xfs_log_recover.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_bit.h"
  25. #include "xfs_inum.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_da_format.h"
  30. #include "xfs_inode.h"
  31. #include "xfs_trans.h"
  32. #include "xfs_log.h"
  33. #include "xfs_log_priv.h"
  34. #include "xfs_log_recover.h"
  35. #include "xfs_inode_item.h"
  36. #include "xfs_extfree_item.h"
  37. #include "xfs_trans_priv.h"
  38. #include "xfs_alloc.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_quota.h"
  41. #include "xfs_cksum.h"
  42. #include "xfs_trace.h"
  43. #include "xfs_icache.h"
  44. #include "xfs_bmap_btree.h"
  45. #include "xfs_dinode.h"
  46. #include "xfs_error.h"
  47. #include "xfs_dir2.h"
  48. #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
  49. STATIC int
  50. xlog_find_zeroed(
  51. struct xlog *,
  52. xfs_daddr_t *);
  53. STATIC int
  54. xlog_clear_stale_blocks(
  55. struct xlog *,
  56. xfs_lsn_t);
  57. #if defined(DEBUG)
  58. STATIC void
  59. xlog_recover_check_summary(
  60. struct xlog *);
  61. #else
  62. #define xlog_recover_check_summary(log)
  63. #endif
  64. /*
  65. * This structure is used during recovery to record the buf log items which
  66. * have been canceled and should not be replayed.
  67. */
  68. struct xfs_buf_cancel {
  69. xfs_daddr_t bc_blkno;
  70. uint bc_len;
  71. int bc_refcount;
  72. struct list_head bc_list;
  73. };
  74. /*
  75. * Sector aligned buffer routines for buffer create/read/write/access
  76. */
  77. /*
  78. * Verify the given count of basic blocks is valid number of blocks
  79. * to specify for an operation involving the given XFS log buffer.
  80. * Returns nonzero if the count is valid, 0 otherwise.
  81. */
  82. static inline int
  83. xlog_buf_bbcount_valid(
  84. struct xlog *log,
  85. int bbcount)
  86. {
  87. return bbcount > 0 && bbcount <= log->l_logBBsize;
  88. }
  89. /*
  90. * Allocate a buffer to hold log data. The buffer needs to be able
  91. * to map to a range of nbblks basic blocks at any valid (basic
  92. * block) offset within the log.
  93. */
  94. STATIC xfs_buf_t *
  95. xlog_get_bp(
  96. struct xlog *log,
  97. int nbblks)
  98. {
  99. struct xfs_buf *bp;
  100. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  101. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  102. nbblks);
  103. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  104. return NULL;
  105. }
  106. /*
  107. * We do log I/O in units of log sectors (a power-of-2
  108. * multiple of the basic block size), so we round up the
  109. * requested size to accommodate the basic blocks required
  110. * for complete log sectors.
  111. *
  112. * In addition, the buffer may be used for a non-sector-
  113. * aligned block offset, in which case an I/O of the
  114. * requested size could extend beyond the end of the
  115. * buffer. If the requested size is only 1 basic block it
  116. * will never straddle a sector boundary, so this won't be
  117. * an issue. Nor will this be a problem if the log I/O is
  118. * done in basic blocks (sector size 1). But otherwise we
  119. * extend the buffer by one extra log sector to ensure
  120. * there's space to accommodate this possibility.
  121. */
  122. if (nbblks > 1 && log->l_sectBBsize > 1)
  123. nbblks += log->l_sectBBsize;
  124. nbblks = round_up(nbblks, log->l_sectBBsize);
  125. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  126. if (bp)
  127. xfs_buf_unlock(bp);
  128. return bp;
  129. }
  130. STATIC void
  131. xlog_put_bp(
  132. xfs_buf_t *bp)
  133. {
  134. xfs_buf_free(bp);
  135. }
  136. /*
  137. * Return the address of the start of the given block number's data
  138. * in a log buffer. The buffer covers a log sector-aligned region.
  139. */
  140. STATIC xfs_caddr_t
  141. xlog_align(
  142. struct xlog *log,
  143. xfs_daddr_t blk_no,
  144. int nbblks,
  145. struct xfs_buf *bp)
  146. {
  147. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  148. ASSERT(offset + nbblks <= bp->b_length);
  149. return bp->b_addr + BBTOB(offset);
  150. }
  151. /*
  152. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  153. */
  154. STATIC int
  155. xlog_bread_noalign(
  156. struct xlog *log,
  157. xfs_daddr_t blk_no,
  158. int nbblks,
  159. struct xfs_buf *bp)
  160. {
  161. int error;
  162. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  163. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  164. nbblks);
  165. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  166. return -EFSCORRUPTED;
  167. }
  168. blk_no = round_down(blk_no, log->l_sectBBsize);
  169. nbblks = round_up(nbblks, log->l_sectBBsize);
  170. ASSERT(nbblks > 0);
  171. ASSERT(nbblks <= bp->b_length);
  172. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  173. XFS_BUF_READ(bp);
  174. bp->b_io_length = nbblks;
  175. bp->b_error = 0;
  176. error = xfs_buf_submit_wait(bp);
  177. if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
  178. xfs_buf_ioerror_alert(bp, __func__);
  179. return error;
  180. }
  181. STATIC int
  182. xlog_bread(
  183. struct xlog *log,
  184. xfs_daddr_t blk_no,
  185. int nbblks,
  186. struct xfs_buf *bp,
  187. xfs_caddr_t *offset)
  188. {
  189. int error;
  190. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  191. if (error)
  192. return error;
  193. *offset = xlog_align(log, blk_no, nbblks, bp);
  194. return 0;
  195. }
  196. /*
  197. * Read at an offset into the buffer. Returns with the buffer in it's original
  198. * state regardless of the result of the read.
  199. */
  200. STATIC int
  201. xlog_bread_offset(
  202. struct xlog *log,
  203. xfs_daddr_t blk_no, /* block to read from */
  204. int nbblks, /* blocks to read */
  205. struct xfs_buf *bp,
  206. xfs_caddr_t offset)
  207. {
  208. xfs_caddr_t orig_offset = bp->b_addr;
  209. int orig_len = BBTOB(bp->b_length);
  210. int error, error2;
  211. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  212. if (error)
  213. return error;
  214. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  215. /* must reset buffer pointer even on error */
  216. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  217. if (error)
  218. return error;
  219. return error2;
  220. }
  221. /*
  222. * Write out the buffer at the given block for the given number of blocks.
  223. * The buffer is kept locked across the write and is returned locked.
  224. * This can only be used for synchronous log writes.
  225. */
  226. STATIC int
  227. xlog_bwrite(
  228. struct xlog *log,
  229. xfs_daddr_t blk_no,
  230. int nbblks,
  231. struct xfs_buf *bp)
  232. {
  233. int error;
  234. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  235. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  236. nbblks);
  237. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  238. return -EFSCORRUPTED;
  239. }
  240. blk_no = round_down(blk_no, log->l_sectBBsize);
  241. nbblks = round_up(nbblks, log->l_sectBBsize);
  242. ASSERT(nbblks > 0);
  243. ASSERT(nbblks <= bp->b_length);
  244. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  245. XFS_BUF_ZEROFLAGS(bp);
  246. xfs_buf_hold(bp);
  247. xfs_buf_lock(bp);
  248. bp->b_io_length = nbblks;
  249. bp->b_error = 0;
  250. error = xfs_bwrite(bp);
  251. if (error)
  252. xfs_buf_ioerror_alert(bp, __func__);
  253. xfs_buf_relse(bp);
  254. return error;
  255. }
  256. #ifdef DEBUG
  257. /*
  258. * dump debug superblock and log record information
  259. */
  260. STATIC void
  261. xlog_header_check_dump(
  262. xfs_mount_t *mp,
  263. xlog_rec_header_t *head)
  264. {
  265. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
  266. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  267. xfs_debug(mp, " log : uuid = %pU, fmt = %d",
  268. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  269. }
  270. #else
  271. #define xlog_header_check_dump(mp, head)
  272. #endif
  273. /*
  274. * check log record header for recovery
  275. */
  276. STATIC int
  277. xlog_header_check_recover(
  278. xfs_mount_t *mp,
  279. xlog_rec_header_t *head)
  280. {
  281. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  282. /*
  283. * IRIX doesn't write the h_fmt field and leaves it zeroed
  284. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  285. * a dirty log created in IRIX.
  286. */
  287. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  288. xfs_warn(mp,
  289. "dirty log written in incompatible format - can't recover");
  290. xlog_header_check_dump(mp, head);
  291. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  292. XFS_ERRLEVEL_HIGH, mp);
  293. return -EFSCORRUPTED;
  294. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  295. xfs_warn(mp,
  296. "dirty log entry has mismatched uuid - can't recover");
  297. xlog_header_check_dump(mp, head);
  298. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  299. XFS_ERRLEVEL_HIGH, mp);
  300. return -EFSCORRUPTED;
  301. }
  302. return 0;
  303. }
  304. /*
  305. * read the head block of the log and check the header
  306. */
  307. STATIC int
  308. xlog_header_check_mount(
  309. xfs_mount_t *mp,
  310. xlog_rec_header_t *head)
  311. {
  312. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  313. if (uuid_is_nil(&head->h_fs_uuid)) {
  314. /*
  315. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  316. * h_fs_uuid is nil, we assume this log was last mounted
  317. * by IRIX and continue.
  318. */
  319. xfs_warn(mp, "nil uuid in log - IRIX style log");
  320. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  321. xfs_warn(mp, "log has mismatched uuid - can't recover");
  322. xlog_header_check_dump(mp, head);
  323. XFS_ERROR_REPORT("xlog_header_check_mount",
  324. XFS_ERRLEVEL_HIGH, mp);
  325. return -EFSCORRUPTED;
  326. }
  327. return 0;
  328. }
  329. STATIC void
  330. xlog_recover_iodone(
  331. struct xfs_buf *bp)
  332. {
  333. if (bp->b_error) {
  334. /*
  335. * We're not going to bother about retrying
  336. * this during recovery. One strike!
  337. */
  338. if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
  339. xfs_buf_ioerror_alert(bp, __func__);
  340. xfs_force_shutdown(bp->b_target->bt_mount,
  341. SHUTDOWN_META_IO_ERROR);
  342. }
  343. }
  344. bp->b_iodone = NULL;
  345. xfs_buf_ioend(bp);
  346. }
  347. /*
  348. * This routine finds (to an approximation) the first block in the physical
  349. * log which contains the given cycle. It uses a binary search algorithm.
  350. * Note that the algorithm can not be perfect because the disk will not
  351. * necessarily be perfect.
  352. */
  353. STATIC int
  354. xlog_find_cycle_start(
  355. struct xlog *log,
  356. struct xfs_buf *bp,
  357. xfs_daddr_t first_blk,
  358. xfs_daddr_t *last_blk,
  359. uint cycle)
  360. {
  361. xfs_caddr_t offset;
  362. xfs_daddr_t mid_blk;
  363. xfs_daddr_t end_blk;
  364. uint mid_cycle;
  365. int error;
  366. end_blk = *last_blk;
  367. mid_blk = BLK_AVG(first_blk, end_blk);
  368. while (mid_blk != first_blk && mid_blk != end_blk) {
  369. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  370. if (error)
  371. return error;
  372. mid_cycle = xlog_get_cycle(offset);
  373. if (mid_cycle == cycle)
  374. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  375. else
  376. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  377. mid_blk = BLK_AVG(first_blk, end_blk);
  378. }
  379. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  380. (mid_blk == end_blk && mid_blk-1 == first_blk));
  381. *last_blk = end_blk;
  382. return 0;
  383. }
  384. /*
  385. * Check that a range of blocks does not contain stop_on_cycle_no.
  386. * Fill in *new_blk with the block offset where such a block is
  387. * found, or with -1 (an invalid block number) if there is no such
  388. * block in the range. The scan needs to occur from front to back
  389. * and the pointer into the region must be updated since a later
  390. * routine will need to perform another test.
  391. */
  392. STATIC int
  393. xlog_find_verify_cycle(
  394. struct xlog *log,
  395. xfs_daddr_t start_blk,
  396. int nbblks,
  397. uint stop_on_cycle_no,
  398. xfs_daddr_t *new_blk)
  399. {
  400. xfs_daddr_t i, j;
  401. uint cycle;
  402. xfs_buf_t *bp;
  403. xfs_daddr_t bufblks;
  404. xfs_caddr_t buf = NULL;
  405. int error = 0;
  406. /*
  407. * Greedily allocate a buffer big enough to handle the full
  408. * range of basic blocks we'll be examining. If that fails,
  409. * try a smaller size. We need to be able to read at least
  410. * a log sector, or we're out of luck.
  411. */
  412. bufblks = 1 << ffs(nbblks);
  413. while (bufblks > log->l_logBBsize)
  414. bufblks >>= 1;
  415. while (!(bp = xlog_get_bp(log, bufblks))) {
  416. bufblks >>= 1;
  417. if (bufblks < log->l_sectBBsize)
  418. return -ENOMEM;
  419. }
  420. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  421. int bcount;
  422. bcount = min(bufblks, (start_blk + nbblks - i));
  423. error = xlog_bread(log, i, bcount, bp, &buf);
  424. if (error)
  425. goto out;
  426. for (j = 0; j < bcount; j++) {
  427. cycle = xlog_get_cycle(buf);
  428. if (cycle == stop_on_cycle_no) {
  429. *new_blk = i+j;
  430. goto out;
  431. }
  432. buf += BBSIZE;
  433. }
  434. }
  435. *new_blk = -1;
  436. out:
  437. xlog_put_bp(bp);
  438. return error;
  439. }
  440. /*
  441. * Potentially backup over partial log record write.
  442. *
  443. * In the typical case, last_blk is the number of the block directly after
  444. * a good log record. Therefore, we subtract one to get the block number
  445. * of the last block in the given buffer. extra_bblks contains the number
  446. * of blocks we would have read on a previous read. This happens when the
  447. * last log record is split over the end of the physical log.
  448. *
  449. * extra_bblks is the number of blocks potentially verified on a previous
  450. * call to this routine.
  451. */
  452. STATIC int
  453. xlog_find_verify_log_record(
  454. struct xlog *log,
  455. xfs_daddr_t start_blk,
  456. xfs_daddr_t *last_blk,
  457. int extra_bblks)
  458. {
  459. xfs_daddr_t i;
  460. xfs_buf_t *bp;
  461. xfs_caddr_t offset = NULL;
  462. xlog_rec_header_t *head = NULL;
  463. int error = 0;
  464. int smallmem = 0;
  465. int num_blks = *last_blk - start_blk;
  466. int xhdrs;
  467. ASSERT(start_blk != 0 || *last_blk != start_blk);
  468. if (!(bp = xlog_get_bp(log, num_blks))) {
  469. if (!(bp = xlog_get_bp(log, 1)))
  470. return -ENOMEM;
  471. smallmem = 1;
  472. } else {
  473. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  474. if (error)
  475. goto out;
  476. offset += ((num_blks - 1) << BBSHIFT);
  477. }
  478. for (i = (*last_blk) - 1; i >= 0; i--) {
  479. if (i < start_blk) {
  480. /* valid log record not found */
  481. xfs_warn(log->l_mp,
  482. "Log inconsistent (didn't find previous header)");
  483. ASSERT(0);
  484. error = -EIO;
  485. goto out;
  486. }
  487. if (smallmem) {
  488. error = xlog_bread(log, i, 1, bp, &offset);
  489. if (error)
  490. goto out;
  491. }
  492. head = (xlog_rec_header_t *)offset;
  493. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  494. break;
  495. if (!smallmem)
  496. offset -= BBSIZE;
  497. }
  498. /*
  499. * We hit the beginning of the physical log & still no header. Return
  500. * to caller. If caller can handle a return of -1, then this routine
  501. * will be called again for the end of the physical log.
  502. */
  503. if (i == -1) {
  504. error = 1;
  505. goto out;
  506. }
  507. /*
  508. * We have the final block of the good log (the first block
  509. * of the log record _before_ the head. So we check the uuid.
  510. */
  511. if ((error = xlog_header_check_mount(log->l_mp, head)))
  512. goto out;
  513. /*
  514. * We may have found a log record header before we expected one.
  515. * last_blk will be the 1st block # with a given cycle #. We may end
  516. * up reading an entire log record. In this case, we don't want to
  517. * reset last_blk. Only when last_blk points in the middle of a log
  518. * record do we update last_blk.
  519. */
  520. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  521. uint h_size = be32_to_cpu(head->h_size);
  522. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  523. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  524. xhdrs++;
  525. } else {
  526. xhdrs = 1;
  527. }
  528. if (*last_blk - i + extra_bblks !=
  529. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  530. *last_blk = i;
  531. out:
  532. xlog_put_bp(bp);
  533. return error;
  534. }
  535. /*
  536. * Head is defined to be the point of the log where the next log write
  537. * could go. This means that incomplete LR writes at the end are
  538. * eliminated when calculating the head. We aren't guaranteed that previous
  539. * LR have complete transactions. We only know that a cycle number of
  540. * current cycle number -1 won't be present in the log if we start writing
  541. * from our current block number.
  542. *
  543. * last_blk contains the block number of the first block with a given
  544. * cycle number.
  545. *
  546. * Return: zero if normal, non-zero if error.
  547. */
  548. STATIC int
  549. xlog_find_head(
  550. struct xlog *log,
  551. xfs_daddr_t *return_head_blk)
  552. {
  553. xfs_buf_t *bp;
  554. xfs_caddr_t offset;
  555. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  556. int num_scan_bblks;
  557. uint first_half_cycle, last_half_cycle;
  558. uint stop_on_cycle;
  559. int error, log_bbnum = log->l_logBBsize;
  560. /* Is the end of the log device zeroed? */
  561. error = xlog_find_zeroed(log, &first_blk);
  562. if (error < 0) {
  563. xfs_warn(log->l_mp, "empty log check failed");
  564. return error;
  565. }
  566. if (error == 1) {
  567. *return_head_blk = first_blk;
  568. /* Is the whole lot zeroed? */
  569. if (!first_blk) {
  570. /* Linux XFS shouldn't generate totally zeroed logs -
  571. * mkfs etc write a dummy unmount record to a fresh
  572. * log so we can store the uuid in there
  573. */
  574. xfs_warn(log->l_mp, "totally zeroed log");
  575. }
  576. return 0;
  577. }
  578. first_blk = 0; /* get cycle # of 1st block */
  579. bp = xlog_get_bp(log, 1);
  580. if (!bp)
  581. return -ENOMEM;
  582. error = xlog_bread(log, 0, 1, bp, &offset);
  583. if (error)
  584. goto bp_err;
  585. first_half_cycle = xlog_get_cycle(offset);
  586. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  587. error = xlog_bread(log, last_blk, 1, bp, &offset);
  588. if (error)
  589. goto bp_err;
  590. last_half_cycle = xlog_get_cycle(offset);
  591. ASSERT(last_half_cycle != 0);
  592. /*
  593. * If the 1st half cycle number is equal to the last half cycle number,
  594. * then the entire log is stamped with the same cycle number. In this
  595. * case, head_blk can't be set to zero (which makes sense). The below
  596. * math doesn't work out properly with head_blk equal to zero. Instead,
  597. * we set it to log_bbnum which is an invalid block number, but this
  598. * value makes the math correct. If head_blk doesn't changed through
  599. * all the tests below, *head_blk is set to zero at the very end rather
  600. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  601. * in a circular file.
  602. */
  603. if (first_half_cycle == last_half_cycle) {
  604. /*
  605. * In this case we believe that the entire log should have
  606. * cycle number last_half_cycle. We need to scan backwards
  607. * from the end verifying that there are no holes still
  608. * containing last_half_cycle - 1. If we find such a hole,
  609. * then the start of that hole will be the new head. The
  610. * simple case looks like
  611. * x | x ... | x - 1 | x
  612. * Another case that fits this picture would be
  613. * x | x + 1 | x ... | x
  614. * In this case the head really is somewhere at the end of the
  615. * log, as one of the latest writes at the beginning was
  616. * incomplete.
  617. * One more case is
  618. * x | x + 1 | x ... | x - 1 | x
  619. * This is really the combination of the above two cases, and
  620. * the head has to end up at the start of the x-1 hole at the
  621. * end of the log.
  622. *
  623. * In the 256k log case, we will read from the beginning to the
  624. * end of the log and search for cycle numbers equal to x-1.
  625. * We don't worry about the x+1 blocks that we encounter,
  626. * because we know that they cannot be the head since the log
  627. * started with x.
  628. */
  629. head_blk = log_bbnum;
  630. stop_on_cycle = last_half_cycle - 1;
  631. } else {
  632. /*
  633. * In this case we want to find the first block with cycle
  634. * number matching last_half_cycle. We expect the log to be
  635. * some variation on
  636. * x + 1 ... | x ... | x
  637. * The first block with cycle number x (last_half_cycle) will
  638. * be where the new head belongs. First we do a binary search
  639. * for the first occurrence of last_half_cycle. The binary
  640. * search may not be totally accurate, so then we scan back
  641. * from there looking for occurrences of last_half_cycle before
  642. * us. If that backwards scan wraps around the beginning of
  643. * the log, then we look for occurrences of last_half_cycle - 1
  644. * at the end of the log. The cases we're looking for look
  645. * like
  646. * v binary search stopped here
  647. * x + 1 ... | x | x + 1 | x ... | x
  648. * ^ but we want to locate this spot
  649. * or
  650. * <---------> less than scan distance
  651. * x + 1 ... | x ... | x - 1 | x
  652. * ^ we want to locate this spot
  653. */
  654. stop_on_cycle = last_half_cycle;
  655. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  656. &head_blk, last_half_cycle)))
  657. goto bp_err;
  658. }
  659. /*
  660. * Now validate the answer. Scan back some number of maximum possible
  661. * blocks and make sure each one has the expected cycle number. The
  662. * maximum is determined by the total possible amount of buffering
  663. * in the in-core log. The following number can be made tighter if
  664. * we actually look at the block size of the filesystem.
  665. */
  666. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  667. if (head_blk >= num_scan_bblks) {
  668. /*
  669. * We are guaranteed that the entire check can be performed
  670. * in one buffer.
  671. */
  672. start_blk = head_blk - num_scan_bblks;
  673. if ((error = xlog_find_verify_cycle(log,
  674. start_blk, num_scan_bblks,
  675. stop_on_cycle, &new_blk)))
  676. goto bp_err;
  677. if (new_blk != -1)
  678. head_blk = new_blk;
  679. } else { /* need to read 2 parts of log */
  680. /*
  681. * We are going to scan backwards in the log in two parts.
  682. * First we scan the physical end of the log. In this part
  683. * of the log, we are looking for blocks with cycle number
  684. * last_half_cycle - 1.
  685. * If we find one, then we know that the log starts there, as
  686. * we've found a hole that didn't get written in going around
  687. * the end of the physical log. The simple case for this is
  688. * x + 1 ... | x ... | x - 1 | x
  689. * <---------> less than scan distance
  690. * If all of the blocks at the end of the log have cycle number
  691. * last_half_cycle, then we check the blocks at the start of
  692. * the log looking for occurrences of last_half_cycle. If we
  693. * find one, then our current estimate for the location of the
  694. * first occurrence of last_half_cycle is wrong and we move
  695. * back to the hole we've found. This case looks like
  696. * x + 1 ... | x | x + 1 | x ...
  697. * ^ binary search stopped here
  698. * Another case we need to handle that only occurs in 256k
  699. * logs is
  700. * x + 1 ... | x ... | x+1 | x ...
  701. * ^ binary search stops here
  702. * In a 256k log, the scan at the end of the log will see the
  703. * x + 1 blocks. We need to skip past those since that is
  704. * certainly not the head of the log. By searching for
  705. * last_half_cycle-1 we accomplish that.
  706. */
  707. ASSERT(head_blk <= INT_MAX &&
  708. (xfs_daddr_t) num_scan_bblks >= head_blk);
  709. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  710. if ((error = xlog_find_verify_cycle(log, start_blk,
  711. num_scan_bblks - (int)head_blk,
  712. (stop_on_cycle - 1), &new_blk)))
  713. goto bp_err;
  714. if (new_blk != -1) {
  715. head_blk = new_blk;
  716. goto validate_head;
  717. }
  718. /*
  719. * Scan beginning of log now. The last part of the physical
  720. * log is good. This scan needs to verify that it doesn't find
  721. * the last_half_cycle.
  722. */
  723. start_blk = 0;
  724. ASSERT(head_blk <= INT_MAX);
  725. if ((error = xlog_find_verify_cycle(log,
  726. start_blk, (int)head_blk,
  727. stop_on_cycle, &new_blk)))
  728. goto bp_err;
  729. if (new_blk != -1)
  730. head_blk = new_blk;
  731. }
  732. validate_head:
  733. /*
  734. * Now we need to make sure head_blk is not pointing to a block in
  735. * the middle of a log record.
  736. */
  737. num_scan_bblks = XLOG_REC_SHIFT(log);
  738. if (head_blk >= num_scan_bblks) {
  739. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  740. /* start ptr at last block ptr before head_blk */
  741. error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
  742. if (error == 1)
  743. error = -EIO;
  744. if (error)
  745. goto bp_err;
  746. } else {
  747. start_blk = 0;
  748. ASSERT(head_blk <= INT_MAX);
  749. error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
  750. if (error < 0)
  751. goto bp_err;
  752. if (error == 1) {
  753. /* We hit the beginning of the log during our search */
  754. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  755. new_blk = log_bbnum;
  756. ASSERT(start_blk <= INT_MAX &&
  757. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  758. ASSERT(head_blk <= INT_MAX);
  759. error = xlog_find_verify_log_record(log, start_blk,
  760. &new_blk, (int)head_blk);
  761. if (error == 1)
  762. error = -EIO;
  763. if (error)
  764. goto bp_err;
  765. if (new_blk != log_bbnum)
  766. head_blk = new_blk;
  767. } else if (error)
  768. goto bp_err;
  769. }
  770. xlog_put_bp(bp);
  771. if (head_blk == log_bbnum)
  772. *return_head_blk = 0;
  773. else
  774. *return_head_blk = head_blk;
  775. /*
  776. * When returning here, we have a good block number. Bad block
  777. * means that during a previous crash, we didn't have a clean break
  778. * from cycle number N to cycle number N-1. In this case, we need
  779. * to find the first block with cycle number N-1.
  780. */
  781. return 0;
  782. bp_err:
  783. xlog_put_bp(bp);
  784. if (error)
  785. xfs_warn(log->l_mp, "failed to find log head");
  786. return error;
  787. }
  788. /*
  789. * Find the sync block number or the tail of the log.
  790. *
  791. * This will be the block number of the last record to have its
  792. * associated buffers synced to disk. Every log record header has
  793. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  794. * to get a sync block number. The only concern is to figure out which
  795. * log record header to believe.
  796. *
  797. * The following algorithm uses the log record header with the largest
  798. * lsn. The entire log record does not need to be valid. We only care
  799. * that the header is valid.
  800. *
  801. * We could speed up search by using current head_blk buffer, but it is not
  802. * available.
  803. */
  804. STATIC int
  805. xlog_find_tail(
  806. struct xlog *log,
  807. xfs_daddr_t *head_blk,
  808. xfs_daddr_t *tail_blk)
  809. {
  810. xlog_rec_header_t *rhead;
  811. xlog_op_header_t *op_head;
  812. xfs_caddr_t offset = NULL;
  813. xfs_buf_t *bp;
  814. int error, i, found;
  815. xfs_daddr_t umount_data_blk;
  816. xfs_daddr_t after_umount_blk;
  817. xfs_lsn_t tail_lsn;
  818. int hblks;
  819. found = 0;
  820. /*
  821. * Find previous log record
  822. */
  823. if ((error = xlog_find_head(log, head_blk)))
  824. return error;
  825. bp = xlog_get_bp(log, 1);
  826. if (!bp)
  827. return -ENOMEM;
  828. if (*head_blk == 0) { /* special case */
  829. error = xlog_bread(log, 0, 1, bp, &offset);
  830. if (error)
  831. goto done;
  832. if (xlog_get_cycle(offset) == 0) {
  833. *tail_blk = 0;
  834. /* leave all other log inited values alone */
  835. goto done;
  836. }
  837. }
  838. /*
  839. * Search backwards looking for log record header block
  840. */
  841. ASSERT(*head_blk < INT_MAX);
  842. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  843. error = xlog_bread(log, i, 1, bp, &offset);
  844. if (error)
  845. goto done;
  846. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  847. found = 1;
  848. break;
  849. }
  850. }
  851. /*
  852. * If we haven't found the log record header block, start looking
  853. * again from the end of the physical log. XXXmiken: There should be
  854. * a check here to make sure we didn't search more than N blocks in
  855. * the previous code.
  856. */
  857. if (!found) {
  858. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  859. error = xlog_bread(log, i, 1, bp, &offset);
  860. if (error)
  861. goto done;
  862. if (*(__be32 *)offset ==
  863. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  864. found = 2;
  865. break;
  866. }
  867. }
  868. }
  869. if (!found) {
  870. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  871. xlog_put_bp(bp);
  872. ASSERT(0);
  873. return -EIO;
  874. }
  875. /* find blk_no of tail of log */
  876. rhead = (xlog_rec_header_t *)offset;
  877. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  878. /*
  879. * Reset log values according to the state of the log when we
  880. * crashed. In the case where head_blk == 0, we bump curr_cycle
  881. * one because the next write starts a new cycle rather than
  882. * continuing the cycle of the last good log record. At this
  883. * point we have guaranteed that all partial log records have been
  884. * accounted for. Therefore, we know that the last good log record
  885. * written was complete and ended exactly on the end boundary
  886. * of the physical log.
  887. */
  888. log->l_prev_block = i;
  889. log->l_curr_block = (int)*head_blk;
  890. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  891. if (found == 2)
  892. log->l_curr_cycle++;
  893. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  894. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  895. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  896. BBTOB(log->l_curr_block));
  897. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  898. BBTOB(log->l_curr_block));
  899. /*
  900. * Look for unmount record. If we find it, then we know there
  901. * was a clean unmount. Since 'i' could be the last block in
  902. * the physical log, we convert to a log block before comparing
  903. * to the head_blk.
  904. *
  905. * Save the current tail lsn to use to pass to
  906. * xlog_clear_stale_blocks() below. We won't want to clear the
  907. * unmount record if there is one, so we pass the lsn of the
  908. * unmount record rather than the block after it.
  909. */
  910. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  911. int h_size = be32_to_cpu(rhead->h_size);
  912. int h_version = be32_to_cpu(rhead->h_version);
  913. if ((h_version & XLOG_VERSION_2) &&
  914. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  915. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  916. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  917. hblks++;
  918. } else {
  919. hblks = 1;
  920. }
  921. } else {
  922. hblks = 1;
  923. }
  924. after_umount_blk = (i + hblks + (int)
  925. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  926. tail_lsn = atomic64_read(&log->l_tail_lsn);
  927. if (*head_blk == after_umount_blk &&
  928. be32_to_cpu(rhead->h_num_logops) == 1) {
  929. umount_data_blk = (i + hblks) % log->l_logBBsize;
  930. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  931. if (error)
  932. goto done;
  933. op_head = (xlog_op_header_t *)offset;
  934. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  935. /*
  936. * Set tail and last sync so that newly written
  937. * log records will point recovery to after the
  938. * current unmount record.
  939. */
  940. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  941. log->l_curr_cycle, after_umount_blk);
  942. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  943. log->l_curr_cycle, after_umount_blk);
  944. *tail_blk = after_umount_blk;
  945. /*
  946. * Note that the unmount was clean. If the unmount
  947. * was not clean, we need to know this to rebuild the
  948. * superblock counters from the perag headers if we
  949. * have a filesystem using non-persistent counters.
  950. */
  951. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  952. }
  953. }
  954. /*
  955. * Make sure that there are no blocks in front of the head
  956. * with the same cycle number as the head. This can happen
  957. * because we allow multiple outstanding log writes concurrently,
  958. * and the later writes might make it out before earlier ones.
  959. *
  960. * We use the lsn from before modifying it so that we'll never
  961. * overwrite the unmount record after a clean unmount.
  962. *
  963. * Do this only if we are going to recover the filesystem
  964. *
  965. * NOTE: This used to say "if (!readonly)"
  966. * However on Linux, we can & do recover a read-only filesystem.
  967. * We only skip recovery if NORECOVERY is specified on mount,
  968. * in which case we would not be here.
  969. *
  970. * But... if the -device- itself is readonly, just skip this.
  971. * We can't recover this device anyway, so it won't matter.
  972. */
  973. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  974. error = xlog_clear_stale_blocks(log, tail_lsn);
  975. done:
  976. xlog_put_bp(bp);
  977. if (error)
  978. xfs_warn(log->l_mp, "failed to locate log tail");
  979. return error;
  980. }
  981. /*
  982. * Is the log zeroed at all?
  983. *
  984. * The last binary search should be changed to perform an X block read
  985. * once X becomes small enough. You can then search linearly through
  986. * the X blocks. This will cut down on the number of reads we need to do.
  987. *
  988. * If the log is partially zeroed, this routine will pass back the blkno
  989. * of the first block with cycle number 0. It won't have a complete LR
  990. * preceding it.
  991. *
  992. * Return:
  993. * 0 => the log is completely written to
  994. * 1 => use *blk_no as the first block of the log
  995. * <0 => error has occurred
  996. */
  997. STATIC int
  998. xlog_find_zeroed(
  999. struct xlog *log,
  1000. xfs_daddr_t *blk_no)
  1001. {
  1002. xfs_buf_t *bp;
  1003. xfs_caddr_t offset;
  1004. uint first_cycle, last_cycle;
  1005. xfs_daddr_t new_blk, last_blk, start_blk;
  1006. xfs_daddr_t num_scan_bblks;
  1007. int error, log_bbnum = log->l_logBBsize;
  1008. *blk_no = 0;
  1009. /* check totally zeroed log */
  1010. bp = xlog_get_bp(log, 1);
  1011. if (!bp)
  1012. return -ENOMEM;
  1013. error = xlog_bread(log, 0, 1, bp, &offset);
  1014. if (error)
  1015. goto bp_err;
  1016. first_cycle = xlog_get_cycle(offset);
  1017. if (first_cycle == 0) { /* completely zeroed log */
  1018. *blk_no = 0;
  1019. xlog_put_bp(bp);
  1020. return 1;
  1021. }
  1022. /* check partially zeroed log */
  1023. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1024. if (error)
  1025. goto bp_err;
  1026. last_cycle = xlog_get_cycle(offset);
  1027. if (last_cycle != 0) { /* log completely written to */
  1028. xlog_put_bp(bp);
  1029. return 0;
  1030. } else if (first_cycle != 1) {
  1031. /*
  1032. * If the cycle of the last block is zero, the cycle of
  1033. * the first block must be 1. If it's not, maybe we're
  1034. * not looking at a log... Bail out.
  1035. */
  1036. xfs_warn(log->l_mp,
  1037. "Log inconsistent or not a log (last==0, first!=1)");
  1038. error = -EINVAL;
  1039. goto bp_err;
  1040. }
  1041. /* we have a partially zeroed log */
  1042. last_blk = log_bbnum-1;
  1043. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1044. goto bp_err;
  1045. /*
  1046. * Validate the answer. Because there is no way to guarantee that
  1047. * the entire log is made up of log records which are the same size,
  1048. * we scan over the defined maximum blocks. At this point, the maximum
  1049. * is not chosen to mean anything special. XXXmiken
  1050. */
  1051. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1052. ASSERT(num_scan_bblks <= INT_MAX);
  1053. if (last_blk < num_scan_bblks)
  1054. num_scan_bblks = last_blk;
  1055. start_blk = last_blk - num_scan_bblks;
  1056. /*
  1057. * We search for any instances of cycle number 0 that occur before
  1058. * our current estimate of the head. What we're trying to detect is
  1059. * 1 ... | 0 | 1 | 0...
  1060. * ^ binary search ends here
  1061. */
  1062. if ((error = xlog_find_verify_cycle(log, start_blk,
  1063. (int)num_scan_bblks, 0, &new_blk)))
  1064. goto bp_err;
  1065. if (new_blk != -1)
  1066. last_blk = new_blk;
  1067. /*
  1068. * Potentially backup over partial log record write. We don't need
  1069. * to search the end of the log because we know it is zero.
  1070. */
  1071. error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
  1072. if (error == 1)
  1073. error = -EIO;
  1074. if (error)
  1075. goto bp_err;
  1076. *blk_no = last_blk;
  1077. bp_err:
  1078. xlog_put_bp(bp);
  1079. if (error)
  1080. return error;
  1081. return 1;
  1082. }
  1083. /*
  1084. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1085. * to initialize a buffer full of empty log record headers and write
  1086. * them into the log.
  1087. */
  1088. STATIC void
  1089. xlog_add_record(
  1090. struct xlog *log,
  1091. xfs_caddr_t buf,
  1092. int cycle,
  1093. int block,
  1094. int tail_cycle,
  1095. int tail_block)
  1096. {
  1097. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1098. memset(buf, 0, BBSIZE);
  1099. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1100. recp->h_cycle = cpu_to_be32(cycle);
  1101. recp->h_version = cpu_to_be32(
  1102. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1103. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1104. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1105. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1106. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1107. }
  1108. STATIC int
  1109. xlog_write_log_records(
  1110. struct xlog *log,
  1111. int cycle,
  1112. int start_block,
  1113. int blocks,
  1114. int tail_cycle,
  1115. int tail_block)
  1116. {
  1117. xfs_caddr_t offset;
  1118. xfs_buf_t *bp;
  1119. int balign, ealign;
  1120. int sectbb = log->l_sectBBsize;
  1121. int end_block = start_block + blocks;
  1122. int bufblks;
  1123. int error = 0;
  1124. int i, j = 0;
  1125. /*
  1126. * Greedily allocate a buffer big enough to handle the full
  1127. * range of basic blocks to be written. If that fails, try
  1128. * a smaller size. We need to be able to write at least a
  1129. * log sector, or we're out of luck.
  1130. */
  1131. bufblks = 1 << ffs(blocks);
  1132. while (bufblks > log->l_logBBsize)
  1133. bufblks >>= 1;
  1134. while (!(bp = xlog_get_bp(log, bufblks))) {
  1135. bufblks >>= 1;
  1136. if (bufblks < sectbb)
  1137. return -ENOMEM;
  1138. }
  1139. /* We may need to do a read at the start to fill in part of
  1140. * the buffer in the starting sector not covered by the first
  1141. * write below.
  1142. */
  1143. balign = round_down(start_block, sectbb);
  1144. if (balign != start_block) {
  1145. error = xlog_bread_noalign(log, start_block, 1, bp);
  1146. if (error)
  1147. goto out_put_bp;
  1148. j = start_block - balign;
  1149. }
  1150. for (i = start_block; i < end_block; i += bufblks) {
  1151. int bcount, endcount;
  1152. bcount = min(bufblks, end_block - start_block);
  1153. endcount = bcount - j;
  1154. /* We may need to do a read at the end to fill in part of
  1155. * the buffer in the final sector not covered by the write.
  1156. * If this is the same sector as the above read, skip it.
  1157. */
  1158. ealign = round_down(end_block, sectbb);
  1159. if (j == 0 && (start_block + endcount > ealign)) {
  1160. offset = bp->b_addr + BBTOB(ealign - start_block);
  1161. error = xlog_bread_offset(log, ealign, sectbb,
  1162. bp, offset);
  1163. if (error)
  1164. break;
  1165. }
  1166. offset = xlog_align(log, start_block, endcount, bp);
  1167. for (; j < endcount; j++) {
  1168. xlog_add_record(log, offset, cycle, i+j,
  1169. tail_cycle, tail_block);
  1170. offset += BBSIZE;
  1171. }
  1172. error = xlog_bwrite(log, start_block, endcount, bp);
  1173. if (error)
  1174. break;
  1175. start_block += endcount;
  1176. j = 0;
  1177. }
  1178. out_put_bp:
  1179. xlog_put_bp(bp);
  1180. return error;
  1181. }
  1182. /*
  1183. * This routine is called to blow away any incomplete log writes out
  1184. * in front of the log head. We do this so that we won't become confused
  1185. * if we come up, write only a little bit more, and then crash again.
  1186. * If we leave the partial log records out there, this situation could
  1187. * cause us to think those partial writes are valid blocks since they
  1188. * have the current cycle number. We get rid of them by overwriting them
  1189. * with empty log records with the old cycle number rather than the
  1190. * current one.
  1191. *
  1192. * The tail lsn is passed in rather than taken from
  1193. * the log so that we will not write over the unmount record after a
  1194. * clean unmount in a 512 block log. Doing so would leave the log without
  1195. * any valid log records in it until a new one was written. If we crashed
  1196. * during that time we would not be able to recover.
  1197. */
  1198. STATIC int
  1199. xlog_clear_stale_blocks(
  1200. struct xlog *log,
  1201. xfs_lsn_t tail_lsn)
  1202. {
  1203. int tail_cycle, head_cycle;
  1204. int tail_block, head_block;
  1205. int tail_distance, max_distance;
  1206. int distance;
  1207. int error;
  1208. tail_cycle = CYCLE_LSN(tail_lsn);
  1209. tail_block = BLOCK_LSN(tail_lsn);
  1210. head_cycle = log->l_curr_cycle;
  1211. head_block = log->l_curr_block;
  1212. /*
  1213. * Figure out the distance between the new head of the log
  1214. * and the tail. We want to write over any blocks beyond the
  1215. * head that we may have written just before the crash, but
  1216. * we don't want to overwrite the tail of the log.
  1217. */
  1218. if (head_cycle == tail_cycle) {
  1219. /*
  1220. * The tail is behind the head in the physical log,
  1221. * so the distance from the head to the tail is the
  1222. * distance from the head to the end of the log plus
  1223. * the distance from the beginning of the log to the
  1224. * tail.
  1225. */
  1226. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1227. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1228. XFS_ERRLEVEL_LOW, log->l_mp);
  1229. return -EFSCORRUPTED;
  1230. }
  1231. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1232. } else {
  1233. /*
  1234. * The head is behind the tail in the physical log,
  1235. * so the distance from the head to the tail is just
  1236. * the tail block minus the head block.
  1237. */
  1238. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1239. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1240. XFS_ERRLEVEL_LOW, log->l_mp);
  1241. return -EFSCORRUPTED;
  1242. }
  1243. tail_distance = tail_block - head_block;
  1244. }
  1245. /*
  1246. * If the head is right up against the tail, we can't clear
  1247. * anything.
  1248. */
  1249. if (tail_distance <= 0) {
  1250. ASSERT(tail_distance == 0);
  1251. return 0;
  1252. }
  1253. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1254. /*
  1255. * Take the smaller of the maximum amount of outstanding I/O
  1256. * we could have and the distance to the tail to clear out.
  1257. * We take the smaller so that we don't overwrite the tail and
  1258. * we don't waste all day writing from the head to the tail
  1259. * for no reason.
  1260. */
  1261. max_distance = MIN(max_distance, tail_distance);
  1262. if ((head_block + max_distance) <= log->l_logBBsize) {
  1263. /*
  1264. * We can stomp all the blocks we need to without
  1265. * wrapping around the end of the log. Just do it
  1266. * in a single write. Use the cycle number of the
  1267. * current cycle minus one so that the log will look like:
  1268. * n ... | n - 1 ...
  1269. */
  1270. error = xlog_write_log_records(log, (head_cycle - 1),
  1271. head_block, max_distance, tail_cycle,
  1272. tail_block);
  1273. if (error)
  1274. return error;
  1275. } else {
  1276. /*
  1277. * We need to wrap around the end of the physical log in
  1278. * order to clear all the blocks. Do it in two separate
  1279. * I/Os. The first write should be from the head to the
  1280. * end of the physical log, and it should use the current
  1281. * cycle number minus one just like above.
  1282. */
  1283. distance = log->l_logBBsize - head_block;
  1284. error = xlog_write_log_records(log, (head_cycle - 1),
  1285. head_block, distance, tail_cycle,
  1286. tail_block);
  1287. if (error)
  1288. return error;
  1289. /*
  1290. * Now write the blocks at the start of the physical log.
  1291. * This writes the remainder of the blocks we want to clear.
  1292. * It uses the current cycle number since we're now on the
  1293. * same cycle as the head so that we get:
  1294. * n ... n ... | n - 1 ...
  1295. * ^^^^^ blocks we're writing
  1296. */
  1297. distance = max_distance - (log->l_logBBsize - head_block);
  1298. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1299. tail_cycle, tail_block);
  1300. if (error)
  1301. return error;
  1302. }
  1303. return 0;
  1304. }
  1305. /******************************************************************************
  1306. *
  1307. * Log recover routines
  1308. *
  1309. ******************************************************************************
  1310. */
  1311. /*
  1312. * Sort the log items in the transaction.
  1313. *
  1314. * The ordering constraints are defined by the inode allocation and unlink
  1315. * behaviour. The rules are:
  1316. *
  1317. * 1. Every item is only logged once in a given transaction. Hence it
  1318. * represents the last logged state of the item. Hence ordering is
  1319. * dependent on the order in which operations need to be performed so
  1320. * required initial conditions are always met.
  1321. *
  1322. * 2. Cancelled buffers are recorded in pass 1 in a separate table and
  1323. * there's nothing to replay from them so we can simply cull them
  1324. * from the transaction. However, we can't do that until after we've
  1325. * replayed all the other items because they may be dependent on the
  1326. * cancelled buffer and replaying the cancelled buffer can remove it
  1327. * form the cancelled buffer table. Hence they have tobe done last.
  1328. *
  1329. * 3. Inode allocation buffers must be replayed before inode items that
  1330. * read the buffer and replay changes into it. For filesystems using the
  1331. * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
  1332. * treated the same as inode allocation buffers as they create and
  1333. * initialise the buffers directly.
  1334. *
  1335. * 4. Inode unlink buffers must be replayed after inode items are replayed.
  1336. * This ensures that inodes are completely flushed to the inode buffer
  1337. * in a "free" state before we remove the unlinked inode list pointer.
  1338. *
  1339. * Hence the ordering needs to be inode allocation buffers first, inode items
  1340. * second, inode unlink buffers third and cancelled buffers last.
  1341. *
  1342. * But there's a problem with that - we can't tell an inode allocation buffer
  1343. * apart from a regular buffer, so we can't separate them. We can, however,
  1344. * tell an inode unlink buffer from the others, and so we can separate them out
  1345. * from all the other buffers and move them to last.
  1346. *
  1347. * Hence, 4 lists, in order from head to tail:
  1348. * - buffer_list for all buffers except cancelled/inode unlink buffers
  1349. * - item_list for all non-buffer items
  1350. * - inode_buffer_list for inode unlink buffers
  1351. * - cancel_list for the cancelled buffers
  1352. *
  1353. * Note that we add objects to the tail of the lists so that first-to-last
  1354. * ordering is preserved within the lists. Adding objects to the head of the
  1355. * list means when we traverse from the head we walk them in last-to-first
  1356. * order. For cancelled buffers and inode unlink buffers this doesn't matter,
  1357. * but for all other items there may be specific ordering that we need to
  1358. * preserve.
  1359. */
  1360. STATIC int
  1361. xlog_recover_reorder_trans(
  1362. struct xlog *log,
  1363. struct xlog_recover *trans,
  1364. int pass)
  1365. {
  1366. xlog_recover_item_t *item, *n;
  1367. int error = 0;
  1368. LIST_HEAD(sort_list);
  1369. LIST_HEAD(cancel_list);
  1370. LIST_HEAD(buffer_list);
  1371. LIST_HEAD(inode_buffer_list);
  1372. LIST_HEAD(inode_list);
  1373. list_splice_init(&trans->r_itemq, &sort_list);
  1374. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1375. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1376. switch (ITEM_TYPE(item)) {
  1377. case XFS_LI_ICREATE:
  1378. list_move_tail(&item->ri_list, &buffer_list);
  1379. break;
  1380. case XFS_LI_BUF:
  1381. if (buf_f->blf_flags & XFS_BLF_CANCEL) {
  1382. trace_xfs_log_recover_item_reorder_head(log,
  1383. trans, item, pass);
  1384. list_move(&item->ri_list, &cancel_list);
  1385. break;
  1386. }
  1387. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1388. list_move(&item->ri_list, &inode_buffer_list);
  1389. break;
  1390. }
  1391. list_move_tail(&item->ri_list, &buffer_list);
  1392. break;
  1393. case XFS_LI_INODE:
  1394. case XFS_LI_DQUOT:
  1395. case XFS_LI_QUOTAOFF:
  1396. case XFS_LI_EFD:
  1397. case XFS_LI_EFI:
  1398. trace_xfs_log_recover_item_reorder_tail(log,
  1399. trans, item, pass);
  1400. list_move_tail(&item->ri_list, &inode_list);
  1401. break;
  1402. default:
  1403. xfs_warn(log->l_mp,
  1404. "%s: unrecognized type of log operation",
  1405. __func__);
  1406. ASSERT(0);
  1407. /*
  1408. * return the remaining items back to the transaction
  1409. * item list so they can be freed in caller.
  1410. */
  1411. if (!list_empty(&sort_list))
  1412. list_splice_init(&sort_list, &trans->r_itemq);
  1413. error = -EIO;
  1414. goto out;
  1415. }
  1416. }
  1417. out:
  1418. ASSERT(list_empty(&sort_list));
  1419. if (!list_empty(&buffer_list))
  1420. list_splice(&buffer_list, &trans->r_itemq);
  1421. if (!list_empty(&inode_list))
  1422. list_splice_tail(&inode_list, &trans->r_itemq);
  1423. if (!list_empty(&inode_buffer_list))
  1424. list_splice_tail(&inode_buffer_list, &trans->r_itemq);
  1425. if (!list_empty(&cancel_list))
  1426. list_splice_tail(&cancel_list, &trans->r_itemq);
  1427. return error;
  1428. }
  1429. /*
  1430. * Build up the table of buf cancel records so that we don't replay
  1431. * cancelled data in the second pass. For buffer records that are
  1432. * not cancel records, there is nothing to do here so we just return.
  1433. *
  1434. * If we get a cancel record which is already in the table, this indicates
  1435. * that the buffer was cancelled multiple times. In order to ensure
  1436. * that during pass 2 we keep the record in the table until we reach its
  1437. * last occurrence in the log, we keep a reference count in the cancel
  1438. * record in the table to tell us how many times we expect to see this
  1439. * record during the second pass.
  1440. */
  1441. STATIC int
  1442. xlog_recover_buffer_pass1(
  1443. struct xlog *log,
  1444. struct xlog_recover_item *item)
  1445. {
  1446. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1447. struct list_head *bucket;
  1448. struct xfs_buf_cancel *bcp;
  1449. /*
  1450. * If this isn't a cancel buffer item, then just return.
  1451. */
  1452. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1453. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1454. return 0;
  1455. }
  1456. /*
  1457. * Insert an xfs_buf_cancel record into the hash table of them.
  1458. * If there is already an identical record, bump its reference count.
  1459. */
  1460. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1461. list_for_each_entry(bcp, bucket, bc_list) {
  1462. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1463. bcp->bc_len == buf_f->blf_len) {
  1464. bcp->bc_refcount++;
  1465. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1466. return 0;
  1467. }
  1468. }
  1469. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1470. bcp->bc_blkno = buf_f->blf_blkno;
  1471. bcp->bc_len = buf_f->blf_len;
  1472. bcp->bc_refcount = 1;
  1473. list_add_tail(&bcp->bc_list, bucket);
  1474. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1475. return 0;
  1476. }
  1477. /*
  1478. * Check to see whether the buffer being recovered has a corresponding
  1479. * entry in the buffer cancel record table. If it is, return the cancel
  1480. * buffer structure to the caller.
  1481. */
  1482. STATIC struct xfs_buf_cancel *
  1483. xlog_peek_buffer_cancelled(
  1484. struct xlog *log,
  1485. xfs_daddr_t blkno,
  1486. uint len,
  1487. ushort flags)
  1488. {
  1489. struct list_head *bucket;
  1490. struct xfs_buf_cancel *bcp;
  1491. if (!log->l_buf_cancel_table) {
  1492. /* empty table means no cancelled buffers in the log */
  1493. ASSERT(!(flags & XFS_BLF_CANCEL));
  1494. return NULL;
  1495. }
  1496. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1497. list_for_each_entry(bcp, bucket, bc_list) {
  1498. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1499. return bcp;
  1500. }
  1501. /*
  1502. * We didn't find a corresponding entry in the table, so return 0 so
  1503. * that the buffer is NOT cancelled.
  1504. */
  1505. ASSERT(!(flags & XFS_BLF_CANCEL));
  1506. return NULL;
  1507. }
  1508. /*
  1509. * If the buffer is being cancelled then return 1 so that it will be cancelled,
  1510. * otherwise return 0. If the buffer is actually a buffer cancel item
  1511. * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
  1512. * table and remove it from the table if this is the last reference.
  1513. *
  1514. * We remove the cancel record from the table when we encounter its last
  1515. * occurrence in the log so that if the same buffer is re-used again after its
  1516. * last cancellation we actually replay the changes made at that point.
  1517. */
  1518. STATIC int
  1519. xlog_check_buffer_cancelled(
  1520. struct xlog *log,
  1521. xfs_daddr_t blkno,
  1522. uint len,
  1523. ushort flags)
  1524. {
  1525. struct xfs_buf_cancel *bcp;
  1526. bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
  1527. if (!bcp)
  1528. return 0;
  1529. /*
  1530. * We've go a match, so return 1 so that the recovery of this buffer
  1531. * is cancelled. If this buffer is actually a buffer cancel log
  1532. * item, then decrement the refcount on the one in the table and
  1533. * remove it if this is the last reference.
  1534. */
  1535. if (flags & XFS_BLF_CANCEL) {
  1536. if (--bcp->bc_refcount == 0) {
  1537. list_del(&bcp->bc_list);
  1538. kmem_free(bcp);
  1539. }
  1540. }
  1541. return 1;
  1542. }
  1543. /*
  1544. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1545. * data which should be recovered is that which corresponds to the
  1546. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1547. * data for the inodes is always logged through the inodes themselves rather
  1548. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1549. *
  1550. * The only time when buffers full of inodes are fully recovered is when the
  1551. * buffer is full of newly allocated inodes. In this case the buffer will
  1552. * not be marked as an inode buffer and so will be sent to
  1553. * xlog_recover_do_reg_buffer() below during recovery.
  1554. */
  1555. STATIC int
  1556. xlog_recover_do_inode_buffer(
  1557. struct xfs_mount *mp,
  1558. xlog_recover_item_t *item,
  1559. struct xfs_buf *bp,
  1560. xfs_buf_log_format_t *buf_f)
  1561. {
  1562. int i;
  1563. int item_index = 0;
  1564. int bit = 0;
  1565. int nbits = 0;
  1566. int reg_buf_offset = 0;
  1567. int reg_buf_bytes = 0;
  1568. int next_unlinked_offset;
  1569. int inodes_per_buf;
  1570. xfs_agino_t *logged_nextp;
  1571. xfs_agino_t *buffer_nextp;
  1572. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1573. /*
  1574. * Post recovery validation only works properly on CRC enabled
  1575. * filesystems.
  1576. */
  1577. if (xfs_sb_version_hascrc(&mp->m_sb))
  1578. bp->b_ops = &xfs_inode_buf_ops;
  1579. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1580. for (i = 0; i < inodes_per_buf; i++) {
  1581. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1582. offsetof(xfs_dinode_t, di_next_unlinked);
  1583. while (next_unlinked_offset >=
  1584. (reg_buf_offset + reg_buf_bytes)) {
  1585. /*
  1586. * The next di_next_unlinked field is beyond
  1587. * the current logged region. Find the next
  1588. * logged region that contains or is beyond
  1589. * the current di_next_unlinked field.
  1590. */
  1591. bit += nbits;
  1592. bit = xfs_next_bit(buf_f->blf_data_map,
  1593. buf_f->blf_map_size, bit);
  1594. /*
  1595. * If there are no more logged regions in the
  1596. * buffer, then we're done.
  1597. */
  1598. if (bit == -1)
  1599. return 0;
  1600. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1601. buf_f->blf_map_size, bit);
  1602. ASSERT(nbits > 0);
  1603. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1604. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1605. item_index++;
  1606. }
  1607. /*
  1608. * If the current logged region starts after the current
  1609. * di_next_unlinked field, then move on to the next
  1610. * di_next_unlinked field.
  1611. */
  1612. if (next_unlinked_offset < reg_buf_offset)
  1613. continue;
  1614. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1615. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1616. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1617. BBTOB(bp->b_io_length));
  1618. /*
  1619. * The current logged region contains a copy of the
  1620. * current di_next_unlinked field. Extract its value
  1621. * and copy it to the buffer copy.
  1622. */
  1623. logged_nextp = item->ri_buf[item_index].i_addr +
  1624. next_unlinked_offset - reg_buf_offset;
  1625. if (unlikely(*logged_nextp == 0)) {
  1626. xfs_alert(mp,
  1627. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1628. "Trying to replay bad (0) inode di_next_unlinked field.",
  1629. item, bp);
  1630. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1631. XFS_ERRLEVEL_LOW, mp);
  1632. return -EFSCORRUPTED;
  1633. }
  1634. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1635. next_unlinked_offset);
  1636. *buffer_nextp = *logged_nextp;
  1637. /*
  1638. * If necessary, recalculate the CRC in the on-disk inode. We
  1639. * have to leave the inode in a consistent state for whoever
  1640. * reads it next....
  1641. */
  1642. xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
  1643. xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
  1644. }
  1645. return 0;
  1646. }
  1647. /*
  1648. * V5 filesystems know the age of the buffer on disk being recovered. We can
  1649. * have newer objects on disk than we are replaying, and so for these cases we
  1650. * don't want to replay the current change as that will make the buffer contents
  1651. * temporarily invalid on disk.
  1652. *
  1653. * The magic number might not match the buffer type we are going to recover
  1654. * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
  1655. * extract the LSN of the existing object in the buffer based on it's current
  1656. * magic number. If we don't recognise the magic number in the buffer, then
  1657. * return a LSN of -1 so that the caller knows it was an unrecognised block and
  1658. * so can recover the buffer.
  1659. *
  1660. * Note: we cannot rely solely on magic number matches to determine that the
  1661. * buffer has a valid LSN - we also need to verify that it belongs to this
  1662. * filesystem, so we need to extract the object's LSN and compare it to that
  1663. * which we read from the superblock. If the UUIDs don't match, then we've got a
  1664. * stale metadata block from an old filesystem instance that we need to recover
  1665. * over the top of.
  1666. */
  1667. static xfs_lsn_t
  1668. xlog_recover_get_buf_lsn(
  1669. struct xfs_mount *mp,
  1670. struct xfs_buf *bp)
  1671. {
  1672. __uint32_t magic32;
  1673. __uint16_t magic16;
  1674. __uint16_t magicda;
  1675. void *blk = bp->b_addr;
  1676. uuid_t *uuid;
  1677. xfs_lsn_t lsn = -1;
  1678. /* v4 filesystems always recover immediately */
  1679. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1680. goto recover_immediately;
  1681. magic32 = be32_to_cpu(*(__be32 *)blk);
  1682. switch (magic32) {
  1683. case XFS_ABTB_CRC_MAGIC:
  1684. case XFS_ABTC_CRC_MAGIC:
  1685. case XFS_ABTB_MAGIC:
  1686. case XFS_ABTC_MAGIC:
  1687. case XFS_IBT_CRC_MAGIC:
  1688. case XFS_IBT_MAGIC: {
  1689. struct xfs_btree_block *btb = blk;
  1690. lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
  1691. uuid = &btb->bb_u.s.bb_uuid;
  1692. break;
  1693. }
  1694. case XFS_BMAP_CRC_MAGIC:
  1695. case XFS_BMAP_MAGIC: {
  1696. struct xfs_btree_block *btb = blk;
  1697. lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
  1698. uuid = &btb->bb_u.l.bb_uuid;
  1699. break;
  1700. }
  1701. case XFS_AGF_MAGIC:
  1702. lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
  1703. uuid = &((struct xfs_agf *)blk)->agf_uuid;
  1704. break;
  1705. case XFS_AGFL_MAGIC:
  1706. lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
  1707. uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
  1708. break;
  1709. case XFS_AGI_MAGIC:
  1710. lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
  1711. uuid = &((struct xfs_agi *)blk)->agi_uuid;
  1712. break;
  1713. case XFS_SYMLINK_MAGIC:
  1714. lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
  1715. uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
  1716. break;
  1717. case XFS_DIR3_BLOCK_MAGIC:
  1718. case XFS_DIR3_DATA_MAGIC:
  1719. case XFS_DIR3_FREE_MAGIC:
  1720. lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
  1721. uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
  1722. break;
  1723. case XFS_ATTR3_RMT_MAGIC:
  1724. lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
  1725. uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
  1726. break;
  1727. case XFS_SB_MAGIC:
  1728. lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
  1729. uuid = &((struct xfs_dsb *)blk)->sb_uuid;
  1730. break;
  1731. default:
  1732. break;
  1733. }
  1734. if (lsn != (xfs_lsn_t)-1) {
  1735. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1736. goto recover_immediately;
  1737. return lsn;
  1738. }
  1739. magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
  1740. switch (magicda) {
  1741. case XFS_DIR3_LEAF1_MAGIC:
  1742. case XFS_DIR3_LEAFN_MAGIC:
  1743. case XFS_DA3_NODE_MAGIC:
  1744. lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
  1745. uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
  1746. break;
  1747. default:
  1748. break;
  1749. }
  1750. if (lsn != (xfs_lsn_t)-1) {
  1751. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1752. goto recover_immediately;
  1753. return lsn;
  1754. }
  1755. /*
  1756. * We do individual object checks on dquot and inode buffers as they
  1757. * have their own individual LSN records. Also, we could have a stale
  1758. * buffer here, so we have to at least recognise these buffer types.
  1759. *
  1760. * A notd complexity here is inode unlinked list processing - it logs
  1761. * the inode directly in the buffer, but we don't know which inodes have
  1762. * been modified, and there is no global buffer LSN. Hence we need to
  1763. * recover all inode buffer types immediately. This problem will be
  1764. * fixed by logical logging of the unlinked list modifications.
  1765. */
  1766. magic16 = be16_to_cpu(*(__be16 *)blk);
  1767. switch (magic16) {
  1768. case XFS_DQUOT_MAGIC:
  1769. case XFS_DINODE_MAGIC:
  1770. goto recover_immediately;
  1771. default:
  1772. break;
  1773. }
  1774. /* unknown buffer contents, recover immediately */
  1775. recover_immediately:
  1776. return (xfs_lsn_t)-1;
  1777. }
  1778. /*
  1779. * Validate the recovered buffer is of the correct type and attach the
  1780. * appropriate buffer operations to them for writeback. Magic numbers are in a
  1781. * few places:
  1782. * the first 16 bits of the buffer (inode buffer, dquot buffer),
  1783. * the first 32 bits of the buffer (most blocks),
  1784. * inside a struct xfs_da_blkinfo at the start of the buffer.
  1785. */
  1786. static void
  1787. xlog_recover_validate_buf_type(
  1788. struct xfs_mount *mp,
  1789. struct xfs_buf *bp,
  1790. xfs_buf_log_format_t *buf_f)
  1791. {
  1792. struct xfs_da_blkinfo *info = bp->b_addr;
  1793. __uint32_t magic32;
  1794. __uint16_t magic16;
  1795. __uint16_t magicda;
  1796. /*
  1797. * We can only do post recovery validation on items on CRC enabled
  1798. * fielsystems as we need to know when the buffer was written to be able
  1799. * to determine if we should have replayed the item. If we replay old
  1800. * metadata over a newer buffer, then it will enter a temporarily
  1801. * inconsistent state resulting in verification failures. Hence for now
  1802. * just avoid the verification stage for non-crc filesystems
  1803. */
  1804. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1805. return;
  1806. magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
  1807. magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
  1808. magicda = be16_to_cpu(info->magic);
  1809. switch (xfs_blft_from_flags(buf_f)) {
  1810. case XFS_BLFT_BTREE_BUF:
  1811. switch (magic32) {
  1812. case XFS_ABTB_CRC_MAGIC:
  1813. case XFS_ABTC_CRC_MAGIC:
  1814. case XFS_ABTB_MAGIC:
  1815. case XFS_ABTC_MAGIC:
  1816. bp->b_ops = &xfs_allocbt_buf_ops;
  1817. break;
  1818. case XFS_IBT_CRC_MAGIC:
  1819. case XFS_FIBT_CRC_MAGIC:
  1820. case XFS_IBT_MAGIC:
  1821. case XFS_FIBT_MAGIC:
  1822. bp->b_ops = &xfs_inobt_buf_ops;
  1823. break;
  1824. case XFS_BMAP_CRC_MAGIC:
  1825. case XFS_BMAP_MAGIC:
  1826. bp->b_ops = &xfs_bmbt_buf_ops;
  1827. break;
  1828. default:
  1829. xfs_warn(mp, "Bad btree block magic!");
  1830. ASSERT(0);
  1831. break;
  1832. }
  1833. break;
  1834. case XFS_BLFT_AGF_BUF:
  1835. if (magic32 != XFS_AGF_MAGIC) {
  1836. xfs_warn(mp, "Bad AGF block magic!");
  1837. ASSERT(0);
  1838. break;
  1839. }
  1840. bp->b_ops = &xfs_agf_buf_ops;
  1841. break;
  1842. case XFS_BLFT_AGFL_BUF:
  1843. if (magic32 != XFS_AGFL_MAGIC) {
  1844. xfs_warn(mp, "Bad AGFL block magic!");
  1845. ASSERT(0);
  1846. break;
  1847. }
  1848. bp->b_ops = &xfs_agfl_buf_ops;
  1849. break;
  1850. case XFS_BLFT_AGI_BUF:
  1851. if (magic32 != XFS_AGI_MAGIC) {
  1852. xfs_warn(mp, "Bad AGI block magic!");
  1853. ASSERT(0);
  1854. break;
  1855. }
  1856. bp->b_ops = &xfs_agi_buf_ops;
  1857. break;
  1858. case XFS_BLFT_UDQUOT_BUF:
  1859. case XFS_BLFT_PDQUOT_BUF:
  1860. case XFS_BLFT_GDQUOT_BUF:
  1861. #ifdef CONFIG_XFS_QUOTA
  1862. if (magic16 != XFS_DQUOT_MAGIC) {
  1863. xfs_warn(mp, "Bad DQUOT block magic!");
  1864. ASSERT(0);
  1865. break;
  1866. }
  1867. bp->b_ops = &xfs_dquot_buf_ops;
  1868. #else
  1869. xfs_alert(mp,
  1870. "Trying to recover dquots without QUOTA support built in!");
  1871. ASSERT(0);
  1872. #endif
  1873. break;
  1874. case XFS_BLFT_DINO_BUF:
  1875. if (magic16 != XFS_DINODE_MAGIC) {
  1876. xfs_warn(mp, "Bad INODE block magic!");
  1877. ASSERT(0);
  1878. break;
  1879. }
  1880. bp->b_ops = &xfs_inode_buf_ops;
  1881. break;
  1882. case XFS_BLFT_SYMLINK_BUF:
  1883. if (magic32 != XFS_SYMLINK_MAGIC) {
  1884. xfs_warn(mp, "Bad symlink block magic!");
  1885. ASSERT(0);
  1886. break;
  1887. }
  1888. bp->b_ops = &xfs_symlink_buf_ops;
  1889. break;
  1890. case XFS_BLFT_DIR_BLOCK_BUF:
  1891. if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
  1892. magic32 != XFS_DIR3_BLOCK_MAGIC) {
  1893. xfs_warn(mp, "Bad dir block magic!");
  1894. ASSERT(0);
  1895. break;
  1896. }
  1897. bp->b_ops = &xfs_dir3_block_buf_ops;
  1898. break;
  1899. case XFS_BLFT_DIR_DATA_BUF:
  1900. if (magic32 != XFS_DIR2_DATA_MAGIC &&
  1901. magic32 != XFS_DIR3_DATA_MAGIC) {
  1902. xfs_warn(mp, "Bad dir data magic!");
  1903. ASSERT(0);
  1904. break;
  1905. }
  1906. bp->b_ops = &xfs_dir3_data_buf_ops;
  1907. break;
  1908. case XFS_BLFT_DIR_FREE_BUF:
  1909. if (magic32 != XFS_DIR2_FREE_MAGIC &&
  1910. magic32 != XFS_DIR3_FREE_MAGIC) {
  1911. xfs_warn(mp, "Bad dir3 free magic!");
  1912. ASSERT(0);
  1913. break;
  1914. }
  1915. bp->b_ops = &xfs_dir3_free_buf_ops;
  1916. break;
  1917. case XFS_BLFT_DIR_LEAF1_BUF:
  1918. if (magicda != XFS_DIR2_LEAF1_MAGIC &&
  1919. magicda != XFS_DIR3_LEAF1_MAGIC) {
  1920. xfs_warn(mp, "Bad dir leaf1 magic!");
  1921. ASSERT(0);
  1922. break;
  1923. }
  1924. bp->b_ops = &xfs_dir3_leaf1_buf_ops;
  1925. break;
  1926. case XFS_BLFT_DIR_LEAFN_BUF:
  1927. if (magicda != XFS_DIR2_LEAFN_MAGIC &&
  1928. magicda != XFS_DIR3_LEAFN_MAGIC) {
  1929. xfs_warn(mp, "Bad dir leafn magic!");
  1930. ASSERT(0);
  1931. break;
  1932. }
  1933. bp->b_ops = &xfs_dir3_leafn_buf_ops;
  1934. break;
  1935. case XFS_BLFT_DA_NODE_BUF:
  1936. if (magicda != XFS_DA_NODE_MAGIC &&
  1937. magicda != XFS_DA3_NODE_MAGIC) {
  1938. xfs_warn(mp, "Bad da node magic!");
  1939. ASSERT(0);
  1940. break;
  1941. }
  1942. bp->b_ops = &xfs_da3_node_buf_ops;
  1943. break;
  1944. case XFS_BLFT_ATTR_LEAF_BUF:
  1945. if (magicda != XFS_ATTR_LEAF_MAGIC &&
  1946. magicda != XFS_ATTR3_LEAF_MAGIC) {
  1947. xfs_warn(mp, "Bad attr leaf magic!");
  1948. ASSERT(0);
  1949. break;
  1950. }
  1951. bp->b_ops = &xfs_attr3_leaf_buf_ops;
  1952. break;
  1953. case XFS_BLFT_ATTR_RMT_BUF:
  1954. if (magic32 != XFS_ATTR3_RMT_MAGIC) {
  1955. xfs_warn(mp, "Bad attr remote magic!");
  1956. ASSERT(0);
  1957. break;
  1958. }
  1959. bp->b_ops = &xfs_attr3_rmt_buf_ops;
  1960. break;
  1961. case XFS_BLFT_SB_BUF:
  1962. if (magic32 != XFS_SB_MAGIC) {
  1963. xfs_warn(mp, "Bad SB block magic!");
  1964. ASSERT(0);
  1965. break;
  1966. }
  1967. bp->b_ops = &xfs_sb_buf_ops;
  1968. break;
  1969. default:
  1970. xfs_warn(mp, "Unknown buffer type %d!",
  1971. xfs_blft_from_flags(buf_f));
  1972. break;
  1973. }
  1974. }
  1975. /*
  1976. * Perform a 'normal' buffer recovery. Each logged region of the
  1977. * buffer should be copied over the corresponding region in the
  1978. * given buffer. The bitmap in the buf log format structure indicates
  1979. * where to place the logged data.
  1980. */
  1981. STATIC void
  1982. xlog_recover_do_reg_buffer(
  1983. struct xfs_mount *mp,
  1984. xlog_recover_item_t *item,
  1985. struct xfs_buf *bp,
  1986. xfs_buf_log_format_t *buf_f)
  1987. {
  1988. int i;
  1989. int bit;
  1990. int nbits;
  1991. int error;
  1992. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1993. bit = 0;
  1994. i = 1; /* 0 is the buf format structure */
  1995. while (1) {
  1996. bit = xfs_next_bit(buf_f->blf_data_map,
  1997. buf_f->blf_map_size, bit);
  1998. if (bit == -1)
  1999. break;
  2000. nbits = xfs_contig_bits(buf_f->blf_data_map,
  2001. buf_f->blf_map_size, bit);
  2002. ASSERT(nbits > 0);
  2003. ASSERT(item->ri_buf[i].i_addr != NULL);
  2004. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  2005. ASSERT(BBTOB(bp->b_io_length) >=
  2006. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  2007. /*
  2008. * The dirty regions logged in the buffer, even though
  2009. * contiguous, may span multiple chunks. This is because the
  2010. * dirty region may span a physical page boundary in a buffer
  2011. * and hence be split into two separate vectors for writing into
  2012. * the log. Hence we need to trim nbits back to the length of
  2013. * the current region being copied out of the log.
  2014. */
  2015. if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
  2016. nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
  2017. /*
  2018. * Do a sanity check if this is a dquot buffer. Just checking
  2019. * the first dquot in the buffer should do. XXXThis is
  2020. * probably a good thing to do for other buf types also.
  2021. */
  2022. error = 0;
  2023. if (buf_f->blf_flags &
  2024. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2025. if (item->ri_buf[i].i_addr == NULL) {
  2026. xfs_alert(mp,
  2027. "XFS: NULL dquot in %s.", __func__);
  2028. goto next;
  2029. }
  2030. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  2031. xfs_alert(mp,
  2032. "XFS: dquot too small (%d) in %s.",
  2033. item->ri_buf[i].i_len, __func__);
  2034. goto next;
  2035. }
  2036. error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
  2037. -1, 0, XFS_QMOPT_DOWARN,
  2038. "dquot_buf_recover");
  2039. if (error)
  2040. goto next;
  2041. }
  2042. memcpy(xfs_buf_offset(bp,
  2043. (uint)bit << XFS_BLF_SHIFT), /* dest */
  2044. item->ri_buf[i].i_addr, /* source */
  2045. nbits<<XFS_BLF_SHIFT); /* length */
  2046. next:
  2047. i++;
  2048. bit += nbits;
  2049. }
  2050. /* Shouldn't be any more regions */
  2051. ASSERT(i == item->ri_total);
  2052. xlog_recover_validate_buf_type(mp, bp, buf_f);
  2053. }
  2054. /*
  2055. * Perform a dquot buffer recovery.
  2056. * Simple algorithm: if we have found a QUOTAOFF log item of the same type
  2057. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  2058. * Else, treat it as a regular buffer and do recovery.
  2059. *
  2060. * Return false if the buffer was tossed and true if we recovered the buffer to
  2061. * indicate to the caller if the buffer needs writing.
  2062. */
  2063. STATIC bool
  2064. xlog_recover_do_dquot_buffer(
  2065. struct xfs_mount *mp,
  2066. struct xlog *log,
  2067. struct xlog_recover_item *item,
  2068. struct xfs_buf *bp,
  2069. struct xfs_buf_log_format *buf_f)
  2070. {
  2071. uint type;
  2072. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  2073. /*
  2074. * Filesystems are required to send in quota flags at mount time.
  2075. */
  2076. if (!mp->m_qflags)
  2077. return false;
  2078. type = 0;
  2079. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  2080. type |= XFS_DQ_USER;
  2081. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  2082. type |= XFS_DQ_PROJ;
  2083. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  2084. type |= XFS_DQ_GROUP;
  2085. /*
  2086. * This type of quotas was turned off, so ignore this buffer
  2087. */
  2088. if (log->l_quotaoffs_flag & type)
  2089. return false;
  2090. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2091. return true;
  2092. }
  2093. /*
  2094. * This routine replays a modification made to a buffer at runtime.
  2095. * There are actually two types of buffer, regular and inode, which
  2096. * are handled differently. Inode buffers are handled differently
  2097. * in that we only recover a specific set of data from them, namely
  2098. * the inode di_next_unlinked fields. This is because all other inode
  2099. * data is actually logged via inode records and any data we replay
  2100. * here which overlaps that may be stale.
  2101. *
  2102. * When meta-data buffers are freed at run time we log a buffer item
  2103. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  2104. * of the buffer in the log should not be replayed at recovery time.
  2105. * This is so that if the blocks covered by the buffer are reused for
  2106. * file data before we crash we don't end up replaying old, freed
  2107. * meta-data into a user's file.
  2108. *
  2109. * To handle the cancellation of buffer log items, we make two passes
  2110. * over the log during recovery. During the first we build a table of
  2111. * those buffers which have been cancelled, and during the second we
  2112. * only replay those buffers which do not have corresponding cancel
  2113. * records in the table. See xlog_recover_buffer_pass[1,2] above
  2114. * for more details on the implementation of the table of cancel records.
  2115. */
  2116. STATIC int
  2117. xlog_recover_buffer_pass2(
  2118. struct xlog *log,
  2119. struct list_head *buffer_list,
  2120. struct xlog_recover_item *item,
  2121. xfs_lsn_t current_lsn)
  2122. {
  2123. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  2124. xfs_mount_t *mp = log->l_mp;
  2125. xfs_buf_t *bp;
  2126. int error;
  2127. uint buf_flags;
  2128. xfs_lsn_t lsn;
  2129. /*
  2130. * In this pass we only want to recover all the buffers which have
  2131. * not been cancelled and are not cancellation buffers themselves.
  2132. */
  2133. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  2134. buf_f->blf_len, buf_f->blf_flags)) {
  2135. trace_xfs_log_recover_buf_cancel(log, buf_f);
  2136. return 0;
  2137. }
  2138. trace_xfs_log_recover_buf_recover(log, buf_f);
  2139. buf_flags = 0;
  2140. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  2141. buf_flags |= XBF_UNMAPPED;
  2142. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  2143. buf_flags, NULL);
  2144. if (!bp)
  2145. return -ENOMEM;
  2146. error = bp->b_error;
  2147. if (error) {
  2148. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  2149. goto out_release;
  2150. }
  2151. /*
  2152. * Recover the buffer only if we get an LSN from it and it's less than
  2153. * the lsn of the transaction we are replaying.
  2154. *
  2155. * Note that we have to be extremely careful of readahead here.
  2156. * Readahead does not attach verfiers to the buffers so if we don't
  2157. * actually do any replay after readahead because of the LSN we found
  2158. * in the buffer if more recent than that current transaction then we
  2159. * need to attach the verifier directly. Failure to do so can lead to
  2160. * future recovery actions (e.g. EFI and unlinked list recovery) can
  2161. * operate on the buffers and they won't get the verifier attached. This
  2162. * can lead to blocks on disk having the correct content but a stale
  2163. * CRC.
  2164. *
  2165. * It is safe to assume these clean buffers are currently up to date.
  2166. * If the buffer is dirtied by a later transaction being replayed, then
  2167. * the verifier will be reset to match whatever recover turns that
  2168. * buffer into.
  2169. */
  2170. lsn = xlog_recover_get_buf_lsn(mp, bp);
  2171. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2172. xlog_recover_validate_buf_type(mp, bp, buf_f);
  2173. goto out_release;
  2174. }
  2175. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  2176. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2177. if (error)
  2178. goto out_release;
  2179. } else if (buf_f->blf_flags &
  2180. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2181. bool dirty;
  2182. dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2183. if (!dirty)
  2184. goto out_release;
  2185. } else {
  2186. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2187. }
  2188. /*
  2189. * Perform delayed write on the buffer. Asynchronous writes will be
  2190. * slower when taking into account all the buffers to be flushed.
  2191. *
  2192. * Also make sure that only inode buffers with good sizes stay in
  2193. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2194. * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
  2195. * buffers in the log can be a different size if the log was generated
  2196. * by an older kernel using unclustered inode buffers or a newer kernel
  2197. * running with a different inode cluster size. Regardless, if the
  2198. * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
  2199. * for *our* value of mp->m_inode_cluster_size, then we need to keep
  2200. * the buffer out of the buffer cache so that the buffer won't
  2201. * overlap with future reads of those inodes.
  2202. */
  2203. if (XFS_DINODE_MAGIC ==
  2204. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2205. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  2206. (__uint32_t)log->l_mp->m_inode_cluster_size))) {
  2207. xfs_buf_stale(bp);
  2208. error = xfs_bwrite(bp);
  2209. } else {
  2210. ASSERT(bp->b_target->bt_mount == mp);
  2211. bp->b_iodone = xlog_recover_iodone;
  2212. xfs_buf_delwri_queue(bp, buffer_list);
  2213. }
  2214. out_release:
  2215. xfs_buf_relse(bp);
  2216. return error;
  2217. }
  2218. /*
  2219. * Inode fork owner changes
  2220. *
  2221. * If we have been told that we have to reparent the inode fork, it's because an
  2222. * extent swap operation on a CRC enabled filesystem has been done and we are
  2223. * replaying it. We need to walk the BMBT of the appropriate fork and change the
  2224. * owners of it.
  2225. *
  2226. * The complexity here is that we don't have an inode context to work with, so
  2227. * after we've replayed the inode we need to instantiate one. This is where the
  2228. * fun begins.
  2229. *
  2230. * We are in the middle of log recovery, so we can't run transactions. That
  2231. * means we cannot use cache coherent inode instantiation via xfs_iget(), as
  2232. * that will result in the corresponding iput() running the inode through
  2233. * xfs_inactive(). If we've just replayed an inode core that changes the link
  2234. * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
  2235. * transactions (bad!).
  2236. *
  2237. * So, to avoid this, we instantiate an inode directly from the inode core we've
  2238. * just recovered. We have the buffer still locked, and all we really need to
  2239. * instantiate is the inode core and the forks being modified. We can do this
  2240. * manually, then run the inode btree owner change, and then tear down the
  2241. * xfs_inode without having to run any transactions at all.
  2242. *
  2243. * Also, because we don't have a transaction context available here but need to
  2244. * gather all the buffers we modify for writeback so we pass the buffer_list
  2245. * instead for the operation to use.
  2246. */
  2247. STATIC int
  2248. xfs_recover_inode_owner_change(
  2249. struct xfs_mount *mp,
  2250. struct xfs_dinode *dip,
  2251. struct xfs_inode_log_format *in_f,
  2252. struct list_head *buffer_list)
  2253. {
  2254. struct xfs_inode *ip;
  2255. int error;
  2256. ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
  2257. ip = xfs_inode_alloc(mp, in_f->ilf_ino);
  2258. if (!ip)
  2259. return -ENOMEM;
  2260. /* instantiate the inode */
  2261. xfs_dinode_from_disk(&ip->i_d, dip);
  2262. ASSERT(ip->i_d.di_version >= 3);
  2263. error = xfs_iformat_fork(ip, dip);
  2264. if (error)
  2265. goto out_free_ip;
  2266. if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
  2267. ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
  2268. error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
  2269. ip->i_ino, buffer_list);
  2270. if (error)
  2271. goto out_free_ip;
  2272. }
  2273. if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
  2274. ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
  2275. error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
  2276. ip->i_ino, buffer_list);
  2277. if (error)
  2278. goto out_free_ip;
  2279. }
  2280. out_free_ip:
  2281. xfs_inode_free(ip);
  2282. return error;
  2283. }
  2284. STATIC int
  2285. xlog_recover_inode_pass2(
  2286. struct xlog *log,
  2287. struct list_head *buffer_list,
  2288. struct xlog_recover_item *item,
  2289. xfs_lsn_t current_lsn)
  2290. {
  2291. xfs_inode_log_format_t *in_f;
  2292. xfs_mount_t *mp = log->l_mp;
  2293. xfs_buf_t *bp;
  2294. xfs_dinode_t *dip;
  2295. int len;
  2296. xfs_caddr_t src;
  2297. xfs_caddr_t dest;
  2298. int error;
  2299. int attr_index;
  2300. uint fields;
  2301. xfs_icdinode_t *dicp;
  2302. uint isize;
  2303. int need_free = 0;
  2304. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2305. in_f = item->ri_buf[0].i_addr;
  2306. } else {
  2307. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2308. need_free = 1;
  2309. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2310. if (error)
  2311. goto error;
  2312. }
  2313. /*
  2314. * Inode buffers can be freed, look out for it,
  2315. * and do not replay the inode.
  2316. */
  2317. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2318. in_f->ilf_len, 0)) {
  2319. error = 0;
  2320. trace_xfs_log_recover_inode_cancel(log, in_f);
  2321. goto error;
  2322. }
  2323. trace_xfs_log_recover_inode_recover(log, in_f);
  2324. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
  2325. &xfs_inode_buf_ops);
  2326. if (!bp) {
  2327. error = -ENOMEM;
  2328. goto error;
  2329. }
  2330. error = bp->b_error;
  2331. if (error) {
  2332. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2333. goto out_release;
  2334. }
  2335. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2336. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2337. /*
  2338. * Make sure the place we're flushing out to really looks
  2339. * like an inode!
  2340. */
  2341. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2342. xfs_alert(mp,
  2343. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2344. __func__, dip, bp, in_f->ilf_ino);
  2345. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2346. XFS_ERRLEVEL_LOW, mp);
  2347. error = -EFSCORRUPTED;
  2348. goto out_release;
  2349. }
  2350. dicp = item->ri_buf[1].i_addr;
  2351. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2352. xfs_alert(mp,
  2353. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2354. __func__, item, in_f->ilf_ino);
  2355. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2356. XFS_ERRLEVEL_LOW, mp);
  2357. error = -EFSCORRUPTED;
  2358. goto out_release;
  2359. }
  2360. /*
  2361. * If the inode has an LSN in it, recover the inode only if it's less
  2362. * than the lsn of the transaction we are replaying. Note: we still
  2363. * need to replay an owner change even though the inode is more recent
  2364. * than the transaction as there is no guarantee that all the btree
  2365. * blocks are more recent than this transaction, too.
  2366. */
  2367. if (dip->di_version >= 3) {
  2368. xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
  2369. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2370. trace_xfs_log_recover_inode_skip(log, in_f);
  2371. error = 0;
  2372. goto out_owner_change;
  2373. }
  2374. }
  2375. /*
  2376. * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
  2377. * are transactional and if ordering is necessary we can determine that
  2378. * more accurately by the LSN field in the V3 inode core. Don't trust
  2379. * the inode versions we might be changing them here - use the
  2380. * superblock flag to determine whether we need to look at di_flushiter
  2381. * to skip replay when the on disk inode is newer than the log one
  2382. */
  2383. if (!xfs_sb_version_hascrc(&mp->m_sb) &&
  2384. dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2385. /*
  2386. * Deal with the wrap case, DI_MAX_FLUSH is less
  2387. * than smaller numbers
  2388. */
  2389. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2390. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2391. /* do nothing */
  2392. } else {
  2393. trace_xfs_log_recover_inode_skip(log, in_f);
  2394. error = 0;
  2395. goto out_release;
  2396. }
  2397. }
  2398. /* Take the opportunity to reset the flush iteration count */
  2399. dicp->di_flushiter = 0;
  2400. if (unlikely(S_ISREG(dicp->di_mode))) {
  2401. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2402. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2403. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2404. XFS_ERRLEVEL_LOW, mp, dicp);
  2405. xfs_alert(mp,
  2406. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2407. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2408. __func__, item, dip, bp, in_f->ilf_ino);
  2409. error = -EFSCORRUPTED;
  2410. goto out_release;
  2411. }
  2412. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2413. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2414. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2415. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2416. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2417. XFS_ERRLEVEL_LOW, mp, dicp);
  2418. xfs_alert(mp,
  2419. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2420. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2421. __func__, item, dip, bp, in_f->ilf_ino);
  2422. error = -EFSCORRUPTED;
  2423. goto out_release;
  2424. }
  2425. }
  2426. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2427. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2428. XFS_ERRLEVEL_LOW, mp, dicp);
  2429. xfs_alert(mp,
  2430. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2431. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2432. __func__, item, dip, bp, in_f->ilf_ino,
  2433. dicp->di_nextents + dicp->di_anextents,
  2434. dicp->di_nblocks);
  2435. error = -EFSCORRUPTED;
  2436. goto out_release;
  2437. }
  2438. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2439. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2440. XFS_ERRLEVEL_LOW, mp, dicp);
  2441. xfs_alert(mp,
  2442. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2443. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2444. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2445. error = -EFSCORRUPTED;
  2446. goto out_release;
  2447. }
  2448. isize = xfs_icdinode_size(dicp->di_version);
  2449. if (unlikely(item->ri_buf[1].i_len > isize)) {
  2450. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2451. XFS_ERRLEVEL_LOW, mp, dicp);
  2452. xfs_alert(mp,
  2453. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2454. __func__, item->ri_buf[1].i_len, item);
  2455. error = -EFSCORRUPTED;
  2456. goto out_release;
  2457. }
  2458. /* The core is in in-core format */
  2459. xfs_dinode_to_disk(dip, dicp);
  2460. /* the rest is in on-disk format */
  2461. if (item->ri_buf[1].i_len > isize) {
  2462. memcpy((char *)dip + isize,
  2463. item->ri_buf[1].i_addr + isize,
  2464. item->ri_buf[1].i_len - isize);
  2465. }
  2466. fields = in_f->ilf_fields;
  2467. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2468. case XFS_ILOG_DEV:
  2469. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2470. break;
  2471. case XFS_ILOG_UUID:
  2472. memcpy(XFS_DFORK_DPTR(dip),
  2473. &in_f->ilf_u.ilfu_uuid,
  2474. sizeof(uuid_t));
  2475. break;
  2476. }
  2477. if (in_f->ilf_size == 2)
  2478. goto out_owner_change;
  2479. len = item->ri_buf[2].i_len;
  2480. src = item->ri_buf[2].i_addr;
  2481. ASSERT(in_f->ilf_size <= 4);
  2482. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2483. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2484. (len == in_f->ilf_dsize));
  2485. switch (fields & XFS_ILOG_DFORK) {
  2486. case XFS_ILOG_DDATA:
  2487. case XFS_ILOG_DEXT:
  2488. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2489. break;
  2490. case XFS_ILOG_DBROOT:
  2491. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2492. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2493. XFS_DFORK_DSIZE(dip, mp));
  2494. break;
  2495. default:
  2496. /*
  2497. * There are no data fork flags set.
  2498. */
  2499. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2500. break;
  2501. }
  2502. /*
  2503. * If we logged any attribute data, recover it. There may or
  2504. * may not have been any other non-core data logged in this
  2505. * transaction.
  2506. */
  2507. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2508. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2509. attr_index = 3;
  2510. } else {
  2511. attr_index = 2;
  2512. }
  2513. len = item->ri_buf[attr_index].i_len;
  2514. src = item->ri_buf[attr_index].i_addr;
  2515. ASSERT(len == in_f->ilf_asize);
  2516. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2517. case XFS_ILOG_ADATA:
  2518. case XFS_ILOG_AEXT:
  2519. dest = XFS_DFORK_APTR(dip);
  2520. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2521. memcpy(dest, src, len);
  2522. break;
  2523. case XFS_ILOG_ABROOT:
  2524. dest = XFS_DFORK_APTR(dip);
  2525. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2526. len, (xfs_bmdr_block_t*)dest,
  2527. XFS_DFORK_ASIZE(dip, mp));
  2528. break;
  2529. default:
  2530. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2531. ASSERT(0);
  2532. error = -EIO;
  2533. goto out_release;
  2534. }
  2535. }
  2536. out_owner_change:
  2537. if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
  2538. error = xfs_recover_inode_owner_change(mp, dip, in_f,
  2539. buffer_list);
  2540. /* re-generate the checksum. */
  2541. xfs_dinode_calc_crc(log->l_mp, dip);
  2542. ASSERT(bp->b_target->bt_mount == mp);
  2543. bp->b_iodone = xlog_recover_iodone;
  2544. xfs_buf_delwri_queue(bp, buffer_list);
  2545. out_release:
  2546. xfs_buf_relse(bp);
  2547. error:
  2548. if (need_free)
  2549. kmem_free(in_f);
  2550. return error;
  2551. }
  2552. /*
  2553. * Recover QUOTAOFF records. We simply make a note of it in the xlog
  2554. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2555. * of that type.
  2556. */
  2557. STATIC int
  2558. xlog_recover_quotaoff_pass1(
  2559. struct xlog *log,
  2560. struct xlog_recover_item *item)
  2561. {
  2562. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2563. ASSERT(qoff_f);
  2564. /*
  2565. * The logitem format's flag tells us if this was user quotaoff,
  2566. * group/project quotaoff or both.
  2567. */
  2568. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2569. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2570. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2571. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2572. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2573. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2574. return 0;
  2575. }
  2576. /*
  2577. * Recover a dquot record
  2578. */
  2579. STATIC int
  2580. xlog_recover_dquot_pass2(
  2581. struct xlog *log,
  2582. struct list_head *buffer_list,
  2583. struct xlog_recover_item *item,
  2584. xfs_lsn_t current_lsn)
  2585. {
  2586. xfs_mount_t *mp = log->l_mp;
  2587. xfs_buf_t *bp;
  2588. struct xfs_disk_dquot *ddq, *recddq;
  2589. int error;
  2590. xfs_dq_logformat_t *dq_f;
  2591. uint type;
  2592. /*
  2593. * Filesystems are required to send in quota flags at mount time.
  2594. */
  2595. if (mp->m_qflags == 0)
  2596. return 0;
  2597. recddq = item->ri_buf[1].i_addr;
  2598. if (recddq == NULL) {
  2599. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2600. return -EIO;
  2601. }
  2602. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2603. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2604. item->ri_buf[1].i_len, __func__);
  2605. return -EIO;
  2606. }
  2607. /*
  2608. * This type of quotas was turned off, so ignore this record.
  2609. */
  2610. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2611. ASSERT(type);
  2612. if (log->l_quotaoffs_flag & type)
  2613. return 0;
  2614. /*
  2615. * At this point we know that quota was _not_ turned off.
  2616. * Since the mount flags are not indicating to us otherwise, this
  2617. * must mean that quota is on, and the dquot needs to be replayed.
  2618. * Remember that we may not have fully recovered the superblock yet,
  2619. * so we can't do the usual trick of looking at the SB quota bits.
  2620. *
  2621. * The other possibility, of course, is that the quota subsystem was
  2622. * removed since the last mount - ENOSYS.
  2623. */
  2624. dq_f = item->ri_buf[0].i_addr;
  2625. ASSERT(dq_f);
  2626. error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2627. "xlog_recover_dquot_pass2 (log copy)");
  2628. if (error)
  2629. return -EIO;
  2630. ASSERT(dq_f->qlf_len == 1);
  2631. /*
  2632. * At this point we are assuming that the dquots have been allocated
  2633. * and hence the buffer has valid dquots stamped in it. It should,
  2634. * therefore, pass verifier validation. If the dquot is bad, then the
  2635. * we'll return an error here, so we don't need to specifically check
  2636. * the dquot in the buffer after the verifier has run.
  2637. */
  2638. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2639. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
  2640. &xfs_dquot_buf_ops);
  2641. if (error)
  2642. return error;
  2643. ASSERT(bp);
  2644. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2645. /*
  2646. * If the dquot has an LSN in it, recover the dquot only if it's less
  2647. * than the lsn of the transaction we are replaying.
  2648. */
  2649. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2650. struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
  2651. xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
  2652. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2653. goto out_release;
  2654. }
  2655. }
  2656. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2657. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2658. xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
  2659. XFS_DQUOT_CRC_OFF);
  2660. }
  2661. ASSERT(dq_f->qlf_size == 2);
  2662. ASSERT(bp->b_target->bt_mount == mp);
  2663. bp->b_iodone = xlog_recover_iodone;
  2664. xfs_buf_delwri_queue(bp, buffer_list);
  2665. out_release:
  2666. xfs_buf_relse(bp);
  2667. return 0;
  2668. }
  2669. /*
  2670. * This routine is called to create an in-core extent free intent
  2671. * item from the efi format structure which was logged on disk.
  2672. * It allocates an in-core efi, copies the extents from the format
  2673. * structure into it, and adds the efi to the AIL with the given
  2674. * LSN.
  2675. */
  2676. STATIC int
  2677. xlog_recover_efi_pass2(
  2678. struct xlog *log,
  2679. struct xlog_recover_item *item,
  2680. xfs_lsn_t lsn)
  2681. {
  2682. int error;
  2683. xfs_mount_t *mp = log->l_mp;
  2684. xfs_efi_log_item_t *efip;
  2685. xfs_efi_log_format_t *efi_formatp;
  2686. efi_formatp = item->ri_buf[0].i_addr;
  2687. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2688. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2689. &(efip->efi_format)))) {
  2690. xfs_efi_item_free(efip);
  2691. return error;
  2692. }
  2693. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2694. spin_lock(&log->l_ailp->xa_lock);
  2695. /*
  2696. * xfs_trans_ail_update() drops the AIL lock.
  2697. */
  2698. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2699. return 0;
  2700. }
  2701. /*
  2702. * This routine is called when an efd format structure is found in
  2703. * a committed transaction in the log. It's purpose is to cancel
  2704. * the corresponding efi if it was still in the log. To do this
  2705. * it searches the AIL for the efi with an id equal to that in the
  2706. * efd format structure. If we find it, we remove the efi from the
  2707. * AIL and free it.
  2708. */
  2709. STATIC int
  2710. xlog_recover_efd_pass2(
  2711. struct xlog *log,
  2712. struct xlog_recover_item *item)
  2713. {
  2714. xfs_efd_log_format_t *efd_formatp;
  2715. xfs_efi_log_item_t *efip = NULL;
  2716. xfs_log_item_t *lip;
  2717. __uint64_t efi_id;
  2718. struct xfs_ail_cursor cur;
  2719. struct xfs_ail *ailp = log->l_ailp;
  2720. efd_formatp = item->ri_buf[0].i_addr;
  2721. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2722. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2723. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2724. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2725. efi_id = efd_formatp->efd_efi_id;
  2726. /*
  2727. * Search for the efi with the id in the efd format structure
  2728. * in the AIL.
  2729. */
  2730. spin_lock(&ailp->xa_lock);
  2731. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2732. while (lip != NULL) {
  2733. if (lip->li_type == XFS_LI_EFI) {
  2734. efip = (xfs_efi_log_item_t *)lip;
  2735. if (efip->efi_format.efi_id == efi_id) {
  2736. /*
  2737. * xfs_trans_ail_delete() drops the
  2738. * AIL lock.
  2739. */
  2740. xfs_trans_ail_delete(ailp, lip,
  2741. SHUTDOWN_CORRUPT_INCORE);
  2742. xfs_efi_item_free(efip);
  2743. spin_lock(&ailp->xa_lock);
  2744. break;
  2745. }
  2746. }
  2747. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2748. }
  2749. xfs_trans_ail_cursor_done(&cur);
  2750. spin_unlock(&ailp->xa_lock);
  2751. return 0;
  2752. }
  2753. /*
  2754. * This routine is called when an inode create format structure is found in a
  2755. * committed transaction in the log. It's purpose is to initialise the inodes
  2756. * being allocated on disk. This requires us to get inode cluster buffers that
  2757. * match the range to be intialised, stamped with inode templates and written
  2758. * by delayed write so that subsequent modifications will hit the cached buffer
  2759. * and only need writing out at the end of recovery.
  2760. */
  2761. STATIC int
  2762. xlog_recover_do_icreate_pass2(
  2763. struct xlog *log,
  2764. struct list_head *buffer_list,
  2765. xlog_recover_item_t *item)
  2766. {
  2767. struct xfs_mount *mp = log->l_mp;
  2768. struct xfs_icreate_log *icl;
  2769. xfs_agnumber_t agno;
  2770. xfs_agblock_t agbno;
  2771. unsigned int count;
  2772. unsigned int isize;
  2773. xfs_agblock_t length;
  2774. icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
  2775. if (icl->icl_type != XFS_LI_ICREATE) {
  2776. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
  2777. return -EINVAL;
  2778. }
  2779. if (icl->icl_size != 1) {
  2780. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
  2781. return -EINVAL;
  2782. }
  2783. agno = be32_to_cpu(icl->icl_ag);
  2784. if (agno >= mp->m_sb.sb_agcount) {
  2785. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
  2786. return -EINVAL;
  2787. }
  2788. agbno = be32_to_cpu(icl->icl_agbno);
  2789. if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
  2790. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
  2791. return -EINVAL;
  2792. }
  2793. isize = be32_to_cpu(icl->icl_isize);
  2794. if (isize != mp->m_sb.sb_inodesize) {
  2795. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
  2796. return -EINVAL;
  2797. }
  2798. count = be32_to_cpu(icl->icl_count);
  2799. if (!count) {
  2800. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
  2801. return -EINVAL;
  2802. }
  2803. length = be32_to_cpu(icl->icl_length);
  2804. if (!length || length >= mp->m_sb.sb_agblocks) {
  2805. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
  2806. return -EINVAL;
  2807. }
  2808. /* existing allocation is fixed value */
  2809. ASSERT(count == mp->m_ialloc_inos);
  2810. ASSERT(length == mp->m_ialloc_blks);
  2811. if (count != mp->m_ialloc_inos ||
  2812. length != mp->m_ialloc_blks) {
  2813. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
  2814. return -EINVAL;
  2815. }
  2816. /*
  2817. * Inode buffers can be freed. Do not replay the inode initialisation as
  2818. * we could be overwriting something written after this inode buffer was
  2819. * cancelled.
  2820. *
  2821. * XXX: we need to iterate all buffers and only init those that are not
  2822. * cancelled. I think that a more fine grained factoring of
  2823. * xfs_ialloc_inode_init may be appropriate here to enable this to be
  2824. * done easily.
  2825. */
  2826. if (xlog_check_buffer_cancelled(log,
  2827. XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
  2828. return 0;
  2829. xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
  2830. be32_to_cpu(icl->icl_gen));
  2831. return 0;
  2832. }
  2833. STATIC void
  2834. xlog_recover_buffer_ra_pass2(
  2835. struct xlog *log,
  2836. struct xlog_recover_item *item)
  2837. {
  2838. struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
  2839. struct xfs_mount *mp = log->l_mp;
  2840. if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
  2841. buf_f->blf_len, buf_f->blf_flags)) {
  2842. return;
  2843. }
  2844. xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
  2845. buf_f->blf_len, NULL);
  2846. }
  2847. STATIC void
  2848. xlog_recover_inode_ra_pass2(
  2849. struct xlog *log,
  2850. struct xlog_recover_item *item)
  2851. {
  2852. struct xfs_inode_log_format ilf_buf;
  2853. struct xfs_inode_log_format *ilfp;
  2854. struct xfs_mount *mp = log->l_mp;
  2855. int error;
  2856. if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
  2857. ilfp = item->ri_buf[0].i_addr;
  2858. } else {
  2859. ilfp = &ilf_buf;
  2860. memset(ilfp, 0, sizeof(*ilfp));
  2861. error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
  2862. if (error)
  2863. return;
  2864. }
  2865. if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
  2866. return;
  2867. xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
  2868. ilfp->ilf_len, &xfs_inode_buf_ra_ops);
  2869. }
  2870. STATIC void
  2871. xlog_recover_dquot_ra_pass2(
  2872. struct xlog *log,
  2873. struct xlog_recover_item *item)
  2874. {
  2875. struct xfs_mount *mp = log->l_mp;
  2876. struct xfs_disk_dquot *recddq;
  2877. struct xfs_dq_logformat *dq_f;
  2878. uint type;
  2879. if (mp->m_qflags == 0)
  2880. return;
  2881. recddq = item->ri_buf[1].i_addr;
  2882. if (recddq == NULL)
  2883. return;
  2884. if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
  2885. return;
  2886. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2887. ASSERT(type);
  2888. if (log->l_quotaoffs_flag & type)
  2889. return;
  2890. dq_f = item->ri_buf[0].i_addr;
  2891. ASSERT(dq_f);
  2892. ASSERT(dq_f->qlf_len == 1);
  2893. xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
  2894. XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
  2895. }
  2896. STATIC void
  2897. xlog_recover_ra_pass2(
  2898. struct xlog *log,
  2899. struct xlog_recover_item *item)
  2900. {
  2901. switch (ITEM_TYPE(item)) {
  2902. case XFS_LI_BUF:
  2903. xlog_recover_buffer_ra_pass2(log, item);
  2904. break;
  2905. case XFS_LI_INODE:
  2906. xlog_recover_inode_ra_pass2(log, item);
  2907. break;
  2908. case XFS_LI_DQUOT:
  2909. xlog_recover_dquot_ra_pass2(log, item);
  2910. break;
  2911. case XFS_LI_EFI:
  2912. case XFS_LI_EFD:
  2913. case XFS_LI_QUOTAOFF:
  2914. default:
  2915. break;
  2916. }
  2917. }
  2918. STATIC int
  2919. xlog_recover_commit_pass1(
  2920. struct xlog *log,
  2921. struct xlog_recover *trans,
  2922. struct xlog_recover_item *item)
  2923. {
  2924. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2925. switch (ITEM_TYPE(item)) {
  2926. case XFS_LI_BUF:
  2927. return xlog_recover_buffer_pass1(log, item);
  2928. case XFS_LI_QUOTAOFF:
  2929. return xlog_recover_quotaoff_pass1(log, item);
  2930. case XFS_LI_INODE:
  2931. case XFS_LI_EFI:
  2932. case XFS_LI_EFD:
  2933. case XFS_LI_DQUOT:
  2934. case XFS_LI_ICREATE:
  2935. /* nothing to do in pass 1 */
  2936. return 0;
  2937. default:
  2938. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2939. __func__, ITEM_TYPE(item));
  2940. ASSERT(0);
  2941. return -EIO;
  2942. }
  2943. }
  2944. STATIC int
  2945. xlog_recover_commit_pass2(
  2946. struct xlog *log,
  2947. struct xlog_recover *trans,
  2948. struct list_head *buffer_list,
  2949. struct xlog_recover_item *item)
  2950. {
  2951. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2952. switch (ITEM_TYPE(item)) {
  2953. case XFS_LI_BUF:
  2954. return xlog_recover_buffer_pass2(log, buffer_list, item,
  2955. trans->r_lsn);
  2956. case XFS_LI_INODE:
  2957. return xlog_recover_inode_pass2(log, buffer_list, item,
  2958. trans->r_lsn);
  2959. case XFS_LI_EFI:
  2960. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2961. case XFS_LI_EFD:
  2962. return xlog_recover_efd_pass2(log, item);
  2963. case XFS_LI_DQUOT:
  2964. return xlog_recover_dquot_pass2(log, buffer_list, item,
  2965. trans->r_lsn);
  2966. case XFS_LI_ICREATE:
  2967. return xlog_recover_do_icreate_pass2(log, buffer_list, item);
  2968. case XFS_LI_QUOTAOFF:
  2969. /* nothing to do in pass2 */
  2970. return 0;
  2971. default:
  2972. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2973. __func__, ITEM_TYPE(item));
  2974. ASSERT(0);
  2975. return -EIO;
  2976. }
  2977. }
  2978. STATIC int
  2979. xlog_recover_items_pass2(
  2980. struct xlog *log,
  2981. struct xlog_recover *trans,
  2982. struct list_head *buffer_list,
  2983. struct list_head *item_list)
  2984. {
  2985. struct xlog_recover_item *item;
  2986. int error = 0;
  2987. list_for_each_entry(item, item_list, ri_list) {
  2988. error = xlog_recover_commit_pass2(log, trans,
  2989. buffer_list, item);
  2990. if (error)
  2991. return error;
  2992. }
  2993. return error;
  2994. }
  2995. /*
  2996. * Perform the transaction.
  2997. *
  2998. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2999. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  3000. */
  3001. STATIC int
  3002. xlog_recover_commit_trans(
  3003. struct xlog *log,
  3004. struct xlog_recover *trans,
  3005. int pass)
  3006. {
  3007. int error = 0;
  3008. int error2;
  3009. int items_queued = 0;
  3010. struct xlog_recover_item *item;
  3011. struct xlog_recover_item *next;
  3012. LIST_HEAD (buffer_list);
  3013. LIST_HEAD (ra_list);
  3014. LIST_HEAD (done_list);
  3015. #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
  3016. hlist_del(&trans->r_list);
  3017. error = xlog_recover_reorder_trans(log, trans, pass);
  3018. if (error)
  3019. return error;
  3020. list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
  3021. switch (pass) {
  3022. case XLOG_RECOVER_PASS1:
  3023. error = xlog_recover_commit_pass1(log, trans, item);
  3024. break;
  3025. case XLOG_RECOVER_PASS2:
  3026. xlog_recover_ra_pass2(log, item);
  3027. list_move_tail(&item->ri_list, &ra_list);
  3028. items_queued++;
  3029. if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
  3030. error = xlog_recover_items_pass2(log, trans,
  3031. &buffer_list, &ra_list);
  3032. list_splice_tail_init(&ra_list, &done_list);
  3033. items_queued = 0;
  3034. }
  3035. break;
  3036. default:
  3037. ASSERT(0);
  3038. }
  3039. if (error)
  3040. goto out;
  3041. }
  3042. out:
  3043. if (!list_empty(&ra_list)) {
  3044. if (!error)
  3045. error = xlog_recover_items_pass2(log, trans,
  3046. &buffer_list, &ra_list);
  3047. list_splice_tail_init(&ra_list, &done_list);
  3048. }
  3049. if (!list_empty(&done_list))
  3050. list_splice_init(&done_list, &trans->r_itemq);
  3051. error2 = xfs_buf_delwri_submit(&buffer_list);
  3052. return error ? error : error2;
  3053. }
  3054. STATIC void
  3055. xlog_recover_add_item(
  3056. struct list_head *head)
  3057. {
  3058. xlog_recover_item_t *item;
  3059. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  3060. INIT_LIST_HEAD(&item->ri_list);
  3061. list_add_tail(&item->ri_list, head);
  3062. }
  3063. STATIC int
  3064. xlog_recover_add_to_cont_trans(
  3065. struct xlog *log,
  3066. struct xlog_recover *trans,
  3067. xfs_caddr_t dp,
  3068. int len)
  3069. {
  3070. xlog_recover_item_t *item;
  3071. xfs_caddr_t ptr, old_ptr;
  3072. int old_len;
  3073. if (list_empty(&trans->r_itemq)) {
  3074. /* finish copying rest of trans header */
  3075. xlog_recover_add_item(&trans->r_itemq);
  3076. ptr = (xfs_caddr_t) &trans->r_theader +
  3077. sizeof(xfs_trans_header_t) - len;
  3078. memcpy(ptr, dp, len);
  3079. return 0;
  3080. }
  3081. /* take the tail entry */
  3082. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  3083. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  3084. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  3085. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  3086. memcpy(&ptr[old_len], dp, len);
  3087. item->ri_buf[item->ri_cnt-1].i_len += len;
  3088. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  3089. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  3090. return 0;
  3091. }
  3092. /*
  3093. * The next region to add is the start of a new region. It could be
  3094. * a whole region or it could be the first part of a new region. Because
  3095. * of this, the assumption here is that the type and size fields of all
  3096. * format structures fit into the first 32 bits of the structure.
  3097. *
  3098. * This works because all regions must be 32 bit aligned. Therefore, we
  3099. * either have both fields or we have neither field. In the case we have
  3100. * neither field, the data part of the region is zero length. We only have
  3101. * a log_op_header and can throw away the header since a new one will appear
  3102. * later. If we have at least 4 bytes, then we can determine how many regions
  3103. * will appear in the current log item.
  3104. */
  3105. STATIC int
  3106. xlog_recover_add_to_trans(
  3107. struct xlog *log,
  3108. struct xlog_recover *trans,
  3109. xfs_caddr_t dp,
  3110. int len)
  3111. {
  3112. xfs_inode_log_format_t *in_f; /* any will do */
  3113. xlog_recover_item_t *item;
  3114. xfs_caddr_t ptr;
  3115. if (!len)
  3116. return 0;
  3117. if (list_empty(&trans->r_itemq)) {
  3118. /* we need to catch log corruptions here */
  3119. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  3120. xfs_warn(log->l_mp, "%s: bad header magic number",
  3121. __func__);
  3122. ASSERT(0);
  3123. return -EIO;
  3124. }
  3125. if (len == sizeof(xfs_trans_header_t))
  3126. xlog_recover_add_item(&trans->r_itemq);
  3127. memcpy(&trans->r_theader, dp, len);
  3128. return 0;
  3129. }
  3130. ptr = kmem_alloc(len, KM_SLEEP);
  3131. memcpy(ptr, dp, len);
  3132. in_f = (xfs_inode_log_format_t *)ptr;
  3133. /* take the tail entry */
  3134. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  3135. if (item->ri_total != 0 &&
  3136. item->ri_total == item->ri_cnt) {
  3137. /* tail item is in use, get a new one */
  3138. xlog_recover_add_item(&trans->r_itemq);
  3139. item = list_entry(trans->r_itemq.prev,
  3140. xlog_recover_item_t, ri_list);
  3141. }
  3142. if (item->ri_total == 0) { /* first region to be added */
  3143. if (in_f->ilf_size == 0 ||
  3144. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  3145. xfs_warn(log->l_mp,
  3146. "bad number of regions (%d) in inode log format",
  3147. in_f->ilf_size);
  3148. ASSERT(0);
  3149. kmem_free(ptr);
  3150. return -EIO;
  3151. }
  3152. item->ri_total = in_f->ilf_size;
  3153. item->ri_buf =
  3154. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  3155. KM_SLEEP);
  3156. }
  3157. ASSERT(item->ri_total > item->ri_cnt);
  3158. /* Description region is ri_buf[0] */
  3159. item->ri_buf[item->ri_cnt].i_addr = ptr;
  3160. item->ri_buf[item->ri_cnt].i_len = len;
  3161. item->ri_cnt++;
  3162. trace_xfs_log_recover_item_add(log, trans, item, 0);
  3163. return 0;
  3164. }
  3165. /*
  3166. * Free up any resources allocated by the transaction
  3167. *
  3168. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  3169. */
  3170. STATIC void
  3171. xlog_recover_free_trans(
  3172. struct xlog_recover *trans)
  3173. {
  3174. xlog_recover_item_t *item, *n;
  3175. int i;
  3176. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  3177. /* Free the regions in the item. */
  3178. list_del(&item->ri_list);
  3179. for (i = 0; i < item->ri_cnt; i++)
  3180. kmem_free(item->ri_buf[i].i_addr);
  3181. /* Free the item itself */
  3182. kmem_free(item->ri_buf);
  3183. kmem_free(item);
  3184. }
  3185. /* Free the transaction recover structure */
  3186. kmem_free(trans);
  3187. }
  3188. /*
  3189. * On error or completion, trans is freed.
  3190. */
  3191. STATIC int
  3192. xlog_recovery_process_trans(
  3193. struct xlog *log,
  3194. struct xlog_recover *trans,
  3195. xfs_caddr_t dp,
  3196. unsigned int len,
  3197. unsigned int flags,
  3198. int pass)
  3199. {
  3200. int error = 0;
  3201. bool freeit = false;
  3202. /* mask off ophdr transaction container flags */
  3203. flags &= ~XLOG_END_TRANS;
  3204. if (flags & XLOG_WAS_CONT_TRANS)
  3205. flags &= ~XLOG_CONTINUE_TRANS;
  3206. /*
  3207. * Callees must not free the trans structure. We'll decide if we need to
  3208. * free it or not based on the operation being done and it's result.
  3209. */
  3210. switch (flags) {
  3211. /* expected flag values */
  3212. case 0:
  3213. case XLOG_CONTINUE_TRANS:
  3214. error = xlog_recover_add_to_trans(log, trans, dp, len);
  3215. break;
  3216. case XLOG_WAS_CONT_TRANS:
  3217. error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
  3218. break;
  3219. case XLOG_COMMIT_TRANS:
  3220. error = xlog_recover_commit_trans(log, trans, pass);
  3221. /* success or fail, we are now done with this transaction. */
  3222. freeit = true;
  3223. break;
  3224. /* unexpected flag values */
  3225. case XLOG_UNMOUNT_TRANS:
  3226. /* just skip trans */
  3227. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  3228. freeit = true;
  3229. break;
  3230. case XLOG_START_TRANS:
  3231. default:
  3232. xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
  3233. ASSERT(0);
  3234. error = -EIO;
  3235. break;
  3236. }
  3237. if (error || freeit)
  3238. xlog_recover_free_trans(trans);
  3239. return error;
  3240. }
  3241. /*
  3242. * Lookup the transaction recovery structure associated with the ID in the
  3243. * current ophdr. If the transaction doesn't exist and the start flag is set in
  3244. * the ophdr, then allocate a new transaction for future ID matches to find.
  3245. * Either way, return what we found during the lookup - an existing transaction
  3246. * or nothing.
  3247. */
  3248. STATIC struct xlog_recover *
  3249. xlog_recover_ophdr_to_trans(
  3250. struct hlist_head rhash[],
  3251. struct xlog_rec_header *rhead,
  3252. struct xlog_op_header *ohead)
  3253. {
  3254. struct xlog_recover *trans;
  3255. xlog_tid_t tid;
  3256. struct hlist_head *rhp;
  3257. tid = be32_to_cpu(ohead->oh_tid);
  3258. rhp = &rhash[XLOG_RHASH(tid)];
  3259. hlist_for_each_entry(trans, rhp, r_list) {
  3260. if (trans->r_log_tid == tid)
  3261. return trans;
  3262. }
  3263. /*
  3264. * skip over non-start transaction headers - we could be
  3265. * processing slack space before the next transaction starts
  3266. */
  3267. if (!(ohead->oh_flags & XLOG_START_TRANS))
  3268. return NULL;
  3269. ASSERT(be32_to_cpu(ohead->oh_len) == 0);
  3270. /*
  3271. * This is a new transaction so allocate a new recovery container to
  3272. * hold the recovery ops that will follow.
  3273. */
  3274. trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
  3275. trans->r_log_tid = tid;
  3276. trans->r_lsn = be64_to_cpu(rhead->h_lsn);
  3277. INIT_LIST_HEAD(&trans->r_itemq);
  3278. INIT_HLIST_NODE(&trans->r_list);
  3279. hlist_add_head(&trans->r_list, rhp);
  3280. /*
  3281. * Nothing more to do for this ophdr. Items to be added to this new
  3282. * transaction will be in subsequent ophdr containers.
  3283. */
  3284. return NULL;
  3285. }
  3286. STATIC int
  3287. xlog_recover_process_ophdr(
  3288. struct xlog *log,
  3289. struct hlist_head rhash[],
  3290. struct xlog_rec_header *rhead,
  3291. struct xlog_op_header *ohead,
  3292. xfs_caddr_t dp,
  3293. xfs_caddr_t end,
  3294. int pass)
  3295. {
  3296. struct xlog_recover *trans;
  3297. unsigned int len;
  3298. /* Do we understand who wrote this op? */
  3299. if (ohead->oh_clientid != XFS_TRANSACTION &&
  3300. ohead->oh_clientid != XFS_LOG) {
  3301. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  3302. __func__, ohead->oh_clientid);
  3303. ASSERT(0);
  3304. return -EIO;
  3305. }
  3306. /*
  3307. * Check the ophdr contains all the data it is supposed to contain.
  3308. */
  3309. len = be32_to_cpu(ohead->oh_len);
  3310. if (dp + len > end) {
  3311. xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
  3312. WARN_ON(1);
  3313. return -EIO;
  3314. }
  3315. trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
  3316. if (!trans) {
  3317. /* nothing to do, so skip over this ophdr */
  3318. return 0;
  3319. }
  3320. return xlog_recovery_process_trans(log, trans, dp, len,
  3321. ohead->oh_flags, pass);
  3322. }
  3323. /*
  3324. * There are two valid states of the r_state field. 0 indicates that the
  3325. * transaction structure is in a normal state. We have either seen the
  3326. * start of the transaction or the last operation we added was not a partial
  3327. * operation. If the last operation we added to the transaction was a
  3328. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  3329. *
  3330. * NOTE: skip LRs with 0 data length.
  3331. */
  3332. STATIC int
  3333. xlog_recover_process_data(
  3334. struct xlog *log,
  3335. struct hlist_head rhash[],
  3336. struct xlog_rec_header *rhead,
  3337. xfs_caddr_t dp,
  3338. int pass)
  3339. {
  3340. struct xlog_op_header *ohead;
  3341. xfs_caddr_t end;
  3342. int num_logops;
  3343. int error;
  3344. end = dp + be32_to_cpu(rhead->h_len);
  3345. num_logops = be32_to_cpu(rhead->h_num_logops);
  3346. /* check the log format matches our own - else we can't recover */
  3347. if (xlog_header_check_recover(log->l_mp, rhead))
  3348. return -EIO;
  3349. while ((dp < end) && num_logops) {
  3350. ohead = (struct xlog_op_header *)dp;
  3351. dp += sizeof(*ohead);
  3352. ASSERT(dp <= end);
  3353. /* errors will abort recovery */
  3354. error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
  3355. dp, end, pass);
  3356. if (error)
  3357. return error;
  3358. dp += be32_to_cpu(ohead->oh_len);
  3359. num_logops--;
  3360. }
  3361. return 0;
  3362. }
  3363. /*
  3364. * Process an extent free intent item that was recovered from
  3365. * the log. We need to free the extents that it describes.
  3366. */
  3367. STATIC int
  3368. xlog_recover_process_efi(
  3369. xfs_mount_t *mp,
  3370. xfs_efi_log_item_t *efip)
  3371. {
  3372. xfs_efd_log_item_t *efdp;
  3373. xfs_trans_t *tp;
  3374. int i;
  3375. int error = 0;
  3376. xfs_extent_t *extp;
  3377. xfs_fsblock_t startblock_fsb;
  3378. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  3379. /*
  3380. * First check the validity of the extents described by the
  3381. * EFI. If any are bad, then assume that all are bad and
  3382. * just toss the EFI.
  3383. */
  3384. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3385. extp = &(efip->efi_format.efi_extents[i]);
  3386. startblock_fsb = XFS_BB_TO_FSB(mp,
  3387. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  3388. if ((startblock_fsb == 0) ||
  3389. (extp->ext_len == 0) ||
  3390. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  3391. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  3392. /*
  3393. * This will pull the EFI from the AIL and
  3394. * free the memory associated with it.
  3395. */
  3396. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3397. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  3398. return -EIO;
  3399. }
  3400. }
  3401. tp = xfs_trans_alloc(mp, 0);
  3402. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
  3403. if (error)
  3404. goto abort_error;
  3405. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  3406. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3407. extp = &(efip->efi_format.efi_extents[i]);
  3408. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  3409. if (error)
  3410. goto abort_error;
  3411. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  3412. extp->ext_len);
  3413. }
  3414. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3415. error = xfs_trans_commit(tp, 0);
  3416. return error;
  3417. abort_error:
  3418. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3419. return error;
  3420. }
  3421. /*
  3422. * When this is called, all of the EFIs which did not have
  3423. * corresponding EFDs should be in the AIL. What we do now
  3424. * is free the extents associated with each one.
  3425. *
  3426. * Since we process the EFIs in normal transactions, they
  3427. * will be removed at some point after the commit. This prevents
  3428. * us from just walking down the list processing each one.
  3429. * We'll use a flag in the EFI to skip those that we've already
  3430. * processed and use the AIL iteration mechanism's generation
  3431. * count to try to speed this up at least a bit.
  3432. *
  3433. * When we start, we know that the EFIs are the only things in
  3434. * the AIL. As we process them, however, other items are added
  3435. * to the AIL. Since everything added to the AIL must come after
  3436. * everything already in the AIL, we stop processing as soon as
  3437. * we see something other than an EFI in the AIL.
  3438. */
  3439. STATIC int
  3440. xlog_recover_process_efis(
  3441. struct xlog *log)
  3442. {
  3443. xfs_log_item_t *lip;
  3444. xfs_efi_log_item_t *efip;
  3445. int error = 0;
  3446. struct xfs_ail_cursor cur;
  3447. struct xfs_ail *ailp;
  3448. ailp = log->l_ailp;
  3449. spin_lock(&ailp->xa_lock);
  3450. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  3451. while (lip != NULL) {
  3452. /*
  3453. * We're done when we see something other than an EFI.
  3454. * There should be no EFIs left in the AIL now.
  3455. */
  3456. if (lip->li_type != XFS_LI_EFI) {
  3457. #ifdef DEBUG
  3458. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  3459. ASSERT(lip->li_type != XFS_LI_EFI);
  3460. #endif
  3461. break;
  3462. }
  3463. /*
  3464. * Skip EFIs that we've already processed.
  3465. */
  3466. efip = (xfs_efi_log_item_t *)lip;
  3467. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  3468. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3469. continue;
  3470. }
  3471. spin_unlock(&ailp->xa_lock);
  3472. error = xlog_recover_process_efi(log->l_mp, efip);
  3473. spin_lock(&ailp->xa_lock);
  3474. if (error)
  3475. goto out;
  3476. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3477. }
  3478. out:
  3479. xfs_trans_ail_cursor_done(&cur);
  3480. spin_unlock(&ailp->xa_lock);
  3481. return error;
  3482. }
  3483. /*
  3484. * This routine performs a transaction to null out a bad inode pointer
  3485. * in an agi unlinked inode hash bucket.
  3486. */
  3487. STATIC void
  3488. xlog_recover_clear_agi_bucket(
  3489. xfs_mount_t *mp,
  3490. xfs_agnumber_t agno,
  3491. int bucket)
  3492. {
  3493. xfs_trans_t *tp;
  3494. xfs_agi_t *agi;
  3495. xfs_buf_t *agibp;
  3496. int offset;
  3497. int error;
  3498. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  3499. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
  3500. if (error)
  3501. goto out_abort;
  3502. error = xfs_read_agi(mp, tp, agno, &agibp);
  3503. if (error)
  3504. goto out_abort;
  3505. agi = XFS_BUF_TO_AGI(agibp);
  3506. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  3507. offset = offsetof(xfs_agi_t, agi_unlinked) +
  3508. (sizeof(xfs_agino_t) * bucket);
  3509. xfs_trans_log_buf(tp, agibp, offset,
  3510. (offset + sizeof(xfs_agino_t) - 1));
  3511. error = xfs_trans_commit(tp, 0);
  3512. if (error)
  3513. goto out_error;
  3514. return;
  3515. out_abort:
  3516. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3517. out_error:
  3518. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  3519. return;
  3520. }
  3521. STATIC xfs_agino_t
  3522. xlog_recover_process_one_iunlink(
  3523. struct xfs_mount *mp,
  3524. xfs_agnumber_t agno,
  3525. xfs_agino_t agino,
  3526. int bucket)
  3527. {
  3528. struct xfs_buf *ibp;
  3529. struct xfs_dinode *dip;
  3530. struct xfs_inode *ip;
  3531. xfs_ino_t ino;
  3532. int error;
  3533. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  3534. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  3535. if (error)
  3536. goto fail;
  3537. /*
  3538. * Get the on disk inode to find the next inode in the bucket.
  3539. */
  3540. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
  3541. if (error)
  3542. goto fail_iput;
  3543. ASSERT(ip->i_d.di_nlink == 0);
  3544. ASSERT(ip->i_d.di_mode != 0);
  3545. /* setup for the next pass */
  3546. agino = be32_to_cpu(dip->di_next_unlinked);
  3547. xfs_buf_relse(ibp);
  3548. /*
  3549. * Prevent any DMAPI event from being sent when the reference on
  3550. * the inode is dropped.
  3551. */
  3552. ip->i_d.di_dmevmask = 0;
  3553. IRELE(ip);
  3554. return agino;
  3555. fail_iput:
  3556. IRELE(ip);
  3557. fail:
  3558. /*
  3559. * We can't read in the inode this bucket points to, or this inode
  3560. * is messed up. Just ditch this bucket of inodes. We will lose
  3561. * some inodes and space, but at least we won't hang.
  3562. *
  3563. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  3564. * clear the inode pointer in the bucket.
  3565. */
  3566. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  3567. return NULLAGINO;
  3568. }
  3569. /*
  3570. * xlog_iunlink_recover
  3571. *
  3572. * This is called during recovery to process any inodes which
  3573. * we unlinked but not freed when the system crashed. These
  3574. * inodes will be on the lists in the AGI blocks. What we do
  3575. * here is scan all the AGIs and fully truncate and free any
  3576. * inodes found on the lists. Each inode is removed from the
  3577. * lists when it has been fully truncated and is freed. The
  3578. * freeing of the inode and its removal from the list must be
  3579. * atomic.
  3580. */
  3581. STATIC void
  3582. xlog_recover_process_iunlinks(
  3583. struct xlog *log)
  3584. {
  3585. xfs_mount_t *mp;
  3586. xfs_agnumber_t agno;
  3587. xfs_agi_t *agi;
  3588. xfs_buf_t *agibp;
  3589. xfs_agino_t agino;
  3590. int bucket;
  3591. int error;
  3592. uint mp_dmevmask;
  3593. mp = log->l_mp;
  3594. /*
  3595. * Prevent any DMAPI event from being sent while in this function.
  3596. */
  3597. mp_dmevmask = mp->m_dmevmask;
  3598. mp->m_dmevmask = 0;
  3599. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3600. /*
  3601. * Find the agi for this ag.
  3602. */
  3603. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3604. if (error) {
  3605. /*
  3606. * AGI is b0rked. Don't process it.
  3607. *
  3608. * We should probably mark the filesystem as corrupt
  3609. * after we've recovered all the ag's we can....
  3610. */
  3611. continue;
  3612. }
  3613. /*
  3614. * Unlock the buffer so that it can be acquired in the normal
  3615. * course of the transaction to truncate and free each inode.
  3616. * Because we are not racing with anyone else here for the AGI
  3617. * buffer, we don't even need to hold it locked to read the
  3618. * initial unlinked bucket entries out of the buffer. We keep
  3619. * buffer reference though, so that it stays pinned in memory
  3620. * while we need the buffer.
  3621. */
  3622. agi = XFS_BUF_TO_AGI(agibp);
  3623. xfs_buf_unlock(agibp);
  3624. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  3625. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  3626. while (agino != NULLAGINO) {
  3627. agino = xlog_recover_process_one_iunlink(mp,
  3628. agno, agino, bucket);
  3629. }
  3630. }
  3631. xfs_buf_rele(agibp);
  3632. }
  3633. mp->m_dmevmask = mp_dmevmask;
  3634. }
  3635. /*
  3636. * Upack the log buffer data and crc check it. If the check fails, issue a
  3637. * warning if and only if the CRC in the header is non-zero. This makes the
  3638. * check an advisory warning, and the zero CRC check will prevent failure
  3639. * warnings from being emitted when upgrading the kernel from one that does not
  3640. * add CRCs by default.
  3641. *
  3642. * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
  3643. * corruption failure
  3644. */
  3645. STATIC int
  3646. xlog_unpack_data_crc(
  3647. struct xlog_rec_header *rhead,
  3648. xfs_caddr_t dp,
  3649. struct xlog *log)
  3650. {
  3651. __le32 crc;
  3652. crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
  3653. if (crc != rhead->h_crc) {
  3654. if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
  3655. xfs_alert(log->l_mp,
  3656. "log record CRC mismatch: found 0x%x, expected 0x%x.",
  3657. le32_to_cpu(rhead->h_crc),
  3658. le32_to_cpu(crc));
  3659. xfs_hex_dump(dp, 32);
  3660. }
  3661. /*
  3662. * If we've detected a log record corruption, then we can't
  3663. * recover past this point. Abort recovery if we are enforcing
  3664. * CRC protection by punting an error back up the stack.
  3665. */
  3666. if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
  3667. return -EFSCORRUPTED;
  3668. }
  3669. return 0;
  3670. }
  3671. STATIC int
  3672. xlog_unpack_data(
  3673. struct xlog_rec_header *rhead,
  3674. xfs_caddr_t dp,
  3675. struct xlog *log)
  3676. {
  3677. int i, j, k;
  3678. int error;
  3679. error = xlog_unpack_data_crc(rhead, dp, log);
  3680. if (error)
  3681. return error;
  3682. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3683. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3684. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3685. dp += BBSIZE;
  3686. }
  3687. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3688. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3689. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3690. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3691. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3692. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3693. dp += BBSIZE;
  3694. }
  3695. }
  3696. return 0;
  3697. }
  3698. STATIC int
  3699. xlog_valid_rec_header(
  3700. struct xlog *log,
  3701. struct xlog_rec_header *rhead,
  3702. xfs_daddr_t blkno)
  3703. {
  3704. int hlen;
  3705. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  3706. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3707. XFS_ERRLEVEL_LOW, log->l_mp);
  3708. return -EFSCORRUPTED;
  3709. }
  3710. if (unlikely(
  3711. (!rhead->h_version ||
  3712. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3713. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3714. __func__, be32_to_cpu(rhead->h_version));
  3715. return -EIO;
  3716. }
  3717. /* LR body must have data or it wouldn't have been written */
  3718. hlen = be32_to_cpu(rhead->h_len);
  3719. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3720. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3721. XFS_ERRLEVEL_LOW, log->l_mp);
  3722. return -EFSCORRUPTED;
  3723. }
  3724. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3725. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3726. XFS_ERRLEVEL_LOW, log->l_mp);
  3727. return -EFSCORRUPTED;
  3728. }
  3729. return 0;
  3730. }
  3731. /*
  3732. * Read the log from tail to head and process the log records found.
  3733. * Handle the two cases where the tail and head are in the same cycle
  3734. * and where the active portion of the log wraps around the end of
  3735. * the physical log separately. The pass parameter is passed through
  3736. * to the routines called to process the data and is not looked at
  3737. * here.
  3738. */
  3739. STATIC int
  3740. xlog_do_recovery_pass(
  3741. struct xlog *log,
  3742. xfs_daddr_t head_blk,
  3743. xfs_daddr_t tail_blk,
  3744. int pass)
  3745. {
  3746. xlog_rec_header_t *rhead;
  3747. xfs_daddr_t blk_no;
  3748. xfs_caddr_t offset;
  3749. xfs_buf_t *hbp, *dbp;
  3750. int error = 0, h_size;
  3751. int bblks, split_bblks;
  3752. int hblks, split_hblks, wrapped_hblks;
  3753. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3754. ASSERT(head_blk != tail_blk);
  3755. /*
  3756. * Read the header of the tail block and get the iclog buffer size from
  3757. * h_size. Use this to tell how many sectors make up the log header.
  3758. */
  3759. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3760. /*
  3761. * When using variable length iclogs, read first sector of
  3762. * iclog header and extract the header size from it. Get a
  3763. * new hbp that is the correct size.
  3764. */
  3765. hbp = xlog_get_bp(log, 1);
  3766. if (!hbp)
  3767. return -ENOMEM;
  3768. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3769. if (error)
  3770. goto bread_err1;
  3771. rhead = (xlog_rec_header_t *)offset;
  3772. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3773. if (error)
  3774. goto bread_err1;
  3775. h_size = be32_to_cpu(rhead->h_size);
  3776. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3777. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3778. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3779. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3780. hblks++;
  3781. xlog_put_bp(hbp);
  3782. hbp = xlog_get_bp(log, hblks);
  3783. } else {
  3784. hblks = 1;
  3785. }
  3786. } else {
  3787. ASSERT(log->l_sectBBsize == 1);
  3788. hblks = 1;
  3789. hbp = xlog_get_bp(log, 1);
  3790. h_size = XLOG_BIG_RECORD_BSIZE;
  3791. }
  3792. if (!hbp)
  3793. return -ENOMEM;
  3794. dbp = xlog_get_bp(log, BTOBB(h_size));
  3795. if (!dbp) {
  3796. xlog_put_bp(hbp);
  3797. return -ENOMEM;
  3798. }
  3799. memset(rhash, 0, sizeof(rhash));
  3800. blk_no = tail_blk;
  3801. if (tail_blk > head_blk) {
  3802. /*
  3803. * Perform recovery around the end of the physical log.
  3804. * When the head is not on the same cycle number as the tail,
  3805. * we can't do a sequential recovery.
  3806. */
  3807. while (blk_no < log->l_logBBsize) {
  3808. /*
  3809. * Check for header wrapping around physical end-of-log
  3810. */
  3811. offset = hbp->b_addr;
  3812. split_hblks = 0;
  3813. wrapped_hblks = 0;
  3814. if (blk_no + hblks <= log->l_logBBsize) {
  3815. /* Read header in one read */
  3816. error = xlog_bread(log, blk_no, hblks, hbp,
  3817. &offset);
  3818. if (error)
  3819. goto bread_err2;
  3820. } else {
  3821. /* This LR is split across physical log end */
  3822. if (blk_no != log->l_logBBsize) {
  3823. /* some data before physical log end */
  3824. ASSERT(blk_no <= INT_MAX);
  3825. split_hblks = log->l_logBBsize - (int)blk_no;
  3826. ASSERT(split_hblks > 0);
  3827. error = xlog_bread(log, blk_no,
  3828. split_hblks, hbp,
  3829. &offset);
  3830. if (error)
  3831. goto bread_err2;
  3832. }
  3833. /*
  3834. * Note: this black magic still works with
  3835. * large sector sizes (non-512) only because:
  3836. * - we increased the buffer size originally
  3837. * by 1 sector giving us enough extra space
  3838. * for the second read;
  3839. * - the log start is guaranteed to be sector
  3840. * aligned;
  3841. * - we read the log end (LR header start)
  3842. * _first_, then the log start (LR header end)
  3843. * - order is important.
  3844. */
  3845. wrapped_hblks = hblks - split_hblks;
  3846. error = xlog_bread_offset(log, 0,
  3847. wrapped_hblks, hbp,
  3848. offset + BBTOB(split_hblks));
  3849. if (error)
  3850. goto bread_err2;
  3851. }
  3852. rhead = (xlog_rec_header_t *)offset;
  3853. error = xlog_valid_rec_header(log, rhead,
  3854. split_hblks ? blk_no : 0);
  3855. if (error)
  3856. goto bread_err2;
  3857. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3858. blk_no += hblks;
  3859. /* Read in data for log record */
  3860. if (blk_no + bblks <= log->l_logBBsize) {
  3861. error = xlog_bread(log, blk_no, bblks, dbp,
  3862. &offset);
  3863. if (error)
  3864. goto bread_err2;
  3865. } else {
  3866. /* This log record is split across the
  3867. * physical end of log */
  3868. offset = dbp->b_addr;
  3869. split_bblks = 0;
  3870. if (blk_no != log->l_logBBsize) {
  3871. /* some data is before the physical
  3872. * end of log */
  3873. ASSERT(!wrapped_hblks);
  3874. ASSERT(blk_no <= INT_MAX);
  3875. split_bblks =
  3876. log->l_logBBsize - (int)blk_no;
  3877. ASSERT(split_bblks > 0);
  3878. error = xlog_bread(log, blk_no,
  3879. split_bblks, dbp,
  3880. &offset);
  3881. if (error)
  3882. goto bread_err2;
  3883. }
  3884. /*
  3885. * Note: this black magic still works with
  3886. * large sector sizes (non-512) only because:
  3887. * - we increased the buffer size originally
  3888. * by 1 sector giving us enough extra space
  3889. * for the second read;
  3890. * - the log start is guaranteed to be sector
  3891. * aligned;
  3892. * - we read the log end (LR header start)
  3893. * _first_, then the log start (LR header end)
  3894. * - order is important.
  3895. */
  3896. error = xlog_bread_offset(log, 0,
  3897. bblks - split_bblks, dbp,
  3898. offset + BBTOB(split_bblks));
  3899. if (error)
  3900. goto bread_err2;
  3901. }
  3902. error = xlog_unpack_data(rhead, offset, log);
  3903. if (error)
  3904. goto bread_err2;
  3905. error = xlog_recover_process_data(log, rhash,
  3906. rhead, offset, pass);
  3907. if (error)
  3908. goto bread_err2;
  3909. blk_no += bblks;
  3910. }
  3911. ASSERT(blk_no >= log->l_logBBsize);
  3912. blk_no -= log->l_logBBsize;
  3913. }
  3914. /* read first part of physical log */
  3915. while (blk_no < head_blk) {
  3916. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3917. if (error)
  3918. goto bread_err2;
  3919. rhead = (xlog_rec_header_t *)offset;
  3920. error = xlog_valid_rec_header(log, rhead, blk_no);
  3921. if (error)
  3922. goto bread_err2;
  3923. /* blocks in data section */
  3924. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3925. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3926. &offset);
  3927. if (error)
  3928. goto bread_err2;
  3929. error = xlog_unpack_data(rhead, offset, log);
  3930. if (error)
  3931. goto bread_err2;
  3932. error = xlog_recover_process_data(log, rhash,
  3933. rhead, offset, pass);
  3934. if (error)
  3935. goto bread_err2;
  3936. blk_no += bblks + hblks;
  3937. }
  3938. bread_err2:
  3939. xlog_put_bp(dbp);
  3940. bread_err1:
  3941. xlog_put_bp(hbp);
  3942. return error;
  3943. }
  3944. /*
  3945. * Do the recovery of the log. We actually do this in two phases.
  3946. * The two passes are necessary in order to implement the function
  3947. * of cancelling a record written into the log. The first pass
  3948. * determines those things which have been cancelled, and the
  3949. * second pass replays log items normally except for those which
  3950. * have been cancelled. The handling of the replay and cancellations
  3951. * takes place in the log item type specific routines.
  3952. *
  3953. * The table of items which have cancel records in the log is allocated
  3954. * and freed at this level, since only here do we know when all of
  3955. * the log recovery has been completed.
  3956. */
  3957. STATIC int
  3958. xlog_do_log_recovery(
  3959. struct xlog *log,
  3960. xfs_daddr_t head_blk,
  3961. xfs_daddr_t tail_blk)
  3962. {
  3963. int error, i;
  3964. ASSERT(head_blk != tail_blk);
  3965. /*
  3966. * First do a pass to find all of the cancelled buf log items.
  3967. * Store them in the buf_cancel_table for use in the second pass.
  3968. */
  3969. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3970. sizeof(struct list_head),
  3971. KM_SLEEP);
  3972. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3973. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3974. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3975. XLOG_RECOVER_PASS1);
  3976. if (error != 0) {
  3977. kmem_free(log->l_buf_cancel_table);
  3978. log->l_buf_cancel_table = NULL;
  3979. return error;
  3980. }
  3981. /*
  3982. * Then do a second pass to actually recover the items in the log.
  3983. * When it is complete free the table of buf cancel items.
  3984. */
  3985. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3986. XLOG_RECOVER_PASS2);
  3987. #ifdef DEBUG
  3988. if (!error) {
  3989. int i;
  3990. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3991. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3992. }
  3993. #endif /* DEBUG */
  3994. kmem_free(log->l_buf_cancel_table);
  3995. log->l_buf_cancel_table = NULL;
  3996. return error;
  3997. }
  3998. /*
  3999. * Do the actual recovery
  4000. */
  4001. STATIC int
  4002. xlog_do_recover(
  4003. struct xlog *log,
  4004. xfs_daddr_t head_blk,
  4005. xfs_daddr_t tail_blk)
  4006. {
  4007. int error;
  4008. xfs_buf_t *bp;
  4009. xfs_sb_t *sbp;
  4010. /*
  4011. * First replay the images in the log.
  4012. */
  4013. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  4014. if (error)
  4015. return error;
  4016. /*
  4017. * If IO errors happened during recovery, bail out.
  4018. */
  4019. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  4020. return -EIO;
  4021. }
  4022. /*
  4023. * We now update the tail_lsn since much of the recovery has completed
  4024. * and there may be space available to use. If there were no extent
  4025. * or iunlinks, we can free up the entire log and set the tail_lsn to
  4026. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  4027. * lsn of the last known good LR on disk. If there are extent frees
  4028. * or iunlinks they will have some entries in the AIL; so we look at
  4029. * the AIL to determine how to set the tail_lsn.
  4030. */
  4031. xlog_assign_tail_lsn(log->l_mp);
  4032. /*
  4033. * Now that we've finished replaying all buffer and inode
  4034. * updates, re-read in the superblock and reverify it.
  4035. */
  4036. bp = xfs_getsb(log->l_mp, 0);
  4037. XFS_BUF_UNDONE(bp);
  4038. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  4039. XFS_BUF_READ(bp);
  4040. XFS_BUF_UNASYNC(bp);
  4041. bp->b_ops = &xfs_sb_buf_ops;
  4042. error = xfs_buf_submit_wait(bp);
  4043. if (error) {
  4044. if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
  4045. xfs_buf_ioerror_alert(bp, __func__);
  4046. ASSERT(0);
  4047. }
  4048. xfs_buf_relse(bp);
  4049. return error;
  4050. }
  4051. /* Convert superblock from on-disk format */
  4052. sbp = &log->l_mp->m_sb;
  4053. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  4054. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  4055. ASSERT(xfs_sb_good_version(sbp));
  4056. xfs_buf_relse(bp);
  4057. /* We've re-read the superblock so re-initialize per-cpu counters */
  4058. xfs_icsb_reinit_counters(log->l_mp);
  4059. xlog_recover_check_summary(log);
  4060. /* Normal transactions can now occur */
  4061. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  4062. return 0;
  4063. }
  4064. /*
  4065. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  4066. *
  4067. * Return error or zero.
  4068. */
  4069. int
  4070. xlog_recover(
  4071. struct xlog *log)
  4072. {
  4073. xfs_daddr_t head_blk, tail_blk;
  4074. int error;
  4075. /* find the tail of the log */
  4076. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  4077. return error;
  4078. if (tail_blk != head_blk) {
  4079. /* There used to be a comment here:
  4080. *
  4081. * disallow recovery on read-only mounts. note -- mount
  4082. * checks for ENOSPC and turns it into an intelligent
  4083. * error message.
  4084. * ...but this is no longer true. Now, unless you specify
  4085. * NORECOVERY (in which case this function would never be
  4086. * called), we just go ahead and recover. We do this all
  4087. * under the vfs layer, so we can get away with it unless
  4088. * the device itself is read-only, in which case we fail.
  4089. */
  4090. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  4091. return error;
  4092. }
  4093. /*
  4094. * Version 5 superblock log feature mask validation. We know the
  4095. * log is dirty so check if there are any unknown log features
  4096. * in what we need to recover. If there are unknown features
  4097. * (e.g. unsupported transactions, then simply reject the
  4098. * attempt at recovery before touching anything.
  4099. */
  4100. if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
  4101. xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
  4102. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
  4103. xfs_warn(log->l_mp,
  4104. "Superblock has unknown incompatible log features (0x%x) enabled.\n"
  4105. "The log can not be fully and/or safely recovered by this kernel.\n"
  4106. "Please recover the log on a kernel that supports the unknown features.",
  4107. (log->l_mp->m_sb.sb_features_log_incompat &
  4108. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
  4109. return -EINVAL;
  4110. }
  4111. /*
  4112. * Delay log recovery if the debug hook is set. This is debug
  4113. * instrumention to coordinate simulation of I/O failures with
  4114. * log recovery.
  4115. */
  4116. if (xfs_globals.log_recovery_delay) {
  4117. xfs_notice(log->l_mp,
  4118. "Delaying log recovery for %d seconds.",
  4119. xfs_globals.log_recovery_delay);
  4120. msleep(xfs_globals.log_recovery_delay * 1000);
  4121. }
  4122. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  4123. log->l_mp->m_logname ? log->l_mp->m_logname
  4124. : "internal");
  4125. error = xlog_do_recover(log, head_blk, tail_blk);
  4126. log->l_flags |= XLOG_RECOVERY_NEEDED;
  4127. }
  4128. return error;
  4129. }
  4130. /*
  4131. * In the first part of recovery we replay inodes and buffers and build
  4132. * up the list of extent free items which need to be processed. Here
  4133. * we process the extent free items and clean up the on disk unlinked
  4134. * inode lists. This is separated from the first part of recovery so
  4135. * that the root and real-time bitmap inodes can be read in from disk in
  4136. * between the two stages. This is necessary so that we can free space
  4137. * in the real-time portion of the file system.
  4138. */
  4139. int
  4140. xlog_recover_finish(
  4141. struct xlog *log)
  4142. {
  4143. /*
  4144. * Now we're ready to do the transactions needed for the
  4145. * rest of recovery. Start with completing all the extent
  4146. * free intent records and then process the unlinked inode
  4147. * lists. At this point, we essentially run in normal mode
  4148. * except that we're still performing recovery actions
  4149. * rather than accepting new requests.
  4150. */
  4151. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  4152. int error;
  4153. error = xlog_recover_process_efis(log);
  4154. if (error) {
  4155. xfs_alert(log->l_mp, "Failed to recover EFIs");
  4156. return error;
  4157. }
  4158. /*
  4159. * Sync the log to get all the EFIs out of the AIL.
  4160. * This isn't absolutely necessary, but it helps in
  4161. * case the unlink transactions would have problems
  4162. * pushing the EFIs out of the way.
  4163. */
  4164. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  4165. xlog_recover_process_iunlinks(log);
  4166. xlog_recover_check_summary(log);
  4167. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  4168. log->l_mp->m_logname ? log->l_mp->m_logname
  4169. : "internal");
  4170. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  4171. } else {
  4172. xfs_info(log->l_mp, "Ending clean mount");
  4173. }
  4174. return 0;
  4175. }
  4176. #if defined(DEBUG)
  4177. /*
  4178. * Read all of the agf and agi counters and check that they
  4179. * are consistent with the superblock counters.
  4180. */
  4181. void
  4182. xlog_recover_check_summary(
  4183. struct xlog *log)
  4184. {
  4185. xfs_mount_t *mp;
  4186. xfs_agf_t *agfp;
  4187. xfs_buf_t *agfbp;
  4188. xfs_buf_t *agibp;
  4189. xfs_agnumber_t agno;
  4190. __uint64_t freeblks;
  4191. __uint64_t itotal;
  4192. __uint64_t ifree;
  4193. int error;
  4194. mp = log->l_mp;
  4195. freeblks = 0LL;
  4196. itotal = 0LL;
  4197. ifree = 0LL;
  4198. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  4199. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  4200. if (error) {
  4201. xfs_alert(mp, "%s agf read failed agno %d error %d",
  4202. __func__, agno, error);
  4203. } else {
  4204. agfp = XFS_BUF_TO_AGF(agfbp);
  4205. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  4206. be32_to_cpu(agfp->agf_flcount);
  4207. xfs_buf_relse(agfbp);
  4208. }
  4209. error = xfs_read_agi(mp, NULL, agno, &agibp);
  4210. if (error) {
  4211. xfs_alert(mp, "%s agi read failed agno %d error %d",
  4212. __func__, agno, error);
  4213. } else {
  4214. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  4215. itotal += be32_to_cpu(agi->agi_count);
  4216. ifree += be32_to_cpu(agi->agi_freecount);
  4217. xfs_buf_relse(agibp);
  4218. }
  4219. }
  4220. }
  4221. #endif /* DEBUG */