node.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  23. static struct kmem_cache *nat_entry_slab;
  24. static struct kmem_cache *free_nid_slab;
  25. static struct kmem_cache *nat_entry_set_slab;
  26. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  27. {
  28. struct f2fs_nm_info *nm_i = NM_I(sbi);
  29. struct sysinfo val;
  30. unsigned long mem_size = 0;
  31. bool res = false;
  32. si_meminfo(&val);
  33. /* give 25%, 25%, 50% memory for each components respectively */
  34. if (type == FREE_NIDS) {
  35. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
  36. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  37. } else if (type == NAT_ENTRIES) {
  38. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
  39. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  40. } else if (type == DIRTY_DENTS) {
  41. if (sbi->sb->s_bdi->dirty_exceeded)
  42. return false;
  43. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  44. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
  45. }
  46. return res;
  47. }
  48. static void clear_node_page_dirty(struct page *page)
  49. {
  50. struct address_space *mapping = page->mapping;
  51. unsigned int long flags;
  52. if (PageDirty(page)) {
  53. spin_lock_irqsave(&mapping->tree_lock, flags);
  54. radix_tree_tag_clear(&mapping->page_tree,
  55. page_index(page),
  56. PAGECACHE_TAG_DIRTY);
  57. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  58. clear_page_dirty_for_io(page);
  59. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  60. }
  61. ClearPageUptodate(page);
  62. }
  63. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  64. {
  65. pgoff_t index = current_nat_addr(sbi, nid);
  66. return get_meta_page(sbi, index);
  67. }
  68. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  69. {
  70. struct page *src_page;
  71. struct page *dst_page;
  72. pgoff_t src_off;
  73. pgoff_t dst_off;
  74. void *src_addr;
  75. void *dst_addr;
  76. struct f2fs_nm_info *nm_i = NM_I(sbi);
  77. src_off = current_nat_addr(sbi, nid);
  78. dst_off = next_nat_addr(sbi, src_off);
  79. /* get current nat block page with lock */
  80. src_page = get_meta_page(sbi, src_off);
  81. dst_page = grab_meta_page(sbi, dst_off);
  82. f2fs_bug_on(sbi, PageDirty(src_page));
  83. src_addr = page_address(src_page);
  84. dst_addr = page_address(dst_page);
  85. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  86. set_page_dirty(dst_page);
  87. f2fs_put_page(src_page, 1);
  88. set_to_next_nat(nm_i, nid);
  89. return dst_page;
  90. }
  91. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  92. {
  93. return radix_tree_lookup(&nm_i->nat_root, n);
  94. }
  95. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  96. nid_t start, unsigned int nr, struct nat_entry **ep)
  97. {
  98. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  99. }
  100. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  101. {
  102. list_del(&e->list);
  103. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  104. nm_i->nat_cnt--;
  105. kmem_cache_free(nat_entry_slab, e);
  106. }
  107. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  108. struct nat_entry *ne)
  109. {
  110. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  111. struct nat_entry_set *head;
  112. if (get_nat_flag(ne, IS_DIRTY))
  113. return;
  114. retry:
  115. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  116. if (!head) {
  117. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
  118. INIT_LIST_HEAD(&head->entry_list);
  119. INIT_LIST_HEAD(&head->set_list);
  120. head->set = set;
  121. head->entry_cnt = 0;
  122. if (radix_tree_insert(&nm_i->nat_set_root, set, head)) {
  123. cond_resched();
  124. goto retry;
  125. }
  126. }
  127. list_move_tail(&ne->list, &head->entry_list);
  128. nm_i->dirty_nat_cnt++;
  129. head->entry_cnt++;
  130. set_nat_flag(ne, IS_DIRTY, true);
  131. }
  132. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  133. struct nat_entry *ne)
  134. {
  135. nid_t set = ne->ni.nid / NAT_ENTRY_PER_BLOCK;
  136. struct nat_entry_set *head;
  137. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  138. if (head) {
  139. list_move_tail(&ne->list, &nm_i->nat_entries);
  140. set_nat_flag(ne, IS_DIRTY, false);
  141. head->entry_cnt--;
  142. nm_i->dirty_nat_cnt--;
  143. }
  144. }
  145. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  146. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  147. {
  148. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  149. start, nr);
  150. }
  151. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  152. {
  153. struct f2fs_nm_info *nm_i = NM_I(sbi);
  154. struct nat_entry *e;
  155. bool is_cp = true;
  156. read_lock(&nm_i->nat_tree_lock);
  157. e = __lookup_nat_cache(nm_i, nid);
  158. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  159. is_cp = false;
  160. read_unlock(&nm_i->nat_tree_lock);
  161. return is_cp;
  162. }
  163. bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
  164. {
  165. struct f2fs_nm_info *nm_i = NM_I(sbi);
  166. struct nat_entry *e;
  167. bool fsynced = false;
  168. read_lock(&nm_i->nat_tree_lock);
  169. e = __lookup_nat_cache(nm_i, ino);
  170. if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
  171. fsynced = true;
  172. read_unlock(&nm_i->nat_tree_lock);
  173. return fsynced;
  174. }
  175. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  176. {
  177. struct f2fs_nm_info *nm_i = NM_I(sbi);
  178. struct nat_entry *e;
  179. bool need_update = true;
  180. read_lock(&nm_i->nat_tree_lock);
  181. e = __lookup_nat_cache(nm_i, ino);
  182. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  183. (get_nat_flag(e, IS_CHECKPOINTED) ||
  184. get_nat_flag(e, HAS_FSYNCED_INODE)))
  185. need_update = false;
  186. read_unlock(&nm_i->nat_tree_lock);
  187. return need_update;
  188. }
  189. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  190. {
  191. struct nat_entry *new;
  192. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  193. if (!new)
  194. return NULL;
  195. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  196. kmem_cache_free(nat_entry_slab, new);
  197. return NULL;
  198. }
  199. memset(new, 0, sizeof(struct nat_entry));
  200. nat_set_nid(new, nid);
  201. nat_reset_flag(new);
  202. list_add_tail(&new->list, &nm_i->nat_entries);
  203. nm_i->nat_cnt++;
  204. return new;
  205. }
  206. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  207. struct f2fs_nat_entry *ne)
  208. {
  209. struct nat_entry *e;
  210. retry:
  211. write_lock(&nm_i->nat_tree_lock);
  212. e = __lookup_nat_cache(nm_i, nid);
  213. if (!e) {
  214. e = grab_nat_entry(nm_i, nid);
  215. if (!e) {
  216. write_unlock(&nm_i->nat_tree_lock);
  217. goto retry;
  218. }
  219. node_info_from_raw_nat(&e->ni, ne);
  220. }
  221. write_unlock(&nm_i->nat_tree_lock);
  222. }
  223. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  224. block_t new_blkaddr, bool fsync_done)
  225. {
  226. struct f2fs_nm_info *nm_i = NM_I(sbi);
  227. struct nat_entry *e;
  228. retry:
  229. write_lock(&nm_i->nat_tree_lock);
  230. e = __lookup_nat_cache(nm_i, ni->nid);
  231. if (!e) {
  232. e = grab_nat_entry(nm_i, ni->nid);
  233. if (!e) {
  234. write_unlock(&nm_i->nat_tree_lock);
  235. goto retry;
  236. }
  237. e->ni = *ni;
  238. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  239. } else if (new_blkaddr == NEW_ADDR) {
  240. /*
  241. * when nid is reallocated,
  242. * previous nat entry can be remained in nat cache.
  243. * So, reinitialize it with new information.
  244. */
  245. e->ni = *ni;
  246. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  247. }
  248. /* sanity check */
  249. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  250. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  251. new_blkaddr == NULL_ADDR);
  252. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  253. new_blkaddr == NEW_ADDR);
  254. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  255. nat_get_blkaddr(e) != NULL_ADDR &&
  256. new_blkaddr == NEW_ADDR);
  257. /* increment version no as node is removed */
  258. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  259. unsigned char version = nat_get_version(e);
  260. nat_set_version(e, inc_node_version(version));
  261. }
  262. /* change address */
  263. nat_set_blkaddr(e, new_blkaddr);
  264. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  265. set_nat_flag(e, IS_CHECKPOINTED, false);
  266. __set_nat_cache_dirty(nm_i, e);
  267. /* update fsync_mark if its inode nat entry is still alive */
  268. e = __lookup_nat_cache(nm_i, ni->ino);
  269. if (e) {
  270. if (fsync_done && ni->nid == ni->ino)
  271. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  272. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  273. }
  274. write_unlock(&nm_i->nat_tree_lock);
  275. }
  276. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  277. {
  278. struct f2fs_nm_info *nm_i = NM_I(sbi);
  279. if (available_free_memory(sbi, NAT_ENTRIES))
  280. return 0;
  281. write_lock(&nm_i->nat_tree_lock);
  282. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  283. struct nat_entry *ne;
  284. ne = list_first_entry(&nm_i->nat_entries,
  285. struct nat_entry, list);
  286. __del_from_nat_cache(nm_i, ne);
  287. nr_shrink--;
  288. }
  289. write_unlock(&nm_i->nat_tree_lock);
  290. return nr_shrink;
  291. }
  292. /*
  293. * This function always returns success
  294. */
  295. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  296. {
  297. struct f2fs_nm_info *nm_i = NM_I(sbi);
  298. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  299. struct f2fs_summary_block *sum = curseg->sum_blk;
  300. nid_t start_nid = START_NID(nid);
  301. struct f2fs_nat_block *nat_blk;
  302. struct page *page = NULL;
  303. struct f2fs_nat_entry ne;
  304. struct nat_entry *e;
  305. int i;
  306. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  307. ni->nid = nid;
  308. /* Check nat cache */
  309. read_lock(&nm_i->nat_tree_lock);
  310. e = __lookup_nat_cache(nm_i, nid);
  311. if (e) {
  312. ni->ino = nat_get_ino(e);
  313. ni->blk_addr = nat_get_blkaddr(e);
  314. ni->version = nat_get_version(e);
  315. }
  316. read_unlock(&nm_i->nat_tree_lock);
  317. if (e)
  318. return;
  319. /* Check current segment summary */
  320. mutex_lock(&curseg->curseg_mutex);
  321. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  322. if (i >= 0) {
  323. ne = nat_in_journal(sum, i);
  324. node_info_from_raw_nat(ni, &ne);
  325. }
  326. mutex_unlock(&curseg->curseg_mutex);
  327. if (i >= 0)
  328. goto cache;
  329. /* Fill node_info from nat page */
  330. page = get_current_nat_page(sbi, start_nid);
  331. nat_blk = (struct f2fs_nat_block *)page_address(page);
  332. ne = nat_blk->entries[nid - start_nid];
  333. node_info_from_raw_nat(ni, &ne);
  334. f2fs_put_page(page, 1);
  335. cache:
  336. /* cache nat entry */
  337. cache_nat_entry(NM_I(sbi), nid, &ne);
  338. }
  339. /*
  340. * The maximum depth is four.
  341. * Offset[0] will have raw inode offset.
  342. */
  343. static int get_node_path(struct f2fs_inode_info *fi, long block,
  344. int offset[4], unsigned int noffset[4])
  345. {
  346. const long direct_index = ADDRS_PER_INODE(fi);
  347. const long direct_blks = ADDRS_PER_BLOCK;
  348. const long dptrs_per_blk = NIDS_PER_BLOCK;
  349. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  350. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  351. int n = 0;
  352. int level = 0;
  353. noffset[0] = 0;
  354. if (block < direct_index) {
  355. offset[n] = block;
  356. goto got;
  357. }
  358. block -= direct_index;
  359. if (block < direct_blks) {
  360. offset[n++] = NODE_DIR1_BLOCK;
  361. noffset[n] = 1;
  362. offset[n] = block;
  363. level = 1;
  364. goto got;
  365. }
  366. block -= direct_blks;
  367. if (block < direct_blks) {
  368. offset[n++] = NODE_DIR2_BLOCK;
  369. noffset[n] = 2;
  370. offset[n] = block;
  371. level = 1;
  372. goto got;
  373. }
  374. block -= direct_blks;
  375. if (block < indirect_blks) {
  376. offset[n++] = NODE_IND1_BLOCK;
  377. noffset[n] = 3;
  378. offset[n++] = block / direct_blks;
  379. noffset[n] = 4 + offset[n - 1];
  380. offset[n] = block % direct_blks;
  381. level = 2;
  382. goto got;
  383. }
  384. block -= indirect_blks;
  385. if (block < indirect_blks) {
  386. offset[n++] = NODE_IND2_BLOCK;
  387. noffset[n] = 4 + dptrs_per_blk;
  388. offset[n++] = block / direct_blks;
  389. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  390. offset[n] = block % direct_blks;
  391. level = 2;
  392. goto got;
  393. }
  394. block -= indirect_blks;
  395. if (block < dindirect_blks) {
  396. offset[n++] = NODE_DIND_BLOCK;
  397. noffset[n] = 5 + (dptrs_per_blk * 2);
  398. offset[n++] = block / indirect_blks;
  399. noffset[n] = 6 + (dptrs_per_blk * 2) +
  400. offset[n - 1] * (dptrs_per_blk + 1);
  401. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  402. noffset[n] = 7 + (dptrs_per_blk * 2) +
  403. offset[n - 2] * (dptrs_per_blk + 1) +
  404. offset[n - 1];
  405. offset[n] = block % direct_blks;
  406. level = 3;
  407. goto got;
  408. } else {
  409. BUG();
  410. }
  411. got:
  412. return level;
  413. }
  414. /*
  415. * Caller should call f2fs_put_dnode(dn).
  416. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  417. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  418. * In the case of RDONLY_NODE, we don't need to care about mutex.
  419. */
  420. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  421. {
  422. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  423. struct page *npage[4];
  424. struct page *parent;
  425. int offset[4];
  426. unsigned int noffset[4];
  427. nid_t nids[4];
  428. int level, i;
  429. int err = 0;
  430. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  431. nids[0] = dn->inode->i_ino;
  432. npage[0] = dn->inode_page;
  433. if (!npage[0]) {
  434. npage[0] = get_node_page(sbi, nids[0]);
  435. if (IS_ERR(npage[0]))
  436. return PTR_ERR(npage[0]);
  437. }
  438. parent = npage[0];
  439. if (level != 0)
  440. nids[1] = get_nid(parent, offset[0], true);
  441. dn->inode_page = npage[0];
  442. dn->inode_page_locked = true;
  443. /* get indirect or direct nodes */
  444. for (i = 1; i <= level; i++) {
  445. bool done = false;
  446. if (!nids[i] && mode == ALLOC_NODE) {
  447. /* alloc new node */
  448. if (!alloc_nid(sbi, &(nids[i]))) {
  449. err = -ENOSPC;
  450. goto release_pages;
  451. }
  452. dn->nid = nids[i];
  453. npage[i] = new_node_page(dn, noffset[i], NULL);
  454. if (IS_ERR(npage[i])) {
  455. alloc_nid_failed(sbi, nids[i]);
  456. err = PTR_ERR(npage[i]);
  457. goto release_pages;
  458. }
  459. set_nid(parent, offset[i - 1], nids[i], i == 1);
  460. alloc_nid_done(sbi, nids[i]);
  461. done = true;
  462. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  463. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  464. if (IS_ERR(npage[i])) {
  465. err = PTR_ERR(npage[i]);
  466. goto release_pages;
  467. }
  468. done = true;
  469. }
  470. if (i == 1) {
  471. dn->inode_page_locked = false;
  472. unlock_page(parent);
  473. } else {
  474. f2fs_put_page(parent, 1);
  475. }
  476. if (!done) {
  477. npage[i] = get_node_page(sbi, nids[i]);
  478. if (IS_ERR(npage[i])) {
  479. err = PTR_ERR(npage[i]);
  480. f2fs_put_page(npage[0], 0);
  481. goto release_out;
  482. }
  483. }
  484. if (i < level) {
  485. parent = npage[i];
  486. nids[i + 1] = get_nid(parent, offset[i], false);
  487. }
  488. }
  489. dn->nid = nids[level];
  490. dn->ofs_in_node = offset[level];
  491. dn->node_page = npage[level];
  492. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  493. return 0;
  494. release_pages:
  495. f2fs_put_page(parent, 1);
  496. if (i > 1)
  497. f2fs_put_page(npage[0], 0);
  498. release_out:
  499. dn->inode_page = NULL;
  500. dn->node_page = NULL;
  501. return err;
  502. }
  503. static void truncate_node(struct dnode_of_data *dn)
  504. {
  505. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  506. struct node_info ni;
  507. get_node_info(sbi, dn->nid, &ni);
  508. if (dn->inode->i_blocks == 0) {
  509. f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
  510. goto invalidate;
  511. }
  512. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  513. /* Deallocate node address */
  514. invalidate_blocks(sbi, ni.blk_addr);
  515. dec_valid_node_count(sbi, dn->inode);
  516. set_node_addr(sbi, &ni, NULL_ADDR, false);
  517. if (dn->nid == dn->inode->i_ino) {
  518. remove_orphan_inode(sbi, dn->nid);
  519. dec_valid_inode_count(sbi);
  520. } else {
  521. sync_inode_page(dn);
  522. }
  523. invalidate:
  524. clear_node_page_dirty(dn->node_page);
  525. F2FS_SET_SB_DIRT(sbi);
  526. f2fs_put_page(dn->node_page, 1);
  527. invalidate_mapping_pages(NODE_MAPPING(sbi),
  528. dn->node_page->index, dn->node_page->index);
  529. dn->node_page = NULL;
  530. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  531. }
  532. static int truncate_dnode(struct dnode_of_data *dn)
  533. {
  534. struct page *page;
  535. if (dn->nid == 0)
  536. return 1;
  537. /* get direct node */
  538. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  539. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  540. return 1;
  541. else if (IS_ERR(page))
  542. return PTR_ERR(page);
  543. /* Make dnode_of_data for parameter */
  544. dn->node_page = page;
  545. dn->ofs_in_node = 0;
  546. truncate_data_blocks(dn);
  547. truncate_node(dn);
  548. return 1;
  549. }
  550. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  551. int ofs, int depth)
  552. {
  553. struct dnode_of_data rdn = *dn;
  554. struct page *page;
  555. struct f2fs_node *rn;
  556. nid_t child_nid;
  557. unsigned int child_nofs;
  558. int freed = 0;
  559. int i, ret;
  560. if (dn->nid == 0)
  561. return NIDS_PER_BLOCK + 1;
  562. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  563. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  564. if (IS_ERR(page)) {
  565. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  566. return PTR_ERR(page);
  567. }
  568. rn = F2FS_NODE(page);
  569. if (depth < 3) {
  570. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  571. child_nid = le32_to_cpu(rn->in.nid[i]);
  572. if (child_nid == 0)
  573. continue;
  574. rdn.nid = child_nid;
  575. ret = truncate_dnode(&rdn);
  576. if (ret < 0)
  577. goto out_err;
  578. set_nid(page, i, 0, false);
  579. }
  580. } else {
  581. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  582. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  583. child_nid = le32_to_cpu(rn->in.nid[i]);
  584. if (child_nid == 0) {
  585. child_nofs += NIDS_PER_BLOCK + 1;
  586. continue;
  587. }
  588. rdn.nid = child_nid;
  589. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  590. if (ret == (NIDS_PER_BLOCK + 1)) {
  591. set_nid(page, i, 0, false);
  592. child_nofs += ret;
  593. } else if (ret < 0 && ret != -ENOENT) {
  594. goto out_err;
  595. }
  596. }
  597. freed = child_nofs;
  598. }
  599. if (!ofs) {
  600. /* remove current indirect node */
  601. dn->node_page = page;
  602. truncate_node(dn);
  603. freed++;
  604. } else {
  605. f2fs_put_page(page, 1);
  606. }
  607. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  608. return freed;
  609. out_err:
  610. f2fs_put_page(page, 1);
  611. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  612. return ret;
  613. }
  614. static int truncate_partial_nodes(struct dnode_of_data *dn,
  615. struct f2fs_inode *ri, int *offset, int depth)
  616. {
  617. struct page *pages[2];
  618. nid_t nid[3];
  619. nid_t child_nid;
  620. int err = 0;
  621. int i;
  622. int idx = depth - 2;
  623. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  624. if (!nid[0])
  625. return 0;
  626. /* get indirect nodes in the path */
  627. for (i = 0; i < idx + 1; i++) {
  628. /* reference count'll be increased */
  629. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  630. if (IS_ERR(pages[i])) {
  631. err = PTR_ERR(pages[i]);
  632. idx = i - 1;
  633. goto fail;
  634. }
  635. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  636. }
  637. /* free direct nodes linked to a partial indirect node */
  638. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  639. child_nid = get_nid(pages[idx], i, false);
  640. if (!child_nid)
  641. continue;
  642. dn->nid = child_nid;
  643. err = truncate_dnode(dn);
  644. if (err < 0)
  645. goto fail;
  646. set_nid(pages[idx], i, 0, false);
  647. }
  648. if (offset[idx + 1] == 0) {
  649. dn->node_page = pages[idx];
  650. dn->nid = nid[idx];
  651. truncate_node(dn);
  652. } else {
  653. f2fs_put_page(pages[idx], 1);
  654. }
  655. offset[idx]++;
  656. offset[idx + 1] = 0;
  657. idx--;
  658. fail:
  659. for (i = idx; i >= 0; i--)
  660. f2fs_put_page(pages[i], 1);
  661. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  662. return err;
  663. }
  664. /*
  665. * All the block addresses of data and nodes should be nullified.
  666. */
  667. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  668. {
  669. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  670. int err = 0, cont = 1;
  671. int level, offset[4], noffset[4];
  672. unsigned int nofs = 0;
  673. struct f2fs_inode *ri;
  674. struct dnode_of_data dn;
  675. struct page *page;
  676. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  677. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  678. restart:
  679. page = get_node_page(sbi, inode->i_ino);
  680. if (IS_ERR(page)) {
  681. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  682. return PTR_ERR(page);
  683. }
  684. set_new_dnode(&dn, inode, page, NULL, 0);
  685. unlock_page(page);
  686. ri = F2FS_INODE(page);
  687. switch (level) {
  688. case 0:
  689. case 1:
  690. nofs = noffset[1];
  691. break;
  692. case 2:
  693. nofs = noffset[1];
  694. if (!offset[level - 1])
  695. goto skip_partial;
  696. err = truncate_partial_nodes(&dn, ri, offset, level);
  697. if (err < 0 && err != -ENOENT)
  698. goto fail;
  699. nofs += 1 + NIDS_PER_BLOCK;
  700. break;
  701. case 3:
  702. nofs = 5 + 2 * NIDS_PER_BLOCK;
  703. if (!offset[level - 1])
  704. goto skip_partial;
  705. err = truncate_partial_nodes(&dn, ri, offset, level);
  706. if (err < 0 && err != -ENOENT)
  707. goto fail;
  708. break;
  709. default:
  710. BUG();
  711. }
  712. skip_partial:
  713. while (cont) {
  714. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  715. switch (offset[0]) {
  716. case NODE_DIR1_BLOCK:
  717. case NODE_DIR2_BLOCK:
  718. err = truncate_dnode(&dn);
  719. break;
  720. case NODE_IND1_BLOCK:
  721. case NODE_IND2_BLOCK:
  722. err = truncate_nodes(&dn, nofs, offset[1], 2);
  723. break;
  724. case NODE_DIND_BLOCK:
  725. err = truncate_nodes(&dn, nofs, offset[1], 3);
  726. cont = 0;
  727. break;
  728. default:
  729. BUG();
  730. }
  731. if (err < 0 && err != -ENOENT)
  732. goto fail;
  733. if (offset[1] == 0 &&
  734. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  735. lock_page(page);
  736. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  737. f2fs_put_page(page, 1);
  738. goto restart;
  739. }
  740. f2fs_wait_on_page_writeback(page, NODE);
  741. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  742. set_page_dirty(page);
  743. unlock_page(page);
  744. }
  745. offset[1] = 0;
  746. offset[0]++;
  747. nofs += err;
  748. }
  749. fail:
  750. f2fs_put_page(page, 0);
  751. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  752. return err > 0 ? 0 : err;
  753. }
  754. int truncate_xattr_node(struct inode *inode, struct page *page)
  755. {
  756. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  757. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  758. struct dnode_of_data dn;
  759. struct page *npage;
  760. if (!nid)
  761. return 0;
  762. npage = get_node_page(sbi, nid);
  763. if (IS_ERR(npage))
  764. return PTR_ERR(npage);
  765. F2FS_I(inode)->i_xattr_nid = 0;
  766. /* need to do checkpoint during fsync */
  767. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  768. set_new_dnode(&dn, inode, page, npage, nid);
  769. if (page)
  770. dn.inode_page_locked = true;
  771. truncate_node(&dn);
  772. return 0;
  773. }
  774. /*
  775. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  776. * f2fs_unlock_op().
  777. */
  778. void remove_inode_page(struct inode *inode)
  779. {
  780. struct dnode_of_data dn;
  781. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  782. if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
  783. return;
  784. if (truncate_xattr_node(inode, dn.inode_page)) {
  785. f2fs_put_dnode(&dn);
  786. return;
  787. }
  788. /* remove potential inline_data blocks */
  789. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  790. S_ISLNK(inode->i_mode))
  791. truncate_data_blocks_range(&dn, 1);
  792. /* 0 is possible, after f2fs_new_inode() has failed */
  793. f2fs_bug_on(F2FS_I_SB(inode),
  794. inode->i_blocks != 0 && inode->i_blocks != 1);
  795. /* will put inode & node pages */
  796. truncate_node(&dn);
  797. }
  798. struct page *new_inode_page(struct inode *inode)
  799. {
  800. struct dnode_of_data dn;
  801. /* allocate inode page for new inode */
  802. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  803. /* caller should f2fs_put_page(page, 1); */
  804. return new_node_page(&dn, 0, NULL);
  805. }
  806. struct page *new_node_page(struct dnode_of_data *dn,
  807. unsigned int ofs, struct page *ipage)
  808. {
  809. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  810. struct node_info old_ni, new_ni;
  811. struct page *page;
  812. int err;
  813. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  814. return ERR_PTR(-EPERM);
  815. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  816. if (!page)
  817. return ERR_PTR(-ENOMEM);
  818. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  819. err = -ENOSPC;
  820. goto fail;
  821. }
  822. get_node_info(sbi, dn->nid, &old_ni);
  823. /* Reinitialize old_ni with new node page */
  824. f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
  825. new_ni = old_ni;
  826. new_ni.ino = dn->inode->i_ino;
  827. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  828. f2fs_wait_on_page_writeback(page, NODE);
  829. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  830. set_cold_node(dn->inode, page);
  831. SetPageUptodate(page);
  832. set_page_dirty(page);
  833. if (f2fs_has_xattr_block(ofs))
  834. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  835. dn->node_page = page;
  836. if (ipage)
  837. update_inode(dn->inode, ipage);
  838. else
  839. sync_inode_page(dn);
  840. if (ofs == 0)
  841. inc_valid_inode_count(sbi);
  842. return page;
  843. fail:
  844. clear_node_page_dirty(page);
  845. f2fs_put_page(page, 1);
  846. return ERR_PTR(err);
  847. }
  848. /*
  849. * Caller should do after getting the following values.
  850. * 0: f2fs_put_page(page, 0)
  851. * LOCKED_PAGE: f2fs_put_page(page, 1)
  852. * error: nothing
  853. */
  854. static int read_node_page(struct page *page, int rw)
  855. {
  856. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  857. struct node_info ni;
  858. get_node_info(sbi, page->index, &ni);
  859. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  860. f2fs_put_page(page, 1);
  861. return -ENOENT;
  862. }
  863. if (PageUptodate(page))
  864. return LOCKED_PAGE;
  865. return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
  866. }
  867. /*
  868. * Readahead a node page
  869. */
  870. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  871. {
  872. struct page *apage;
  873. int err;
  874. apage = find_get_page(NODE_MAPPING(sbi), nid);
  875. if (apage && PageUptodate(apage)) {
  876. f2fs_put_page(apage, 0);
  877. return;
  878. }
  879. f2fs_put_page(apage, 0);
  880. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  881. if (!apage)
  882. return;
  883. err = read_node_page(apage, READA);
  884. if (err == 0)
  885. f2fs_put_page(apage, 0);
  886. else if (err == LOCKED_PAGE)
  887. f2fs_put_page(apage, 1);
  888. }
  889. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  890. {
  891. struct page *page;
  892. int err;
  893. repeat:
  894. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  895. if (!page)
  896. return ERR_PTR(-ENOMEM);
  897. err = read_node_page(page, READ_SYNC);
  898. if (err < 0)
  899. return ERR_PTR(err);
  900. else if (err == LOCKED_PAGE)
  901. goto got_it;
  902. lock_page(page);
  903. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  904. f2fs_put_page(page, 1);
  905. return ERR_PTR(-EIO);
  906. }
  907. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  908. f2fs_put_page(page, 1);
  909. goto repeat;
  910. }
  911. got_it:
  912. return page;
  913. }
  914. /*
  915. * Return a locked page for the desired node page.
  916. * And, readahead MAX_RA_NODE number of node pages.
  917. */
  918. struct page *get_node_page_ra(struct page *parent, int start)
  919. {
  920. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  921. struct blk_plug plug;
  922. struct page *page;
  923. int err, i, end;
  924. nid_t nid;
  925. /* First, try getting the desired direct node. */
  926. nid = get_nid(parent, start, false);
  927. if (!nid)
  928. return ERR_PTR(-ENOENT);
  929. repeat:
  930. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  931. if (!page)
  932. return ERR_PTR(-ENOMEM);
  933. err = read_node_page(page, READ_SYNC);
  934. if (err < 0)
  935. return ERR_PTR(err);
  936. else if (err == LOCKED_PAGE)
  937. goto page_hit;
  938. blk_start_plug(&plug);
  939. /* Then, try readahead for siblings of the desired node */
  940. end = start + MAX_RA_NODE;
  941. end = min(end, NIDS_PER_BLOCK);
  942. for (i = start + 1; i < end; i++) {
  943. nid = get_nid(parent, i, false);
  944. if (!nid)
  945. continue;
  946. ra_node_page(sbi, nid);
  947. }
  948. blk_finish_plug(&plug);
  949. lock_page(page);
  950. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  951. f2fs_put_page(page, 1);
  952. goto repeat;
  953. }
  954. page_hit:
  955. if (unlikely(!PageUptodate(page))) {
  956. f2fs_put_page(page, 1);
  957. return ERR_PTR(-EIO);
  958. }
  959. return page;
  960. }
  961. void sync_inode_page(struct dnode_of_data *dn)
  962. {
  963. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  964. update_inode(dn->inode, dn->node_page);
  965. } else if (dn->inode_page) {
  966. if (!dn->inode_page_locked)
  967. lock_page(dn->inode_page);
  968. update_inode(dn->inode, dn->inode_page);
  969. if (!dn->inode_page_locked)
  970. unlock_page(dn->inode_page);
  971. } else {
  972. update_inode_page(dn->inode);
  973. }
  974. }
  975. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  976. struct writeback_control *wbc)
  977. {
  978. pgoff_t index, end;
  979. struct pagevec pvec;
  980. int step = ino ? 2 : 0;
  981. int nwritten = 0, wrote = 0;
  982. pagevec_init(&pvec, 0);
  983. next_step:
  984. index = 0;
  985. end = LONG_MAX;
  986. while (index <= end) {
  987. int i, nr_pages;
  988. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  989. PAGECACHE_TAG_DIRTY,
  990. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  991. if (nr_pages == 0)
  992. break;
  993. for (i = 0; i < nr_pages; i++) {
  994. struct page *page = pvec.pages[i];
  995. /*
  996. * flushing sequence with step:
  997. * 0. indirect nodes
  998. * 1. dentry dnodes
  999. * 2. file dnodes
  1000. */
  1001. if (step == 0 && IS_DNODE(page))
  1002. continue;
  1003. if (step == 1 && (!IS_DNODE(page) ||
  1004. is_cold_node(page)))
  1005. continue;
  1006. if (step == 2 && (!IS_DNODE(page) ||
  1007. !is_cold_node(page)))
  1008. continue;
  1009. /*
  1010. * If an fsync mode,
  1011. * we should not skip writing node pages.
  1012. */
  1013. if (ino && ino_of_node(page) == ino)
  1014. lock_page(page);
  1015. else if (!trylock_page(page))
  1016. continue;
  1017. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1018. continue_unlock:
  1019. unlock_page(page);
  1020. continue;
  1021. }
  1022. if (ino && ino_of_node(page) != ino)
  1023. goto continue_unlock;
  1024. if (!PageDirty(page)) {
  1025. /* someone wrote it for us */
  1026. goto continue_unlock;
  1027. }
  1028. if (!clear_page_dirty_for_io(page))
  1029. goto continue_unlock;
  1030. /* called by fsync() */
  1031. if (ino && IS_DNODE(page)) {
  1032. set_fsync_mark(page, 1);
  1033. if (IS_INODE(page)) {
  1034. if (!is_checkpointed_node(sbi, ino) &&
  1035. !has_fsynced_inode(sbi, ino))
  1036. set_dentry_mark(page, 1);
  1037. else
  1038. set_dentry_mark(page, 0);
  1039. }
  1040. nwritten++;
  1041. } else {
  1042. set_fsync_mark(page, 0);
  1043. set_dentry_mark(page, 0);
  1044. }
  1045. if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
  1046. unlock_page(page);
  1047. else
  1048. wrote++;
  1049. if (--wbc->nr_to_write == 0)
  1050. break;
  1051. }
  1052. pagevec_release(&pvec);
  1053. cond_resched();
  1054. if (wbc->nr_to_write == 0) {
  1055. step = 2;
  1056. break;
  1057. }
  1058. }
  1059. if (step < 2) {
  1060. step++;
  1061. goto next_step;
  1062. }
  1063. if (wrote)
  1064. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1065. return nwritten;
  1066. }
  1067. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1068. {
  1069. pgoff_t index = 0, end = LONG_MAX;
  1070. struct pagevec pvec;
  1071. int ret2 = 0, ret = 0;
  1072. pagevec_init(&pvec, 0);
  1073. while (index <= end) {
  1074. int i, nr_pages;
  1075. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1076. PAGECACHE_TAG_WRITEBACK,
  1077. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1078. if (nr_pages == 0)
  1079. break;
  1080. for (i = 0; i < nr_pages; i++) {
  1081. struct page *page = pvec.pages[i];
  1082. /* until radix tree lookup accepts end_index */
  1083. if (unlikely(page->index > end))
  1084. continue;
  1085. if (ino && ino_of_node(page) == ino) {
  1086. f2fs_wait_on_page_writeback(page, NODE);
  1087. if (TestClearPageError(page))
  1088. ret = -EIO;
  1089. }
  1090. }
  1091. pagevec_release(&pvec);
  1092. cond_resched();
  1093. }
  1094. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1095. ret2 = -ENOSPC;
  1096. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1097. ret2 = -EIO;
  1098. if (!ret)
  1099. ret = ret2;
  1100. return ret;
  1101. }
  1102. static int f2fs_write_node_page(struct page *page,
  1103. struct writeback_control *wbc)
  1104. {
  1105. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1106. nid_t nid;
  1107. block_t new_addr;
  1108. struct node_info ni;
  1109. struct f2fs_io_info fio = {
  1110. .type = NODE,
  1111. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1112. };
  1113. trace_f2fs_writepage(page, NODE);
  1114. if (unlikely(sbi->por_doing))
  1115. goto redirty_out;
  1116. if (unlikely(f2fs_cp_error(sbi)))
  1117. goto redirty_out;
  1118. f2fs_wait_on_page_writeback(page, NODE);
  1119. /* get old block addr of this node page */
  1120. nid = nid_of_node(page);
  1121. f2fs_bug_on(sbi, page->index != nid);
  1122. get_node_info(sbi, nid, &ni);
  1123. /* This page is already truncated */
  1124. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1125. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1126. unlock_page(page);
  1127. return 0;
  1128. }
  1129. if (wbc->for_reclaim)
  1130. goto redirty_out;
  1131. down_read(&sbi->node_write);
  1132. set_page_writeback(page);
  1133. write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
  1134. set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
  1135. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1136. up_read(&sbi->node_write);
  1137. unlock_page(page);
  1138. return 0;
  1139. redirty_out:
  1140. redirty_page_for_writepage(wbc, page);
  1141. return AOP_WRITEPAGE_ACTIVATE;
  1142. }
  1143. static int f2fs_write_node_pages(struct address_space *mapping,
  1144. struct writeback_control *wbc)
  1145. {
  1146. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1147. long diff;
  1148. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1149. /* balancing f2fs's metadata in background */
  1150. f2fs_balance_fs_bg(sbi);
  1151. /* collect a number of dirty node pages and write together */
  1152. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1153. goto skip_write;
  1154. diff = nr_pages_to_write(sbi, NODE, wbc);
  1155. wbc->sync_mode = WB_SYNC_NONE;
  1156. sync_node_pages(sbi, 0, wbc);
  1157. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1158. return 0;
  1159. skip_write:
  1160. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1161. return 0;
  1162. }
  1163. static int f2fs_set_node_page_dirty(struct page *page)
  1164. {
  1165. trace_f2fs_set_page_dirty(page, NODE);
  1166. SetPageUptodate(page);
  1167. if (!PageDirty(page)) {
  1168. __set_page_dirty_nobuffers(page);
  1169. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1170. SetPagePrivate(page);
  1171. return 1;
  1172. }
  1173. return 0;
  1174. }
  1175. static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
  1176. unsigned int length)
  1177. {
  1178. struct inode *inode = page->mapping->host;
  1179. if (PageDirty(page))
  1180. dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
  1181. ClearPagePrivate(page);
  1182. }
  1183. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1184. {
  1185. ClearPagePrivate(page);
  1186. return 1;
  1187. }
  1188. /*
  1189. * Structure of the f2fs node operations
  1190. */
  1191. const struct address_space_operations f2fs_node_aops = {
  1192. .writepage = f2fs_write_node_page,
  1193. .writepages = f2fs_write_node_pages,
  1194. .set_page_dirty = f2fs_set_node_page_dirty,
  1195. .invalidatepage = f2fs_invalidate_node_page,
  1196. .releasepage = f2fs_release_node_page,
  1197. };
  1198. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1199. nid_t n)
  1200. {
  1201. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1202. }
  1203. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1204. struct free_nid *i)
  1205. {
  1206. list_del(&i->list);
  1207. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1208. }
  1209. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1210. {
  1211. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1212. struct free_nid *i;
  1213. struct nat_entry *ne;
  1214. bool allocated = false;
  1215. if (!available_free_memory(sbi, FREE_NIDS))
  1216. return -1;
  1217. /* 0 nid should not be used */
  1218. if (unlikely(nid == 0))
  1219. return 0;
  1220. if (build) {
  1221. /* do not add allocated nids */
  1222. read_lock(&nm_i->nat_tree_lock);
  1223. ne = __lookup_nat_cache(nm_i, nid);
  1224. if (ne &&
  1225. (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1226. nat_get_blkaddr(ne) != NULL_ADDR))
  1227. allocated = true;
  1228. read_unlock(&nm_i->nat_tree_lock);
  1229. if (allocated)
  1230. return 0;
  1231. }
  1232. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1233. i->nid = nid;
  1234. i->state = NID_NEW;
  1235. spin_lock(&nm_i->free_nid_list_lock);
  1236. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1237. spin_unlock(&nm_i->free_nid_list_lock);
  1238. kmem_cache_free(free_nid_slab, i);
  1239. return 0;
  1240. }
  1241. list_add_tail(&i->list, &nm_i->free_nid_list);
  1242. nm_i->fcnt++;
  1243. spin_unlock(&nm_i->free_nid_list_lock);
  1244. return 1;
  1245. }
  1246. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1247. {
  1248. struct free_nid *i;
  1249. bool need_free = false;
  1250. spin_lock(&nm_i->free_nid_list_lock);
  1251. i = __lookup_free_nid_list(nm_i, nid);
  1252. if (i && i->state == NID_NEW) {
  1253. __del_from_free_nid_list(nm_i, i);
  1254. nm_i->fcnt--;
  1255. need_free = true;
  1256. }
  1257. spin_unlock(&nm_i->free_nid_list_lock);
  1258. if (need_free)
  1259. kmem_cache_free(free_nid_slab, i);
  1260. }
  1261. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1262. struct page *nat_page, nid_t start_nid)
  1263. {
  1264. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1265. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1266. block_t blk_addr;
  1267. int i;
  1268. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1269. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1270. if (unlikely(start_nid >= nm_i->max_nid))
  1271. break;
  1272. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1273. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1274. if (blk_addr == NULL_ADDR) {
  1275. if (add_free_nid(sbi, start_nid, true) < 0)
  1276. break;
  1277. }
  1278. }
  1279. }
  1280. static void build_free_nids(struct f2fs_sb_info *sbi)
  1281. {
  1282. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1283. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1284. struct f2fs_summary_block *sum = curseg->sum_blk;
  1285. int i = 0;
  1286. nid_t nid = nm_i->next_scan_nid;
  1287. /* Enough entries */
  1288. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1289. return;
  1290. /* readahead nat pages to be scanned */
  1291. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1292. while (1) {
  1293. struct page *page = get_current_nat_page(sbi, nid);
  1294. scan_nat_page(sbi, page, nid);
  1295. f2fs_put_page(page, 1);
  1296. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1297. if (unlikely(nid >= nm_i->max_nid))
  1298. nid = 0;
  1299. if (i++ == FREE_NID_PAGES)
  1300. break;
  1301. }
  1302. /* go to the next free nat pages to find free nids abundantly */
  1303. nm_i->next_scan_nid = nid;
  1304. /* find free nids from current sum_pages */
  1305. mutex_lock(&curseg->curseg_mutex);
  1306. for (i = 0; i < nats_in_cursum(sum); i++) {
  1307. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1308. nid = le32_to_cpu(nid_in_journal(sum, i));
  1309. if (addr == NULL_ADDR)
  1310. add_free_nid(sbi, nid, true);
  1311. else
  1312. remove_free_nid(nm_i, nid);
  1313. }
  1314. mutex_unlock(&curseg->curseg_mutex);
  1315. }
  1316. /*
  1317. * If this function returns success, caller can obtain a new nid
  1318. * from second parameter of this function.
  1319. * The returned nid could be used ino as well as nid when inode is created.
  1320. */
  1321. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1322. {
  1323. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1324. struct free_nid *i = NULL;
  1325. retry:
  1326. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1327. return false;
  1328. spin_lock(&nm_i->free_nid_list_lock);
  1329. /* We should not use stale free nids created by build_free_nids */
  1330. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1331. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1332. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1333. if (i->state == NID_NEW)
  1334. break;
  1335. f2fs_bug_on(sbi, i->state != NID_NEW);
  1336. *nid = i->nid;
  1337. i->state = NID_ALLOC;
  1338. nm_i->fcnt--;
  1339. spin_unlock(&nm_i->free_nid_list_lock);
  1340. return true;
  1341. }
  1342. spin_unlock(&nm_i->free_nid_list_lock);
  1343. /* Let's scan nat pages and its caches to get free nids */
  1344. mutex_lock(&nm_i->build_lock);
  1345. build_free_nids(sbi);
  1346. mutex_unlock(&nm_i->build_lock);
  1347. goto retry;
  1348. }
  1349. /*
  1350. * alloc_nid() should be called prior to this function.
  1351. */
  1352. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1353. {
  1354. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1355. struct free_nid *i;
  1356. spin_lock(&nm_i->free_nid_list_lock);
  1357. i = __lookup_free_nid_list(nm_i, nid);
  1358. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1359. __del_from_free_nid_list(nm_i, i);
  1360. spin_unlock(&nm_i->free_nid_list_lock);
  1361. kmem_cache_free(free_nid_slab, i);
  1362. }
  1363. /*
  1364. * alloc_nid() should be called prior to this function.
  1365. */
  1366. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1367. {
  1368. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1369. struct free_nid *i;
  1370. bool need_free = false;
  1371. if (!nid)
  1372. return;
  1373. spin_lock(&nm_i->free_nid_list_lock);
  1374. i = __lookup_free_nid_list(nm_i, nid);
  1375. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1376. if (!available_free_memory(sbi, FREE_NIDS)) {
  1377. __del_from_free_nid_list(nm_i, i);
  1378. need_free = true;
  1379. } else {
  1380. i->state = NID_NEW;
  1381. nm_i->fcnt++;
  1382. }
  1383. spin_unlock(&nm_i->free_nid_list_lock);
  1384. if (need_free)
  1385. kmem_cache_free(free_nid_slab, i);
  1386. }
  1387. void recover_inline_xattr(struct inode *inode, struct page *page)
  1388. {
  1389. void *src_addr, *dst_addr;
  1390. size_t inline_size;
  1391. struct page *ipage;
  1392. struct f2fs_inode *ri;
  1393. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1394. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1395. ri = F2FS_INODE(page);
  1396. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1397. clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
  1398. goto update_inode;
  1399. }
  1400. dst_addr = inline_xattr_addr(ipage);
  1401. src_addr = inline_xattr_addr(page);
  1402. inline_size = inline_xattr_size(inode);
  1403. f2fs_wait_on_page_writeback(ipage, NODE);
  1404. memcpy(dst_addr, src_addr, inline_size);
  1405. update_inode:
  1406. update_inode(inode, ipage);
  1407. f2fs_put_page(ipage, 1);
  1408. }
  1409. void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1410. {
  1411. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1412. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1413. nid_t new_xnid = nid_of_node(page);
  1414. struct node_info ni;
  1415. /* 1: invalidate the previous xattr nid */
  1416. if (!prev_xnid)
  1417. goto recover_xnid;
  1418. /* Deallocate node address */
  1419. get_node_info(sbi, prev_xnid, &ni);
  1420. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  1421. invalidate_blocks(sbi, ni.blk_addr);
  1422. dec_valid_node_count(sbi, inode);
  1423. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1424. recover_xnid:
  1425. /* 2: allocate new xattr nid */
  1426. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1427. f2fs_bug_on(sbi, 1);
  1428. remove_free_nid(NM_I(sbi), new_xnid);
  1429. get_node_info(sbi, new_xnid, &ni);
  1430. ni.ino = inode->i_ino;
  1431. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1432. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1433. /* 3: update xattr blkaddr */
  1434. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1435. set_node_addr(sbi, &ni, blkaddr, false);
  1436. update_inode_page(inode);
  1437. }
  1438. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1439. {
  1440. struct f2fs_inode *src, *dst;
  1441. nid_t ino = ino_of_node(page);
  1442. struct node_info old_ni, new_ni;
  1443. struct page *ipage;
  1444. get_node_info(sbi, ino, &old_ni);
  1445. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1446. return -EINVAL;
  1447. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1448. if (!ipage)
  1449. return -ENOMEM;
  1450. /* Should not use this inode from free nid list */
  1451. remove_free_nid(NM_I(sbi), ino);
  1452. SetPageUptodate(ipage);
  1453. fill_node_footer(ipage, ino, ino, 0, true);
  1454. src = F2FS_INODE(page);
  1455. dst = F2FS_INODE(ipage);
  1456. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1457. dst->i_size = 0;
  1458. dst->i_blocks = cpu_to_le64(1);
  1459. dst->i_links = cpu_to_le32(1);
  1460. dst->i_xattr_nid = 0;
  1461. dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
  1462. new_ni = old_ni;
  1463. new_ni.ino = ino;
  1464. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1465. WARN_ON(1);
  1466. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1467. inc_valid_inode_count(sbi);
  1468. set_page_dirty(ipage);
  1469. f2fs_put_page(ipage, 1);
  1470. return 0;
  1471. }
  1472. /*
  1473. * ra_sum_pages() merge contiguous pages into one bio and submit.
  1474. * these pre-read pages are allocated in bd_inode's mapping tree.
  1475. */
  1476. static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
  1477. int start, int nrpages)
  1478. {
  1479. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1480. struct address_space *mapping = inode->i_mapping;
  1481. int i, page_idx = start;
  1482. struct f2fs_io_info fio = {
  1483. .type = META,
  1484. .rw = READ_SYNC | REQ_META | REQ_PRIO
  1485. };
  1486. for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
  1487. /* alloc page in bd_inode for reading node summary info */
  1488. pages[i] = grab_cache_page(mapping, page_idx);
  1489. if (!pages[i])
  1490. break;
  1491. f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
  1492. }
  1493. f2fs_submit_merged_bio(sbi, META, READ);
  1494. return i;
  1495. }
  1496. int restore_node_summary(struct f2fs_sb_info *sbi,
  1497. unsigned int segno, struct f2fs_summary_block *sum)
  1498. {
  1499. struct f2fs_node *rn;
  1500. struct f2fs_summary *sum_entry;
  1501. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1502. block_t addr;
  1503. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  1504. struct page *pages[bio_blocks];
  1505. int i, idx, last_offset, nrpages, err = 0;
  1506. /* scan the node segment */
  1507. last_offset = sbi->blocks_per_seg;
  1508. addr = START_BLOCK(sbi, segno);
  1509. sum_entry = &sum->entries[0];
  1510. for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
  1511. nrpages = min(last_offset - i, bio_blocks);
  1512. /* readahead node pages */
  1513. nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
  1514. if (!nrpages)
  1515. return -ENOMEM;
  1516. for (idx = 0; idx < nrpages; idx++) {
  1517. if (err)
  1518. goto skip;
  1519. lock_page(pages[idx]);
  1520. if (unlikely(!PageUptodate(pages[idx]))) {
  1521. err = -EIO;
  1522. } else {
  1523. rn = F2FS_NODE(pages[idx]);
  1524. sum_entry->nid = rn->footer.nid;
  1525. sum_entry->version = 0;
  1526. sum_entry->ofs_in_node = 0;
  1527. sum_entry++;
  1528. }
  1529. unlock_page(pages[idx]);
  1530. skip:
  1531. page_cache_release(pages[idx]);
  1532. }
  1533. invalidate_mapping_pages(inode->i_mapping, addr,
  1534. addr + nrpages);
  1535. }
  1536. return err;
  1537. }
  1538. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  1539. {
  1540. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1541. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1542. struct f2fs_summary_block *sum = curseg->sum_blk;
  1543. int i;
  1544. mutex_lock(&curseg->curseg_mutex);
  1545. for (i = 0; i < nats_in_cursum(sum); i++) {
  1546. struct nat_entry *ne;
  1547. struct f2fs_nat_entry raw_ne;
  1548. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1549. raw_ne = nat_in_journal(sum, i);
  1550. retry:
  1551. write_lock(&nm_i->nat_tree_lock);
  1552. ne = __lookup_nat_cache(nm_i, nid);
  1553. if (ne)
  1554. goto found;
  1555. ne = grab_nat_entry(nm_i, nid);
  1556. if (!ne) {
  1557. write_unlock(&nm_i->nat_tree_lock);
  1558. goto retry;
  1559. }
  1560. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1561. found:
  1562. __set_nat_cache_dirty(nm_i, ne);
  1563. write_unlock(&nm_i->nat_tree_lock);
  1564. }
  1565. update_nats_in_cursum(sum, -i);
  1566. mutex_unlock(&curseg->curseg_mutex);
  1567. }
  1568. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  1569. struct list_head *head, int max)
  1570. {
  1571. struct nat_entry_set *cur;
  1572. if (nes->entry_cnt >= max)
  1573. goto add_out;
  1574. list_for_each_entry(cur, head, set_list) {
  1575. if (cur->entry_cnt >= nes->entry_cnt) {
  1576. list_add(&nes->set_list, cur->set_list.prev);
  1577. return;
  1578. }
  1579. }
  1580. add_out:
  1581. list_add_tail(&nes->set_list, head);
  1582. }
  1583. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  1584. struct nat_entry_set *set)
  1585. {
  1586. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1587. struct f2fs_summary_block *sum = curseg->sum_blk;
  1588. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  1589. bool to_journal = true;
  1590. struct f2fs_nat_block *nat_blk;
  1591. struct nat_entry *ne, *cur;
  1592. struct page *page = NULL;
  1593. /*
  1594. * there are two steps to flush nat entries:
  1595. * #1, flush nat entries to journal in current hot data summary block.
  1596. * #2, flush nat entries to nat page.
  1597. */
  1598. if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
  1599. to_journal = false;
  1600. if (to_journal) {
  1601. mutex_lock(&curseg->curseg_mutex);
  1602. } else {
  1603. page = get_next_nat_page(sbi, start_nid);
  1604. nat_blk = page_address(page);
  1605. f2fs_bug_on(sbi, !nat_blk);
  1606. }
  1607. /* flush dirty nats in nat entry set */
  1608. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  1609. struct f2fs_nat_entry *raw_ne;
  1610. nid_t nid = nat_get_nid(ne);
  1611. int offset;
  1612. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1613. continue;
  1614. if (to_journal) {
  1615. offset = lookup_journal_in_cursum(sum,
  1616. NAT_JOURNAL, nid, 1);
  1617. f2fs_bug_on(sbi, offset < 0);
  1618. raw_ne = &nat_in_journal(sum, offset);
  1619. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1620. } else {
  1621. raw_ne = &nat_blk->entries[nid - start_nid];
  1622. }
  1623. raw_nat_from_node_info(raw_ne, &ne->ni);
  1624. write_lock(&NM_I(sbi)->nat_tree_lock);
  1625. nat_reset_flag(ne);
  1626. __clear_nat_cache_dirty(NM_I(sbi), ne);
  1627. write_unlock(&NM_I(sbi)->nat_tree_lock);
  1628. if (nat_get_blkaddr(ne) == NULL_ADDR)
  1629. add_free_nid(sbi, nid, false);
  1630. }
  1631. if (to_journal)
  1632. mutex_unlock(&curseg->curseg_mutex);
  1633. else
  1634. f2fs_put_page(page, 1);
  1635. if (!set->entry_cnt) {
  1636. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  1637. kmem_cache_free(nat_entry_set_slab, set);
  1638. }
  1639. }
  1640. /*
  1641. * This function is called during the checkpointing process.
  1642. */
  1643. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1644. {
  1645. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1646. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1647. struct f2fs_summary_block *sum = curseg->sum_blk;
  1648. struct nat_entry_set *setvec[NATVEC_SIZE];
  1649. struct nat_entry_set *set, *tmp;
  1650. unsigned int found;
  1651. nid_t set_idx = 0;
  1652. LIST_HEAD(sets);
  1653. /*
  1654. * if there are no enough space in journal to store dirty nat
  1655. * entries, remove all entries from journal and merge them
  1656. * into nat entry set.
  1657. */
  1658. if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  1659. remove_nats_in_journal(sbi);
  1660. if (!nm_i->dirty_nat_cnt)
  1661. return;
  1662. while ((found = __gang_lookup_nat_set(nm_i,
  1663. set_idx, NATVEC_SIZE, setvec))) {
  1664. unsigned idx;
  1665. set_idx = setvec[found - 1]->set + 1;
  1666. for (idx = 0; idx < found; idx++)
  1667. __adjust_nat_entry_set(setvec[idx], &sets,
  1668. MAX_NAT_JENTRIES(sum));
  1669. }
  1670. /* flush dirty nats in nat entry set */
  1671. list_for_each_entry_safe(set, tmp, &sets, set_list)
  1672. __flush_nat_entry_set(sbi, set);
  1673. f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
  1674. }
  1675. static int init_node_manager(struct f2fs_sb_info *sbi)
  1676. {
  1677. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1678. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1679. unsigned char *version_bitmap;
  1680. unsigned int nat_segs, nat_blocks;
  1681. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1682. /* segment_count_nat includes pair segment so divide to 2. */
  1683. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1684. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1685. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1686. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1687. nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
  1688. nm_i->fcnt = 0;
  1689. nm_i->nat_cnt = 0;
  1690. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1691. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1692. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1693. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1694. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_ATOMIC);
  1695. INIT_LIST_HEAD(&nm_i->nat_entries);
  1696. mutex_init(&nm_i->build_lock);
  1697. spin_lock_init(&nm_i->free_nid_list_lock);
  1698. rwlock_init(&nm_i->nat_tree_lock);
  1699. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1700. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1701. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1702. if (!version_bitmap)
  1703. return -EFAULT;
  1704. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1705. GFP_KERNEL);
  1706. if (!nm_i->nat_bitmap)
  1707. return -ENOMEM;
  1708. return 0;
  1709. }
  1710. int build_node_manager(struct f2fs_sb_info *sbi)
  1711. {
  1712. int err;
  1713. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1714. if (!sbi->nm_info)
  1715. return -ENOMEM;
  1716. err = init_node_manager(sbi);
  1717. if (err)
  1718. return err;
  1719. build_free_nids(sbi);
  1720. return 0;
  1721. }
  1722. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1723. {
  1724. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1725. struct free_nid *i, *next_i;
  1726. struct nat_entry *natvec[NATVEC_SIZE];
  1727. nid_t nid = 0;
  1728. unsigned int found;
  1729. if (!nm_i)
  1730. return;
  1731. /* destroy free nid list */
  1732. spin_lock(&nm_i->free_nid_list_lock);
  1733. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1734. f2fs_bug_on(sbi, i->state == NID_ALLOC);
  1735. __del_from_free_nid_list(nm_i, i);
  1736. nm_i->fcnt--;
  1737. spin_unlock(&nm_i->free_nid_list_lock);
  1738. kmem_cache_free(free_nid_slab, i);
  1739. spin_lock(&nm_i->free_nid_list_lock);
  1740. }
  1741. f2fs_bug_on(sbi, nm_i->fcnt);
  1742. spin_unlock(&nm_i->free_nid_list_lock);
  1743. /* destroy nat cache */
  1744. write_lock(&nm_i->nat_tree_lock);
  1745. while ((found = __gang_lookup_nat_cache(nm_i,
  1746. nid, NATVEC_SIZE, natvec))) {
  1747. unsigned idx;
  1748. nid = nat_get_nid(natvec[found - 1]) + 1;
  1749. for (idx = 0; idx < found; idx++)
  1750. __del_from_nat_cache(nm_i, natvec[idx]);
  1751. }
  1752. f2fs_bug_on(sbi, nm_i->nat_cnt);
  1753. write_unlock(&nm_i->nat_tree_lock);
  1754. kfree(nm_i->nat_bitmap);
  1755. sbi->nm_info = NULL;
  1756. kfree(nm_i);
  1757. }
  1758. int __init create_node_manager_caches(void)
  1759. {
  1760. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1761. sizeof(struct nat_entry));
  1762. if (!nat_entry_slab)
  1763. goto fail;
  1764. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1765. sizeof(struct free_nid));
  1766. if (!free_nid_slab)
  1767. goto destory_nat_entry;
  1768. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  1769. sizeof(struct nat_entry_set));
  1770. if (!nat_entry_set_slab)
  1771. goto destory_free_nid;
  1772. return 0;
  1773. destory_free_nid:
  1774. kmem_cache_destroy(free_nid_slab);
  1775. destory_nat_entry:
  1776. kmem_cache_destroy(nat_entry_slab);
  1777. fail:
  1778. return -ENOMEM;
  1779. }
  1780. void destroy_node_manager_caches(void)
  1781. {
  1782. kmem_cache_destroy(nat_entry_set_slab);
  1783. kmem_cache_destroy(free_nid_slab);
  1784. kmem_cache_destroy(nat_entry_slab);
  1785. }