevent the following
  987. * store to lock_ptr from getting ahead of the plist_del.
  988. */
  989. smp_wmb();
  990. q->lock_ptr = NULL;
  991. wake_up_state(p, TASK_NORMAL);
  992. put_task_struct(p);
  993. }
  994. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  995. {
  996. struct task_struct *new_owner;
  997. struct futex_pi_state *pi_state = this->pi_state;
  998. u32 uninitialized_var(curval), newval;
  999. int ret = 0;
  1000. if (!pi_state)
  1001. return -EINVAL;
  1002. /*
  1003. * If current does not own the pi_state then the futex is
  1004. * inconsistent and user space fiddled with the futex value.
  1005. */
  1006. if (pi_state->owner != current)
  1007. return -EINVAL;
  1008. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  1009. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1010. /*
  1011. * It is possible that the next waiter (the one that brought
  1012. * this owner to the kernel) timed out and is no longer
  1013. * waiting on the lock.
  1014. */
  1015. if (!new_owner)
  1016. new_owner = this->task;
  1017. /*
  1018. * We pass it to the next owner. The WAITERS bit is always
  1019. * kept enabled while there is PI state around. We cleanup the
  1020. * owner died bit, because we are the owner.
  1021. */
  1022. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1023. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1024. ret = -EFAULT;
  1025. else if (curval != uval)
  1026. ret = -EINVAL;
  1027. if (ret) {
  1028. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  1029. return ret;
  1030. }
  1031. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1032. WARN_ON(list_empty(&pi_state->list));
  1033. list_del_init(&pi_state->list);
  1034. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1035. raw_spin_lock_irq(&new_owner->pi_lock);
  1036. WARN_ON(!list_empty(&pi_state->list));
  1037. list_add(&pi_state->list, &new_owner->pi_state_list);
  1038. pi_state->owner = new_owner;
  1039. raw_spin_unlock_irq(&new_owner->pi_lock);
  1040. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  1041. rt_mutex_unlock(&pi_state->pi_mutex);
  1042. return 0;
  1043. }
  1044. /*
  1045. * Express the locking dependencies for lockdep:
  1046. */
  1047. static inline void
  1048. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1049. {
  1050. if (hb1 <= hb2) {
  1051. spin_lock(&hb1->lock);
  1052. if (hb1 < hb2)
  1053. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1054. } else { /* hb1 > hb2 */
  1055. spin_lock(&hb2->lock);
  1056. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1057. }
  1058. }
  1059. static inline void
  1060. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1061. {
  1062. spin_unlock(&hb1->lock);
  1063. if (hb1 != hb2)
  1064. spin_unlock(&hb2->lock);
  1065. }
  1066. /*
  1067. * Wake up waiters matching bitset queued on this futex (uaddr).
  1068. */
  1069. static int
  1070. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1071. {
  1072. struct futex_hash_bucket *hb;
  1073. struct futex_q *this, *next;
  1074. union futex_key key = FUTEX_KEY_INIT;
  1075. int ret;
  1076. if (!bitset)
  1077. return -EINVAL;
  1078. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1079. if (unlikely(ret != 0))
  1080. goto out;
  1081. hb = hash_futex(&key);
  1082. /* Make sure we really have tasks to wakeup */
  1083. if (!hb_waiters_pending(hb))
  1084. goto out_put_key;
  1085. spin_lock(&hb->lock);
  1086. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1087. if (match_futex (&this->key, &key)) {
  1088. if (this->pi_state || this->rt_waiter) {
  1089. ret = -EINVAL;
  1090. break;
  1091. }
  1092. /* Check if one of the bits is set in both bitsets */
  1093. if (!(this->bitset & bitset))
  1094. continue;
  1095. wake_futex(this);
  1096. if (++ret >= nr_wake)
  1097. break;
  1098. }
  1099. }
  1100. spin_unlock(&hb->lock);
  1101. out_put_key:
  1102. put_futex_key(&key);
  1103. out:
  1104. return ret;
  1105. }
  1106. /*
  1107. * Wake up all waiters hashed on the physical page that is mapped
  1108. * to this virtual address:
  1109. */
  1110. static int
  1111. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1112. int nr_wake, int nr_wake2, int op)
  1113. {
  1114. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1115. struct futex_hash_bucket *hb1, *hb2;
  1116. struct futex_q *this, *next;
  1117. int ret, op_ret;
  1118. retry:
  1119. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1120. if (unlikely(ret != 0))
  1121. goto out;
  1122. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1123. if (unlikely(ret != 0))
  1124. goto out_put_key1;
  1125. hb1 = hash_futex(&key1);
  1126. hb2 = hash_futex(&key2);
  1127. retry_private:
  1128. double_lock_hb(hb1, hb2);
  1129. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1130. if (unlikely(op_ret < 0)) {
  1131. double_unlock_hb(hb1, hb2);
  1132. #ifndef CONFIG_MMU
  1133. /*
  1134. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1135. * but we might get them from range checking
  1136. */
  1137. ret = op_ret;
  1138. goto out_put_keys;
  1139. #endif
  1140. if (unlikely(op_ret != -EFAULT)) {
  1141. ret = op_ret;
  1142. goto out_put_keys;
  1143. }
  1144. ret = fault_in_user_writeable(uaddr2);
  1145. if (ret)
  1146. goto out_put_keys;
  1147. if (!(flags & FLAGS_SHARED))
  1148. goto retry_private;
  1149. put_futex_key(&key2);
  1150. put_futex_key(&key1);
  1151. goto retry;
  1152. }
  1153. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1154. if (match_futex (&this->key, &key1)) {
  1155. if (this->pi_state || this->rt_waiter) {
  1156. ret = -EINVAL;
  1157. goto out_unlock;
  1158. }
  1159. wake_futex(this);
  1160. if (++ret >= nr_wake)
  1161. break;
  1162. }
  1163. }
  1164. if (op_ret > 0) {
  1165. op_ret = 0;
  1166. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1167. if (match_futex (&this->key, &key2)) {
  1168. if (this->pi_state || this->rt_waiter) {
  1169. ret = -EINVAL;
  1170. goto out_unlock;
  1171. }
  1172. wake_futex(this);
  1173. if (++op_ret >= nr_wake2)
  1174. break;
  1175. }
  1176. }
  1177. ret += op_ret;
  1178. }
  1179. out_unlock:
  1180. double_unlock_hb(hb1, hb2);
  1181. out_put_keys:
  1182. put_futex_key(&key2);
  1183. out_put_key1:
  1184. put_futex_key(&key1);
  1185. out:
  1186. return ret;
  1187. }
  1188. /**
  1189. * requeue_futex() - Requeue a futex_q from one hb to another
  1190. * @q: the futex_q to requeue
  1191. * @hb1: the source hash_bucket
  1192. * @hb2: the target hash_bucket
  1193. * @key2: the new key for the requeued futex_q
  1194. */
  1195. static inline
  1196. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1197. struct futex_hash_bucket *hb2, union futex_key *key2)
  1198. {
  1199. /*
  1200. * If key1 and key2 hash to the same bucket, no need to
  1201. * requeue.
  1202. */
  1203. if (likely(&hb1->chain != &hb2->chain)) {
  1204. plist_del(&q->list, &hb1->chain);
  1205. hb_waiters_dec(hb1);
  1206. plist_add(&q->list, &hb2->chain);
  1207. hb_waiters_inc(hb2);
  1208. q->lock_ptr = &hb2->lock;
  1209. }
  1210. get_futex_key_refs(key2);
  1211. q->key = *key2;
  1212. }
  1213. /**
  1214. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1215. * @q: the futex_q
  1216. * @key: the key of the requeue target futex
  1217. * @hb: the hash_bucket of the requeue target futex
  1218. *
  1219. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1220. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1221. * to the requeue target futex so the waiter can detect the wakeup on the right
  1222. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1223. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1224. * to protect access to the pi_state to fixup the owner later. Must be called
  1225. * with both q->lock_ptr and hb->lock held.
  1226. */
  1227. static inline
  1228. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1229. struct futex_hash_bucket *hb)
  1230. {
  1231. get_futex_key_refs(key);
  1232. q->key = *key;
  1233. __unqueue_futex(q);
  1234. WARN_ON(!q->rt_waiter);
  1235. q->rt_waiter = NULL;
  1236. q->lock_ptr = &hb->lock;
  1237. wake_up_state(q->task, TASK_NORMAL);
  1238. }
  1239. /**
  1240. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1241. * @pifutex: the user address of the to futex
  1242. * @hb1: the from futex hash bucket, must be locked by the caller
  1243. * @hb2: the to futex hash bucket, must be locked by the caller
  1244. * @key1: the from futex key
  1245. * @key2: the to futex key
  1246. * @ps: address to store the pi_state pointer
  1247. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1248. *
  1249. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1250. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1251. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1252. * hb1 and hb2 must be held by the caller.
  1253. *
  1254. * Return:
  1255. * 0 - failed to acquire the lock atomically;
  1256. * >0 - acquired the lock, return value is vpid of the top_waiter
  1257. * <0 - error
  1258. */
  1259. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1260. struct futex_hash_bucket *hb1,
  1261. struct futex_hash_bucket *hb2,
  1262. union futex_key *key1, union futex_key *key2,
  1263. struct futex_pi_state **ps, int set_waiters)
  1264. {
  1265. struct futex_q *top_waiter = NULL;
  1266. u32 curval;
  1267. int ret, vpid;
  1268. if (get_futex_value_locked(&curval, pifutex))
  1269. return -EFAULT;
  1270. /*
  1271. * Find the top_waiter and determine if there are additional waiters.
  1272. * If the caller intends to requeue more than 1 waiter to pifutex,
  1273. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1274. * as we have means to handle the possible fault. If not, don't set
  1275. * the bit unecessarily as it will force the subsequent unlock to enter
  1276. * the kernel.
  1277. */
  1278. top_waiter = futex_top_waiter(hb1, key1);
  1279. /* There are no waiters, nothing for us to do. */
  1280. if (!top_waiter)
  1281. return 0;
  1282. /* Ensure we requeue to the expected futex. */
  1283. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1284. return -EINVAL;
  1285. /*
  1286. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1287. * the contended case or if set_waiters is 1. The pi_state is returned
  1288. * in ps in contended cases.
  1289. */
  1290. vpid = task_pid_vnr(top_waiter->task);
  1291. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1292. set_waiters);
  1293. if (ret == 1) {
  1294. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1295. return vpid;
  1296. }
  1297. return ret;
  1298. }
  1299. /**
  1300. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1301. * @uaddr1: source futex user address
  1302. * @flags: futex flags (FLAGS_SHARED, etc.)
  1303. * @uaddr2: target futex user address
  1304. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1305. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1306. * @cmpval: @uaddr1 expected value (or %NULL)
  1307. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1308. * pi futex (pi to pi requeue is not supported)
  1309. *
  1310. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1311. * uaddr2 atomically on behalf of the top waiter.
  1312. *
  1313. * Return:
  1314. * >=0 - on success, the number of tasks requeued or woken;
  1315. * <0 - on error
  1316. */
  1317. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1318. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1319. u32 *cmpval, int requeue_pi)
  1320. {
  1321. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1322. int drop_count = 0, task_count = 0, ret;
  1323. struct futex_pi_state *pi_state = NULL;
  1324. struct futex_hash_bucket *hb1, *hb2;
  1325. struct futex_q *this, *next;
  1326. if (requeue_pi) {
  1327. /*
  1328. * Requeue PI only works on two distinct uaddrs. This
  1329. * check is only valid for private futexes. See below.
  1330. */
  1331. if (uaddr1 == uaddr2)
  1332. return -EINVAL;
  1333. /*
  1334. * requeue_pi requires a pi_state, try to allocate it now
  1335. * without any locks in case it fails.
  1336. */
  1337. if (refill_pi_state_cache())
  1338. return -ENOMEM;
  1339. /*
  1340. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1341. * + nr_requeue, since it acquires the rt_mutex prior to
  1342. * returning to userspace, so as to not leave the rt_mutex with
  1343. * waiters and no owner. However, second and third wake-ups
  1344. * cannot be predicted as they involve race conditions with the
  1345. * first wake and a fault while looking up the pi_state. Both
  1346. * pthread_cond_signal() and pthread_cond_broadcast() should
  1347. * use nr_wake=1.
  1348. */
  1349. if (nr_wake != 1)
  1350. return -EINVAL;
  1351. }
  1352. retry:
  1353. if (pi_state != NULL) {
  1354. /*
  1355. * We will have to lookup the pi_state again, so free this one
  1356. * to keep the accounting correct.
  1357. */
  1358. free_pi_state(pi_state);
  1359. pi_state = NULL;
  1360. }
  1361. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1362. if (unlikely(ret != 0))
  1363. goto out;
  1364. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1365. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1366. if (unlikely(ret != 0))
  1367. goto out_put_key1;
  1368. /*
  1369. * The check above which compares uaddrs is not sufficient for
  1370. * shared futexes. We need to compare the keys:
  1371. */
  1372. if (requeue_pi && match_futex(&key1, &key2)) {
  1373. ret = -EINVAL;
  1374. goto out_put_keys;
  1375. }
  1376. hb1 = hash_futex(&key1);
  1377. hb2 = hash_futex(&key2);
  1378. retry_private:
  1379. hb_waiters_inc(hb2);
  1380. double_lock_hb(hb1, hb2);
  1381. if (likely(cmpval != NULL)) {
  1382. u32 curval;
  1383. ret = get_futex_value_locked(&curval, uaddr1);
  1384. if (unlikely(ret)) {
  1385. double_unlock_hb(hb1, hb2);
  1386. hb_waiters_dec(hb2);
  1387. ret = get_user(curval, uaddr1);
  1388. if (ret)
  1389. goto out_put_keys;
  1390. if (!(flags & FLAGS_SHARED))
  1391. goto retry_private;
  1392. put_futex_key(&key2);
  1393. put_futex_key(&key1);
  1394. goto retry;
  1395. }
  1396. if (curval != *cmpval) {
  1397. ret = -EAGAIN;
  1398. goto out_unlock;
  1399. }
  1400. }
  1401. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1402. /*
  1403. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1404. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1405. * bit. We force this here where we are able to easily handle
  1406. * faults rather in the requeue loop below.
  1407. */
  1408. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1409. &key2, &pi_state, nr_requeue);
  1410. /*
  1411. * At this point the top_waiter has either taken uaddr2 or is
  1412. * waiting on it. If the former, then the pi_state will not
  1413. * exist yet, look it up one more time to ensure we have a
  1414. * reference to it. If the lock was taken, ret contains the
  1415. * vpid of the top waiter task.
  1416. */
  1417. if (ret > 0) {
  1418. WARN_ON(pi_state);
  1419. drop_count++;
  1420. task_count++;
  1421. /*
  1422. * If we acquired the lock, then the user
  1423. * space value of uaddr2 should be vpid. It
  1424. * cannot be changed by the top waiter as it
  1425. * is blocked on hb2 lock if it tries to do
  1426. * so. If something fiddled with it behind our
  1427. * back the pi state lookup might unearth
  1428. * it. So we rather use the known value than
  1429. * rereading and handing potential crap to
  1430. * lookup_pi_state.
  1431. */
  1432. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1433. }
  1434. switch (ret) {
  1435. case 0:
  1436. break;
  1437. case -EFAULT:
  1438. double_unlock_hb(hb1, hb2);
  1439. hb_waiters_dec(hb2);
  1440. put_futex_key(&key2);
  1441. put_futex_key(&key1);
  1442. ret = fault_in_user_writeable(uaddr2);
  1443. if (!ret)
  1444. goto retry;
  1445. goto out;
  1446. case -EAGAIN:
  1447. /*
  1448. * Two reasons for this:
  1449. * - Owner is exiting and we just wait for the
  1450. * exit to complete.
  1451. * - The user space value changed.
  1452. */
  1453. double_unlock_hb(hb1, hb2);
  1454. hb_waiters_dec(hb2);
  1455. put_futex_key(&key2);
  1456. put_futex_key(&key1);
  1457. cond_resched();
  1458. goto retry;
  1459. default:
  1460. goto out_unlock;
  1461. }
  1462. }
  1463. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1464. if (task_count - nr_wake >= nr_requeue)
  1465. break;
  1466. if (!match_futex(&this->key, &key1))
  1467. continue;
  1468. /*
  1469. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1470. * be paired with each other and no other futex ops.
  1471. *
  1472. * We should never be requeueing a futex_q with a pi_state,
  1473. * which is awaiting a futex_unlock_pi().
  1474. */
  1475. if ((requeue_pi && !this->rt_waiter) ||
  1476. (!requeue_pi && this->rt_waiter) ||
  1477. this->pi_state) {
  1478. ret = -EINVAL;
  1479. break;
  1480. }
  1481. /*
  1482. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1483. * lock, we already woke the top_waiter. If not, it will be
  1484. * woken by futex_unlock_pi().
  1485. */
  1486. if (++task_count <= nr_wake && !requeue_pi) {
  1487. wake_futex(this);
  1488. continue;
  1489. }
  1490. /* Ensure we requeue to the expected futex for requeue_pi. */
  1491. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1492. ret = -EINVAL;
  1493. break;
  1494. }
  1495. /*
  1496. * Requeue nr_requeue waiters and possibly one more in the case
  1497. * of requeue_pi if we couldn't acquire the lock atomically.
  1498. */
  1499. if (requeue_pi) {
  1500. /* Prepare the waiter to take the rt_mutex. */
  1501. atomic_inc(&pi_state->refcount);
  1502. this->pi_state = pi_state;
  1503. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1504. this->rt_waiter,
  1505. this->task);
  1506. if (ret == 1) {
  1507. /* We got the lock. */
  1508. requeue_pi_wake_futex(this, &key2, hb2);
  1509. drop_count++;
  1510. continue;
  1511. } else if (ret) {
  1512. /* -EDEADLK */
  1513. this->pi_state = NULL;
  1514. free_pi_state(pi_state);
  1515. goto out_unlock;
  1516. }
  1517. }
  1518. requeue_futex(this, hb1, hb2, &key2);
  1519. drop_count++;
  1520. }
  1521. out_unlock:
  1522. double_unlock_hb(hb1, hb2);
  1523. hb_waiters_dec(hb2);
  1524. /*
  1525. * drop_futex_key_refs() must be called outside the spinlocks. During
  1526. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1527. * one at key2 and updated their key pointer. We no longer need to
  1528. * hold the references to key1.
  1529. */
  1530. while (--drop_count >= 0)
  1531. drop_futex_key_refs(&key1);
  1532. out_put_keys:
  1533. put_futex_key(&key2);
  1534. out_put_key1:
  1535. put_futex_key(&key1);
  1536. out:
  1537. if (pi_state != NULL)
  1538. free_pi_state(pi_state);
  1539. return ret ? ret : task_count;
  1540. }
  1541. /* The key must be already stored in q->key. */
  1542. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1543. __acquires(&hb->lock)
  1544. {
  1545. struct futex_hash_bucket *hb;
  1546. hb = hash_futex(&q->key);
  1547. /*
  1548. * Increment the counter before taking the lock so that
  1549. * a potential waker won't miss a to-be-slept task that is
  1550. * waiting for the spinlock. This is safe as all queue_lock()
  1551. * users end up calling queue_me(). Similarly, for housekeeping,
  1552. * decrement the counter at queue_unlock() when some error has
  1553. * occurred and we don't end up adding the task to the list.
  1554. */
  1555. hb_waiters_inc(hb);
  1556. q->lock_ptr = &hb->lock;
  1557. spin_lock(&hb->lock); /* implies MB (A) */
  1558. return hb;
  1559. }
  1560. static inline void
  1561. queue_unlock(struct futex_hash_bucket *hb)
  1562. __releases(&hb->lock)
  1563. {
  1564. spin_unlock(&hb->lock);
  1565. hb_waiters_dec(hb);
  1566. }
  1567. /**
  1568. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1569. * @q: The futex_q to enqueue
  1570. * @hb: The destination hash bucket
  1571. *
  1572. * The hb->lock must be held by the caller, and is released here. A call to
  1573. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1574. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1575. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1576. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1577. * an example).
  1578. */
  1579. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1580. __releases(&hb->lock)
  1581. {
  1582. int prio;
  1583. /*
  1584. * The priority used to register this element is
  1585. * - either the real thread-priority for the real-time threads
  1586. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1587. * - or MAX_RT_PRIO for non-RT threads.
  1588. * Thus, all RT-threads are woken first in priority order, and
  1589. * the others are woken last, in FIFO order.
  1590. */
  1591. prio = min(current->normal_prio, MAX_RT_PRIO);
  1592. plist_node_init(&q->list, prio);
  1593. plist_add(&q->list, &hb->chain);
  1594. q->task = current;
  1595. spin_unlock(&hb->lock);
  1596. }
  1597. /**
  1598. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1599. * @q: The futex_q to unqueue
  1600. *
  1601. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1602. * be paired with exactly one earlier call to queue_me().
  1603. *
  1604. * Return:
  1605. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1606. * 0 - if the futex_q was already removed by the waking thread
  1607. */
  1608. static int unqueue_me(struct futex_q *q)
  1609. {
  1610. spinlock_t *lock_ptr;
  1611. int ret = 0;
  1612. /* In the common case we don't take the spinlock, which is nice. */
  1613. retry:
  1614. lock_ptr = q->lock_ptr;
  1615. barrier();
  1616. if (lock_ptr != NULL) {
  1617. spin_lock(lock_ptr);
  1618. /*
  1619. * q->lock_ptr can change between reading it and
  1620. * spin_lock(), causing us to take the wrong lock. This
  1621. * corrects the race condition.
  1622. *
  1623. * Reasoning goes like this: if we have the wrong lock,
  1624. * q->lock_ptr must have changed (maybe several times)
  1625. * between reading it and the spin_lock(). It can
  1626. * change again after the spin_lock() but only if it was
  1627. * already changed before the spin_lock(). It cannot,
  1628. * however, change back to the original value. Therefore
  1629. * we can detect whether we acquired the correct lock.
  1630. */
  1631. if (unlikely(lock_ptr != q->lock_ptr)) {
  1632. spin_unlock(lock_ptr);
  1633. goto retry;
  1634. }
  1635. __unqueue_futex(q);
  1636. BUG_ON(q->pi_state);
  1637. spin_unlock(lock_ptr);
  1638. ret = 1;
  1639. }
  1640. drop_futex_key_refs(&q->key);
  1641. return ret;
  1642. }
  1643. /*
  1644. * PI futexes can not be requeued and must remove themself from the
  1645. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1646. * and dropped here.
  1647. */
  1648. static void unqueue_me_pi(struct futex_q *q)
  1649. __releases(q->lock_ptr)
  1650. {
  1651. __unqueue_futex(q);
  1652. BUG_ON(!q->pi_state);
  1653. free_pi_state(q->pi_state);
  1654. q->pi_state = NULL;
  1655. spin_unlock(q->lock_ptr);
  1656. }
  1657. /*
  1658. * Fixup the pi_state owner with the new owner.
  1659. *
  1660. * Must be called with hash bucket lock held and mm->sem held for non
  1661. * private futexes.
  1662. */
  1663. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1664. struct task_struct *newowner)
  1665. {
  1666. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1667. struct futex_pi_state *pi_state = q->pi_state;
  1668. struct task_struct *oldowner = pi_state->owner;
  1669. u32 uval, uninitialized_var(curval), newval;
  1670. int ret;
  1671. /* Owner died? */
  1672. if (!pi_state->owner)
  1673. newtid |= FUTEX_OWNER_DIED;
  1674. /*
  1675. * We are here either because we stole the rtmutex from the
  1676. * previous highest priority waiter or we are the highest priority
  1677. * waiter but failed to get the rtmutex the first time.
  1678. * We have to replace the newowner TID in the user space variable.
  1679. * This must be atomic as we have to preserve the owner died bit here.
  1680. *
  1681. * Note: We write the user space value _before_ changing the pi_state
  1682. * because we can fault here. Imagine swapped out pages or a fork
  1683. * that marked all the anonymous memory readonly for cow.
  1684. *
  1685. * Modifying pi_state _before_ the user space value would
  1686. * leave the pi_state in an inconsistent state when we fault
  1687. * here, because we need to drop the hash bucket lock to
  1688. * handle the fault. This might be observed in the PID check
  1689. * in lookup_pi_state.
  1690. */
  1691. retry:
  1692. if (get_futex_value_locked(&uval, uaddr))
  1693. goto handle_fault;
  1694. while (1) {
  1695. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1696. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1697. goto handle_fault;
  1698. if (curval == uval)
  1699. break;
  1700. uval = curval;
  1701. }
  1702. /*
  1703. * We fixed up user space. Now we need to fix the pi_state
  1704. * itself.
  1705. */
  1706. if (pi_state->owner != NULL) {
  1707. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1708. WARN_ON(list_empty(&pi_state->list));
  1709. list_del_init(&pi_state->list);
  1710. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1711. }
  1712. pi_state->owner = newowner;
  1713. raw_spin_lock_irq(&newowner->pi_lock);
  1714. WARN_ON(!list_empty(&pi_state->list));
  1715. list_add(&pi_state->list, &newowner->pi_state_list);
  1716. raw_spin_unlock_irq(&newowner->pi_lock);
  1717. return 0;
  1718. /*
  1719. * To handle the page fault we need to drop the hash bucket
  1720. * lock here. That gives the other task (either the highest priority
  1721. * waiter itself or the task which stole the rtmutex) the
  1722. * chance to try the fixup of the pi_state. So once we are
  1723. * back from handling the fault we need to check the pi_state
  1724. * after reacquiring the hash bucket lock and before trying to
  1725. * do another fixup. When the fixup has been done already we
  1726. * simply return.
  1727. */
  1728. handle_fault:
  1729. spin_unlock(q->lock_ptr);
  1730. ret = fault_in_user_writeable(uaddr);
  1731. spin_lock(q->lock_ptr);
  1732. /*
  1733. * Check if someone else fixed it for us:
  1734. */
  1735. if (pi_state->owner != oldowner)
  1736. return 0;
  1737. if (ret)
  1738. return ret;
  1739. goto retry;
  1740. }
  1741. static long futex_wait_restart(struct restart_block *restart);
  1742. /**
  1743. * fixup_owner() - Post lock pi_state and corner case management
  1744. * @uaddr: user address of the futex
  1745. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1746. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1747. *
  1748. * After attempting to lock an rt_mutex, this function is called to cleanup
  1749. * the pi_state owner as well as handle race conditions that may allow us to
  1750. * acquire the lock. Must be called with the hb lock held.
  1751. *
  1752. * Return:
  1753. * 1 - success, lock taken;
  1754. * 0 - success, lock not taken;
  1755. * <0 - on error (-EFAULT)
  1756. */
  1757. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1758. {
  1759. struct task_struct *owner;
  1760. int ret = 0;
  1761. if (locked) {
  1762. /*
  1763. * Got the lock. We might not be the anticipated owner if we
  1764. * did a lock-steal - fix up the PI-state in that case:
  1765. */
  1766. if (q->pi_state->owner != current)
  1767. ret = fixup_pi_state_owner(uaddr, q, current);
  1768. goto out;
  1769. }
  1770. /*
  1771. * Catch the rare case, where the lock was released when we were on the
  1772. * way back before we locked the hash bucket.
  1773. */
  1774. if (q->pi_state->owner == current) {
  1775. /*
  1776. * Try to get the rt_mutex now. This might fail as some other
  1777. * task acquired the rt_mutex after we removed ourself from the
  1778. * rt_mutex waiters list.
  1779. */
  1780. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1781. locked = 1;
  1782. goto out;
  1783. }
  1784. /*
  1785. * pi_state is incorrect, some other task did a lock steal and
  1786. * we returned due to timeout or signal without taking the
  1787. * rt_mutex. Too late.
  1788. */
  1789. raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
  1790. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1791. if (!owner)
  1792. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1793. raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
  1794. ret = fixup_pi_state_owner(uaddr, q, owner);
  1795. goto out;
  1796. }
  1797. /*
  1798. * Paranoia check. If we did not take the lock, then we should not be
  1799. * the owner of the rt_mutex.
  1800. */
  1801. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1802. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1803. "pi-state %p\n", ret,
  1804. q->pi_state->pi_mutex.owner,
  1805. q->pi_state->owner);
  1806. out:
  1807. return ret ? ret : locked;
  1808. }
  1809. /**
  1810. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1811. * @hb: the futex hash bucket, must be locked by the caller
  1812. * @q: the futex_q to queue up on
  1813. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1814. */
  1815. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1816. struct hrtimer_sleeper *timeout)
  1817. {
  1818. /*
  1819. * The task state is guaranteed to be set before another task can
  1820. * wake it. set_current_state() is implemented using set_mb() and
  1821. * queue_me() calls spin_unlock() upon completion, both serializing
  1822. * access to the hash list and forcing another memory barrier.
  1823. */
  1824. set_current_state(TASK_INTERRUPTIBLE);
  1825. queue_me(q, hb);
  1826. /* Arm the timer */
  1827. if (timeout) {
  1828. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1829. if (!hrtimer_active(&timeout->timer))
  1830. timeout->task = NULL;
  1831. }
  1832. /*
  1833. * If we have been removed from the hash list, then another task
  1834. * has tried to wake us, and we can skip the call to schedule().
  1835. */
  1836. if (likely(!plist_node_empty(&q->list))) {
  1837. /*
  1838. * If the timer has already expired, current will already be
  1839. * flagged for rescheduling. Only call schedule if there
  1840. * is no timeout, or if it has yet to expire.
  1841. */
  1842. if (!timeout || timeout->task)
  1843. freezable_schedule();
  1844. }
  1845. __set_current_state(TASK_RUNNING);
  1846. }
  1847. /**
  1848. * futex_wait_setup() - Prepare to wait on a futex
  1849. * @uaddr: the futex userspace address
  1850. * @val: the expected value
  1851. * @flags: futex flags (FLAGS_SHARED, etc.)
  1852. * @q: the associated futex_q
  1853. * @hb: storage for hash_bucket pointer to be returned to caller
  1854. *
  1855. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1856. * compare it with the expected value. Handle atomic faults internally.
  1857. * Return with the hb lock held and a q.key reference on success, and unlocked
  1858. * with no q.key reference on failure.
  1859. *
  1860. * Return:
  1861. * 0 - uaddr contains val and hb has been locked;
  1862. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  1863. */
  1864. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1865. struct futex_q *q, struct futex_hash_bucket **hb)
  1866. {
  1867. u32 uval;
  1868. int ret;
  1869. /*
  1870. * Access the page AFTER the hash-bucket is locked.
  1871. * Order is important:
  1872. *
  1873. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1874. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1875. *
  1876. * The basic logical guarantee of a futex is that it blocks ONLY
  1877. * if cond(var) is known to be true at the time of blocking, for
  1878. * any cond. If we locked the hash-bucket after testing *uaddr, that
  1879. * would open a race condition where we could block indefinitely with
  1880. * cond(var) false, which would violate the guarantee.
  1881. *
  1882. * On the other hand, we insert q and release the hash-bucket only
  1883. * after testing *uaddr. This guarantees that futex_wait() will NOT
  1884. * absorb a wakeup if *uaddr does not match the desired values
  1885. * while the syscall executes.
  1886. */
  1887. retry:
  1888. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  1889. if (unlikely(ret != 0))
  1890. return ret;
  1891. retry_private:
  1892. *hb = queue_lock(q);
  1893. ret = get_futex_value_locked(&uval, uaddr);
  1894. if (ret) {
  1895. queue_unlock(*hb);
  1896. ret = get_user(uval, uaddr);
  1897. if (ret)
  1898. goto out;
  1899. if (!(flags & FLAGS_SHARED))
  1900. goto retry_private;
  1901. put_futex_key(&q->key);
  1902. goto retry;
  1903. }
  1904. if (uval != val) {
  1905. queue_unlock(*hb);
  1906. ret = -EWOULDBLOCK;
  1907. }
  1908. out:
  1909. if (ret)
  1910. put_futex_key(&q->key);
  1911. return ret;
  1912. }
  1913. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1914. ktime_t *abs_time, u32 bitset)
  1915. {
  1916. struct hrtimer_sleeper timeout, *to = NULL;
  1917. struct restart_block *restart;
  1918. struct futex_hash_bucket *hb;
  1919. struct futex_q q = futex_q_init;
  1920. int ret;
  1921. if (!bitset)
  1922. return -EINVAL;
  1923. q.bitset = bitset;
  1924. if (abs_time) {
  1925. to = &timeout;
  1926. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1927. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1928. HRTIMER_MODE_ABS);
  1929. hrtimer_init_sleeper(to, current);
  1930. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1931. current->timer_slack_ns);
  1932. }
  1933. retry:
  1934. /*
  1935. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1936. * q.key refs.
  1937. */
  1938. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1939. if (ret)
  1940. goto out;
  1941. /* queue_me and wait for wakeup, timeout, or a signal. */
  1942. futex_wait_queue_me(hb, &q, to);
  1943. /* If we were woken (and unqueued), we succeeded, whatever. */
  1944. ret = 0;
  1945. /* unqueue_me() drops q.key ref */
  1946. if (!unqueue_me(&q))
  1947. goto out;
  1948. ret = -ETIMEDOUT;
  1949. if (to && !to->task)
  1950. goto out;
  1951. /*
  1952. * We expect signal_pending(current), but we might be the
  1953. * victim of a spurious wakeup as well.
  1954. */
  1955. if (!signal_pending(current))
  1956. goto retry;
  1957. ret = -ERESTARTSYS;
  1958. if (!abs_time)
  1959. goto out;
  1960. restart = &current_thread_info()->restart_block;
  1961. restart->fn = futex_wait_restart;
  1962. restart->futex.uaddr = uaddr;
  1963. restart->futex.val = val;
  1964. restart->futex.time = abs_time->tv64;
  1965. restart->futex.bitset = bitset;
  1966. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  1967. ret = -ERESTART_RESTARTBLOCK;
  1968. out:
  1969. if (to) {
  1970. hrtimer_cancel(&to->timer);
  1971. destroy_hrtimer_on_stack(&to->timer);
  1972. }
  1973. return ret;
  1974. }
  1975. static long futex_wait_restart(struct restart_block *restart)
  1976. {
  1977. u32 __user *uaddr = restart->futex.uaddr;
  1978. ktime_t t, *tp = NULL;
  1979. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1980. t.tv64 = restart->futex.time;
  1981. tp = &t;
  1982. }
  1983. restart->fn = do_no_restart_syscall;
  1984. return (long)futex_wait(uaddr, restart->futex.flags,
  1985. restart->futex.val, tp, restart->futex.bitset);
  1986. }
  1987. /*
  1988. * Userspace tried a 0 -> TID atomic transition of the futex value
  1989. * and failed. The kernel side here does the whole locking operation:
  1990. * if there are waiters then it will block, it does PI, etc. (Due to
  1991. * races the kernel might see a 0 value of the futex too.)
  1992. */
  1993. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  1994. ktime_t *time, int trylock)
  1995. {
  1996. struct hrtimer_sleeper timeout, *to = NULL;
  1997. struct futex_hash_bucket *hb;
  1998. struct futex_q q = futex_q_init;
  1999. int res, ret;
  2000. if (refill_pi_state_cache())
  2001. return -ENOMEM;
  2002. if (time) {
  2003. to = &timeout;
  2004. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2005. HRTIMER_MODE_ABS);
  2006. hrtimer_init_sleeper(to, current);
  2007. hrtimer_set_expires(&to->timer, *time);
  2008. }
  2009. retry:
  2010. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2011. if (unlikely(ret != 0))
  2012. goto out;
  2013. retry_private:
  2014. hb = queue_lock(&q);
  2015. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2016. if (unlikely(ret)) {
  2017. switch (ret) {
  2018. case 1:
  2019. /* We got the lock. */
  2020. ret = 0;
  2021. goto out_unlock_put_key;
  2022. case -EFAULT:
  2023. goto uaddr_faulted;
  2024. case -EAGAIN:
  2025. /*
  2026. * Two reasons for this:
  2027. * - Task is exiting and we just wait for the
  2028. * exit to complete.
  2029. * - The user space value changed.
  2030. */
  2031. queue_unlock(hb);
  2032. put_futex_key(&q.key);
  2033. cond_resched();
  2034. goto retry;
  2035. default:
  2036. goto out_unlock_put_key;
  2037. }
  2038. }
  2039. /*
  2040. * Only actually queue now that the atomic ops are done:
  2041. */
  2042. queue_me(&q, hb);
  2043. WARN_ON(!q.pi_state);
  2044. /*
  2045. * Block on the PI mutex:
  2046. */
  2047. if (!trylock) {
  2048. ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
  2049. } else {
  2050. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  2051. /* Fixup the trylock return value: */
  2052. ret = ret ? 0 : -EWOULDBLOCK;
  2053. }
  2054. spin_lock(q.lock_ptr);
  2055. /*
  2056. * Fixup the pi_state owner and possibly acquire the lock if we
  2057. * haven't already.
  2058. */
  2059. res = fixup_owner(uaddr, &q, !ret);
  2060. /*
  2061. * If fixup_owner() returned an error, proprogate that. If it acquired
  2062. * the lock, clear our -ETIMEDOUT or -EINTR.
  2063. */
  2064. if (res)
  2065. ret = (res < 0) ? res : 0;
  2066. /*
  2067. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2068. * it and return the fault to userspace.
  2069. */
  2070. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2071. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2072. /* Unqueue and drop the lock */
  2073. unqueue_me_pi(&q);
  2074. goto out_put_key;
  2075. out_unlock_put_key:
  2076. queue_unlock(hb);
  2077. out_put_key:
  2078. put_futex_key(&q.key);
  2079. out:
  2080. if (to)
  2081. destroy_hrtimer_on_stack(&to->timer);
  2082. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2083. uaddr_faulted:
  2084. queue_unlock(hb);
  2085. ret = fault_in_user_writeable(uaddr);
  2086. if (ret)
  2087. goto out_put_key;
  2088. if (!(flags & FLAGS_SHARED))
  2089. goto retry_private;
  2090. put_futex_key(&q.key);
  2091. goto retry;
  2092. }
  2093. /*
  2094. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2095. * This is the in-kernel slowpath: we look up the PI state (if any),
  2096. * and do the rt-mutex unlock.
  2097. */
  2098. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2099. {
  2100. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2101. union futex_key key = FUTEX_KEY_INIT;
  2102. struct futex_hash_bucket *hb;
  2103. struct futex_q *match;
  2104. int ret;
  2105. retry:
  2106. if (get_user(uval, uaddr))
  2107. return -EFAULT;
  2108. /*
  2109. * We release only a lock we actually own:
  2110. */
  2111. if ((uval & FUTEX_TID_MASK) != vpid)
  2112. return -EPERM;
  2113. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2114. if (ret)
  2115. return ret;
  2116. hb = hash_futex(&key);
  2117. spin_lock(&hb->lock);
  2118. /*
  2119. * Check waiters first. We do not trust user space values at
  2120. * all and we at least want to know if user space fiddled
  2121. * with the futex value instead of blindly unlocking.
  2122. */
  2123. match = futex_top_waiter(hb, &key);
  2124. if (match) {
  2125. ret = wake_futex_pi(uaddr, uval, match);
  2126. /*
  2127. * The atomic access to the futex value generated a
  2128. * pagefault, so retry the user-access and the wakeup:
  2129. */
  2130. if (ret == -EFAULT)
  2131. goto pi_faulted;
  2132. goto out_unlock;
  2133. }
  2134. /*
  2135. * We have no kernel internal state, i.e. no waiters in the
  2136. * kernel. Waiters which are about to queue themselves are stuck
  2137. * on hb->lock. So we can safely ignore them. We do neither
  2138. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2139. * owner.
  2140. */
  2141. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
  2142. goto pi_faulted;
  2143. /*
  2144. * If uval has changed, let user space handle it.
  2145. */
  2146. ret = (curval == uval) ? 0 : -EAGAIN;
  2147. out_unlock:
  2148. spin_unlock(&hb->lock);
  2149. put_futex_key(&key);
  2150. return ret;
  2151. pi_faulted:
  2152. spin_unlock(&hb->lock);
  2153. put_futex_key(&key);
  2154. ret = fault_in_user_writeable(uaddr);
  2155. if (!ret)
  2156. goto retry;
  2157. return ret;
  2158. }
  2159. /**
  2160. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2161. * @hb: the hash_bucket futex_q was original enqueued on
  2162. * @q: the futex_q woken while waiting to be requeued
  2163. * @key2: the futex_key of the requeue target futex
  2164. * @timeout: the timeout associated with the wait (NULL if none)
  2165. *
  2166. * Detect if the task was woken on the initial futex as opposed to the requeue
  2167. * target futex. If so, determine if it was a timeout or a signal that caused
  2168. * the wakeup and return the appropriate error code to the caller. Must be
  2169. * called with the hb lock held.
  2170. *
  2171. * Return:
  2172. * 0 = no early wakeup detected;
  2173. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2174. */
  2175. static inline
  2176. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2177. struct futex_q *q, union futex_key *key2,
  2178. struct hrtimer_sleeper *timeout)
  2179. {
  2180. int ret = 0;
  2181. /*
  2182. * With the hb lock held, we avoid races while we process the wakeup.
  2183. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2184. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2185. * It can't be requeued from uaddr2 to something else since we don't
  2186. * support a PI aware source futex for requeue.
  2187. */
  2188. if (!match_futex(&q->key, key2)) {
  2189. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2190. /*
  2191. * We were woken prior to requeue by a timeout or a signal.
  2192. * Unqueue the futex_q and determine which it was.
  2193. */
  2194. plist_del(&q->list, &hb->chain);
  2195. hb_waiters_dec(hb);
  2196. /* Handle spurious wakeups gracefully */
  2197. ret = -EWOULDBLOCK;
  2198. if (timeout && !timeout->task)
  2199. ret = -ETIMEDOUT;
  2200. else if (signal_pending(current))
  2201. ret = -ERESTARTNOINTR;
  2202. }
  2203. return ret;
  2204. }
  2205. /**
  2206. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2207. * @uaddr: the futex we initially wait on (non-pi)
  2208. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2209. * the same type, no requeueing from private to shared, etc.
  2210. * @val: the expected value of uaddr
  2211. * @abs_time: absolute timeout
  2212. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2213. * @uaddr2: the pi futex we will take prior to returning to user-space
  2214. *
  2215. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2216. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2217. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2218. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2219. * without one, the pi logic would not know which task to boost/deboost, if
  2220. * there was a need to.
  2221. *
  2222. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2223. * via the following--
  2224. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2225. * 2) wakeup on uaddr2 after a requeue
  2226. * 3) signal
  2227. * 4) timeout
  2228. *
  2229. * If 3, cleanup and return -ERESTARTNOINTR.
  2230. *
  2231. * If 2, we may then block on trying to take the rt_mutex and return via:
  2232. * 5) successful lock
  2233. * 6) signal
  2234. * 7) timeout
  2235. * 8) other lock acquisition failure
  2236. *
  2237. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2238. *
  2239. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2240. *
  2241. * Return:
  2242. * 0 - On success;
  2243. * <0 - On error
  2244. */
  2245. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2246. u32 val, ktime_t *abs_time, u32 bitset,
  2247. u32 __user *uaddr2)
  2248. {
  2249. struct hrtimer_sleeper timeout, *to = NULL;
  2250. struct rt_mutex_waiter rt_waiter;
  2251. struct rt_mutex *pi_mutex = NULL;
  2252. struct futex_hash_bucket *hb;
  2253. union futex_key key2 = FUTEX_KEY_INIT;
  2254. struct futex_q q = futex_q_init;
  2255. int res, ret;
  2256. if (uaddr == uaddr2)
  2257. return -EINVAL;
  2258. if (!bitset)
  2259. return -EINVAL;
  2260. if (abs_time) {
  2261. to = &timeout;
  2262. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2263. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2264. HRTIMER_MODE_ABS);
  2265. hrtimer_init_sleeper(to, current);
  2266. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2267. current->timer_slack_ns);
  2268. }
  2269. /*
  2270. * The waiter is allocated on our stack, manipulated by the requeue
  2271. * code while we sleep on uaddr.
  2272. */
  2273. debug_rt_mutex_init_waiter(&rt_waiter);
  2274. RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
  2275. RB_CLEAR_NODE(&rt_waiter.tree_entry);
  2276. rt_waiter.task = NULL;
  2277. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2278. if (unlikely(ret != 0))
  2279. goto out;
  2280. q.bitset = bitset;
  2281. q.rt_waiter = &rt_waiter;
  2282. q.requeue_pi_key = &key2;
  2283. /*
  2284. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2285. * count.
  2286. */
  2287. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2288. if (ret)
  2289. goto out_key2;
  2290. /*
  2291. * The check above which compares uaddrs is not sufficient for
  2292. * shared futexes. We need to compare the keys:
  2293. */
  2294. if (match_futex(&q.key, &key2)) {
  2295. queue_unlock(hb);
  2296. ret = -EINVAL;
  2297. goto out_put_keys;
  2298. }
  2299. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2300. futex_wait_queue_me(hb, &q, to);
  2301. spin_lock(&hb->lock);
  2302. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2303. spin_unlock(&hb->lock);
  2304. if (ret)
  2305. goto out_put_keys;
  2306. /*
  2307. * In order for us to be here, we know our q.key == key2, and since
  2308. * we took the hb->lock above, we also know that futex_requeue() has
  2309. * completed and we no longer have to concern ourselves with a wakeup
  2310. * race with the atomic proxy lock acquisition by the requeue code. The
  2311. * futex_requeue dropped our key1 reference and incremented our key2
  2312. * reference count.
  2313. */
  2314. /* Check if the requeue code acquired the second futex for us. */
  2315. if (!q.rt_waiter) {
  2316. /*
  2317. * Got the lock. We might not be the anticipated owner if we
  2318. * did a lock-steal - fix up the PI-state in that case.
  2319. */
  2320. if (q.pi_state && (q.pi_state->owner != current)) {
  2321. spin_lock(q.lock_ptr);
  2322. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2323. spin_unlock(q.lock_ptr);
  2324. }
  2325. } else {
  2326. /*
  2327. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2328. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2329. * the pi_state.
  2330. */
  2331. WARN_ON(!q.pi_state);
  2332. pi_mutex = &q.pi_state->pi_mutex;
  2333. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
  2334. debug_rt_mutex_free_waiter(&rt_waiter);
  2335. spin_lock(q.lock_ptr);
  2336. /*
  2337. * Fixup the pi_state owner and possibly acquire the lock if we
  2338. * haven't already.
  2339. */
  2340. res = fixup_owner(uaddr2, &q, !ret);
  2341. /*
  2342. * If fixup_owner() returned an error, proprogate that. If it
  2343. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2344. */
  2345. if (res)
  2346. ret = (res < 0) ? res : 0;
  2347. /* Unqueue and drop the lock. */
  2348. unqueue_me_pi(&q);
  2349. }
  2350. /*
  2351. * If fixup_pi_state_owner() faulted and was unable to handle the
  2352. * fault, unlock the rt_mutex and return the fault to userspace.
  2353. */
  2354. if (ret == -EFAULT) {
  2355. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2356. rt_mutex_unlock(pi_mutex);
  2357. } else if (ret == -EINTR) {
  2358. /*
  2359. * We've already been requeued, but cannot restart by calling
  2360. * futex_lock_pi() directly. We could restart this syscall, but
  2361. * it would detect that the user space "val" changed and return
  2362. * -EWOULDBLOCK. Save the overhead of the restart and return
  2363. * -EWOULDBLOCK directly.
  2364. */
  2365. ret = -EWOULDBLOCK;
  2366. }
  2367. out_put_keys:
  2368. put_futex_key(&q.key);
  2369. out_key2:
  2370. put_futex_key(&key2);
  2371. out:
  2372. if (to) {
  2373. hrtimer_cancel(&to->timer);
  2374. destroy_hrtimer_on_stack(&to->timer);
  2375. }
  2376. return ret;
  2377. }
  2378. /*
  2379. * Support for robust futexes: the kernel cleans up held futexes at
  2380. * thread exit time.
  2381. *
  2382. * Implementation: user-space maintains a per-thread list of locks it
  2383. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2384. * and marks all locks that are owned by this thread with the
  2385. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2386. * always manipulated with the lock held, so the list is private and
  2387. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2388. * field, to allow the kernel to clean up if the thread dies after
  2389. * acquiring the lock, but just before it could have added itself to
  2390. * the list. There can only be one such pending lock.
  2391. */
  2392. /**
  2393. * sys_set_robust_list() - Set the robust-futex list head of a task
  2394. * @head: pointer to the list-head
  2395. * @len: length of the list-head, as userspace expects
  2396. */
  2397. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2398. size_t, len)
  2399. {
  2400. if (!futex_cmpxchg_enabled)
  2401. return -ENOSYS;
  2402. /*
  2403. * The kernel knows only one size for now:
  2404. */
  2405. if (unlikely(len != sizeof(*head)))
  2406. return -EINVAL;
  2407. current->robust_list = head;
  2408. return 0;
  2409. }
  2410. /**
  2411. * sys_get_robust_list() - Get the robust-futex list head of a task
  2412. * @pid: pid of the process [zero for current task]
  2413. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2414. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2415. */
  2416. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2417. struct robust_list_head __user * __user *, head_ptr,
  2418. size_t __user *, len_ptr)
  2419. {
  2420. struct robust_list_head __user *head;
  2421. unsigned long ret;
  2422. struct task_struct *p;
  2423. if (!futex_cmpxchg_enabled)
  2424. return -ENOSYS;
  2425. rcu_read_lock();
  2426. ret = -ESRCH;
  2427. if (!pid)
  2428. p = current;
  2429. else {
  2430. p = find_task_by_vpid(pid);
  2431. if (!p)
  2432. goto err_unlock;
  2433. }
  2434. ret = -EPERM;
  2435. if (!ptrace_may_access(p, PTRACE_MODE_READ))
  2436. goto err_unlock;
  2437. head = p->robust_list;
  2438. rcu_read_unlock();
  2439. if (put_user(sizeof(*head), len_ptr))
  2440. return -EFAULT;
  2441. return put_user(head, head_ptr);
  2442. err_unlock:
  2443. rcu_read_unlock();
  2444. return ret;
  2445. }
  2446. /*
  2447. * Process a futex-list entry, check whether it's owned by the
  2448. * dying task, and do notification if so:
  2449. */
  2450. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2451. {
  2452. u32 uval, uninitialized_var(nval), mval;
  2453. retry:
  2454. if (get_user(uval, uaddr))
  2455. return -1;
  2456. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2457. /*
  2458. * Ok, this dying thread is truly holding a futex
  2459. * of interest. Set the OWNER_DIED bit atomically
  2460. * via cmpxchg, and if the value had FUTEX_WAITERS
  2461. * set, wake up a waiter (if any). (We have to do a
  2462. * futex_wake() even if OWNER_DIED is already set -
  2463. * to handle the rare but possible case of recursive
  2464. * thread-death.) The rest of the cleanup is done in
  2465. * userspace.
  2466. */
  2467. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2468. /*
  2469. * We are not holding a lock here, but we want to have
  2470. * the pagefault_disable/enable() protection because
  2471. * we want to handle the fault gracefully. If the
  2472. * access fails we try to fault in the futex with R/W
  2473. * verification via get_user_pages. get_user() above
  2474. * does not guarantee R/W access. If that fails we
  2475. * give up and leave the futex locked.
  2476. */
  2477. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2478. if (fault_in_user_writeable(uaddr))
  2479. return -1;
  2480. goto retry;
  2481. }
  2482. if (nval != uval)
  2483. goto retry;
  2484. /*
  2485. * Wake robust non-PI futexes here. The wakeup of
  2486. * PI futexes happens in exit_pi_state():
  2487. */
  2488. if (!pi && (uval & FUTEX_WAITERS))
  2489. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2490. }
  2491. return 0;
  2492. }
  2493. /*
  2494. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2495. */
  2496. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2497. struct robust_list __user * __user *head,
  2498. unsigned int *pi)
  2499. {
  2500. unsigned long uentry;
  2501. if (get_user(uentry, (unsigned long __user *)head))
  2502. return -EFAULT;
  2503. *entry = (void __user *)(uentry & ~1UL);
  2504. *pi = uentry & 1;
  2505. return 0;
  2506. }
  2507. /*
  2508. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2509. * and mark any locks found there dead, and notify any waiters.
  2510. *
  2511. * We silently return on any sign of list-walking problem.
  2512. */
  2513. void exit_robust_list(struct task_struct *curr)
  2514. {
  2515. struct robust_list_head __user *head = curr->robust_list;
  2516. struct robust_list __user *entry, *next_entry, *pending;
  2517. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2518. unsigned int uninitialized_var(next_pi);
  2519. unsigned long futex_offset;
  2520. int rc;
  2521. if (!futex_cmpxchg_enabled)
  2522. return;
  2523. /*
  2524. * Fetch the list head (which was registered earlier, via
  2525. * sys_set_robust_list()):
  2526. */
  2527. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2528. return;
  2529. /*
  2530. * Fetch the relative futex offset:
  2531. */
  2532. if (get_user(futex_offset, &head->futex_offset))
  2533. return;
  2534. /*
  2535. * Fetch any possibly pending lock-add first, and handle it
  2536. * if it exists:
  2537. */
  2538. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2539. return;
  2540. next_entry = NULL; /* avoid warning with gcc */
  2541. while (entry != &head->list) {
  2542. /*
  2543. * Fetch the next entry in the list before calling
  2544. * handle_futex_death:
  2545. */
  2546. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2547. /*
  2548. * A pending lock might already be on the list, so
  2549. * don't process it twice:
  2550. */
  2551. if (entry != pending)
  2552. if (handle_futex_death((void __user *)entry + futex_offset,
  2553. curr, pi))
  2554. return;
  2555. if (rc)
  2556. return;
  2557. entry = next_entry;
  2558. pi = next_pi;
  2559. /*
  2560. * Avoid excessively long or circular lists:
  2561. */
  2562. if (!--limit)
  2563. break;
  2564. cond_resched();
  2565. }
  2566. if (pending)
  2567. handle_futex_death((void __user *)pending + futex_offset,
  2568. curr, pip);
  2569. }
  2570. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2571. u32 __user *uaddr2, u32 val2, u32 val3)
  2572. {
  2573. int cmd = op & FUTEX_CMD_MASK;
  2574. unsigned int flags = 0;
  2575. if (!(op & FUTEX_PRIVATE_FLAG))
  2576. flags |= FLAGS_SHARED;
  2577. if (op & FUTEX_CLOCK_REALTIME) {
  2578. flags |= FLAGS_CLOCKRT;
  2579. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2580. return -ENOSYS;
  2581. }
  2582. switch (cmd) {
  2583. case FUTEX_LOCK_PI:
  2584. case FUTEX_UNLOCK_PI:
  2585. case FUTEX_TRYLOCK_PI:
  2586. case FUTEX_WAIT_REQUEUE_PI:
  2587. case FUTEX_CMP_REQUEUE_PI:
  2588. if (!futex_cmpxchg_enabled)
  2589. return -ENOSYS;
  2590. }
  2591. switch (cmd) {
  2592. case FUTEX_WAIT:
  2593. val3 = FUTEX_BITSET_MATCH_ANY;
  2594. case FUTEX_WAIT_BITSET:
  2595. return futex_wait(uaddr, flags, val, timeout, val3);
  2596. case FUTEX_WAKE:
  2597. val3 = FUTEX_BITSET_MATCH_ANY;
  2598. case FUTEX_WAKE_BITSET:
  2599. return futex_wake(uaddr, flags, val, val3);
  2600. case FUTEX_REQUEUE:
  2601. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2602. case FUTEX_CMP_REQUEUE:
  2603. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2604. case FUTEX_WAKE_OP:
  2605. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2606. case FUTEX_LOCK_PI:
  2607. return futex_lock_pi(uaddr, flags, val, timeout, 0);
  2608. case FUTEX_UNLOCK_PI:
  2609. return futex_unlock_pi(uaddr, flags);
  2610. case FUTEX_TRYLOCK_PI:
  2611. return futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2612. case FUTEX_WAIT_REQUEUE_PI:
  2613. val3 = FUTEX_BITSET_MATCH_ANY;
  2614. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2615. uaddr2);
  2616. case FUTEX_CMP_REQUEUE_PI:
  2617. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2618. }
  2619. return -ENOSYS;
  2620. }
  2621. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2622. struct timespec __user *, utime, u32 __user *, uaddr2,
  2623. u32, val3)
  2624. {
  2625. struct timespec ts;
  2626. ktime_t t, *tp = NULL;
  2627. u32 val2 = 0;
  2628. int cmd = op & FUTEX_CMD_MASK;
  2629. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2630. cmd == FUTEX_WAIT_BITSET ||
  2631. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2632. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2633. return -EFAULT;
  2634. if (!timespec_valid(&ts))
  2635. return -EINVAL;
  2636. t = timespec_to_ktime(ts);
  2637. if (cmd == FUTEX_WAIT)
  2638. t = ktime_add_safe(ktime_get(), t);
  2639. tp = &t;
  2640. }
  2641. /*
  2642. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2643. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2644. */
  2645. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2646. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2647. val2 = (u32) (unsigned long) utime;
  2648. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2649. }
  2650. static void __init futex_detect_cmpxchg(void)
  2651. {
  2652. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  2653. u32 curval;
  2654. /*
  2655. * This will fail and we want it. Some arch implementations do
  2656. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2657. * functionality. We want to know that before we call in any
  2658. * of the complex code paths. Also we want to prevent
  2659. * registration of robust lists in that case. NULL is
  2660. * guaranteed to fault and we get -EFAULT on functional
  2661. * implementation, the non-functional ones will return
  2662. * -ENOSYS.
  2663. */
  2664. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2665. futex_cmpxchg_enabled = 1;
  2666. #endif
  2667. }
  2668. static int __init futex_init(void)
  2669. {
  2670. unsigned int futex_shift;
  2671. unsigned long i;
  2672. #if CONFIG_BASE_SMALL
  2673. futex_hashsize = 16;
  2674. #else
  2675. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2676. #endif
  2677. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2678. futex_hashsize, 0,
  2679. futex_hashsize < 256 ? HASH_SMALL : 0,
  2680. &futex_shift, NULL,
  2681. futex_hashsize, futex_hashsize);
  2682. futex_hashsize = 1UL << futex_shift;
  2683. futex_detect_cmpxchg();
  2684. for (i = 0; i < futex_hashsize; i++) {
  2685. atomic_set(&futex_queues[i].waiters, 0);
  2686. plist_head_init(&futex_queues[i].chain);
  2687. spin_lock_init(&futex_queues[i].lock);
  2688. }
  2689. return 0;
  2690. }
  2691. __initcall(futex_init);