file.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include "f2fs.h"
  24. #include "node.h"
  25. #include "segment.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include <trace/events/f2fs.h>
  29. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  30. struct vm_fault *vmf)
  31. {
  32. struct page *page = vmf->page;
  33. struct inode *inode = file_inode(vma->vm_file);
  34. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  35. struct dnode_of_data dn;
  36. int err;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* force to convert with normal data indices */
  40. err = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, page);
  41. if (err)
  42. goto out;
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. f2fs_unlock_op(sbi);
  48. if (err)
  49. goto out;
  50. file_update_time(vma->vm_file);
  51. lock_page(page);
  52. if (unlikely(page->mapping != inode->i_mapping ||
  53. page_offset(page) > i_size_read(inode) ||
  54. !PageUptodate(page))) {
  55. unlock_page(page);
  56. err = -EFAULT;
  57. goto out;
  58. }
  59. /*
  60. * check to see if the page is mapped already (no holes)
  61. */
  62. if (PageMappedToDisk(page))
  63. goto mapped;
  64. /* page is wholly or partially inside EOF */
  65. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  66. unsigned offset;
  67. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  68. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  69. }
  70. set_page_dirty(page);
  71. SetPageUptodate(page);
  72. trace_f2fs_vm_page_mkwrite(page, DATA);
  73. mapped:
  74. /* fill the page */
  75. f2fs_wait_on_page_writeback(page, DATA);
  76. out:
  77. sb_end_pagefault(inode->i_sb);
  78. return block_page_mkwrite_return(err);
  79. }
  80. static const struct vm_operations_struct f2fs_file_vm_ops = {
  81. .fault = filemap_fault,
  82. .map_pages = filemap_map_pages,
  83. .page_mkwrite = f2fs_vm_page_mkwrite,
  84. .remap_pages = generic_file_remap_pages,
  85. };
  86. static int get_parent_ino(struct inode *inode, nid_t *pino)
  87. {
  88. struct dentry *dentry;
  89. inode = igrab(inode);
  90. dentry = d_find_any_alias(inode);
  91. iput(inode);
  92. if (!dentry)
  93. return 0;
  94. if (update_dent_inode(inode, &dentry->d_name)) {
  95. dput(dentry);
  96. return 0;
  97. }
  98. *pino = parent_ino(dentry);
  99. dput(dentry);
  100. return 1;
  101. }
  102. static inline bool need_do_checkpoint(struct inode *inode)
  103. {
  104. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  105. bool need_cp = false;
  106. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  107. need_cp = true;
  108. else if (file_wrong_pino(inode))
  109. need_cp = true;
  110. else if (!space_for_roll_forward(sbi))
  111. need_cp = true;
  112. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  113. need_cp = true;
  114. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  115. need_cp = true;
  116. return need_cp;
  117. }
  118. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  119. {
  120. struct inode *inode = file->f_mapping->host;
  121. struct f2fs_inode_info *fi = F2FS_I(inode);
  122. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  123. nid_t ino = inode->i_ino;
  124. int ret = 0;
  125. bool need_cp = false;
  126. struct writeback_control wbc = {
  127. .sync_mode = WB_SYNC_ALL,
  128. .nr_to_write = LONG_MAX,
  129. .for_reclaim = 0,
  130. };
  131. if (unlikely(f2fs_readonly(inode->i_sb)))
  132. return 0;
  133. trace_f2fs_sync_file_enter(inode);
  134. /* if fdatasync is triggered, let's do in-place-update */
  135. if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  136. set_inode_flag(fi, FI_NEED_IPU);
  137. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  138. clear_inode_flag(fi, FI_NEED_IPU);
  139. if (ret) {
  140. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  141. return ret;
  142. }
  143. /*
  144. * if there is no written data, don't waste time to write recovery info.
  145. */
  146. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  147. !exist_written_data(sbi, ino, APPEND_INO)) {
  148. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  149. /* But we need to avoid that there are some inode updates */
  150. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) {
  151. f2fs_put_page(i, 0);
  152. goto go_write;
  153. }
  154. f2fs_put_page(i, 0);
  155. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  156. exist_written_data(sbi, ino, UPDATE_INO))
  157. goto flush_out;
  158. goto out;
  159. }
  160. go_write:
  161. /* guarantee free sections for fsync */
  162. f2fs_balance_fs(sbi);
  163. /*
  164. * Both of fdatasync() and fsync() are able to be recovered from
  165. * sudden-power-off.
  166. */
  167. down_read(&fi->i_sem);
  168. need_cp = need_do_checkpoint(inode);
  169. up_read(&fi->i_sem);
  170. if (need_cp) {
  171. nid_t pino;
  172. /* all the dirty node pages should be flushed for POR */
  173. ret = f2fs_sync_fs(inode->i_sb, 1);
  174. down_write(&fi->i_sem);
  175. F2FS_I(inode)->xattr_ver = 0;
  176. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  177. get_parent_ino(inode, &pino)) {
  178. F2FS_I(inode)->i_pino = pino;
  179. file_got_pino(inode);
  180. up_write(&fi->i_sem);
  181. mark_inode_dirty_sync(inode);
  182. ret = f2fs_write_inode(inode, NULL);
  183. if (ret)
  184. goto out;
  185. } else {
  186. up_write(&fi->i_sem);
  187. }
  188. } else {
  189. sync_nodes:
  190. sync_node_pages(sbi, ino, &wbc);
  191. if (need_inode_block_update(sbi, ino)) {
  192. mark_inode_dirty_sync(inode);
  193. ret = f2fs_write_inode(inode, NULL);
  194. if (ret)
  195. goto out;
  196. goto sync_nodes;
  197. }
  198. ret = wait_on_node_pages_writeback(sbi, ino);
  199. if (ret)
  200. goto out;
  201. /* once recovery info is written, don't need to tack this */
  202. remove_dirty_inode(sbi, ino, APPEND_INO);
  203. clear_inode_flag(fi, FI_APPEND_WRITE);
  204. flush_out:
  205. remove_dirty_inode(sbi, ino, UPDATE_INO);
  206. clear_inode_flag(fi, FI_UPDATE_WRITE);
  207. ret = f2fs_issue_flush(F2FS_I_SB(inode));
  208. }
  209. out:
  210. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  211. return ret;
  212. }
  213. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  214. pgoff_t pgofs, int whence)
  215. {
  216. struct pagevec pvec;
  217. int nr_pages;
  218. if (whence != SEEK_DATA)
  219. return 0;
  220. /* find first dirty page index */
  221. pagevec_init(&pvec, 0);
  222. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  223. PAGECACHE_TAG_DIRTY, 1);
  224. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  225. pagevec_release(&pvec);
  226. return pgofs;
  227. }
  228. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  229. int whence)
  230. {
  231. switch (whence) {
  232. case SEEK_DATA:
  233. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  234. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  235. return true;
  236. break;
  237. case SEEK_HOLE:
  238. if (blkaddr == NULL_ADDR)
  239. return true;
  240. break;
  241. }
  242. return false;
  243. }
  244. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  245. {
  246. struct inode *inode = file->f_mapping->host;
  247. loff_t maxbytes = inode->i_sb->s_maxbytes;
  248. struct dnode_of_data dn;
  249. pgoff_t pgofs, end_offset, dirty;
  250. loff_t data_ofs = offset;
  251. loff_t isize;
  252. int err = 0;
  253. mutex_lock(&inode->i_mutex);
  254. isize = i_size_read(inode);
  255. if (offset >= isize)
  256. goto fail;
  257. /* handle inline data case */
  258. if (f2fs_has_inline_data(inode)) {
  259. if (whence == SEEK_HOLE)
  260. data_ofs = isize;
  261. goto found;
  262. }
  263. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  264. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  265. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  266. set_new_dnode(&dn, inode, NULL, NULL, 0);
  267. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  268. if (err && err != -ENOENT) {
  269. goto fail;
  270. } else if (err == -ENOENT) {
  271. /* direct node does not exists */
  272. if (whence == SEEK_DATA) {
  273. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  274. F2FS_I(inode));
  275. continue;
  276. } else {
  277. goto found;
  278. }
  279. }
  280. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  281. /* find data/hole in dnode block */
  282. for (; dn.ofs_in_node < end_offset;
  283. dn.ofs_in_node++, pgofs++,
  284. data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  285. block_t blkaddr;
  286. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  287. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  288. f2fs_put_dnode(&dn);
  289. goto found;
  290. }
  291. }
  292. f2fs_put_dnode(&dn);
  293. }
  294. if (whence == SEEK_DATA)
  295. goto fail;
  296. found:
  297. if (whence == SEEK_HOLE && data_ofs > isize)
  298. data_ofs = isize;
  299. mutex_unlock(&inode->i_mutex);
  300. return vfs_setpos(file, data_ofs, maxbytes);
  301. fail:
  302. mutex_unlock(&inode->i_mutex);
  303. return -ENXIO;
  304. }
  305. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  306. {
  307. struct inode *inode = file->f_mapping->host;
  308. loff_t maxbytes = inode->i_sb->s_maxbytes;
  309. switch (whence) {
  310. case SEEK_SET:
  311. case SEEK_CUR:
  312. case SEEK_END:
  313. return generic_file_llseek_size(file, offset, whence,
  314. maxbytes, i_size_read(inode));
  315. case SEEK_DATA:
  316. case SEEK_HOLE:
  317. if (offset < 0)
  318. return -ENXIO;
  319. return f2fs_seek_block(file, offset, whence);
  320. }
  321. return -EINVAL;
  322. }
  323. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  324. {
  325. file_accessed(file);
  326. vma->vm_ops = &f2fs_file_vm_ops;
  327. return 0;
  328. }
  329. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  330. {
  331. int nr_free = 0, ofs = dn->ofs_in_node;
  332. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  333. struct f2fs_node *raw_node;
  334. __le32 *addr;
  335. raw_node = F2FS_NODE(dn->node_page);
  336. addr = blkaddr_in_node(raw_node) + ofs;
  337. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  338. block_t blkaddr = le32_to_cpu(*addr);
  339. if (blkaddr == NULL_ADDR)
  340. continue;
  341. update_extent_cache(NULL_ADDR, dn);
  342. invalidate_blocks(sbi, blkaddr);
  343. nr_free++;
  344. }
  345. if (nr_free) {
  346. dec_valid_block_count(sbi, dn->inode, nr_free);
  347. set_page_dirty(dn->node_page);
  348. sync_inode_page(dn);
  349. }
  350. dn->ofs_in_node = ofs;
  351. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  352. dn->ofs_in_node, nr_free);
  353. return nr_free;
  354. }
  355. void truncate_data_blocks(struct dnode_of_data *dn)
  356. {
  357. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  358. }
  359. static void truncate_partial_data_page(struct inode *inode, u64 from)
  360. {
  361. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  362. struct page *page;
  363. if (f2fs_has_inline_data(inode))
  364. return truncate_inline_data(inode, from);
  365. if (!offset)
  366. return;
  367. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  368. if (IS_ERR(page))
  369. return;
  370. lock_page(page);
  371. if (unlikely(!PageUptodate(page) ||
  372. page->mapping != inode->i_mapping))
  373. goto out;
  374. f2fs_wait_on_page_writeback(page, DATA);
  375. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  376. set_page_dirty(page);
  377. out:
  378. f2fs_put_page(page, 1);
  379. }
  380. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  381. {
  382. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  383. unsigned int blocksize = inode->i_sb->s_blocksize;
  384. struct dnode_of_data dn;
  385. pgoff_t free_from;
  386. int count = 0, err = 0;
  387. trace_f2fs_truncate_blocks_enter(inode, from);
  388. if (f2fs_has_inline_data(inode))
  389. goto done;
  390. free_from = (pgoff_t)
  391. ((from + blocksize - 1) >> (sbi->log_blocksize));
  392. if (lock)
  393. f2fs_lock_op(sbi);
  394. set_new_dnode(&dn, inode, NULL, NULL, 0);
  395. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  396. if (err) {
  397. if (err == -ENOENT)
  398. goto free_next;
  399. if (lock)
  400. f2fs_unlock_op(sbi);
  401. trace_f2fs_truncate_blocks_exit(inode, err);
  402. return err;
  403. }
  404. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  405. count -= dn.ofs_in_node;
  406. f2fs_bug_on(sbi, count < 0);
  407. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  408. truncate_data_blocks_range(&dn, count);
  409. free_from += count;
  410. }
  411. f2fs_put_dnode(&dn);
  412. free_next:
  413. err = truncate_inode_blocks(inode, free_from);
  414. if (lock)
  415. f2fs_unlock_op(sbi);
  416. done:
  417. /* lastly zero out the first data page */
  418. truncate_partial_data_page(inode, from);
  419. trace_f2fs_truncate_blocks_exit(inode, err);
  420. return err;
  421. }
  422. void f2fs_truncate(struct inode *inode)
  423. {
  424. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  425. S_ISLNK(inode->i_mode)))
  426. return;
  427. trace_f2fs_truncate(inode);
  428. if (!truncate_blocks(inode, i_size_read(inode), true)) {
  429. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  430. mark_inode_dirty(inode);
  431. }
  432. }
  433. int f2fs_getattr(struct vfsmount *mnt,
  434. struct dentry *dentry, struct kstat *stat)
  435. {
  436. struct inode *inode = dentry->d_inode;
  437. generic_fillattr(inode, stat);
  438. stat->blocks <<= 3;
  439. return 0;
  440. }
  441. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  442. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  443. {
  444. struct f2fs_inode_info *fi = F2FS_I(inode);
  445. unsigned int ia_valid = attr->ia_valid;
  446. if (ia_valid & ATTR_UID)
  447. inode->i_uid = attr->ia_uid;
  448. if (ia_valid & ATTR_GID)
  449. inode->i_gid = attr->ia_gid;
  450. if (ia_valid & ATTR_ATIME)
  451. inode->i_atime = timespec_trunc(attr->ia_atime,
  452. inode->i_sb->s_time_gran);
  453. if (ia_valid & ATTR_MTIME)
  454. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  455. inode->i_sb->s_time_gran);
  456. if (ia_valid & ATTR_CTIME)
  457. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  458. inode->i_sb->s_time_gran);
  459. if (ia_valid & ATTR_MODE) {
  460. umode_t mode = attr->ia_mode;
  461. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  462. mode &= ~S_ISGID;
  463. set_acl_inode(fi, mode);
  464. }
  465. }
  466. #else
  467. #define __setattr_copy setattr_copy
  468. #endif
  469. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  470. {
  471. struct inode *inode = dentry->d_inode;
  472. struct f2fs_inode_info *fi = F2FS_I(inode);
  473. int err;
  474. err = inode_change_ok(inode, attr);
  475. if (err)
  476. return err;
  477. if (attr->ia_valid & ATTR_SIZE) {
  478. err = f2fs_convert_inline_data(inode, attr->ia_size, NULL);
  479. if (err)
  480. return err;
  481. if (attr->ia_size != i_size_read(inode)) {
  482. truncate_setsize(inode, attr->ia_size);
  483. f2fs_truncate(inode);
  484. f2fs_balance_fs(F2FS_I_SB(inode));
  485. } else {
  486. /*
  487. * giving a chance to truncate blocks past EOF which
  488. * are fallocated with FALLOC_FL_KEEP_SIZE.
  489. */
  490. f2fs_truncate(inode);
  491. }
  492. }
  493. __setattr_copy(inode, attr);
  494. if (attr->ia_valid & ATTR_MODE) {
  495. err = posix_acl_chmod(inode, get_inode_mode(inode));
  496. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  497. inode->i_mode = fi->i_acl_mode;
  498. clear_inode_flag(fi, FI_ACL_MODE);
  499. }
  500. }
  501. mark_inode_dirty(inode);
  502. return err;
  503. }
  504. const struct inode_operations f2fs_file_inode_operations = {
  505. .getattr = f2fs_getattr,
  506. .setattr = f2fs_setattr,
  507. .get_acl = f2fs_get_acl,
  508. .set_acl = f2fs_set_acl,
  509. #ifdef CONFIG_F2FS_FS_XATTR
  510. .setxattr = generic_setxattr,
  511. .getxattr = generic_getxattr,
  512. .listxattr = f2fs_listxattr,
  513. .removexattr = generic_removexattr,
  514. #endif
  515. .fiemap = f2fs_fiemap,
  516. };
  517. static void fill_zero(struct inode *inode, pgoff_t index,
  518. loff_t start, loff_t len)
  519. {
  520. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  521. struct page *page;
  522. if (!len)
  523. return;
  524. f2fs_balance_fs(sbi);
  525. f2fs_lock_op(sbi);
  526. page = get_new_data_page(inode, NULL, index, false);
  527. f2fs_unlock_op(sbi);
  528. if (!IS_ERR(page)) {
  529. f2fs_wait_on_page_writeback(page, DATA);
  530. zero_user(page, start, len);
  531. set_page_dirty(page);
  532. f2fs_put_page(page, 1);
  533. }
  534. }
  535. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  536. {
  537. pgoff_t index;
  538. int err;
  539. for (index = pg_start; index < pg_end; index++) {
  540. struct dnode_of_data dn;
  541. set_new_dnode(&dn, inode, NULL, NULL, 0);
  542. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  543. if (err) {
  544. if (err == -ENOENT)
  545. continue;
  546. return err;
  547. }
  548. if (dn.data_blkaddr != NULL_ADDR)
  549. truncate_data_blocks_range(&dn, 1);
  550. f2fs_put_dnode(&dn);
  551. }
  552. return 0;
  553. }
  554. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  555. {
  556. pgoff_t pg_start, pg_end;
  557. loff_t off_start, off_end;
  558. int ret = 0;
  559. if (!S_ISREG(inode->i_mode))
  560. return -EOPNOTSUPP;
  561. /* skip punching hole beyond i_size */
  562. if (offset >= inode->i_size)
  563. return ret;
  564. ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL);
  565. if (ret)
  566. return ret;
  567. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  568. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  569. off_start = offset & (PAGE_CACHE_SIZE - 1);
  570. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  571. if (pg_start == pg_end) {
  572. fill_zero(inode, pg_start, off_start,
  573. off_end - off_start);
  574. } else {
  575. if (off_start)
  576. fill_zero(inode, pg_start++, off_start,
  577. PAGE_CACHE_SIZE - off_start);
  578. if (off_end)
  579. fill_zero(inode, pg_end, 0, off_end);
  580. if (pg_start < pg_end) {
  581. struct address_space *mapping = inode->i_mapping;
  582. loff_t blk_start, blk_end;
  583. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  584. f2fs_balance_fs(sbi);
  585. blk_start = pg_start << PAGE_CACHE_SHIFT;
  586. blk_end = pg_end << PAGE_CACHE_SHIFT;
  587. truncate_inode_pages_range(mapping, blk_start,
  588. blk_end - 1);
  589. f2fs_lock_op(sbi);
  590. ret = truncate_hole(inode, pg_start, pg_end);
  591. f2fs_unlock_op(sbi);
  592. }
  593. }
  594. return ret;
  595. }
  596. static int expand_inode_data(struct inode *inode, loff_t offset,
  597. loff_t len, int mode)
  598. {
  599. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  600. pgoff_t index, pg_start, pg_end;
  601. loff_t new_size = i_size_read(inode);
  602. loff_t off_start, off_end;
  603. int ret = 0;
  604. f2fs_balance_fs(sbi);
  605. ret = inode_newsize_ok(inode, (len + offset));
  606. if (ret)
  607. return ret;
  608. ret = f2fs_convert_inline_data(inode, offset + len, NULL);
  609. if (ret)
  610. return ret;
  611. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  612. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  613. off_start = offset & (PAGE_CACHE_SIZE - 1);
  614. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  615. f2fs_lock_op(sbi);
  616. for (index = pg_start; index <= pg_end; index++) {
  617. struct dnode_of_data dn;
  618. if (index == pg_end && !off_end)
  619. goto noalloc;
  620. set_new_dnode(&dn, inode, NULL, NULL, 0);
  621. ret = f2fs_reserve_block(&dn, index);
  622. if (ret)
  623. break;
  624. noalloc:
  625. if (pg_start == pg_end)
  626. new_size = offset + len;
  627. else if (index == pg_start && off_start)
  628. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  629. else if (index == pg_end)
  630. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  631. else
  632. new_size += PAGE_CACHE_SIZE;
  633. }
  634. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  635. i_size_read(inode) < new_size) {
  636. i_size_write(inode, new_size);
  637. mark_inode_dirty(inode);
  638. update_inode_page(inode);
  639. }
  640. f2fs_unlock_op(sbi);
  641. return ret;
  642. }
  643. static long f2fs_fallocate(struct file *file, int mode,
  644. loff_t offset, loff_t len)
  645. {
  646. struct inode *inode = file_inode(file);
  647. long ret;
  648. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  649. return -EOPNOTSUPP;
  650. mutex_lock(&inode->i_mutex);
  651. if (mode & FALLOC_FL_PUNCH_HOLE)
  652. ret = punch_hole(inode, offset, len);
  653. else
  654. ret = expand_inode_data(inode, offset, len, mode);
  655. if (!ret) {
  656. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  657. mark_inode_dirty(inode);
  658. }
  659. mutex_unlock(&inode->i_mutex);
  660. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  661. return ret;
  662. }
  663. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  664. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  665. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  666. {
  667. if (S_ISDIR(mode))
  668. return flags;
  669. else if (S_ISREG(mode))
  670. return flags & F2FS_REG_FLMASK;
  671. else
  672. return flags & F2FS_OTHER_FLMASK;
  673. }
  674. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  675. {
  676. struct inode *inode = file_inode(filp);
  677. struct f2fs_inode_info *fi = F2FS_I(inode);
  678. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  679. return put_user(flags, (int __user *)arg);
  680. }
  681. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  682. {
  683. struct inode *inode = file_inode(filp);
  684. struct f2fs_inode_info *fi = F2FS_I(inode);
  685. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  686. unsigned int oldflags;
  687. int ret;
  688. ret = mnt_want_write_file(filp);
  689. if (ret)
  690. return ret;
  691. if (!inode_owner_or_capable(inode)) {
  692. ret = -EACCES;
  693. goto out;
  694. }
  695. if (get_user(flags, (int __user *)arg)) {
  696. ret = -EFAULT;
  697. goto out;
  698. }
  699. flags = f2fs_mask_flags(inode->i_mode, flags);
  700. mutex_lock(&inode->i_mutex);
  701. oldflags = fi->i_flags;
  702. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  703. if (!capable(CAP_LINUX_IMMUTABLE)) {
  704. mutex_unlock(&inode->i_mutex);
  705. ret = -EPERM;
  706. goto out;
  707. }
  708. }
  709. flags = flags & FS_FL_USER_MODIFIABLE;
  710. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  711. fi->i_flags = flags;
  712. mutex_unlock(&inode->i_mutex);
  713. f2fs_set_inode_flags(inode);
  714. inode->i_ctime = CURRENT_TIME;
  715. mark_inode_dirty(inode);
  716. out:
  717. mnt_drop_write_file(filp);
  718. return ret;
  719. }
  720. static int f2fs_ioc_start_atomic_write(struct file *filp)
  721. {
  722. struct inode *inode = file_inode(filp);
  723. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  724. if (!inode_owner_or_capable(inode))
  725. return -EACCES;
  726. f2fs_balance_fs(sbi);
  727. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  728. return f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL);
  729. }
  730. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  731. {
  732. struct inode *inode = file_inode(filp);
  733. int ret;
  734. if (!inode_owner_or_capable(inode))
  735. return -EACCES;
  736. if (f2fs_is_volatile_file(inode))
  737. return 0;
  738. ret = mnt_want_write_file(filp);
  739. if (ret)
  740. return ret;
  741. if (f2fs_is_atomic_file(inode))
  742. commit_inmem_pages(inode, false);
  743. ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
  744. mnt_drop_write_file(filp);
  745. return ret;
  746. }
  747. static int f2fs_ioc_start_volatile_write(struct file *filp)
  748. {
  749. struct inode *inode = file_inode(filp);
  750. if (!inode_owner_or_capable(inode))
  751. return -EACCES;
  752. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  753. return 0;
  754. }
  755. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  756. {
  757. struct inode *inode = file_inode(filp);
  758. struct super_block *sb = inode->i_sb;
  759. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  760. struct fstrim_range range;
  761. int ret;
  762. if (!capable(CAP_SYS_ADMIN))
  763. return -EPERM;
  764. if (!blk_queue_discard(q))
  765. return -EOPNOTSUPP;
  766. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  767. sizeof(range)))
  768. return -EFAULT;
  769. range.minlen = max((unsigned int)range.minlen,
  770. q->limits.discard_granularity);
  771. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  772. if (ret < 0)
  773. return ret;
  774. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  775. sizeof(range)))
  776. return -EFAULT;
  777. return 0;
  778. }
  779. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  780. {
  781. switch (cmd) {
  782. case F2FS_IOC_GETFLAGS:
  783. return f2fs_ioc_getflags(filp, arg);
  784. case F2FS_IOC_SETFLAGS:
  785. return f2fs_ioc_setflags(filp, arg);
  786. case F2FS_IOC_START_ATOMIC_WRITE:
  787. return f2fs_ioc_start_atomic_write(filp);
  788. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  789. return f2fs_ioc_commit_atomic_write(filp);
  790. case F2FS_IOC_START_VOLATILE_WRITE:
  791. return f2fs_ioc_start_volatile_write(filp);
  792. case FITRIM:
  793. return f2fs_ioc_fitrim(filp, arg);
  794. default:
  795. return -ENOTTY;
  796. }
  797. }
  798. #ifdef CONFIG_COMPAT
  799. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  800. {
  801. switch (cmd) {
  802. case F2FS_IOC32_GETFLAGS:
  803. cmd = F2FS_IOC_GETFLAGS;
  804. break;
  805. case F2FS_IOC32_SETFLAGS:
  806. cmd = F2FS_IOC_SETFLAGS;
  807. break;
  808. default:
  809. return -ENOIOCTLCMD;
  810. }
  811. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  812. }
  813. #endif
  814. const struct file_operations f2fs_file_operations = {
  815. .llseek = f2fs_llseek,
  816. .read = new_sync_read,
  817. .write = new_sync_write,
  818. .read_iter = generic_file_read_iter,
  819. .write_iter = generic_file_write_iter,
  820. .open = generic_file_open,
  821. .mmap = f2fs_file_mmap,
  822. .fsync = f2fs_sync_file,
  823. .fallocate = f2fs_fallocate,
  824. .unlocked_ioctl = f2fs_ioctl,
  825. #ifdef CONFIG_COMPAT
  826. .compat_ioctl = f2fs_compat_ioctl,
  827. #endif
  828. .splice_read = generic_file_splice_read,
  829. .splice_write = iter_file_splice_write,
  830. };