gc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. /*
  2. * fs/f2fs/gc.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/module.h>
  13. #include <linux/backing-dev.h>
  14. #include <linux/init.h>
  15. #include <linux/f2fs_fs.h>
  16. #include <linux/kthread.h>
  17. #include <linux/delay.h>
  18. #include <linux/freezer.h>
  19. #include <linux/blkdev.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include "gc.h"
  24. #include <trace/events/f2fs.h>
  25. static struct kmem_cache *winode_slab;
  26. static int gc_thread_func(void *data)
  27. {
  28. struct f2fs_sb_info *sbi = data;
  29. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  30. wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
  31. long wait_ms;
  32. wait_ms = gc_th->min_sleep_time;
  33. do {
  34. if (try_to_freeze())
  35. continue;
  36. else
  37. wait_event_interruptible_timeout(*wq,
  38. kthread_should_stop(),
  39. msecs_to_jiffies(wait_ms));
  40. if (kthread_should_stop())
  41. break;
  42. if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
  43. wait_ms = increase_sleep_time(gc_th, wait_ms);
  44. continue;
  45. }
  46. /*
  47. * [GC triggering condition]
  48. * 0. GC is not conducted currently.
  49. * 1. There are enough dirty segments.
  50. * 2. IO subsystem is idle by checking the # of writeback pages.
  51. * 3. IO subsystem is idle by checking the # of requests in
  52. * bdev's request list.
  53. *
  54. * Note) We have to avoid triggering GCs frequently.
  55. * Because it is possible that some segments can be
  56. * invalidated soon after by user update or deletion.
  57. * So, I'd like to wait some time to collect dirty segments.
  58. */
  59. if (!mutex_trylock(&sbi->gc_mutex))
  60. continue;
  61. if (!is_idle(sbi)) {
  62. wait_ms = increase_sleep_time(gc_th, wait_ms);
  63. mutex_unlock(&sbi->gc_mutex);
  64. continue;
  65. }
  66. if (has_enough_invalid_blocks(sbi))
  67. wait_ms = decrease_sleep_time(gc_th, wait_ms);
  68. else
  69. wait_ms = increase_sleep_time(gc_th, wait_ms);
  70. stat_inc_bggc_count(sbi);
  71. /* if return value is not zero, no victim was selected */
  72. if (f2fs_gc(sbi))
  73. wait_ms = gc_th->no_gc_sleep_time;
  74. /* balancing f2fs's metadata periodically */
  75. f2fs_balance_fs_bg(sbi);
  76. } while (!kthread_should_stop());
  77. return 0;
  78. }
  79. int start_gc_thread(struct f2fs_sb_info *sbi)
  80. {
  81. struct f2fs_gc_kthread *gc_th;
  82. dev_t dev = sbi->sb->s_bdev->bd_dev;
  83. int err = 0;
  84. if (!test_opt(sbi, BG_GC))
  85. goto out;
  86. gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
  87. if (!gc_th) {
  88. err = -ENOMEM;
  89. goto out;
  90. }
  91. gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
  92. gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
  93. gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
  94. gc_th->gc_idle = 0;
  95. sbi->gc_thread = gc_th;
  96. init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
  97. sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
  98. "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
  99. if (IS_ERR(gc_th->f2fs_gc_task)) {
  100. err = PTR_ERR(gc_th->f2fs_gc_task);
  101. kfree(gc_th);
  102. sbi->gc_thread = NULL;
  103. }
  104. out:
  105. return err;
  106. }
  107. void stop_gc_thread(struct f2fs_sb_info *sbi)
  108. {
  109. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  110. if (!gc_th)
  111. return;
  112. kthread_stop(gc_th->f2fs_gc_task);
  113. kfree(gc_th);
  114. sbi->gc_thread = NULL;
  115. }
  116. static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
  117. {
  118. int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
  119. if (gc_th && gc_th->gc_idle) {
  120. if (gc_th->gc_idle == 1)
  121. gc_mode = GC_CB;
  122. else if (gc_th->gc_idle == 2)
  123. gc_mode = GC_GREEDY;
  124. }
  125. return gc_mode;
  126. }
  127. static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
  128. int type, struct victim_sel_policy *p)
  129. {
  130. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  131. if (p->alloc_mode == SSR) {
  132. p->gc_mode = GC_GREEDY;
  133. p->dirty_segmap = dirty_i->dirty_segmap[type];
  134. p->max_search = dirty_i->nr_dirty[type];
  135. p->ofs_unit = 1;
  136. } else {
  137. p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
  138. p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
  139. p->max_search = dirty_i->nr_dirty[DIRTY];
  140. p->ofs_unit = sbi->segs_per_sec;
  141. }
  142. if (p->max_search > sbi->max_victim_search)
  143. p->max_search = sbi->max_victim_search;
  144. p->offset = sbi->last_victim[p->gc_mode];
  145. }
  146. static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
  147. struct victim_sel_policy *p)
  148. {
  149. /* SSR allocates in a segment unit */
  150. if (p->alloc_mode == SSR)
  151. return 1 << sbi->log_blocks_per_seg;
  152. if (p->gc_mode == GC_GREEDY)
  153. return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
  154. else if (p->gc_mode == GC_CB)
  155. return UINT_MAX;
  156. else /* No other gc_mode */
  157. return 0;
  158. }
  159. static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
  160. {
  161. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  162. unsigned int secno;
  163. /*
  164. * If the gc_type is FG_GC, we can select victim segments
  165. * selected by background GC before.
  166. * Those segments guarantee they have small valid blocks.
  167. */
  168. for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
  169. if (sec_usage_check(sbi, secno))
  170. continue;
  171. clear_bit(secno, dirty_i->victim_secmap);
  172. return secno * sbi->segs_per_sec;
  173. }
  174. return NULL_SEGNO;
  175. }
  176. static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
  177. {
  178. struct sit_info *sit_i = SIT_I(sbi);
  179. unsigned int secno = GET_SECNO(sbi, segno);
  180. unsigned int start = secno * sbi->segs_per_sec;
  181. unsigned long long mtime = 0;
  182. unsigned int vblocks;
  183. unsigned char age = 0;
  184. unsigned char u;
  185. unsigned int i;
  186. for (i = 0; i < sbi->segs_per_sec; i++)
  187. mtime += get_seg_entry(sbi, start + i)->mtime;
  188. vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  189. mtime = div_u64(mtime, sbi->segs_per_sec);
  190. vblocks = div_u64(vblocks, sbi->segs_per_sec);
  191. u = (vblocks * 100) >> sbi->log_blocks_per_seg;
  192. /* Handle if the system time has changed by the user */
  193. if (mtime < sit_i->min_mtime)
  194. sit_i->min_mtime = mtime;
  195. if (mtime > sit_i->max_mtime)
  196. sit_i->max_mtime = mtime;
  197. if (sit_i->max_mtime != sit_i->min_mtime)
  198. age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
  199. sit_i->max_mtime - sit_i->min_mtime);
  200. return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
  201. }
  202. static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
  203. unsigned int segno, struct victim_sel_policy *p)
  204. {
  205. if (p->alloc_mode == SSR)
  206. return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
  207. /* alloc_mode == LFS */
  208. if (p->gc_mode == GC_GREEDY)
  209. return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  210. else
  211. return get_cb_cost(sbi, segno);
  212. }
  213. /*
  214. * This function is called from two paths.
  215. * One is garbage collection and the other is SSR segment selection.
  216. * When it is called during GC, it just gets a victim segment
  217. * and it does not remove it from dirty seglist.
  218. * When it is called from SSR segment selection, it finds a segment
  219. * which has minimum valid blocks and removes it from dirty seglist.
  220. */
  221. static int get_victim_by_default(struct f2fs_sb_info *sbi,
  222. unsigned int *result, int gc_type, int type, char alloc_mode)
  223. {
  224. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  225. struct victim_sel_policy p;
  226. unsigned int secno, max_cost;
  227. int nsearched = 0;
  228. mutex_lock(&dirty_i->seglist_lock);
  229. p.alloc_mode = alloc_mode;
  230. select_policy(sbi, gc_type, type, &p);
  231. p.min_segno = NULL_SEGNO;
  232. p.min_cost = max_cost = get_max_cost(sbi, &p);
  233. if (p.alloc_mode == LFS && gc_type == FG_GC) {
  234. p.min_segno = check_bg_victims(sbi);
  235. if (p.min_segno != NULL_SEGNO)
  236. goto got_it;
  237. }
  238. while (1) {
  239. unsigned long cost;
  240. unsigned int segno;
  241. segno = find_next_bit(p.dirty_segmap, MAIN_SEGS(sbi), p.offset);
  242. if (segno >= MAIN_SEGS(sbi)) {
  243. if (sbi->last_victim[p.gc_mode]) {
  244. sbi->last_victim[p.gc_mode] = 0;
  245. p.offset = 0;
  246. continue;
  247. }
  248. break;
  249. }
  250. p.offset = segno + p.ofs_unit;
  251. if (p.ofs_unit > 1)
  252. p.offset -= segno % p.ofs_unit;
  253. secno = GET_SECNO(sbi, segno);
  254. if (sec_usage_check(sbi, secno))
  255. continue;
  256. if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
  257. continue;
  258. cost = get_gc_cost(sbi, segno, &p);
  259. if (p.min_cost > cost) {
  260. p.min_segno = segno;
  261. p.min_cost = cost;
  262. } else if (unlikely(cost == max_cost)) {
  263. continue;
  264. }
  265. if (nsearched++ >= p.max_search) {
  266. sbi->last_victim[p.gc_mode] = segno;
  267. break;
  268. }
  269. }
  270. if (p.min_segno != NULL_SEGNO) {
  271. got_it:
  272. if (p.alloc_mode == LFS) {
  273. secno = GET_SECNO(sbi, p.min_segno);
  274. if (gc_type == FG_GC)
  275. sbi->cur_victim_sec = secno;
  276. else
  277. set_bit(secno, dirty_i->victim_secmap);
  278. }
  279. *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
  280. trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
  281. sbi->cur_victim_sec,
  282. prefree_segments(sbi), free_segments(sbi));
  283. }
  284. mutex_unlock(&dirty_i->seglist_lock);
  285. return (p.min_segno == NULL_SEGNO) ? 0 : 1;
  286. }
  287. static const struct victim_selection default_v_ops = {
  288. .get_victim = get_victim_by_default,
  289. };
  290. static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
  291. {
  292. struct inode_entry *ie;
  293. list_for_each_entry(ie, ilist, list)
  294. if (ie->inode->i_ino == ino)
  295. return ie->inode;
  296. return NULL;
  297. }
  298. static void add_gc_inode(struct inode *inode, struct list_head *ilist)
  299. {
  300. struct inode_entry *new_ie;
  301. if (inode == find_gc_inode(inode->i_ino, ilist)) {
  302. iput(inode);
  303. return;
  304. }
  305. new_ie = f2fs_kmem_cache_alloc(winode_slab, GFP_NOFS);
  306. new_ie->inode = inode;
  307. list_add_tail(&new_ie->list, ilist);
  308. }
  309. static void put_gc_inode(struct list_head *ilist)
  310. {
  311. struct inode_entry *ie, *next_ie;
  312. list_for_each_entry_safe(ie, next_ie, ilist, list) {
  313. iput(ie->inode);
  314. list_del(&ie->list);
  315. kmem_cache_free(winode_slab, ie);
  316. }
  317. }
  318. static int check_valid_map(struct f2fs_sb_info *sbi,
  319. unsigned int segno, int offset)
  320. {
  321. struct sit_info *sit_i = SIT_I(sbi);
  322. struct seg_entry *sentry;
  323. int ret;
  324. mutex_lock(&sit_i->sentry_lock);
  325. sentry = get_seg_entry(sbi, segno);
  326. ret = f2fs_test_bit(offset, sentry->cur_valid_map);
  327. mutex_unlock(&sit_i->sentry_lock);
  328. return ret;
  329. }
  330. /*
  331. * This function compares node address got in summary with that in NAT.
  332. * On validity, copy that node with cold status, otherwise (invalid node)
  333. * ignore that.
  334. */
  335. static void gc_node_segment(struct f2fs_sb_info *sbi,
  336. struct f2fs_summary *sum, unsigned int segno, int gc_type)
  337. {
  338. bool initial = true;
  339. struct f2fs_summary *entry;
  340. int off;
  341. next_step:
  342. entry = sum;
  343. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  344. nid_t nid = le32_to_cpu(entry->nid);
  345. struct page *node_page;
  346. /* stop BG_GC if there is not enough free sections. */
  347. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  348. return;
  349. if (check_valid_map(sbi, segno, off) == 0)
  350. continue;
  351. if (initial) {
  352. ra_node_page(sbi, nid);
  353. continue;
  354. }
  355. node_page = get_node_page(sbi, nid);
  356. if (IS_ERR(node_page))
  357. continue;
  358. /* block may become invalid during get_node_page */
  359. if (check_valid_map(sbi, segno, off) == 0) {
  360. f2fs_put_page(node_page, 1);
  361. continue;
  362. }
  363. /* set page dirty and write it */
  364. if (gc_type == FG_GC) {
  365. f2fs_wait_on_page_writeback(node_page, NODE);
  366. set_page_dirty(node_page);
  367. } else {
  368. if (!PageWriteback(node_page))
  369. set_page_dirty(node_page);
  370. }
  371. f2fs_put_page(node_page, 1);
  372. stat_inc_node_blk_count(sbi, 1);
  373. }
  374. if (initial) {
  375. initial = false;
  376. goto next_step;
  377. }
  378. if (gc_type == FG_GC) {
  379. struct writeback_control wbc = {
  380. .sync_mode = WB_SYNC_ALL,
  381. .nr_to_write = LONG_MAX,
  382. .for_reclaim = 0,
  383. };
  384. sync_node_pages(sbi, 0, &wbc);
  385. /*
  386. * In the case of FG_GC, it'd be better to reclaim this victim
  387. * completely.
  388. */
  389. if (get_valid_blocks(sbi, segno, 1) != 0)
  390. goto next_step;
  391. }
  392. }
  393. /*
  394. * Calculate start block index indicating the given node offset.
  395. * Be careful, caller should give this node offset only indicating direct node
  396. * blocks. If any node offsets, which point the other types of node blocks such
  397. * as indirect or double indirect node blocks, are given, it must be a caller's
  398. * bug.
  399. */
  400. block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
  401. {
  402. unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
  403. unsigned int bidx;
  404. if (node_ofs == 0)
  405. return 0;
  406. if (node_ofs <= 2) {
  407. bidx = node_ofs - 1;
  408. } else if (node_ofs <= indirect_blks) {
  409. int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
  410. bidx = node_ofs - 2 - dec;
  411. } else {
  412. int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
  413. bidx = node_ofs - 5 - dec;
  414. }
  415. return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
  416. }
  417. static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  418. struct node_info *dni, block_t blkaddr, unsigned int *nofs)
  419. {
  420. struct page *node_page;
  421. nid_t nid;
  422. unsigned int ofs_in_node;
  423. block_t source_blkaddr;
  424. nid = le32_to_cpu(sum->nid);
  425. ofs_in_node = le16_to_cpu(sum->ofs_in_node);
  426. node_page = get_node_page(sbi, nid);
  427. if (IS_ERR(node_page))
  428. return 0;
  429. get_node_info(sbi, nid, dni);
  430. if (sum->version != dni->version) {
  431. f2fs_put_page(node_page, 1);
  432. return 0;
  433. }
  434. *nofs = ofs_of_node(node_page);
  435. source_blkaddr = datablock_addr(node_page, ofs_in_node);
  436. f2fs_put_page(node_page, 1);
  437. if (source_blkaddr != blkaddr)
  438. return 0;
  439. return 1;
  440. }
  441. static void move_data_page(struct inode *inode, struct page *page, int gc_type)
  442. {
  443. struct f2fs_io_info fio = {
  444. .type = DATA,
  445. .rw = WRITE_SYNC,
  446. };
  447. if (gc_type == BG_GC) {
  448. if (PageWriteback(page))
  449. goto out;
  450. set_page_dirty(page);
  451. set_cold_data(page);
  452. } else {
  453. f2fs_wait_on_page_writeback(page, DATA);
  454. if (clear_page_dirty_for_io(page))
  455. inode_dec_dirty_pages(inode);
  456. set_cold_data(page);
  457. do_write_data_page(page, &fio);
  458. clear_cold_data(page);
  459. }
  460. out:
  461. f2fs_put_page(page, 1);
  462. }
  463. /*
  464. * This function tries to get parent node of victim data block, and identifies
  465. * data block validity. If the block is valid, copy that with cold status and
  466. * modify parent node.
  467. * If the parent node is not valid or the data block address is different,
  468. * the victim data block is ignored.
  469. */
  470. static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  471. struct list_head *ilist, unsigned int segno, int gc_type)
  472. {
  473. struct super_block *sb = sbi->sb;
  474. struct f2fs_summary *entry;
  475. block_t start_addr;
  476. int off;
  477. int phase = 0;
  478. start_addr = START_BLOCK(sbi, segno);
  479. next_step:
  480. entry = sum;
  481. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  482. struct page *data_page;
  483. struct inode *inode;
  484. struct node_info dni; /* dnode info for the data */
  485. unsigned int ofs_in_node, nofs;
  486. block_t start_bidx;
  487. /* stop BG_GC if there is not enough free sections. */
  488. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  489. return;
  490. if (check_valid_map(sbi, segno, off) == 0)
  491. continue;
  492. if (phase == 0) {
  493. ra_node_page(sbi, le32_to_cpu(entry->nid));
  494. continue;
  495. }
  496. /* Get an inode by ino with checking validity */
  497. if (check_dnode(sbi, entry, &dni, start_addr + off, &nofs) == 0)
  498. continue;
  499. if (phase == 1) {
  500. ra_node_page(sbi, dni.ino);
  501. continue;
  502. }
  503. ofs_in_node = le16_to_cpu(entry->ofs_in_node);
  504. if (phase == 2) {
  505. inode = f2fs_iget(sb, dni.ino);
  506. if (IS_ERR(inode) || is_bad_inode(inode))
  507. continue;
  508. start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
  509. data_page = find_data_page(inode,
  510. start_bidx + ofs_in_node, false);
  511. if (IS_ERR(data_page))
  512. goto next_iput;
  513. f2fs_put_page(data_page, 0);
  514. add_gc_inode(inode, ilist);
  515. } else {
  516. inode = find_gc_inode(dni.ino, ilist);
  517. if (inode) {
  518. start_bidx = start_bidx_of_node(nofs,
  519. F2FS_I(inode));
  520. data_page = get_lock_data_page(inode,
  521. start_bidx + ofs_in_node);
  522. if (IS_ERR(data_page))
  523. continue;
  524. move_data_page(inode, data_page, gc_type);
  525. stat_inc_data_blk_count(sbi, 1);
  526. }
  527. }
  528. continue;
  529. next_iput:
  530. iput(inode);
  531. }
  532. if (++phase < 4)
  533. goto next_step;
  534. if (gc_type == FG_GC) {
  535. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  536. /*
  537. * In the case of FG_GC, it'd be better to reclaim this victim
  538. * completely.
  539. */
  540. if (get_valid_blocks(sbi, segno, 1) != 0) {
  541. phase = 2;
  542. goto next_step;
  543. }
  544. }
  545. }
  546. static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
  547. int gc_type, int type)
  548. {
  549. struct sit_info *sit_i = SIT_I(sbi);
  550. int ret;
  551. mutex_lock(&sit_i->sentry_lock);
  552. ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
  553. mutex_unlock(&sit_i->sentry_lock);
  554. return ret;
  555. }
  556. static void do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
  557. struct list_head *ilist, int gc_type)
  558. {
  559. struct page *sum_page;
  560. struct f2fs_summary_block *sum;
  561. struct blk_plug plug;
  562. /* read segment summary of victim */
  563. sum_page = get_sum_page(sbi, segno);
  564. blk_start_plug(&plug);
  565. sum = page_address(sum_page);
  566. switch (GET_SUM_TYPE((&sum->footer))) {
  567. case SUM_TYPE_NODE:
  568. gc_node_segment(sbi, sum->entries, segno, gc_type);
  569. break;
  570. case SUM_TYPE_DATA:
  571. gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
  572. break;
  573. }
  574. blk_finish_plug(&plug);
  575. stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
  576. stat_inc_call_count(sbi->stat_info);
  577. f2fs_put_page(sum_page, 1);
  578. }
  579. int f2fs_gc(struct f2fs_sb_info *sbi)
  580. {
  581. struct list_head ilist;
  582. unsigned int segno, i;
  583. int gc_type = BG_GC;
  584. int nfree = 0;
  585. int ret = -1;
  586. struct cp_control cpc = {
  587. .reason = CP_SYNC,
  588. };
  589. INIT_LIST_HEAD(&ilist);
  590. gc_more:
  591. if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
  592. goto stop;
  593. if (unlikely(f2fs_cp_error(sbi)))
  594. goto stop;
  595. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, nfree)) {
  596. gc_type = FG_GC;
  597. write_checkpoint(sbi, &cpc);
  598. }
  599. if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
  600. goto stop;
  601. ret = 0;
  602. /* readahead multi ssa blocks those have contiguous address */
  603. if (sbi->segs_per_sec > 1)
  604. ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), sbi->segs_per_sec,
  605. META_SSA);
  606. for (i = 0; i < sbi->segs_per_sec; i++)
  607. do_garbage_collect(sbi, segno + i, &ilist, gc_type);
  608. if (gc_type == FG_GC) {
  609. sbi->cur_victim_sec = NULL_SEGNO;
  610. nfree++;
  611. WARN_ON(get_valid_blocks(sbi, segno, sbi->segs_per_sec));
  612. }
  613. if (has_not_enough_free_secs(sbi, nfree))
  614. goto gc_more;
  615. if (gc_type == FG_GC)
  616. write_checkpoint(sbi, &cpc);
  617. stop:
  618. mutex_unlock(&sbi->gc_mutex);
  619. put_gc_inode(&ilist);
  620. return ret;
  621. }
  622. void build_gc_manager(struct f2fs_sb_info *sbi)
  623. {
  624. DIRTY_I(sbi)->v_ops = &default_v_ops;
  625. }
  626. int __init create_gc_caches(void)
  627. {
  628. winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
  629. sizeof(struct inode_entry));
  630. if (!winode_slab)
  631. return -ENOMEM;
  632. return 0;
  633. }
  634. void destroy_gc_caches(void)
  635. {
  636. kmem_cache_destroy(winode_slab);
  637. }