namespace.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static u64 event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct hlist_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static struct mount *alloc_vfsmnt(const char *name)
  170. {
  171. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  172. if (mnt) {
  173. int err;
  174. err = mnt_alloc_id(mnt);
  175. if (err)
  176. goto out_free_cache;
  177. if (name) {
  178. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  179. if (!mnt->mnt_devname)
  180. goto out_free_id;
  181. }
  182. #ifdef CONFIG_SMP
  183. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  184. if (!mnt->mnt_pcp)
  185. goto out_free_devname;
  186. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  187. #else
  188. mnt->mnt_count = 1;
  189. mnt->mnt_writers = 0;
  190. #endif
  191. INIT_HLIST_NODE(&mnt->mnt_hash);
  192. INIT_LIST_HEAD(&mnt->mnt_child);
  193. INIT_LIST_HEAD(&mnt->mnt_mounts);
  194. INIT_LIST_HEAD(&mnt->mnt_list);
  195. INIT_LIST_HEAD(&mnt->mnt_expire);
  196. INIT_LIST_HEAD(&mnt->mnt_share);
  197. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  198. INIT_LIST_HEAD(&mnt->mnt_slave);
  199. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  200. #ifdef CONFIG_FSNOTIFY
  201. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  202. #endif
  203. }
  204. return mnt;
  205. #ifdef CONFIG_SMP
  206. out_free_devname:
  207. kfree(mnt->mnt_devname);
  208. #endif
  209. out_free_id:
  210. mnt_free_id(mnt);
  211. out_free_cache:
  212. kmem_cache_free(mnt_cache, mnt);
  213. return NULL;
  214. }
  215. /*
  216. * Most r/o checks on a fs are for operations that take
  217. * discrete amounts of time, like a write() or unlink().
  218. * We must keep track of when those operations start
  219. * (for permission checks) and when they end, so that
  220. * we can determine when writes are able to occur to
  221. * a filesystem.
  222. */
  223. /*
  224. * __mnt_is_readonly: check whether a mount is read-only
  225. * @mnt: the mount to check for its write status
  226. *
  227. * This shouldn't be used directly ouside of the VFS.
  228. * It does not guarantee that the filesystem will stay
  229. * r/w, just that it is right *now*. This can not and
  230. * should not be used in place of IS_RDONLY(inode).
  231. * mnt_want/drop_write() will _keep_ the filesystem
  232. * r/w.
  233. */
  234. int __mnt_is_readonly(struct vfsmount *mnt)
  235. {
  236. if (mnt->mnt_flags & MNT_READONLY)
  237. return 1;
  238. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  239. return 1;
  240. return 0;
  241. }
  242. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  243. static inline void mnt_inc_writers(struct mount *mnt)
  244. {
  245. #ifdef CONFIG_SMP
  246. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  247. #else
  248. mnt->mnt_writers++;
  249. #endif
  250. }
  251. static inline void mnt_dec_writers(struct mount *mnt)
  252. {
  253. #ifdef CONFIG_SMP
  254. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  255. #else
  256. mnt->mnt_writers--;
  257. #endif
  258. }
  259. static unsigned int mnt_get_writers(struct mount *mnt)
  260. {
  261. #ifdef CONFIG_SMP
  262. unsigned int count = 0;
  263. int cpu;
  264. for_each_possible_cpu(cpu) {
  265. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  266. }
  267. return count;
  268. #else
  269. return mnt->mnt_writers;
  270. #endif
  271. }
  272. static int mnt_is_readonly(struct vfsmount *mnt)
  273. {
  274. if (mnt->mnt_sb->s_readonly_remount)
  275. return 1;
  276. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  277. smp_rmb();
  278. return __mnt_is_readonly(mnt);
  279. }
  280. /*
  281. * Most r/o & frozen checks on a fs are for operations that take discrete
  282. * amounts of time, like a write() or unlink(). We must keep track of when
  283. * those operations start (for permission checks) and when they end, so that we
  284. * can determine when writes are able to occur to a filesystem.
  285. */
  286. /**
  287. * __mnt_want_write - get write access to a mount without freeze protection
  288. * @m: the mount on which to take a write
  289. *
  290. * This tells the low-level filesystem that a write is about to be performed to
  291. * it, and makes sure that writes are allowed (mnt it read-write) before
  292. * returning success. This operation does not protect against filesystem being
  293. * frozen. When the write operation is finished, __mnt_drop_write() must be
  294. * called. This is effectively a refcount.
  295. */
  296. int __mnt_want_write(struct vfsmount *m)
  297. {
  298. struct mount *mnt = real_mount(m);
  299. int ret = 0;
  300. preempt_disable();
  301. mnt_inc_writers(mnt);
  302. /*
  303. * The store to mnt_inc_writers must be visible before we pass
  304. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  305. * incremented count after it has set MNT_WRITE_HOLD.
  306. */
  307. smp_mb();
  308. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  309. cpu_relax();
  310. /*
  311. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  312. * be set to match its requirements. So we must not load that until
  313. * MNT_WRITE_HOLD is cleared.
  314. */
  315. smp_rmb();
  316. if (mnt_is_readonly(m)) {
  317. mnt_dec_writers(mnt);
  318. ret = -EROFS;
  319. }
  320. preempt_enable();
  321. return ret;
  322. }
  323. /**
  324. * mnt_want_write - get write access to a mount
  325. * @m: the mount on which to take a write
  326. *
  327. * This tells the low-level filesystem that a write is about to be performed to
  328. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  329. * is not frozen) before returning success. When the write operation is
  330. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  331. */
  332. int mnt_want_write(struct vfsmount *m)
  333. {
  334. int ret;
  335. sb_start_write(m->mnt_sb);
  336. ret = __mnt_want_write(m);
  337. if (ret)
  338. sb_end_write(m->mnt_sb);
  339. return ret;
  340. }
  341. EXPORT_SYMBOL_GPL(mnt_want_write);
  342. /**
  343. * mnt_clone_write - get write access to a mount
  344. * @mnt: the mount on which to take a write
  345. *
  346. * This is effectively like mnt_want_write, except
  347. * it must only be used to take an extra write reference
  348. * on a mountpoint that we already know has a write reference
  349. * on it. This allows some optimisation.
  350. *
  351. * After finished, mnt_drop_write must be called as usual to
  352. * drop the reference.
  353. */
  354. int mnt_clone_write(struct vfsmount *mnt)
  355. {
  356. /* superblock may be r/o */
  357. if (__mnt_is_readonly(mnt))
  358. return -EROFS;
  359. preempt_disable();
  360. mnt_inc_writers(real_mount(mnt));
  361. preempt_enable();
  362. return 0;
  363. }
  364. EXPORT_SYMBOL_GPL(mnt_clone_write);
  365. /**
  366. * __mnt_want_write_file - get write access to a file's mount
  367. * @file: the file who's mount on which to take a write
  368. *
  369. * This is like __mnt_want_write, but it takes a file and can
  370. * do some optimisations if the file is open for write already
  371. */
  372. int __mnt_want_write_file(struct file *file)
  373. {
  374. if (!(file->f_mode & FMODE_WRITER))
  375. return __mnt_want_write(file->f_path.mnt);
  376. else
  377. return mnt_clone_write(file->f_path.mnt);
  378. }
  379. /**
  380. * mnt_want_write_file - get write access to a file's mount
  381. * @file: the file who's mount on which to take a write
  382. *
  383. * This is like mnt_want_write, but it takes a file and can
  384. * do some optimisations if the file is open for write already
  385. */
  386. int mnt_want_write_file(struct file *file)
  387. {
  388. int ret;
  389. sb_start_write(file->f_path.mnt->mnt_sb);
  390. ret = __mnt_want_write_file(file);
  391. if (ret)
  392. sb_end_write(file->f_path.mnt->mnt_sb);
  393. return ret;
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  396. /**
  397. * __mnt_drop_write - give up write access to a mount
  398. * @mnt: the mount on which to give up write access
  399. *
  400. * Tells the low-level filesystem that we are done
  401. * performing writes to it. Must be matched with
  402. * __mnt_want_write() call above.
  403. */
  404. void __mnt_drop_write(struct vfsmount *mnt)
  405. {
  406. preempt_disable();
  407. mnt_dec_writers(real_mount(mnt));
  408. preempt_enable();
  409. }
  410. /**
  411. * mnt_drop_write - give up write access to a mount
  412. * @mnt: the mount on which to give up write access
  413. *
  414. * Tells the low-level filesystem that we are done performing writes to it and
  415. * also allows filesystem to be frozen again. Must be matched with
  416. * mnt_want_write() call above.
  417. */
  418. void mnt_drop_write(struct vfsmount *mnt)
  419. {
  420. __mnt_drop_write(mnt);
  421. sb_end_write(mnt->mnt_sb);
  422. }
  423. EXPORT_SYMBOL_GPL(mnt_drop_write);
  424. void __mnt_drop_write_file(struct file *file)
  425. {
  426. __mnt_drop_write(file->f_path.mnt);
  427. }
  428. void mnt_drop_write_file(struct file *file)
  429. {
  430. mnt_drop_write(file->f_path.mnt);
  431. }
  432. EXPORT_SYMBOL(mnt_drop_write_file);
  433. static int mnt_make_readonly(struct mount *mnt)
  434. {
  435. int ret = 0;
  436. lock_mount_hash();
  437. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  438. /*
  439. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  440. * should be visible before we do.
  441. */
  442. smp_mb();
  443. /*
  444. * With writers on hold, if this value is zero, then there are
  445. * definitely no active writers (although held writers may subsequently
  446. * increment the count, they'll have to wait, and decrement it after
  447. * seeing MNT_READONLY).
  448. *
  449. * It is OK to have counter incremented on one CPU and decremented on
  450. * another: the sum will add up correctly. The danger would be when we
  451. * sum up each counter, if we read a counter before it is incremented,
  452. * but then read another CPU's count which it has been subsequently
  453. * decremented from -- we would see more decrements than we should.
  454. * MNT_WRITE_HOLD protects against this scenario, because
  455. * mnt_want_write first increments count, then smp_mb, then spins on
  456. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  457. * we're counting up here.
  458. */
  459. if (mnt_get_writers(mnt) > 0)
  460. ret = -EBUSY;
  461. else
  462. mnt->mnt.mnt_flags |= MNT_READONLY;
  463. /*
  464. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  465. * that become unheld will see MNT_READONLY.
  466. */
  467. smp_wmb();
  468. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  469. unlock_mount_hash();
  470. return ret;
  471. }
  472. static void __mnt_unmake_readonly(struct mount *mnt)
  473. {
  474. lock_mount_hash();
  475. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  476. unlock_mount_hash();
  477. }
  478. int sb_prepare_remount_readonly(struct super_block *sb)
  479. {
  480. struct mount *mnt;
  481. int err = 0;
  482. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  483. if (atomic_long_read(&sb->s_remove_count))
  484. return -EBUSY;
  485. lock_mount_hash();
  486. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  487. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  488. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  489. smp_mb();
  490. if (mnt_get_writers(mnt) > 0) {
  491. err = -EBUSY;
  492. break;
  493. }
  494. }
  495. }
  496. if (!err && atomic_long_read(&sb->s_remove_count))
  497. err = -EBUSY;
  498. if (!err) {
  499. sb->s_readonly_remount = 1;
  500. smp_wmb();
  501. }
  502. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  503. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  504. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  505. }
  506. unlock_mount_hash();
  507. return err;
  508. }
  509. static void free_vfsmnt(struct mount *mnt)
  510. {
  511. kfree(mnt->mnt_devname);
  512. #ifdef CONFIG_SMP
  513. free_percpu(mnt->mnt_pcp);
  514. #endif
  515. kmem_cache_free(mnt_cache, mnt);
  516. }
  517. static void delayed_free_vfsmnt(struct rcu_head *head)
  518. {
  519. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  520. }
  521. /* call under rcu_read_lock */
  522. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  523. {
  524. struct mount *mnt;
  525. if (read_seqretry(&mount_lock, seq))
  526. return false;
  527. if (bastard == NULL)
  528. return true;
  529. mnt = real_mount(bastard);
  530. mnt_add_count(mnt, 1);
  531. if (likely(!read_seqretry(&mount_lock, seq)))
  532. return true;
  533. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  534. mnt_add_count(mnt, -1);
  535. return false;
  536. }
  537. rcu_read_unlock();
  538. mntput(bastard);
  539. rcu_read_lock();
  540. return false;
  541. }
  542. /*
  543. * find the first mount at @dentry on vfsmount @mnt.
  544. * call under rcu_read_lock()
  545. */
  546. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  547. {
  548. struct hlist_head *head = m_hash(mnt, dentry);
  549. struct mount *p;
  550. hlist_for_each_entry_rcu(p, head, mnt_hash)
  551. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  552. return p;
  553. return NULL;
  554. }
  555. /*
  556. * find the last mount at @dentry on vfsmount @mnt.
  557. * mount_lock must be held.
  558. */
  559. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  560. {
  561. struct mount *p, *res;
  562. res = p = __lookup_mnt(mnt, dentry);
  563. if (!p)
  564. goto out;
  565. hlist_for_each_entry_continue(p, mnt_hash) {
  566. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  567. break;
  568. res = p;
  569. }
  570. out:
  571. return res;
  572. }
  573. /*
  574. * lookup_mnt - Return the first child mount mounted at path
  575. *
  576. * "First" means first mounted chronologically. If you create the
  577. * following mounts:
  578. *
  579. * mount /dev/sda1 /mnt
  580. * mount /dev/sda2 /mnt
  581. * mount /dev/sda3 /mnt
  582. *
  583. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  584. * return successively the root dentry and vfsmount of /dev/sda1, then
  585. * /dev/sda2, then /dev/sda3, then NULL.
  586. *
  587. * lookup_mnt takes a reference to the found vfsmount.
  588. */
  589. struct vfsmount *lookup_mnt(struct path *path)
  590. {
  591. struct mount *child_mnt;
  592. struct vfsmount *m;
  593. unsigned seq;
  594. rcu_read_lock();
  595. do {
  596. seq = read_seqbegin(&mount_lock);
  597. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  598. m = child_mnt ? &child_mnt->mnt : NULL;
  599. } while (!legitimize_mnt(m, seq));
  600. rcu_read_unlock();
  601. return m;
  602. }
  603. /*
  604. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  605. * current mount namespace.
  606. *
  607. * The common case is dentries are not mountpoints at all and that
  608. * test is handled inline. For the slow case when we are actually
  609. * dealing with a mountpoint of some kind, walk through all of the
  610. * mounts in the current mount namespace and test to see if the dentry
  611. * is a mountpoint.
  612. *
  613. * The mount_hashtable is not usable in the context because we
  614. * need to identify all mounts that may be in the current mount
  615. * namespace not just a mount that happens to have some specified
  616. * parent mount.
  617. */
  618. bool __is_local_mountpoint(struct dentry *dentry)
  619. {
  620. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  621. struct mount *mnt;
  622. bool is_covered = false;
  623. if (!d_mountpoint(dentry))
  624. goto out;
  625. down_read(&namespace_sem);
  626. list_for_each_entry(mnt, &ns->list, mnt_list) {
  627. is_covered = (mnt->mnt_mountpoint == dentry);
  628. if (is_covered)
  629. break;
  630. }
  631. up_read(&namespace_sem);
  632. out:
  633. return is_covered;
  634. }
  635. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  636. {
  637. struct hlist_head *chain = mp_hash(dentry);
  638. struct mountpoint *mp;
  639. hlist_for_each_entry(mp, chain, m_hash) {
  640. if (mp->m_dentry == dentry) {
  641. /* might be worth a WARN_ON() */
  642. if (d_unlinked(dentry))
  643. return ERR_PTR(-ENOENT);
  644. mp->m_count++;
  645. return mp;
  646. }
  647. }
  648. return NULL;
  649. }
  650. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  651. {
  652. struct hlist_head *chain = mp_hash(dentry);
  653. struct mountpoint *mp;
  654. int ret;
  655. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  656. if (!mp)
  657. return ERR_PTR(-ENOMEM);
  658. ret = d_set_mounted(dentry);
  659. if (ret) {
  660. kfree(mp);
  661. return ERR_PTR(ret);
  662. }
  663. mp->m_dentry = dentry;
  664. mp->m_count = 1;
  665. hlist_add_head(&mp->m_hash, chain);
  666. INIT_HLIST_HEAD(&mp->m_list);
  667. return mp;
  668. }
  669. static void put_mountpoint(struct mountpoint *mp)
  670. {
  671. if (!--mp->m_count) {
  672. struct dentry *dentry = mp->m_dentry;
  673. BUG_ON(!hlist_empty(&mp->m_list));
  674. spin_lock(&dentry->d_lock);
  675. dentry->d_flags &= ~DCACHE_MOUNTED;
  676. spin_unlock(&dentry->d_lock);
  677. hlist_del(&mp->m_hash);
  678. kfree(mp);
  679. }
  680. }
  681. static inline int check_mnt(struct mount *mnt)
  682. {
  683. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  684. }
  685. /*
  686. * vfsmount lock must be held for write
  687. */
  688. static void touch_mnt_namespace(struct mnt_namespace *ns)
  689. {
  690. if (ns) {
  691. ns->event = ++event;
  692. wake_up_interruptible(&ns->poll);
  693. }
  694. }
  695. /*
  696. * vfsmount lock must be held for write
  697. */
  698. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  699. {
  700. if (ns && ns->event != event) {
  701. ns->event = event;
  702. wake_up_interruptible(&ns->poll);
  703. }
  704. }
  705. /*
  706. * vfsmount lock must be held for write
  707. */
  708. static void detach_mnt(struct mount *mnt, struct path *old_path)
  709. {
  710. old_path->dentry = mnt->mnt_mountpoint;
  711. old_path->mnt = &mnt->mnt_parent->mnt;
  712. mnt->mnt_parent = mnt;
  713. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  714. list_del_init(&mnt->mnt_child);
  715. hlist_del_init_rcu(&mnt->mnt_hash);
  716. hlist_del_init(&mnt->mnt_mp_list);
  717. put_mountpoint(mnt->mnt_mp);
  718. mnt->mnt_mp = NULL;
  719. }
  720. /*
  721. * vfsmount lock must be held for write
  722. */
  723. void mnt_set_mountpoint(struct mount *mnt,
  724. struct mountpoint *mp,
  725. struct mount *child_mnt)
  726. {
  727. mp->m_count++;
  728. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  729. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  730. child_mnt->mnt_parent = mnt;
  731. child_mnt->mnt_mp = mp;
  732. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  733. }
  734. /*
  735. * vfsmount lock must be held for write
  736. */
  737. static void attach_mnt(struct mount *mnt,
  738. struct mount *parent,
  739. struct mountpoint *mp)
  740. {
  741. mnt_set_mountpoint(parent, mp, mnt);
  742. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  743. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  744. }
  745. static void attach_shadowed(struct mount *mnt,
  746. struct mount *parent,
  747. struct mount *shadows)
  748. {
  749. if (shadows) {
  750. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  751. list_add(&mnt->mnt_child, &shadows->mnt_child);
  752. } else {
  753. hlist_add_head_rcu(&mnt->mnt_hash,
  754. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  755. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  756. }
  757. }
  758. /*
  759. * vfsmount lock must be held for write
  760. */
  761. static void commit_tree(struct mount *mnt, struct mount *shadows)
  762. {
  763. struct mount *parent = mnt->mnt_parent;
  764. struct mount *m;
  765. LIST_HEAD(head);
  766. struct mnt_namespace *n = parent->mnt_ns;
  767. BUG_ON(parent == mnt);
  768. list_add_tail(&head, &mnt->mnt_list);
  769. list_for_each_entry(m, &head, mnt_list)
  770. m->mnt_ns = n;
  771. list_splice(&head, n->list.prev);
  772. attach_shadowed(mnt, parent, shadows);
  773. touch_mnt_namespace(n);
  774. }
  775. static struct mount *next_mnt(struct mount *p, struct mount *root)
  776. {
  777. struct list_head *next = p->mnt_mounts.next;
  778. if (next == &p->mnt_mounts) {
  779. while (1) {
  780. if (p == root)
  781. return NULL;
  782. next = p->mnt_child.next;
  783. if (next != &p->mnt_parent->mnt_mounts)
  784. break;
  785. p = p->mnt_parent;
  786. }
  787. }
  788. return list_entry(next, struct mount, mnt_child);
  789. }
  790. static struct mount *skip_mnt_tree(struct mount *p)
  791. {
  792. struct list_head *prev = p->mnt_mounts.prev;
  793. while (prev != &p->mnt_mounts) {
  794. p = list_entry(prev, struct mount, mnt_child);
  795. prev = p->mnt_mounts.prev;
  796. }
  797. return p;
  798. }
  799. struct vfsmount *
  800. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  801. {
  802. struct mount *mnt;
  803. struct dentry *root;
  804. if (!type)
  805. return ERR_PTR(-ENODEV);
  806. mnt = alloc_vfsmnt(name);
  807. if (!mnt)
  808. return ERR_PTR(-ENOMEM);
  809. if (flags & MS_KERNMOUNT)
  810. mnt->mnt.mnt_flags = MNT_INTERNAL;
  811. root = mount_fs(type, flags, name, data);
  812. if (IS_ERR(root)) {
  813. mnt_free_id(mnt);
  814. free_vfsmnt(mnt);
  815. return ERR_CAST(root);
  816. }
  817. mnt->mnt.mnt_root = root;
  818. mnt->mnt.mnt_sb = root->d_sb;
  819. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  820. mnt->mnt_parent = mnt;
  821. lock_mount_hash();
  822. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  823. unlock_mount_hash();
  824. return &mnt->mnt;
  825. }
  826. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  827. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  828. int flag)
  829. {
  830. struct super_block *sb = old->mnt.mnt_sb;
  831. struct mount *mnt;
  832. int err;
  833. mnt = alloc_vfsmnt(old->mnt_devname);
  834. if (!mnt)
  835. return ERR_PTR(-ENOMEM);
  836. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  837. mnt->mnt_group_id = 0; /* not a peer of original */
  838. else
  839. mnt->mnt_group_id = old->mnt_group_id;
  840. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  841. err = mnt_alloc_group_id(mnt);
  842. if (err)
  843. goto out_free;
  844. }
  845. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  846. /* Don't allow unprivileged users to change mount flags */
  847. if (flag & CL_UNPRIVILEGED) {
  848. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  849. if (mnt->mnt.mnt_flags & MNT_READONLY)
  850. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  851. if (mnt->mnt.mnt_flags & MNT_NODEV)
  852. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  853. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  854. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  855. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  856. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  857. }
  858. /* Don't allow unprivileged users to reveal what is under a mount */
  859. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  860. mnt->mnt.mnt_flags |= MNT_LOCKED;
  861. atomic_inc(&sb->s_active);
  862. mnt->mnt.mnt_sb = sb;
  863. mnt->mnt.mnt_root = dget(root);
  864. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  865. mnt->mnt_parent = mnt;
  866. lock_mount_hash();
  867. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  868. unlock_mount_hash();
  869. if ((flag & CL_SLAVE) ||
  870. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  871. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  872. mnt->mnt_master = old;
  873. CLEAR_MNT_SHARED(mnt);
  874. } else if (!(flag & CL_PRIVATE)) {
  875. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  876. list_add(&mnt->mnt_share, &old->mnt_share);
  877. if (IS_MNT_SLAVE(old))
  878. list_add(&mnt->mnt_slave, &old->mnt_slave);
  879. mnt->mnt_master = old->mnt_master;
  880. }
  881. if (flag & CL_MAKE_SHARED)
  882. set_mnt_shared(mnt);
  883. /* stick the duplicate mount on the same expiry list
  884. * as the original if that was on one */
  885. if (flag & CL_EXPIRE) {
  886. if (!list_empty(&old->mnt_expire))
  887. list_add(&mnt->mnt_expire, &old->mnt_expire);
  888. }
  889. return mnt;
  890. out_free:
  891. mnt_free_id(mnt);
  892. free_vfsmnt(mnt);
  893. return ERR_PTR(err);
  894. }
  895. static void cleanup_mnt(struct mount *mnt)
  896. {
  897. /*
  898. * This probably indicates that somebody messed
  899. * up a mnt_want/drop_write() pair. If this
  900. * happens, the filesystem was probably unable
  901. * to make r/w->r/o transitions.
  902. */
  903. /*
  904. * The locking used to deal with mnt_count decrement provides barriers,
  905. * so mnt_get_writers() below is safe.
  906. */
  907. WARN_ON(mnt_get_writers(mnt));
  908. if (unlikely(mnt->mnt_pins.first))
  909. mnt_pin_kill(mnt);
  910. fsnotify_vfsmount_delete(&mnt->mnt);
  911. dput(mnt->mnt.mnt_root);
  912. deactivate_super(mnt->mnt.mnt_sb);
  913. mnt_free_id(mnt);
  914. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  915. }
  916. static void __cleanup_mnt(struct rcu_head *head)
  917. {
  918. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  919. }
  920. static LLIST_HEAD(delayed_mntput_list);
  921. static void delayed_mntput(struct work_struct *unused)
  922. {
  923. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  924. struct llist_node *next;
  925. for (; node; node = next) {
  926. next = llist_next(node);
  927. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  928. }
  929. }
  930. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  931. static void mntput_no_expire(struct mount *mnt)
  932. {
  933. rcu_read_lock();
  934. mnt_add_count(mnt, -1);
  935. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  936. rcu_read_unlock();
  937. return;
  938. }
  939. lock_mount_hash();
  940. if (mnt_get_count(mnt)) {
  941. rcu_read_unlock();
  942. unlock_mount_hash();
  943. return;
  944. }
  945. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  946. rcu_read_unlock();
  947. unlock_mount_hash();
  948. return;
  949. }
  950. mnt->mnt.mnt_flags |= MNT_DOOMED;
  951. rcu_read_unlock();
  952. list_del(&mnt->mnt_instance);
  953. unlock_mount_hash();
  954. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  955. struct task_struct *task = current;
  956. if (likely(!(task->flags & PF_KTHREAD))) {
  957. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  958. if (!task_work_add(task, &mnt->mnt_rcu, true))
  959. return;
  960. }
  961. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  962. schedule_delayed_work(&delayed_mntput_work, 1);
  963. return;
  964. }
  965. cleanup_mnt(mnt);
  966. }
  967. void mntput(struct vfsmount *mnt)
  968. {
  969. if (mnt) {
  970. struct mount *m = real_mount(mnt);
  971. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  972. if (unlikely(m->mnt_expiry_mark))
  973. m->mnt_expiry_mark = 0;
  974. mntput_no_expire(m);
  975. }
  976. }
  977. EXPORT_SYMBOL(mntput);
  978. struct vfsmount *mntget(struct vfsmount *mnt)
  979. {
  980. if (mnt)
  981. mnt_add_count(real_mount(mnt), 1);
  982. return mnt;
  983. }
  984. EXPORT_SYMBOL(mntget);
  985. struct vfsmount *mnt_clone_internal(struct path *path)
  986. {
  987. struct mount *p;
  988. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  989. if (IS_ERR(p))
  990. return ERR_CAST(p);
  991. p->mnt.mnt_flags |= MNT_INTERNAL;
  992. return &p->mnt;
  993. }
  994. static inline void mangle(struct seq_file *m, const char *s)
  995. {
  996. seq_escape(m, s, " \t\n\\");
  997. }
  998. /*
  999. * Simple .show_options callback for filesystems which don't want to
  1000. * implement more complex mount option showing.
  1001. *
  1002. * See also save_mount_options().
  1003. */
  1004. int generic_show_options(struct seq_file *m, struct dentry *root)
  1005. {
  1006. const char *options;
  1007. rcu_read_lock();
  1008. options = rcu_dereference(root->d_sb->s_options);
  1009. if (options != NULL && options[0]) {
  1010. seq_putc(m, ',');
  1011. mangle(m, options);
  1012. }
  1013. rcu_read_unlock();
  1014. return 0;
  1015. }
  1016. EXPORT_SYMBOL(generic_show_options);
  1017. /*
  1018. * If filesystem uses generic_show_options(), this function should be
  1019. * called from the fill_super() callback.
  1020. *
  1021. * The .remount_fs callback usually needs to be handled in a special
  1022. * way, to make sure, that previous options are not overwritten if the
  1023. * remount fails.
  1024. *
  1025. * Also note, that if the filesystem's .remount_fs function doesn't
  1026. * reset all options to their default value, but changes only newly
  1027. * given options, then the displayed options will not reflect reality
  1028. * any more.
  1029. */
  1030. void save_mount_options(struct super_block *sb, char *options)
  1031. {
  1032. BUG_ON(sb->s_options);
  1033. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1034. }
  1035. EXPORT_SYMBOL(save_mount_options);
  1036. void replace_mount_options(struct super_block *sb, char *options)
  1037. {
  1038. char *old = sb->s_options;
  1039. rcu_assign_pointer(sb->s_options, options);
  1040. if (old) {
  1041. synchronize_rcu();
  1042. kfree(old);
  1043. }
  1044. }
  1045. EXPORT_SYMBOL(replace_mount_options);
  1046. #ifdef CONFIG_PROC_FS
  1047. /* iterator; we want it to have access to namespace_sem, thus here... */
  1048. static void *m_start(struct seq_file *m, loff_t *pos)
  1049. {
  1050. struct proc_mounts *p = proc_mounts(m);
  1051. down_read(&namespace_sem);
  1052. if (p->cached_event == p->ns->event) {
  1053. void *v = p->cached_mount;
  1054. if (*pos == p->cached_index)
  1055. return v;
  1056. if (*pos == p->cached_index + 1) {
  1057. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1058. return p->cached_mount = v;
  1059. }
  1060. }
  1061. p->cached_event = p->ns->event;
  1062. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1063. p->cached_index = *pos;
  1064. return p->cached_mount;
  1065. }
  1066. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1067. {
  1068. struct proc_mounts *p = proc_mounts(m);
  1069. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1070. p->cached_index = *pos;
  1071. return p->cached_mount;
  1072. }
  1073. static void m_stop(struct seq_file *m, void *v)
  1074. {
  1075. up_read(&namespace_sem);
  1076. }
  1077. static int m_show(struct seq_file *m, void *v)
  1078. {
  1079. struct proc_mounts *p = proc_mounts(m);
  1080. struct mount *r = list_entry(v, struct mount, mnt_list);
  1081. return p->show(m, &r->mnt);
  1082. }
  1083. const struct seq_operations mounts_op = {
  1084. .start = m_start,
  1085. .next = m_next,
  1086. .stop = m_stop,
  1087. .show = m_show,
  1088. };
  1089. #endif /* CONFIG_PROC_FS */
  1090. /**
  1091. * may_umount_tree - check if a mount tree is busy
  1092. * @mnt: root of mount tree
  1093. *
  1094. * This is called to check if a tree of mounts has any
  1095. * open files, pwds, chroots or sub mounts that are
  1096. * busy.
  1097. */
  1098. int may_umount_tree(struct vfsmount *m)
  1099. {
  1100. struct mount *mnt = real_mount(m);
  1101. int actual_refs = 0;
  1102. int minimum_refs = 0;
  1103. struct mount *p;
  1104. BUG_ON(!m);
  1105. /* write lock needed for mnt_get_count */
  1106. lock_mount_hash();
  1107. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1108. actual_refs += mnt_get_count(p);
  1109. minimum_refs += 2;
  1110. }
  1111. unlock_mount_hash();
  1112. if (actual_refs > minimum_refs)
  1113. return 0;
  1114. return 1;
  1115. }
  1116. EXPORT_SYMBOL(may_umount_tree);
  1117. /**
  1118. * may_umount - check if a mount point is busy
  1119. * @mnt: root of mount
  1120. *
  1121. * This is called to check if a mount point has any
  1122. * open files, pwds, chroots or sub mounts. If the
  1123. * mount has sub mounts this will return busy
  1124. * regardless of whether the sub mounts are busy.
  1125. *
  1126. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1127. * give false negatives. The main reason why it's here is that we need
  1128. * a non-destructive way to look for easily umountable filesystems.
  1129. */
  1130. int may_umount(struct vfsmount *mnt)
  1131. {
  1132. int ret = 1;
  1133. down_read(&namespace_sem);
  1134. lock_mount_hash();
  1135. if (propagate_mount_busy(real_mount(mnt), 2))
  1136. ret = 0;
  1137. unlock_mount_hash();
  1138. up_read(&namespace_sem);
  1139. return ret;
  1140. }
  1141. EXPORT_SYMBOL(may_umount);
  1142. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1143. static void namespace_unlock(void)
  1144. {
  1145. struct mount *mnt;
  1146. struct hlist_head head = unmounted;
  1147. if (likely(hlist_empty(&head))) {
  1148. up_write(&namespace_sem);
  1149. return;
  1150. }
  1151. head.first->pprev = &head.first;
  1152. INIT_HLIST_HEAD(&unmounted);
  1153. /* undo decrements we'd done in umount_tree() */
  1154. hlist_for_each_entry(mnt, &head, mnt_hash)
  1155. if (mnt->mnt_ex_mountpoint.mnt)
  1156. mntget(mnt->mnt_ex_mountpoint.mnt);
  1157. up_write(&namespace_sem);
  1158. synchronize_rcu();
  1159. while (!hlist_empty(&head)) {
  1160. mnt = hlist_entry(head.first, struct mount, mnt_hash);
  1161. hlist_del_init(&mnt->mnt_hash);
  1162. if (mnt->mnt_ex_mountpoint.mnt)
  1163. path_put(&mnt->mnt_ex_mountpoint);
  1164. mntput(&mnt->mnt);
  1165. }
  1166. }
  1167. static inline void namespace_lock(void)
  1168. {
  1169. down_write(&namespace_sem);
  1170. }
  1171. /*
  1172. * mount_lock must be held
  1173. * namespace_sem must be held for write
  1174. * how = 0 => just this tree, don't propagate
  1175. * how = 1 => propagate; we know that nobody else has reference to any victims
  1176. * how = 2 => lazy umount
  1177. */
  1178. void umount_tree(struct mount *mnt, int how)
  1179. {
  1180. HLIST_HEAD(tmp_list);
  1181. struct mount *p;
  1182. struct mount *last = NULL;
  1183. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1184. hlist_del_init_rcu(&p->mnt_hash);
  1185. hlist_add_head(&p->mnt_hash, &tmp_list);
  1186. }
  1187. hlist_for_each_entry(p, &tmp_list, mnt_hash)
  1188. list_del_init(&p->mnt_child);
  1189. if (how)
  1190. propagate_umount(&tmp_list);
  1191. hlist_for_each_entry(p, &tmp_list, mnt_hash) {
  1192. list_del_init(&p->mnt_expire);
  1193. list_del_init(&p->mnt_list);
  1194. __touch_mnt_namespace(p->mnt_ns);
  1195. p->mnt_ns = NULL;
  1196. if (how < 2)
  1197. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1198. if (mnt_has_parent(p)) {
  1199. hlist_del_init(&p->mnt_mp_list);
  1200. put_mountpoint(p->mnt_mp);
  1201. mnt_add_count(p->mnt_parent, -1);
  1202. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1203. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1204. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1205. p->mnt_mountpoint = p->mnt.mnt_root;
  1206. p->mnt_parent = p;
  1207. p->mnt_mp = NULL;
  1208. }
  1209. change_mnt_propagation(p, MS_PRIVATE);
  1210. last = p;
  1211. }
  1212. if (last) {
  1213. last->mnt_hash.next = unmounted.first;
  1214. unmounted.first = tmp_list.first;
  1215. unmounted.first->pprev = &unmounted.first;
  1216. }
  1217. }
  1218. static void shrink_submounts(struct mount *mnt);
  1219. static int do_umount(struct mount *mnt, int flags)
  1220. {
  1221. struct super_block *sb = mnt->mnt.mnt_sb;
  1222. int retval;
  1223. retval = security_sb_umount(&mnt->mnt, flags);
  1224. if (retval)
  1225. return retval;
  1226. /*
  1227. * Allow userspace to request a mountpoint be expired rather than
  1228. * unmounting unconditionally. Unmount only happens if:
  1229. * (1) the mark is already set (the mark is cleared by mntput())
  1230. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1231. */
  1232. if (flags & MNT_EXPIRE) {
  1233. if (&mnt->mnt == current->fs->root.mnt ||
  1234. flags & (MNT_FORCE | MNT_DETACH))
  1235. return -EINVAL;
  1236. /*
  1237. * probably don't strictly need the lock here if we examined
  1238. * all race cases, but it's a slowpath.
  1239. */
  1240. lock_mount_hash();
  1241. if (mnt_get_count(mnt) != 2) {
  1242. unlock_mount_hash();
  1243. return -EBUSY;
  1244. }
  1245. unlock_mount_hash();
  1246. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1247. return -EAGAIN;
  1248. }
  1249. /*
  1250. * If we may have to abort operations to get out of this
  1251. * mount, and they will themselves hold resources we must
  1252. * allow the fs to do things. In the Unix tradition of
  1253. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1254. * might fail to complete on the first run through as other tasks
  1255. * must return, and the like. Thats for the mount program to worry
  1256. * about for the moment.
  1257. */
  1258. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1259. sb->s_op->umount_begin(sb);
  1260. }
  1261. /*
  1262. * No sense to grab the lock for this test, but test itself looks
  1263. * somewhat bogus. Suggestions for better replacement?
  1264. * Ho-hum... In principle, we might treat that as umount + switch
  1265. * to rootfs. GC would eventually take care of the old vfsmount.
  1266. * Actually it makes sense, especially if rootfs would contain a
  1267. * /reboot - static binary that would close all descriptors and
  1268. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1269. */
  1270. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1271. /*
  1272. * Special case for "unmounting" root ...
  1273. * we just try to remount it readonly.
  1274. */
  1275. if (!capable(CAP_SYS_ADMIN))
  1276. return -EPERM;
  1277. down_write(&sb->s_umount);
  1278. if (!(sb->s_flags & MS_RDONLY))
  1279. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1280. up_write(&sb->s_umount);
  1281. return retval;
  1282. }
  1283. namespace_lock();
  1284. lock_mount_hash();
  1285. event++;
  1286. if (flags & MNT_DETACH) {
  1287. if (!list_empty(&mnt->mnt_list))
  1288. umount_tree(mnt, 2);
  1289. retval = 0;
  1290. } else {
  1291. shrink_submounts(mnt);
  1292. retval = -EBUSY;
  1293. if (!propagate_mount_busy(mnt, 2)) {
  1294. if (!list_empty(&mnt->mnt_list))
  1295. umount_tree(mnt, 1);
  1296. retval = 0;
  1297. }
  1298. }
  1299. unlock_mount_hash();
  1300. namespace_unlock();
  1301. return retval;
  1302. }
  1303. /*
  1304. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1305. *
  1306. * During unlink, rmdir, and d_drop it is possible to loose the path
  1307. * to an existing mountpoint, and wind up leaking the mount.
  1308. * detach_mounts allows lazily unmounting those mounts instead of
  1309. * leaking them.
  1310. *
  1311. * The caller may hold dentry->d_inode->i_mutex.
  1312. */
  1313. void __detach_mounts(struct dentry *dentry)
  1314. {
  1315. struct mountpoint *mp;
  1316. struct mount *mnt;
  1317. namespace_lock();
  1318. mp = lookup_mountpoint(dentry);
  1319. if (!mp)
  1320. goto out_unlock;
  1321. lock_mount_hash();
  1322. while (!hlist_empty(&mp->m_list)) {
  1323. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1324. umount_tree(mnt, 2);
  1325. }
  1326. unlock_mount_hash();
  1327. put_mountpoint(mp);
  1328. out_unlock:
  1329. namespace_unlock();
  1330. }
  1331. /*
  1332. * Is the caller allowed to modify his namespace?
  1333. */
  1334. static inline bool may_mount(void)
  1335. {
  1336. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1337. }
  1338. /*
  1339. * Now umount can handle mount points as well as block devices.
  1340. * This is important for filesystems which use unnamed block devices.
  1341. *
  1342. * We now support a flag for forced unmount like the other 'big iron'
  1343. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1344. */
  1345. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1346. {
  1347. struct path path;
  1348. struct mount *mnt;
  1349. int retval;
  1350. int lookup_flags = 0;
  1351. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1352. return -EINVAL;
  1353. if (!may_mount())
  1354. return -EPERM;
  1355. if (!(flags & UMOUNT_NOFOLLOW))
  1356. lookup_flags |= LOOKUP_FOLLOW;
  1357. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1358. if (retval)
  1359. goto out;
  1360. mnt = real_mount(path.mnt);
  1361. retval = -EINVAL;
  1362. if (path.dentry != path.mnt->mnt_root)
  1363. goto dput_and_out;
  1364. if (!check_mnt(mnt))
  1365. goto dput_and_out;
  1366. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1367. goto dput_and_out;
  1368. retval = do_umount(mnt, flags);
  1369. dput_and_out:
  1370. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1371. dput(path.dentry);
  1372. mntput_no_expire(mnt);
  1373. out:
  1374. return retval;
  1375. }
  1376. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1377. /*
  1378. * The 2.0 compatible umount. No flags.
  1379. */
  1380. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1381. {
  1382. return sys_umount(name, 0);
  1383. }
  1384. #endif
  1385. static bool is_mnt_ns_file(struct dentry *dentry)
  1386. {
  1387. /* Is this a proxy for a mount namespace? */
  1388. struct inode *inode = dentry->d_inode;
  1389. struct proc_ns *ei;
  1390. if (!proc_ns_inode(inode))
  1391. return false;
  1392. ei = get_proc_ns(inode);
  1393. if (ei->ns_ops != &mntns_operations)
  1394. return false;
  1395. return true;
  1396. }
  1397. static bool mnt_ns_loop(struct dentry *dentry)
  1398. {
  1399. /* Could bind mounting the mount namespace inode cause a
  1400. * mount namespace loop?
  1401. */
  1402. struct mnt_namespace *mnt_ns;
  1403. if (!is_mnt_ns_file(dentry))
  1404. return false;
  1405. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1406. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1407. }
  1408. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1409. int flag)
  1410. {
  1411. struct mount *res, *p, *q, *r, *parent;
  1412. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1413. return ERR_PTR(-EINVAL);
  1414. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1415. return ERR_PTR(-EINVAL);
  1416. res = q = clone_mnt(mnt, dentry, flag);
  1417. if (IS_ERR(q))
  1418. return q;
  1419. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1420. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1421. p = mnt;
  1422. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1423. struct mount *s;
  1424. if (!is_subdir(r->mnt_mountpoint, dentry))
  1425. continue;
  1426. for (s = r; s; s = next_mnt(s, r)) {
  1427. struct mount *t = NULL;
  1428. if (!(flag & CL_COPY_UNBINDABLE) &&
  1429. IS_MNT_UNBINDABLE(s)) {
  1430. s = skip_mnt_tree(s);
  1431. continue;
  1432. }
  1433. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1434. is_mnt_ns_file(s->mnt.mnt_root)) {
  1435. s = skip_mnt_tree(s);
  1436. continue;
  1437. }
  1438. while (p != s->mnt_parent) {
  1439. p = p->mnt_parent;
  1440. q = q->mnt_parent;
  1441. }
  1442. p = s;
  1443. parent = q;
  1444. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1445. if (IS_ERR(q))
  1446. goto out;
  1447. lock_mount_hash();
  1448. list_add_tail(&q->mnt_list, &res->mnt_list);
  1449. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1450. if (!list_empty(&parent->mnt_mounts)) {
  1451. t = list_last_entry(&parent->mnt_mounts,
  1452. struct mount, mnt_child);
  1453. if (t->mnt_mp != p->mnt_mp)
  1454. t = NULL;
  1455. }
  1456. attach_shadowed(q, parent, t);
  1457. unlock_mount_hash();
  1458. }
  1459. }
  1460. return res;
  1461. out:
  1462. if (res) {
  1463. lock_mount_hash();
  1464. umount_tree(res, 0);
  1465. unlock_mount_hash();
  1466. }
  1467. return q;
  1468. }
  1469. /* Caller should check returned pointer for errors */
  1470. struct vfsmount *collect_mounts(struct path *path)
  1471. {
  1472. struct mount *tree;
  1473. namespace_lock();
  1474. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1475. CL_COPY_ALL | CL_PRIVATE);
  1476. namespace_unlock();
  1477. if (IS_ERR(tree))
  1478. return ERR_CAST(tree);
  1479. return &tree->mnt;
  1480. }
  1481. void drop_collected_mounts(struct vfsmount *mnt)
  1482. {
  1483. namespace_lock();
  1484. lock_mount_hash();
  1485. umount_tree(real_mount(mnt), 0);
  1486. unlock_mount_hash();
  1487. namespace_unlock();
  1488. }
  1489. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1490. struct vfsmount *root)
  1491. {
  1492. struct mount *mnt;
  1493. int res = f(root, arg);
  1494. if (res)
  1495. return res;
  1496. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1497. res = f(&mnt->mnt, arg);
  1498. if (res)
  1499. return res;
  1500. }
  1501. return 0;
  1502. }
  1503. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1504. {
  1505. struct mount *p;
  1506. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1507. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1508. mnt_release_group_id(p);
  1509. }
  1510. }
  1511. static int invent_group_ids(struct mount *mnt, bool recurse)
  1512. {
  1513. struct mount *p;
  1514. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1515. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1516. int err = mnt_alloc_group_id(p);
  1517. if (err) {
  1518. cleanup_group_ids(mnt, p);
  1519. return err;
  1520. }
  1521. }
  1522. }
  1523. return 0;
  1524. }
  1525. /*
  1526. * @source_mnt : mount tree to be attached
  1527. * @nd : place the mount tree @source_mnt is attached
  1528. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1529. * store the parent mount and mountpoint dentry.
  1530. * (done when source_mnt is moved)
  1531. *
  1532. * NOTE: in the table below explains the semantics when a source mount
  1533. * of a given type is attached to a destination mount of a given type.
  1534. * ---------------------------------------------------------------------------
  1535. * | BIND MOUNT OPERATION |
  1536. * |**************************************************************************
  1537. * | source-->| shared | private | slave | unbindable |
  1538. * | dest | | | | |
  1539. * | | | | | | |
  1540. * | v | | | | |
  1541. * |**************************************************************************
  1542. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1543. * | | | | | |
  1544. * |non-shared| shared (+) | private | slave (*) | invalid |
  1545. * ***************************************************************************
  1546. * A bind operation clones the source mount and mounts the clone on the
  1547. * destination mount.
  1548. *
  1549. * (++) the cloned mount is propagated to all the mounts in the propagation
  1550. * tree of the destination mount and the cloned mount is added to
  1551. * the peer group of the source mount.
  1552. * (+) the cloned mount is created under the destination mount and is marked
  1553. * as shared. The cloned mount is added to the peer group of the source
  1554. * mount.
  1555. * (+++) the mount is propagated to all the mounts in the propagation tree
  1556. * of the destination mount and the cloned mount is made slave
  1557. * of the same master as that of the source mount. The cloned mount
  1558. * is marked as 'shared and slave'.
  1559. * (*) the cloned mount is made a slave of the same master as that of the
  1560. * source mount.
  1561. *
  1562. * ---------------------------------------------------------------------------
  1563. * | MOVE MOUNT OPERATION |
  1564. * |**************************************************************************
  1565. * | source-->| shared | private | slave | unbindable |
  1566. * | dest | | | | |
  1567. * | | | | | | |
  1568. * | v | | | | |
  1569. * |**************************************************************************
  1570. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1571. * | | | | | |
  1572. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1573. * ***************************************************************************
  1574. *
  1575. * (+) the mount is moved to the destination. And is then propagated to
  1576. * all the mounts in the propagation tree of the destination mount.
  1577. * (+*) the mount is moved to the destination.
  1578. * (+++) the mount is moved to the destination and is then propagated to
  1579. * all the mounts belonging to the destination mount's propagation tree.
  1580. * the mount is marked as 'shared and slave'.
  1581. * (*) the mount continues to be a slave at the new location.
  1582. *
  1583. * if the source mount is a tree, the operations explained above is
  1584. * applied to each mount in the tree.
  1585. * Must be called without spinlocks held, since this function can sleep
  1586. * in allocations.
  1587. */
  1588. static int attach_recursive_mnt(struct mount *source_mnt,
  1589. struct mount *dest_mnt,
  1590. struct mountpoint *dest_mp,
  1591. struct path *parent_path)
  1592. {
  1593. HLIST_HEAD(tree_list);
  1594. struct mount *child, *p;
  1595. struct hlist_node *n;
  1596. int err;
  1597. if (IS_MNT_SHARED(dest_mnt)) {
  1598. err = invent_group_ids(source_mnt, true);
  1599. if (err)
  1600. goto out;
  1601. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1602. lock_mount_hash();
  1603. if (err)
  1604. goto out_cleanup_ids;
  1605. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1606. set_mnt_shared(p);
  1607. } else {
  1608. lock_mount_hash();
  1609. }
  1610. if (parent_path) {
  1611. detach_mnt(source_mnt, parent_path);
  1612. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1613. touch_mnt_namespace(source_mnt->mnt_ns);
  1614. } else {
  1615. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1616. commit_tree(source_mnt, NULL);
  1617. }
  1618. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1619. struct mount *q;
  1620. hlist_del_init(&child->mnt_hash);
  1621. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1622. child->mnt_mountpoint);
  1623. commit_tree(child, q);
  1624. }
  1625. unlock_mount_hash();
  1626. return 0;
  1627. out_cleanup_ids:
  1628. while (!hlist_empty(&tree_list)) {
  1629. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1630. umount_tree(child, 0);
  1631. }
  1632. unlock_mount_hash();
  1633. cleanup_group_ids(source_mnt, NULL);
  1634. out:
  1635. return err;
  1636. }
  1637. static struct mountpoint *lock_mount(struct path *path)
  1638. {
  1639. struct vfsmount *mnt;
  1640. struct dentry *dentry = path->dentry;
  1641. retry:
  1642. mutex_lock(&dentry->d_inode->i_mutex);
  1643. if (unlikely(cant_mount(dentry))) {
  1644. mutex_unlock(&dentry->d_inode->i_mutex);
  1645. return ERR_PTR(-ENOENT);
  1646. }
  1647. namespace_lock();
  1648. mnt = lookup_mnt(path);
  1649. if (likely(!mnt)) {
  1650. struct mountpoint *mp = lookup_mountpoint(dentry);
  1651. if (!mp)
  1652. mp = new_mountpoint(dentry);
  1653. if (IS_ERR(mp)) {
  1654. namespace_unlock();
  1655. mutex_unlock(&dentry->d_inode->i_mutex);
  1656. return mp;
  1657. }
  1658. return mp;
  1659. }
  1660. namespace_unlock();
  1661. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1662. path_put(path);
  1663. path->mnt = mnt;
  1664. dentry = path->dentry = dget(mnt->mnt_root);
  1665. goto retry;
  1666. }
  1667. static void unlock_mount(struct mountpoint *where)
  1668. {
  1669. struct dentry *dentry = where->m_dentry;
  1670. put_mountpoint(where);
  1671. namespace_unlock();
  1672. mutex_unlock(&dentry->d_inode->i_mutex);
  1673. }
  1674. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1675. {
  1676. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1677. return -EINVAL;
  1678. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1679. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1680. return -ENOTDIR;
  1681. return attach_recursive_mnt(mnt, p, mp, NULL);
  1682. }
  1683. /*
  1684. * Sanity check the flags to change_mnt_propagation.
  1685. */
  1686. static int flags_to_propagation_type(int flags)
  1687. {
  1688. int type = flags & ~(MS_REC | MS_SILENT);
  1689. /* Fail if any non-propagation flags are set */
  1690. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1691. return 0;
  1692. /* Only one propagation flag should be set */
  1693. if (!is_power_of_2(type))
  1694. return 0;
  1695. return type;
  1696. }
  1697. /*
  1698. * recursively change the type of the mountpoint.
  1699. */
  1700. static int do_change_type(struct path *path, int flag)
  1701. {
  1702. struct mount *m;
  1703. struct mount *mnt = real_mount(path->mnt);
  1704. int recurse = flag & MS_REC;
  1705. int type;
  1706. int err = 0;
  1707. if (path->dentry != path->mnt->mnt_root)
  1708. return -EINVAL;
  1709. type = flags_to_propagation_type(flag);
  1710. if (!type)
  1711. return -EINVAL;
  1712. namespace_lock();
  1713. if (type == MS_SHARED) {
  1714. err = invent_group_ids(mnt, recurse);
  1715. if (err)
  1716. goto out_unlock;
  1717. }
  1718. lock_mount_hash();
  1719. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1720. change_mnt_propagation(m, type);
  1721. unlock_mount_hash();
  1722. out_unlock:
  1723. namespace_unlock();
  1724. return err;
  1725. }
  1726. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1727. {
  1728. struct mount *child;
  1729. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1730. if (!is_subdir(child->mnt_mountpoint, dentry))
  1731. continue;
  1732. if (child->mnt.mnt_flags & MNT_LOCKED)
  1733. return true;
  1734. }
  1735. return false;
  1736. }
  1737. /*
  1738. * do loopback mount.
  1739. */
  1740. static int do_loopback(struct path *path, const char *old_name,
  1741. int recurse)
  1742. {
  1743. struct path old_path;
  1744. struct mount *mnt = NULL, *old, *parent;
  1745. struct mountpoint *mp;
  1746. int err;
  1747. if (!old_name || !*old_name)
  1748. return -EINVAL;
  1749. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1750. if (err)
  1751. return err;
  1752. err = -EINVAL;
  1753. if (mnt_ns_loop(old_path.dentry))
  1754. goto out;
  1755. mp = lock_mount(path);
  1756. err = PTR_ERR(mp);
  1757. if (IS_ERR(mp))
  1758. goto out;
  1759. old = real_mount(old_path.mnt);
  1760. parent = real_mount(path->mnt);
  1761. err = -EINVAL;
  1762. if (IS_MNT_UNBINDABLE(old))
  1763. goto out2;
  1764. if (!check_mnt(parent) || !check_mnt(old))
  1765. goto out2;
  1766. if (!recurse && has_locked_children(old, old_path.dentry))
  1767. goto out2;
  1768. if (recurse)
  1769. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1770. else
  1771. mnt = clone_mnt(old, old_path.dentry, 0);
  1772. if (IS_ERR(mnt)) {
  1773. err = PTR_ERR(mnt);
  1774. goto out2;
  1775. }
  1776. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1777. err = graft_tree(mnt, parent, mp);
  1778. if (err) {
  1779. lock_mount_hash();
  1780. umount_tree(mnt, 0);
  1781. unlock_mount_hash();
  1782. }
  1783. out2:
  1784. unlock_mount(mp);
  1785. out:
  1786. path_put(&old_path);
  1787. return err;
  1788. }
  1789. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1790. {
  1791. int error = 0;
  1792. int readonly_request = 0;
  1793. if (ms_flags & MS_RDONLY)
  1794. readonly_request = 1;
  1795. if (readonly_request == __mnt_is_readonly(mnt))
  1796. return 0;
  1797. if (readonly_request)
  1798. error = mnt_make_readonly(real_mount(mnt));
  1799. else
  1800. __mnt_unmake_readonly(real_mount(mnt));
  1801. return error;
  1802. }
  1803. /*
  1804. * change filesystem flags. dir should be a physical root of filesystem.
  1805. * If you've mounted a non-root directory somewhere and want to do remount
  1806. * on it - tough luck.
  1807. */
  1808. static int do_remount(struct path *path, int flags, int mnt_flags,
  1809. void *data)
  1810. {
  1811. int err;
  1812. struct super_block *sb = path->mnt->mnt_sb;
  1813. struct mount *mnt = real_mount(path->mnt);
  1814. if (!check_mnt(mnt))
  1815. return -EINVAL;
  1816. if (path->dentry != path->mnt->mnt_root)
  1817. return -EINVAL;
  1818. /* Don't allow changing of locked mnt flags.
  1819. *
  1820. * No locks need to be held here while testing the various
  1821. * MNT_LOCK flags because those flags can never be cleared
  1822. * once they are set.
  1823. */
  1824. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1825. !(mnt_flags & MNT_READONLY)) {
  1826. return -EPERM;
  1827. }
  1828. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1829. !(mnt_flags & MNT_NODEV)) {
  1830. return -EPERM;
  1831. }
  1832. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1833. !(mnt_flags & MNT_NOSUID)) {
  1834. return -EPERM;
  1835. }
  1836. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1837. !(mnt_flags & MNT_NOEXEC)) {
  1838. return -EPERM;
  1839. }
  1840. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1841. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1842. return -EPERM;
  1843. }
  1844. err = security_sb_remount(sb, data);
  1845. if (err)
  1846. return err;
  1847. down_write(&sb->s_umount);
  1848. if (flags & MS_BIND)
  1849. err = change_mount_flags(path->mnt, flags);
  1850. else if (!capable(CAP_SYS_ADMIN))
  1851. err = -EPERM;
  1852. else
  1853. err = do_remount_sb(sb, flags, data, 0);
  1854. if (!err) {
  1855. lock_mount_hash();
  1856. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1857. mnt->mnt.mnt_flags = mnt_flags;
  1858. touch_mnt_namespace(mnt->mnt_ns);
  1859. unlock_mount_hash();
  1860. }
  1861. up_write(&sb->s_umount);
  1862. return err;
  1863. }
  1864. static inline int tree_contains_unbindable(struct mount *mnt)
  1865. {
  1866. struct mount *p;
  1867. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1868. if (IS_MNT_UNBINDABLE(p))
  1869. return 1;
  1870. }
  1871. return 0;
  1872. }
  1873. static int do_move_mount(struct path *path, const char *old_name)
  1874. {
  1875. struct path old_path, parent_path;
  1876. struct mount *p;
  1877. struct mount *old;
  1878. struct mountpoint *mp;
  1879. int err;
  1880. if (!old_name || !*old_name)
  1881. return -EINVAL;
  1882. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1883. if (err)
  1884. return err;
  1885. mp = lock_mount(path);
  1886. err = PTR_ERR(mp);
  1887. if (IS_ERR(mp))
  1888. goto out;
  1889. old = real_mount(old_path.mnt);
  1890. p = real_mount(path->mnt);
  1891. err = -EINVAL;
  1892. if (!check_mnt(p) || !check_mnt(old))
  1893. goto out1;
  1894. if (old->mnt.mnt_flags & MNT_LOCKED)
  1895. goto out1;
  1896. err = -EINVAL;
  1897. if (old_path.dentry != old_path.mnt->mnt_root)
  1898. goto out1;
  1899. if (!mnt_has_parent(old))
  1900. goto out1;
  1901. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1902. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1903. goto out1;
  1904. /*
  1905. * Don't move a mount residing in a shared parent.
  1906. */
  1907. if (IS_MNT_SHARED(old->mnt_parent))
  1908. goto out1;
  1909. /*
  1910. * Don't move a mount tree containing unbindable mounts to a destination
  1911. * mount which is shared.
  1912. */
  1913. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1914. goto out1;
  1915. err = -ELOOP;
  1916. for (; mnt_has_parent(p); p = p->mnt_parent)
  1917. if (p == old)
  1918. goto out1;
  1919. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1920. if (err)
  1921. goto out1;
  1922. /* if the mount is moved, it should no longer be expire
  1923. * automatically */
  1924. list_del_init(&old->mnt_expire);
  1925. out1:
  1926. unlock_mount(mp);
  1927. out:
  1928. if (!err)
  1929. path_put(&parent_path);
  1930. path_put(&old_path);
  1931. return err;
  1932. }
  1933. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1934. {
  1935. int err;
  1936. const char *subtype = strchr(fstype, '.');
  1937. if (subtype) {
  1938. subtype++;
  1939. err = -EINVAL;
  1940. if (!subtype[0])
  1941. goto err;
  1942. } else
  1943. subtype = "";
  1944. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1945. err = -ENOMEM;
  1946. if (!mnt->mnt_sb->s_subtype)
  1947. goto err;
  1948. return mnt;
  1949. err:
  1950. mntput(mnt);
  1951. return ERR_PTR(err);
  1952. }
  1953. /*
  1954. * add a mount into a namespace's mount tree
  1955. */
  1956. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1957. {
  1958. struct mountpoint *mp;
  1959. struct mount *parent;
  1960. int err;
  1961. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1962. mp = lock_mount(path);
  1963. if (IS_ERR(mp))
  1964. return PTR_ERR(mp);
  1965. parent = real_mount(path->mnt);
  1966. err = -EINVAL;
  1967. if (unlikely(!check_mnt(parent))) {
  1968. /* that's acceptable only for automounts done in private ns */
  1969. if (!(mnt_flags & MNT_SHRINKABLE))
  1970. goto unlock;
  1971. /* ... and for those we'd better have mountpoint still alive */
  1972. if (!parent->mnt_ns)
  1973. goto unlock;
  1974. }
  1975. /* Refuse the same filesystem on the same mount point */
  1976. err = -EBUSY;
  1977. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1978. path->mnt->mnt_root == path->dentry)
  1979. goto unlock;
  1980. err = -EINVAL;
  1981. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1982. goto unlock;
  1983. newmnt->mnt.mnt_flags = mnt_flags;
  1984. err = graft_tree(newmnt, parent, mp);
  1985. unlock:
  1986. unlock_mount(mp);
  1987. return err;
  1988. }
  1989. /*
  1990. * create a new mount for userspace and request it to be added into the
  1991. * namespace's tree
  1992. */
  1993. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1994. int mnt_flags, const char *name, void *data)
  1995. {
  1996. struct file_system_type *type;
  1997. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1998. struct vfsmount *mnt;
  1999. int err;
  2000. if (!fstype)
  2001. return -EINVAL;
  2002. type = get_fs_type(fstype);
  2003. if (!type)
  2004. return -ENODEV;
  2005. if (user_ns != &init_user_ns) {
  2006. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  2007. put_filesystem(type);
  2008. return -EPERM;
  2009. }
  2010. /* Only in special cases allow devices from mounts
  2011. * created outside the initial user namespace.
  2012. */
  2013. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  2014. flags |= MS_NODEV;
  2015. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  2016. }
  2017. }
  2018. mnt = vfs_kern_mount(type, flags, name, data);
  2019. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2020. !mnt->mnt_sb->s_subtype)
  2021. mnt = fs_set_subtype(mnt, fstype);
  2022. put_filesystem(type);
  2023. if (IS_ERR(mnt))
  2024. return PTR_ERR(mnt);
  2025. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2026. if (err)
  2027. mntput(mnt);
  2028. return err;
  2029. }
  2030. int finish_automount(struct vfsmount *m, struct path *path)
  2031. {
  2032. struct mount *mnt = real_mount(m);
  2033. int err;
  2034. /* The new mount record should have at least 2 refs to prevent it being
  2035. * expired before we get a chance to add it
  2036. */
  2037. BUG_ON(mnt_get_count(mnt) < 2);
  2038. if (m->mnt_sb == path->mnt->mnt_sb &&
  2039. m->mnt_root == path->dentry) {
  2040. err = -ELOOP;
  2041. goto fail;
  2042. }
  2043. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2044. if (!err)
  2045. return 0;
  2046. fail:
  2047. /* remove m from any expiration list it may be on */
  2048. if (!list_empty(&mnt->mnt_expire)) {
  2049. namespace_lock();
  2050. list_del_init(&mnt->mnt_expire);
  2051. namespace_unlock();
  2052. }
  2053. mntput(m);
  2054. mntput(m);
  2055. return err;
  2056. }
  2057. /**
  2058. * mnt_set_expiry - Put a mount on an expiration list
  2059. * @mnt: The mount to list.
  2060. * @expiry_list: The list to add the mount to.
  2061. */
  2062. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2063. {
  2064. namespace_lock();
  2065. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2066. namespace_unlock();
  2067. }
  2068. EXPORT_SYMBOL(mnt_set_expiry);
  2069. /*
  2070. * process a list of expirable mountpoints with the intent of discarding any
  2071. * mountpoints that aren't in use and haven't been touched since last we came
  2072. * here
  2073. */
  2074. void mark_mounts_for_expiry(struct list_head *mounts)
  2075. {
  2076. struct mount *mnt, *next;
  2077. LIST_HEAD(graveyard);
  2078. if (list_empty(mounts))
  2079. return;
  2080. namespace_lock();
  2081. lock_mount_hash();
  2082. /* extract from the expiration list every vfsmount that matches the
  2083. * following criteria:
  2084. * - only referenced by its parent vfsmount
  2085. * - still marked for expiry (marked on the last call here; marks are
  2086. * cleared by mntput())
  2087. */
  2088. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2089. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2090. propagate_mount_busy(mnt, 1))
  2091. continue;
  2092. list_move(&mnt->mnt_expire, &graveyard);
  2093. }
  2094. while (!list_empty(&graveyard)) {
  2095. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2096. touch_mnt_namespace(mnt->mnt_ns);
  2097. umount_tree(mnt, 1);
  2098. }
  2099. unlock_mount_hash();
  2100. namespace_unlock();
  2101. }
  2102. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2103. /*
  2104. * Ripoff of 'select_parent()'
  2105. *
  2106. * search the list of submounts for a given mountpoint, and move any
  2107. * shrinkable submounts to the 'graveyard' list.
  2108. */
  2109. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2110. {
  2111. struct mount *this_parent = parent;
  2112. struct list_head *next;
  2113. int found = 0;
  2114. repeat:
  2115. next = this_parent->mnt_mounts.next;
  2116. resume:
  2117. while (next != &this_parent->mnt_mounts) {
  2118. struct list_head *tmp = next;
  2119. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2120. next = tmp->next;
  2121. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2122. continue;
  2123. /*
  2124. * Descend a level if the d_mounts list is non-empty.
  2125. */
  2126. if (!list_empty(&mnt->mnt_mounts)) {
  2127. this_parent = mnt;
  2128. goto repeat;
  2129. }
  2130. if (!propagate_mount_busy(mnt, 1)) {
  2131. list_move_tail(&mnt->mnt_expire, graveyard);
  2132. found++;
  2133. }
  2134. }
  2135. /*
  2136. * All done at this level ... ascend and resume the search
  2137. */
  2138. if (this_parent != parent) {
  2139. next = this_parent->mnt_child.next;
  2140. this_parent = this_parent->mnt_parent;
  2141. goto resume;
  2142. }
  2143. return found;
  2144. }
  2145. /*
  2146. * process a list of expirable mountpoints with the intent of discarding any
  2147. * submounts of a specific parent mountpoint
  2148. *
  2149. * mount_lock must be held for write
  2150. */
  2151. static void shrink_submounts(struct mount *mnt)
  2152. {
  2153. LIST_HEAD(graveyard);
  2154. struct mount *m;
  2155. /* extract submounts of 'mountpoint' from the expiration list */
  2156. while (select_submounts(mnt, &graveyard)) {
  2157. while (!list_empty(&graveyard)) {
  2158. m = list_first_entry(&graveyard, struct mount,
  2159. mnt_expire);
  2160. touch_mnt_namespace(m->mnt_ns);
  2161. umount_tree(m, 1);
  2162. }
  2163. }
  2164. }
  2165. /*
  2166. * Some copy_from_user() implementations do not return the exact number of
  2167. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2168. * Note that this function differs from copy_from_user() in that it will oops
  2169. * on bad values of `to', rather than returning a short copy.
  2170. */
  2171. static long exact_copy_from_user(void *to, const void __user * from,
  2172. unsigned long n)
  2173. {
  2174. char *t = to;
  2175. const char __user *f = from;
  2176. char c;
  2177. if (!access_ok(VERIFY_READ, from, n))
  2178. return n;
  2179. while (n) {
  2180. if (__get_user(c, f)) {
  2181. memset(t, 0, n);
  2182. break;
  2183. }
  2184. *t++ = c;
  2185. f++;
  2186. n--;
  2187. }
  2188. return n;
  2189. }
  2190. int copy_mount_options(const void __user * data, unsigned long *where)
  2191. {
  2192. int i;
  2193. unsigned long page;
  2194. unsigned long size;
  2195. *where = 0;
  2196. if (!data)
  2197. return 0;
  2198. if (!(page = __get_free_page(GFP_KERNEL)))
  2199. return -ENOMEM;
  2200. /* We only care that *some* data at the address the user
  2201. * gave us is valid. Just in case, we'll zero
  2202. * the remainder of the page.
  2203. */
  2204. /* copy_from_user cannot cross TASK_SIZE ! */
  2205. size = TASK_SIZE - (unsigned long)data;
  2206. if (size > PAGE_SIZE)
  2207. size = PAGE_SIZE;
  2208. i = size - exact_copy_from_user((void *)page, data, size);
  2209. if (!i) {
  2210. free_page(page);
  2211. return -EFAULT;
  2212. }
  2213. if (i != PAGE_SIZE)
  2214. memset((char *)page + i, 0, PAGE_SIZE - i);
  2215. *where = page;
  2216. return 0;
  2217. }
  2218. char *copy_mount_string(const void __user *data)
  2219. {
  2220. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2221. }
  2222. /*
  2223. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2224. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2225. *
  2226. * data is a (void *) that can point to any structure up to
  2227. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2228. * information (or be NULL).
  2229. *
  2230. * Pre-0.97 versions of mount() didn't have a flags word.
  2231. * When the flags word was introduced its top half was required
  2232. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2233. * Therefore, if this magic number is present, it carries no information
  2234. * and must be discarded.
  2235. */
  2236. long do_mount(const char *dev_name, const char __user *dir_name,
  2237. const char *type_page, unsigned long flags, void *data_page)
  2238. {
  2239. struct path path;
  2240. int retval = 0;
  2241. int mnt_flags = 0;
  2242. /* Discard magic */
  2243. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2244. flags &= ~MS_MGC_MSK;
  2245. /* Basic sanity checks */
  2246. if (data_page)
  2247. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2248. /* ... and get the mountpoint */
  2249. retval = user_path(dir_name, &path);
  2250. if (retval)
  2251. return retval;
  2252. retval = security_sb_mount(dev_name, &path,
  2253. type_page, flags, data_page);
  2254. if (!retval && !may_mount())
  2255. retval = -EPERM;
  2256. if (retval)
  2257. goto dput_out;
  2258. /* Default to relatime unless overriden */
  2259. if (!(flags & MS_NOATIME))
  2260. mnt_flags |= MNT_RELATIME;
  2261. /* Separate the per-mountpoint flags */
  2262. if (flags & MS_NOSUID)
  2263. mnt_flags |= MNT_NOSUID;
  2264. if (flags & MS_NODEV)
  2265. mnt_flags |= MNT_NODEV;
  2266. if (flags & MS_NOEXEC)
  2267. mnt_flags |= MNT_NOEXEC;
  2268. if (flags & MS_NOATIME)
  2269. mnt_flags |= MNT_NOATIME;
  2270. if (flags & MS_NODIRATIME)
  2271. mnt_flags |= MNT_NODIRATIME;
  2272. if (flags & MS_STRICTATIME)
  2273. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2274. if (flags & MS_RDONLY)
  2275. mnt_flags |= MNT_READONLY;
  2276. /* The default atime for remount is preservation */
  2277. if ((flags & MS_REMOUNT) &&
  2278. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2279. MS_STRICTATIME)) == 0)) {
  2280. mnt_flags &= ~MNT_ATIME_MASK;
  2281. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2282. }
  2283. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2284. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2285. MS_STRICTATIME);
  2286. if (flags & MS_REMOUNT)
  2287. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2288. data_page);
  2289. else if (flags & MS_BIND)
  2290. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2291. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2292. retval = do_change_type(&path, flags);
  2293. else if (flags & MS_MOVE)
  2294. retval = do_move_mount(&path, dev_name);
  2295. else
  2296. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2297. dev_name, data_page);
  2298. dput_out:
  2299. path_put(&path);
  2300. return retval;
  2301. }
  2302. static void free_mnt_ns(struct mnt_namespace *ns)
  2303. {
  2304. proc_free_inum(ns->proc_inum);
  2305. put_user_ns(ns->user_ns);
  2306. kfree(ns);
  2307. }
  2308. /*
  2309. * Assign a sequence number so we can detect when we attempt to bind
  2310. * mount a reference to an older mount namespace into the current
  2311. * mount namespace, preventing reference counting loops. A 64bit
  2312. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2313. * is effectively never, so we can ignore the possibility.
  2314. */
  2315. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2316. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2317. {
  2318. struct mnt_namespace *new_ns;
  2319. int ret;
  2320. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2321. if (!new_ns)
  2322. return ERR_PTR(-ENOMEM);
  2323. ret = proc_alloc_inum(&new_ns->proc_inum);
  2324. if (ret) {
  2325. kfree(new_ns);
  2326. return ERR_PTR(ret);
  2327. }
  2328. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2329. atomic_set(&new_ns->count, 1);
  2330. new_ns->root = NULL;
  2331. INIT_LIST_HEAD(&new_ns->list);
  2332. init_waitqueue_head(&new_ns->poll);
  2333. new_ns->event = 0;
  2334. new_ns->user_ns = get_user_ns(user_ns);
  2335. return new_ns;
  2336. }
  2337. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2338. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2339. {
  2340. struct mnt_namespace *new_ns;
  2341. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2342. struct mount *p, *q;
  2343. struct mount *old;
  2344. struct mount *new;
  2345. int copy_flags;
  2346. BUG_ON(!ns);
  2347. if (likely(!(flags & CLONE_NEWNS))) {
  2348. get_mnt_ns(ns);
  2349. return ns;
  2350. }
  2351. old = ns->root;
  2352. new_ns = alloc_mnt_ns(user_ns);
  2353. if (IS_ERR(new_ns))
  2354. return new_ns;
  2355. namespace_lock();
  2356. /* First pass: copy the tree topology */
  2357. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2358. if (user_ns != ns->user_ns)
  2359. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2360. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2361. if (IS_ERR(new)) {
  2362. namespace_unlock();
  2363. free_mnt_ns(new_ns);
  2364. return ERR_CAST(new);
  2365. }
  2366. new_ns->root = new;
  2367. list_add_tail(&new_ns->list, &new->mnt_list);
  2368. /*
  2369. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2370. * as belonging to new namespace. We have already acquired a private
  2371. * fs_struct, so tsk->fs->lock is not needed.
  2372. */
  2373. p = old;
  2374. q = new;
  2375. while (p) {
  2376. q->mnt_ns = new_ns;
  2377. if (new_fs) {
  2378. if (&p->mnt == new_fs->root.mnt) {
  2379. new_fs->root.mnt = mntget(&q->mnt);
  2380. rootmnt = &p->mnt;
  2381. }
  2382. if (&p->mnt == new_fs->pwd.mnt) {
  2383. new_fs->pwd.mnt = mntget(&q->mnt);
  2384. pwdmnt = &p->mnt;
  2385. }
  2386. }
  2387. p = next_mnt(p, old);
  2388. q = next_mnt(q, new);
  2389. if (!q)
  2390. break;
  2391. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2392. p = next_mnt(p, old);
  2393. }
  2394. namespace_unlock();
  2395. if (rootmnt)
  2396. mntput(rootmnt);
  2397. if (pwdmnt)
  2398. mntput(pwdmnt);
  2399. return new_ns;
  2400. }
  2401. /**
  2402. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2403. * @mnt: pointer to the new root filesystem mountpoint
  2404. */
  2405. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2406. {
  2407. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2408. if (!IS_ERR(new_ns)) {
  2409. struct mount *mnt = real_mount(m);
  2410. mnt->mnt_ns = new_ns;
  2411. new_ns->root = mnt;
  2412. list_add(&mnt->mnt_list, &new_ns->list);
  2413. } else {
  2414. mntput(m);
  2415. }
  2416. return new_ns;
  2417. }
  2418. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2419. {
  2420. struct mnt_namespace *ns;
  2421. struct super_block *s;
  2422. struct path path;
  2423. int err;
  2424. ns = create_mnt_ns(mnt);
  2425. if (IS_ERR(ns))
  2426. return ERR_CAST(ns);
  2427. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2428. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2429. put_mnt_ns(ns);
  2430. if (err)
  2431. return ERR_PTR(err);
  2432. /* trade a vfsmount reference for active sb one */
  2433. s = path.mnt->mnt_sb;
  2434. atomic_inc(&s->s_active);
  2435. mntput(path.mnt);
  2436. /* lock the sucker */
  2437. down_write(&s->s_umount);
  2438. /* ... and return the root of (sub)tree on it */
  2439. return path.dentry;
  2440. }
  2441. EXPORT_SYMBOL(mount_subtree);
  2442. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2443. char __user *, type, unsigned long, flags, void __user *, data)
  2444. {
  2445. int ret;
  2446. char *kernel_type;
  2447. char *kernel_dev;
  2448. unsigned long data_page;
  2449. kernel_type = copy_mount_string(type);
  2450. ret = PTR_ERR(kernel_type);
  2451. if (IS_ERR(kernel_type))
  2452. goto out_type;
  2453. kernel_dev = copy_mount_string(dev_name);
  2454. ret = PTR_ERR(kernel_dev);
  2455. if (IS_ERR(kernel_dev))
  2456. goto out_dev;
  2457. ret = copy_mount_options(data, &data_page);
  2458. if (ret < 0)
  2459. goto out_data;
  2460. ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
  2461. (void *) data_page);
  2462. free_page(data_page);
  2463. out_data:
  2464. kfree(kernel_dev);
  2465. out_dev:
  2466. kfree(kernel_type);
  2467. out_type:
  2468. return ret;
  2469. }
  2470. /*
  2471. * Return true if path is reachable from root
  2472. *
  2473. * namespace_sem or mount_lock is held
  2474. */
  2475. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2476. const struct path *root)
  2477. {
  2478. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2479. dentry = mnt->mnt_mountpoint;
  2480. mnt = mnt->mnt_parent;
  2481. }
  2482. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2483. }
  2484. int path_is_under(struct path *path1, struct path *path2)
  2485. {
  2486. int res;
  2487. read_seqlock_excl(&mount_lock);
  2488. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2489. read_sequnlock_excl(&mount_lock);
  2490. return res;
  2491. }
  2492. EXPORT_SYMBOL(path_is_under);
  2493. /*
  2494. * pivot_root Semantics:
  2495. * Moves the root file system of the current process to the directory put_old,
  2496. * makes new_root as the new root file system of the current process, and sets
  2497. * root/cwd of all processes which had them on the current root to new_root.
  2498. *
  2499. * Restrictions:
  2500. * The new_root and put_old must be directories, and must not be on the
  2501. * same file system as the current process root. The put_old must be
  2502. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2503. * pointed to by put_old must yield the same directory as new_root. No other
  2504. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2505. *
  2506. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2507. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2508. * in this situation.
  2509. *
  2510. * Notes:
  2511. * - we don't move root/cwd if they are not at the root (reason: if something
  2512. * cared enough to change them, it's probably wrong to force them elsewhere)
  2513. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2514. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2515. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2516. * first.
  2517. */
  2518. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2519. const char __user *, put_old)
  2520. {
  2521. struct path new, old, parent_path, root_parent, root;
  2522. struct mount *new_mnt, *root_mnt, *old_mnt;
  2523. struct mountpoint *old_mp, *root_mp;
  2524. int error;
  2525. if (!may_mount())
  2526. return -EPERM;
  2527. error = user_path_dir(new_root, &new);
  2528. if (error)
  2529. goto out0;
  2530. error = user_path_dir(put_old, &old);
  2531. if (error)
  2532. goto out1;
  2533. error = security_sb_pivotroot(&old, &new);
  2534. if (error)
  2535. goto out2;
  2536. get_fs_root(current->fs, &root);
  2537. old_mp = lock_mount(&old);
  2538. error = PTR_ERR(old_mp);
  2539. if (IS_ERR(old_mp))
  2540. goto out3;
  2541. error = -EINVAL;
  2542. new_mnt = real_mount(new.mnt);
  2543. root_mnt = real_mount(root.mnt);
  2544. old_mnt = real_mount(old.mnt);
  2545. if (IS_MNT_SHARED(old_mnt) ||
  2546. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2547. IS_MNT_SHARED(root_mnt->mnt_parent))
  2548. goto out4;
  2549. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2550. goto out4;
  2551. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2552. goto out4;
  2553. error = -ENOENT;
  2554. if (d_unlinked(new.dentry))
  2555. goto out4;
  2556. error = -EBUSY;
  2557. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2558. goto out4; /* loop, on the same file system */
  2559. error = -EINVAL;
  2560. if (root.mnt->mnt_root != root.dentry)
  2561. goto out4; /* not a mountpoint */
  2562. if (!mnt_has_parent(root_mnt))
  2563. goto out4; /* not attached */
  2564. root_mp = root_mnt->mnt_mp;
  2565. if (new.mnt->mnt_root != new.dentry)
  2566. goto out4; /* not a mountpoint */
  2567. if (!mnt_has_parent(new_mnt))
  2568. goto out4; /* not attached */
  2569. /* make sure we can reach put_old from new_root */
  2570. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2571. goto out4;
  2572. /* make certain new is below the root */
  2573. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2574. goto out4;
  2575. root_mp->m_count++; /* pin it so it won't go away */
  2576. lock_mount_hash();
  2577. detach_mnt(new_mnt, &parent_path);
  2578. detach_mnt(root_mnt, &root_parent);
  2579. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2580. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2581. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2582. }
  2583. /* mount old root on put_old */
  2584. attach_mnt(root_mnt, old_mnt, old_mp);
  2585. /* mount new_root on / */
  2586. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2587. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2588. unlock_mount_hash();
  2589. chroot_fs_refs(&root, &new);
  2590. put_mountpoint(root_mp);
  2591. error = 0;
  2592. out4:
  2593. unlock_mount(old_mp);
  2594. if (!error) {
  2595. path_put(&root_parent);
  2596. path_put(&parent_path);
  2597. }
  2598. out3:
  2599. path_put(&root);
  2600. out2:
  2601. path_put(&old);
  2602. out1:
  2603. path_put(&new);
  2604. out0:
  2605. return error;
  2606. }
  2607. static void __init init_mount_tree(void)
  2608. {
  2609. struct vfsmount *mnt;
  2610. struct mnt_namespace *ns;
  2611. struct path root;
  2612. struct file_system_type *type;
  2613. type = get_fs_type("rootfs");
  2614. if (!type)
  2615. panic("Can't find rootfs type");
  2616. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2617. put_filesystem(type);
  2618. if (IS_ERR(mnt))
  2619. panic("Can't create rootfs");
  2620. ns = create_mnt_ns(mnt);
  2621. if (IS_ERR(ns))
  2622. panic("Can't allocate initial namespace");
  2623. init_task.nsproxy->mnt_ns = ns;
  2624. get_mnt_ns(ns);
  2625. root.mnt = mnt;
  2626. root.dentry = mnt->mnt_root;
  2627. set_fs_pwd(current->fs, &root);
  2628. set_fs_root(current->fs, &root);
  2629. }
  2630. void __init mnt_init(void)
  2631. {
  2632. unsigned u;
  2633. int err;
  2634. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2635. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2636. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2637. sizeof(struct hlist_head),
  2638. mhash_entries, 19,
  2639. 0,
  2640. &m_hash_shift, &m_hash_mask, 0, 0);
  2641. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2642. sizeof(struct hlist_head),
  2643. mphash_entries, 19,
  2644. 0,
  2645. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2646. if (!mount_hashtable || !mountpoint_hashtable)
  2647. panic("Failed to allocate mount hash table\n");
  2648. for (u = 0; u <= m_hash_mask; u++)
  2649. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2650. for (u = 0; u <= mp_hash_mask; u++)
  2651. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2652. kernfs_init();
  2653. err = sysfs_init();
  2654. if (err)
  2655. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2656. __func__, err);
  2657. fs_kobj = kobject_create_and_add("fs", NULL);
  2658. if (!fs_kobj)
  2659. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2660. init_rootfs();
  2661. init_mount_tree();
  2662. }
  2663. void put_mnt_ns(struct mnt_namespace *ns)
  2664. {
  2665. if (!atomic_dec_and_test(&ns->count))
  2666. return;
  2667. drop_collected_mounts(&ns->root->mnt);
  2668. free_mnt_ns(ns);
  2669. }
  2670. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2671. {
  2672. struct vfsmount *mnt;
  2673. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2674. if (!IS_ERR(mnt)) {
  2675. /*
  2676. * it is a longterm mount, don't release mnt until
  2677. * we unmount before file sys is unregistered
  2678. */
  2679. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2680. }
  2681. return mnt;
  2682. }
  2683. EXPORT_SYMBOL_GPL(kern_mount_data);
  2684. void kern_unmount(struct vfsmount *mnt)
  2685. {
  2686. /* release long term mount so mount point can be released */
  2687. if (!IS_ERR_OR_NULL(mnt)) {
  2688. real_mount(mnt)->mnt_ns = NULL;
  2689. synchronize_rcu(); /* yecchhh... */
  2690. mntput(mnt);
  2691. }
  2692. }
  2693. EXPORT_SYMBOL(kern_unmount);
  2694. bool our_mnt(struct vfsmount *mnt)
  2695. {
  2696. return check_mnt(real_mount(mnt));
  2697. }
  2698. bool current_chrooted(void)
  2699. {
  2700. /* Does the current process have a non-standard root */
  2701. struct path ns_root;
  2702. struct path fs_root;
  2703. bool chrooted;
  2704. /* Find the namespace root */
  2705. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2706. ns_root.dentry = ns_root.mnt->mnt_root;
  2707. path_get(&ns_root);
  2708. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2709. ;
  2710. get_fs_root(current->fs, &fs_root);
  2711. chrooted = !path_equal(&fs_root, &ns_root);
  2712. path_put(&fs_root);
  2713. path_put(&ns_root);
  2714. return chrooted;
  2715. }
  2716. bool fs_fully_visible(struct file_system_type *type)
  2717. {
  2718. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2719. struct mount *mnt;
  2720. bool visible = false;
  2721. if (unlikely(!ns))
  2722. return false;
  2723. down_read(&namespace_sem);
  2724. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2725. struct mount *child;
  2726. if (mnt->mnt.mnt_sb->s_type != type)
  2727. continue;
  2728. /* This mount is not fully visible if there are any child mounts
  2729. * that cover anything except for empty directories.
  2730. */
  2731. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2732. struct inode *inode = child->mnt_mountpoint->d_inode;
  2733. if (!S_ISDIR(inode->i_mode))
  2734. goto next;
  2735. if (inode->i_nlink > 2)
  2736. goto next;
  2737. }
  2738. visible = true;
  2739. goto found;
  2740. next: ;
  2741. }
  2742. found:
  2743. up_read(&namespace_sem);
  2744. return visible;
  2745. }
  2746. static void *mntns_get(struct task_struct *task)
  2747. {
  2748. struct mnt_namespace *ns = NULL;
  2749. struct nsproxy *nsproxy;
  2750. task_lock(task);
  2751. nsproxy = task->nsproxy;
  2752. if (nsproxy) {
  2753. ns = nsproxy->mnt_ns;
  2754. get_mnt_ns(ns);
  2755. }
  2756. task_unlock(task);
  2757. return ns;
  2758. }
  2759. static void mntns_put(void *ns)
  2760. {
  2761. put_mnt_ns(ns);
  2762. }
  2763. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2764. {
  2765. struct fs_struct *fs = current->fs;
  2766. struct mnt_namespace *mnt_ns = ns;
  2767. struct path root;
  2768. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2769. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2770. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2771. return -EPERM;
  2772. if (fs->users != 1)
  2773. return -EINVAL;
  2774. get_mnt_ns(mnt_ns);
  2775. put_mnt_ns(nsproxy->mnt_ns);
  2776. nsproxy->mnt_ns = mnt_ns;
  2777. /* Find the root */
  2778. root.mnt = &mnt_ns->root->mnt;
  2779. root.dentry = mnt_ns->root->mnt.mnt_root;
  2780. path_get(&root);
  2781. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2782. ;
  2783. /* Update the pwd and root */
  2784. set_fs_pwd(fs, &root);
  2785. set_fs_root(fs, &root);
  2786. path_put(&root);
  2787. return 0;
  2788. }
  2789. static unsigned int mntns_inum(void *ns)
  2790. {
  2791. struct mnt_namespace *mnt_ns = ns;
  2792. return mnt_ns->proc_inum;
  2793. }
  2794. const struct proc_ns_operations mntns_operations = {
  2795. .name = "mnt",
  2796. .type = CLONE_NEWNS,
  2797. .get = mntns_get,
  2798. .put = mntns_put,
  2799. .install = mntns_install,
  2800. .inum = mntns_inum,
  2801. };