dir.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. #include "xattr.h"
  17. static unsigned long dir_blocks(struct inode *inode)
  18. {
  19. return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
  20. >> PAGE_CACHE_SHIFT;
  21. }
  22. static unsigned int dir_buckets(unsigned int level, int dir_level)
  23. {
  24. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  25. return 1 << (level + dir_level);
  26. else
  27. return MAX_DIR_BUCKETS;
  28. }
  29. static unsigned int bucket_blocks(unsigned int level)
  30. {
  31. if (level < MAX_DIR_HASH_DEPTH / 2)
  32. return 2;
  33. else
  34. return 4;
  35. }
  36. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  37. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  38. [F2FS_FT_REG_FILE] = DT_REG,
  39. [F2FS_FT_DIR] = DT_DIR,
  40. [F2FS_FT_CHRDEV] = DT_CHR,
  41. [F2FS_FT_BLKDEV] = DT_BLK,
  42. [F2FS_FT_FIFO] = DT_FIFO,
  43. [F2FS_FT_SOCK] = DT_SOCK,
  44. [F2FS_FT_SYMLINK] = DT_LNK,
  45. };
  46. #define S_SHIFT 12
  47. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  48. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  49. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  50. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  51. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  52. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  53. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  54. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  55. };
  56. static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode)
  57. {
  58. umode_t mode = inode->i_mode;
  59. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  60. }
  61. static unsigned long dir_block_index(unsigned int level,
  62. int dir_level, unsigned int idx)
  63. {
  64. unsigned long i;
  65. unsigned long bidx = 0;
  66. for (i = 0; i < level; i++)
  67. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  68. bidx += idx * bucket_blocks(level);
  69. return bidx;
  70. }
  71. static bool early_match_name(size_t namelen, f2fs_hash_t namehash,
  72. struct f2fs_dir_entry *de)
  73. {
  74. if (le16_to_cpu(de->name_len) != namelen)
  75. return false;
  76. if (de->hash_code != namehash)
  77. return false;
  78. return true;
  79. }
  80. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  81. struct qstr *name, int *max_slots,
  82. f2fs_hash_t namehash, struct page **res_page)
  83. {
  84. struct f2fs_dir_entry *de;
  85. unsigned long bit_pos = 0;
  86. struct f2fs_dentry_block *dentry_blk = kmap(dentry_page);
  87. const void *dentry_bits = &dentry_blk->dentry_bitmap;
  88. int max_len = 0;
  89. while (bit_pos < NR_DENTRY_IN_BLOCK) {
  90. if (!test_bit_le(bit_pos, dentry_bits)) {
  91. if (bit_pos == 0)
  92. max_len = 1;
  93. else if (!test_bit_le(bit_pos - 1, dentry_bits))
  94. max_len++;
  95. bit_pos++;
  96. continue;
  97. }
  98. de = &dentry_blk->dentry[bit_pos];
  99. if (early_match_name(name->len, namehash, de)) {
  100. if (!memcmp(dentry_blk->filename[bit_pos],
  101. name->name,
  102. name->len)) {
  103. *res_page = dentry_page;
  104. goto found;
  105. }
  106. }
  107. if (max_len > *max_slots) {
  108. *max_slots = max_len;
  109. max_len = 0;
  110. }
  111. /*
  112. * For the most part, it should be a bug when name_len is zero.
  113. * We stop here for figuring out where the bugs has occurred.
  114. */
  115. f2fs_bug_on(F2FS_P_SB(dentry_page), !de->name_len);
  116. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  117. }
  118. de = NULL;
  119. kunmap(dentry_page);
  120. found:
  121. if (max_len > *max_slots)
  122. *max_slots = max_len;
  123. return de;
  124. }
  125. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  126. unsigned int level, struct qstr *name,
  127. f2fs_hash_t namehash, struct page **res_page)
  128. {
  129. int s = GET_DENTRY_SLOTS(name->len);
  130. unsigned int nbucket, nblock;
  131. unsigned int bidx, end_block;
  132. struct page *dentry_page;
  133. struct f2fs_dir_entry *de = NULL;
  134. bool room = false;
  135. int max_slots = 0;
  136. f2fs_bug_on(F2FS_I_SB(dir), level > MAX_DIR_HASH_DEPTH);
  137. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  138. nblock = bucket_blocks(level);
  139. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  140. le32_to_cpu(namehash) % nbucket);
  141. end_block = bidx + nblock;
  142. for (; bidx < end_block; bidx++) {
  143. /* no need to allocate new dentry pages to all the indices */
  144. dentry_page = find_data_page(dir, bidx, true);
  145. if (IS_ERR(dentry_page)) {
  146. room = true;
  147. continue;
  148. }
  149. de = find_in_block(dentry_page, name, &max_slots,
  150. namehash, res_page);
  151. if (de)
  152. break;
  153. if (max_slots >= s)
  154. room = true;
  155. f2fs_put_page(dentry_page, 0);
  156. }
  157. if (!de && room && F2FS_I(dir)->chash != namehash) {
  158. F2FS_I(dir)->chash = namehash;
  159. F2FS_I(dir)->clevel = level;
  160. }
  161. return de;
  162. }
  163. /*
  164. * Find an entry in the specified directory with the wanted name.
  165. * It returns the page where the entry was found (as a parameter - res_page),
  166. * and the entry itself. Page is returned mapped and unlocked.
  167. * Entry is guaranteed to be valid.
  168. */
  169. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  170. struct qstr *child, struct page **res_page)
  171. {
  172. unsigned long npages = dir_blocks(dir);
  173. struct f2fs_dir_entry *de = NULL;
  174. f2fs_hash_t name_hash;
  175. unsigned int max_depth;
  176. unsigned int level;
  177. if (npages == 0)
  178. return NULL;
  179. *res_page = NULL;
  180. name_hash = f2fs_dentry_hash(child);
  181. max_depth = F2FS_I(dir)->i_current_depth;
  182. for (level = 0; level < max_depth; level++) {
  183. de = find_in_level(dir, level, child, name_hash, res_page);
  184. if (de)
  185. break;
  186. }
  187. if (!de && F2FS_I(dir)->chash != name_hash) {
  188. F2FS_I(dir)->chash = name_hash;
  189. F2FS_I(dir)->clevel = level - 1;
  190. }
  191. return de;
  192. }
  193. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  194. {
  195. struct page *page;
  196. struct f2fs_dir_entry *de;
  197. struct f2fs_dentry_block *dentry_blk;
  198. page = get_lock_data_page(dir, 0);
  199. if (IS_ERR(page))
  200. return NULL;
  201. dentry_blk = kmap(page);
  202. de = &dentry_blk->dentry[1];
  203. *p = page;
  204. unlock_page(page);
  205. return de;
  206. }
  207. ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr)
  208. {
  209. ino_t res = 0;
  210. struct f2fs_dir_entry *de;
  211. struct page *page;
  212. de = f2fs_find_entry(dir, qstr, &page);
  213. if (de) {
  214. res = le32_to_cpu(de->ino);
  215. kunmap(page);
  216. f2fs_put_page(page, 0);
  217. }
  218. return res;
  219. }
  220. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  221. struct page *page, struct inode *inode)
  222. {
  223. lock_page(page);
  224. f2fs_wait_on_page_writeback(page, DATA);
  225. de->ino = cpu_to_le32(inode->i_ino);
  226. set_de_type(de, inode);
  227. kunmap(page);
  228. set_page_dirty(page);
  229. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  230. mark_inode_dirty(dir);
  231. f2fs_put_page(page, 1);
  232. }
  233. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  234. {
  235. struct f2fs_inode *ri;
  236. f2fs_wait_on_page_writeback(ipage, NODE);
  237. /* copy name info. to this inode page */
  238. ri = F2FS_INODE(ipage);
  239. ri->i_namelen = cpu_to_le32(name->len);
  240. memcpy(ri->i_name, name->name, name->len);
  241. set_page_dirty(ipage);
  242. }
  243. int update_dent_inode(struct inode *inode, const struct qstr *name)
  244. {
  245. struct page *page;
  246. page = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  247. if (IS_ERR(page))
  248. return PTR_ERR(page);
  249. init_dent_inode(name, page);
  250. f2fs_put_page(page, 1);
  251. return 0;
  252. }
  253. static int make_empty_dir(struct inode *inode,
  254. struct inode *parent, struct page *page)
  255. {
  256. struct page *dentry_page;
  257. struct f2fs_dentry_block *dentry_blk;
  258. struct f2fs_dir_entry *de;
  259. dentry_page = get_new_data_page(inode, page, 0, true);
  260. if (IS_ERR(dentry_page))
  261. return PTR_ERR(dentry_page);
  262. dentry_blk = kmap_atomic(dentry_page);
  263. de = &dentry_blk->dentry[0];
  264. de->name_len = cpu_to_le16(1);
  265. de->hash_code = 0;
  266. de->ino = cpu_to_le32(inode->i_ino);
  267. memcpy(dentry_blk->filename[0], ".", 1);
  268. set_de_type(de, inode);
  269. de = &dentry_blk->dentry[1];
  270. de->hash_code = 0;
  271. de->name_len = cpu_to_le16(2);
  272. de->ino = cpu_to_le32(parent->i_ino);
  273. memcpy(dentry_blk->filename[1], "..", 2);
  274. set_de_type(de, inode);
  275. test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
  276. test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
  277. kunmap_atomic(dentry_blk);
  278. set_page_dirty(dentry_page);
  279. f2fs_put_page(dentry_page, 1);
  280. return 0;
  281. }
  282. static struct page *init_inode_metadata(struct inode *inode,
  283. struct inode *dir, const struct qstr *name)
  284. {
  285. struct page *page;
  286. int err;
  287. if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  288. page = new_inode_page(inode);
  289. if (IS_ERR(page))
  290. return page;
  291. if (S_ISDIR(inode->i_mode)) {
  292. err = make_empty_dir(inode, dir, page);
  293. if (err)
  294. goto error;
  295. }
  296. err = f2fs_init_acl(inode, dir, page);
  297. if (err)
  298. goto put_error;
  299. err = f2fs_init_security(inode, dir, name, page);
  300. if (err)
  301. goto put_error;
  302. } else {
  303. page = get_node_page(F2FS_I_SB(dir), inode->i_ino);
  304. if (IS_ERR(page))
  305. return page;
  306. set_cold_node(inode, page);
  307. }
  308. if (name)
  309. init_dent_inode(name, page);
  310. /*
  311. * This file should be checkpointed during fsync.
  312. * We lost i_pino from now on.
  313. */
  314. if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) {
  315. file_lost_pino(inode);
  316. /*
  317. * If link the tmpfile to alias through linkat path,
  318. * we should remove this inode from orphan list.
  319. */
  320. if (inode->i_nlink == 0)
  321. remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  322. inc_nlink(inode);
  323. }
  324. return page;
  325. put_error:
  326. f2fs_put_page(page, 1);
  327. error:
  328. /* once the failed inode becomes a bad inode, i_mode is S_IFREG */
  329. truncate_inode_pages(&inode->i_data, 0);
  330. truncate_blocks(inode, 0, false);
  331. remove_dirty_dir_inode(inode);
  332. remove_inode_page(inode);
  333. return ERR_PTR(err);
  334. }
  335. static void update_parent_metadata(struct inode *dir, struct inode *inode,
  336. unsigned int current_depth)
  337. {
  338. if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  339. if (S_ISDIR(inode->i_mode)) {
  340. inc_nlink(dir);
  341. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  342. }
  343. clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
  344. }
  345. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  346. mark_inode_dirty(dir);
  347. if (F2FS_I(dir)->i_current_depth != current_depth) {
  348. F2FS_I(dir)->i_current_depth = current_depth;
  349. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  350. }
  351. if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK))
  352. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  353. }
  354. static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots)
  355. {
  356. int bit_start = 0;
  357. int zero_start, zero_end;
  358. next:
  359. zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap,
  360. NR_DENTRY_IN_BLOCK,
  361. bit_start);
  362. if (zero_start >= NR_DENTRY_IN_BLOCK)
  363. return NR_DENTRY_IN_BLOCK;
  364. zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap,
  365. NR_DENTRY_IN_BLOCK,
  366. zero_start);
  367. if (zero_end - zero_start >= slots)
  368. return zero_start;
  369. bit_start = zero_end + 1;
  370. if (zero_end + 1 >= NR_DENTRY_IN_BLOCK)
  371. return NR_DENTRY_IN_BLOCK;
  372. goto next;
  373. }
  374. /*
  375. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  376. * f2fs_unlock_op().
  377. */
  378. int __f2fs_add_link(struct inode *dir, const struct qstr *name,
  379. struct inode *inode)
  380. {
  381. unsigned int bit_pos;
  382. unsigned int level;
  383. unsigned int current_depth;
  384. unsigned long bidx, block;
  385. f2fs_hash_t dentry_hash;
  386. struct f2fs_dir_entry *de;
  387. unsigned int nbucket, nblock;
  388. size_t namelen = name->len;
  389. struct page *dentry_page = NULL;
  390. struct f2fs_dentry_block *dentry_blk = NULL;
  391. int slots = GET_DENTRY_SLOTS(namelen);
  392. struct page *page;
  393. int err = 0;
  394. int i;
  395. dentry_hash = f2fs_dentry_hash(name);
  396. level = 0;
  397. current_depth = F2FS_I(dir)->i_current_depth;
  398. if (F2FS_I(dir)->chash == dentry_hash) {
  399. level = F2FS_I(dir)->clevel;
  400. F2FS_I(dir)->chash = 0;
  401. }
  402. start:
  403. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  404. return -ENOSPC;
  405. /* Increase the depth, if required */
  406. if (level == current_depth)
  407. ++current_depth;
  408. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  409. nblock = bucket_blocks(level);
  410. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  411. (le32_to_cpu(dentry_hash) % nbucket));
  412. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  413. dentry_page = get_new_data_page(dir, NULL, block, true);
  414. if (IS_ERR(dentry_page))
  415. return PTR_ERR(dentry_page);
  416. dentry_blk = kmap(dentry_page);
  417. bit_pos = room_for_filename(dentry_blk, slots);
  418. if (bit_pos < NR_DENTRY_IN_BLOCK)
  419. goto add_dentry;
  420. kunmap(dentry_page);
  421. f2fs_put_page(dentry_page, 1);
  422. }
  423. /* Move to next level to find the empty slot for new dentry */
  424. ++level;
  425. goto start;
  426. add_dentry:
  427. f2fs_wait_on_page_writeback(dentry_page, DATA);
  428. down_write(&F2FS_I(inode)->i_sem);
  429. page = init_inode_metadata(inode, dir, name);
  430. if (IS_ERR(page)) {
  431. err = PTR_ERR(page);
  432. goto fail;
  433. }
  434. de = &dentry_blk->dentry[bit_pos];
  435. de->hash_code = dentry_hash;
  436. de->name_len = cpu_to_le16(namelen);
  437. memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
  438. de->ino = cpu_to_le32(inode->i_ino);
  439. set_de_type(de, inode);
  440. for (i = 0; i < slots; i++)
  441. test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  442. set_page_dirty(dentry_page);
  443. /* we don't need to mark_inode_dirty now */
  444. F2FS_I(inode)->i_pino = dir->i_ino;
  445. update_inode(inode, page);
  446. f2fs_put_page(page, 1);
  447. update_parent_metadata(dir, inode, current_depth);
  448. fail:
  449. up_write(&F2FS_I(inode)->i_sem);
  450. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  451. update_inode_page(dir);
  452. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  453. }
  454. kunmap(dentry_page);
  455. f2fs_put_page(dentry_page, 1);
  456. return err;
  457. }
  458. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  459. {
  460. struct page *page;
  461. int err = 0;
  462. down_write(&F2FS_I(inode)->i_sem);
  463. page = init_inode_metadata(inode, dir, NULL);
  464. if (IS_ERR(page)) {
  465. err = PTR_ERR(page);
  466. goto fail;
  467. }
  468. /* we don't need to mark_inode_dirty now */
  469. update_inode(inode, page);
  470. f2fs_put_page(page, 1);
  471. clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
  472. fail:
  473. up_write(&F2FS_I(inode)->i_sem);
  474. return err;
  475. }
  476. /*
  477. * It only removes the dentry from the dentry page, corresponding name
  478. * entry in name page does not need to be touched during deletion.
  479. */
  480. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  481. struct inode *inode)
  482. {
  483. struct f2fs_dentry_block *dentry_blk;
  484. unsigned int bit_pos;
  485. struct inode *dir = page->mapping->host;
  486. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  487. int i;
  488. lock_page(page);
  489. f2fs_wait_on_page_writeback(page, DATA);
  490. dentry_blk = page_address(page);
  491. bit_pos = dentry - dentry_blk->dentry;
  492. for (i = 0; i < slots; i++)
  493. test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  494. /* Let's check and deallocate this dentry page */
  495. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  496. NR_DENTRY_IN_BLOCK,
  497. 0);
  498. kunmap(page); /* kunmap - pair of f2fs_find_entry */
  499. set_page_dirty(page);
  500. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  501. if (inode) {
  502. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  503. down_write(&F2FS_I(inode)->i_sem);
  504. if (S_ISDIR(inode->i_mode)) {
  505. drop_nlink(dir);
  506. update_inode_page(dir);
  507. }
  508. inode->i_ctime = CURRENT_TIME;
  509. drop_nlink(inode);
  510. if (S_ISDIR(inode->i_mode)) {
  511. drop_nlink(inode);
  512. i_size_write(inode, 0);
  513. }
  514. up_write(&F2FS_I(inode)->i_sem);
  515. update_inode_page(inode);
  516. if (inode->i_nlink == 0)
  517. add_orphan_inode(sbi, inode->i_ino);
  518. else
  519. release_orphan_inode(sbi);
  520. }
  521. if (bit_pos == NR_DENTRY_IN_BLOCK) {
  522. truncate_hole(dir, page->index, page->index + 1);
  523. clear_page_dirty_for_io(page);
  524. ClearPageUptodate(page);
  525. inode_dec_dirty_pages(dir);
  526. }
  527. f2fs_put_page(page, 1);
  528. }
  529. bool f2fs_empty_dir(struct inode *dir)
  530. {
  531. unsigned long bidx;
  532. struct page *dentry_page;
  533. unsigned int bit_pos;
  534. struct f2fs_dentry_block *dentry_blk;
  535. unsigned long nblock = dir_blocks(dir);
  536. for (bidx = 0; bidx < nblock; bidx++) {
  537. dentry_page = get_lock_data_page(dir, bidx);
  538. if (IS_ERR(dentry_page)) {
  539. if (PTR_ERR(dentry_page) == -ENOENT)
  540. continue;
  541. else
  542. return false;
  543. }
  544. dentry_blk = kmap_atomic(dentry_page);
  545. if (bidx == 0)
  546. bit_pos = 2;
  547. else
  548. bit_pos = 0;
  549. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  550. NR_DENTRY_IN_BLOCK,
  551. bit_pos);
  552. kunmap_atomic(dentry_blk);
  553. f2fs_put_page(dentry_page, 1);
  554. if (bit_pos < NR_DENTRY_IN_BLOCK)
  555. return false;
  556. }
  557. return true;
  558. }
  559. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  560. {
  561. struct inode *inode = file_inode(file);
  562. unsigned long npages = dir_blocks(inode);
  563. unsigned int bit_pos = 0;
  564. struct f2fs_dentry_block *dentry_blk = NULL;
  565. struct f2fs_dir_entry *de = NULL;
  566. struct page *dentry_page = NULL;
  567. struct file_ra_state *ra = &file->f_ra;
  568. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  569. unsigned char d_type = DT_UNKNOWN;
  570. bit_pos = ((unsigned long)ctx->pos % NR_DENTRY_IN_BLOCK);
  571. /* readahead for multi pages of dir */
  572. if (npages - n > 1 && !ra_has_index(ra, n))
  573. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  574. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  575. for (; n < npages; n++) {
  576. dentry_page = get_lock_data_page(inode, n);
  577. if (IS_ERR(dentry_page))
  578. continue;
  579. dentry_blk = kmap(dentry_page);
  580. while (bit_pos < NR_DENTRY_IN_BLOCK) {
  581. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  582. NR_DENTRY_IN_BLOCK,
  583. bit_pos);
  584. if (bit_pos >= NR_DENTRY_IN_BLOCK)
  585. break;
  586. de = &dentry_blk->dentry[bit_pos];
  587. if (de->file_type < F2FS_FT_MAX)
  588. d_type = f2fs_filetype_table[de->file_type];
  589. else
  590. d_type = DT_UNKNOWN;
  591. if (!dir_emit(ctx,
  592. dentry_blk->filename[bit_pos],
  593. le16_to_cpu(de->name_len),
  594. le32_to_cpu(de->ino), d_type))
  595. goto stop;
  596. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  597. ctx->pos = n * NR_DENTRY_IN_BLOCK + bit_pos;
  598. }
  599. bit_pos = 0;
  600. ctx->pos = (n + 1) * NR_DENTRY_IN_BLOCK;
  601. kunmap(dentry_page);
  602. f2fs_put_page(dentry_page, 1);
  603. dentry_page = NULL;
  604. }
  605. stop:
  606. if (dentry_page && !IS_ERR(dentry_page)) {
  607. kunmap(dentry_page);
  608. f2fs_put_page(dentry_page, 1);
  609. }
  610. return 0;
  611. }
  612. const struct file_operations f2fs_dir_operations = {
  613. .llseek = generic_file_llseek,
  614. .read = generic_read_dir,
  615. .iterate = f2fs_readdir,
  616. .fsync = f2fs_sync_file,
  617. .unlocked_ioctl = f2fs_ioctl,
  618. };