file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. /*
  2. * linux/fs/ext4/file.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/file.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * ext4 fs regular file handling primitives
  16. *
  17. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  18. * (jj@sunsite.ms.mff.cuni.cz)
  19. */
  20. #include <linux/time.h>
  21. #include <linux/fs.h>
  22. #include <linux/jbd2.h>
  23. #include <linux/mount.h>
  24. #include <linux/path.h>
  25. #include <linux/aio.h>
  26. #include <linux/quotaops.h>
  27. #include <linux/pagevec.h>
  28. #include "ext4.h"
  29. #include "ext4_jbd2.h"
  30. #include "xattr.h"
  31. #include "acl.h"
  32. /*
  33. * Called when an inode is released. Note that this is different
  34. * from ext4_file_open: open gets called at every open, but release
  35. * gets called only when /all/ the files are closed.
  36. */
  37. static int ext4_release_file(struct inode *inode, struct file *filp)
  38. {
  39. if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
  40. ext4_alloc_da_blocks(inode);
  41. ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  42. }
  43. /* if we are the last writer on the inode, drop the block reservation */
  44. if ((filp->f_mode & FMODE_WRITE) &&
  45. (atomic_read(&inode->i_writecount) == 1) &&
  46. !EXT4_I(inode)->i_reserved_data_blocks)
  47. {
  48. down_write(&EXT4_I(inode)->i_data_sem);
  49. ext4_discard_preallocations(inode);
  50. up_write(&EXT4_I(inode)->i_data_sem);
  51. }
  52. if (is_dx(inode) && filp->private_data)
  53. ext4_htree_free_dir_info(filp->private_data);
  54. return 0;
  55. }
  56. static void ext4_unwritten_wait(struct inode *inode)
  57. {
  58. wait_queue_head_t *wq = ext4_ioend_wq(inode);
  59. wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
  60. }
  61. /*
  62. * This tests whether the IO in question is block-aligned or not.
  63. * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
  64. * are converted to written only after the IO is complete. Until they are
  65. * mapped, these blocks appear as holes, so dio_zero_block() will assume that
  66. * it needs to zero out portions of the start and/or end block. If 2 AIO
  67. * threads are at work on the same unwritten block, they must be synchronized
  68. * or one thread will zero the other's data, causing corruption.
  69. */
  70. static int
  71. ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
  72. {
  73. struct super_block *sb = inode->i_sb;
  74. int blockmask = sb->s_blocksize - 1;
  75. if (pos >= i_size_read(inode))
  76. return 0;
  77. if ((pos | iov_iter_alignment(from)) & blockmask)
  78. return 1;
  79. return 0;
  80. }
  81. static ssize_t
  82. ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  83. {
  84. struct file *file = iocb->ki_filp;
  85. struct inode *inode = file_inode(iocb->ki_filp);
  86. struct mutex *aio_mutex = NULL;
  87. struct blk_plug plug;
  88. int o_direct = file->f_flags & O_DIRECT;
  89. int overwrite = 0;
  90. size_t length = iov_iter_count(from);
  91. ssize_t ret;
  92. loff_t pos = iocb->ki_pos;
  93. /*
  94. * Unaligned direct AIO must be serialized; see comment above
  95. * In the case of O_APPEND, assume that we must always serialize
  96. */
  97. if (o_direct &&
  98. ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
  99. !is_sync_kiocb(iocb) &&
  100. (file->f_flags & O_APPEND ||
  101. ext4_unaligned_aio(inode, from, pos))) {
  102. aio_mutex = ext4_aio_mutex(inode);
  103. mutex_lock(aio_mutex);
  104. ext4_unwritten_wait(inode);
  105. }
  106. mutex_lock(&inode->i_mutex);
  107. if (file->f_flags & O_APPEND)
  108. iocb->ki_pos = pos = i_size_read(inode);
  109. /*
  110. * If we have encountered a bitmap-format file, the size limit
  111. * is smaller than s_maxbytes, which is for extent-mapped files.
  112. */
  113. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
  114. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  115. if ((pos > sbi->s_bitmap_maxbytes) ||
  116. (pos == sbi->s_bitmap_maxbytes && length > 0)) {
  117. mutex_unlock(&inode->i_mutex);
  118. ret = -EFBIG;
  119. goto errout;
  120. }
  121. if (pos + length > sbi->s_bitmap_maxbytes)
  122. iov_iter_truncate(from, sbi->s_bitmap_maxbytes - pos);
  123. }
  124. if (o_direct) {
  125. blk_start_plug(&plug);
  126. iocb->private = &overwrite;
  127. /* check whether we do a DIO overwrite or not */
  128. if (ext4_should_dioread_nolock(inode) && !aio_mutex &&
  129. !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
  130. struct ext4_map_blocks map;
  131. unsigned int blkbits = inode->i_blkbits;
  132. int err, len;
  133. map.m_lblk = pos >> blkbits;
  134. map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
  135. - map.m_lblk;
  136. len = map.m_len;
  137. err = ext4_map_blocks(NULL, inode, &map, 0);
  138. /*
  139. * 'err==len' means that all of blocks has
  140. * been preallocated no matter they are
  141. * initialized or not. For excluding
  142. * unwritten extents, we need to check
  143. * m_flags. There are two conditions that
  144. * indicate for initialized extents. 1) If we
  145. * hit extent cache, EXT4_MAP_MAPPED flag is
  146. * returned; 2) If we do a real lookup,
  147. * non-flags are returned. So we should check
  148. * these two conditions.
  149. */
  150. if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
  151. overwrite = 1;
  152. }
  153. }
  154. ret = __generic_file_write_iter(iocb, from);
  155. mutex_unlock(&inode->i_mutex);
  156. if (ret > 0) {
  157. ssize_t err;
  158. err = generic_write_sync(file, iocb->ki_pos - ret, ret);
  159. if (err < 0)
  160. ret = err;
  161. }
  162. if (o_direct)
  163. blk_finish_plug(&plug);
  164. errout:
  165. if (aio_mutex)
  166. mutex_unlock(aio_mutex);
  167. return ret;
  168. }
  169. static const struct vm_operations_struct ext4_file_vm_ops = {
  170. .fault = filemap_fault,
  171. .map_pages = filemap_map_pages,
  172. .page_mkwrite = ext4_page_mkwrite,
  173. .remap_pages = generic_file_remap_pages,
  174. };
  175. static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
  176. {
  177. file_accessed(file);
  178. vma->vm_ops = &ext4_file_vm_ops;
  179. return 0;
  180. }
  181. static int ext4_file_open(struct inode * inode, struct file * filp)
  182. {
  183. struct super_block *sb = inode->i_sb;
  184. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  185. struct vfsmount *mnt = filp->f_path.mnt;
  186. struct path path;
  187. char buf[64], *cp;
  188. if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
  189. !(sb->s_flags & MS_RDONLY))) {
  190. sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
  191. /*
  192. * Sample where the filesystem has been mounted and
  193. * store it in the superblock for sysadmin convenience
  194. * when trying to sort through large numbers of block
  195. * devices or filesystem images.
  196. */
  197. memset(buf, 0, sizeof(buf));
  198. path.mnt = mnt;
  199. path.dentry = mnt->mnt_root;
  200. cp = d_path(&path, buf, sizeof(buf));
  201. if (!IS_ERR(cp)) {
  202. handle_t *handle;
  203. int err;
  204. handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
  205. if (IS_ERR(handle))
  206. return PTR_ERR(handle);
  207. BUFFER_TRACE(sbi->s_sbh, "get_write_access");
  208. err = ext4_journal_get_write_access(handle, sbi->s_sbh);
  209. if (err) {
  210. ext4_journal_stop(handle);
  211. return err;
  212. }
  213. strlcpy(sbi->s_es->s_last_mounted, cp,
  214. sizeof(sbi->s_es->s_last_mounted));
  215. ext4_handle_dirty_super(handle, sb);
  216. ext4_journal_stop(handle);
  217. }
  218. }
  219. /*
  220. * Set up the jbd2_inode if we are opening the inode for
  221. * writing and the journal is present
  222. */
  223. if (filp->f_mode & FMODE_WRITE) {
  224. int ret = ext4_inode_attach_jinode(inode);
  225. if (ret < 0)
  226. return ret;
  227. }
  228. return dquot_file_open(inode, filp);
  229. }
  230. /*
  231. * Here we use ext4_map_blocks() to get a block mapping for a extent-based
  232. * file rather than ext4_ext_walk_space() because we can introduce
  233. * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
  234. * function. When extent status tree has been fully implemented, it will
  235. * track all extent status for a file and we can directly use it to
  236. * retrieve the offset for SEEK_DATA/SEEK_HOLE.
  237. */
  238. /*
  239. * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
  240. * lookup page cache to check whether or not there has some data between
  241. * [startoff, endoff] because, if this range contains an unwritten extent,
  242. * we determine this extent as a data or a hole according to whether the
  243. * page cache has data or not.
  244. */
  245. static int ext4_find_unwritten_pgoff(struct inode *inode,
  246. int whence,
  247. struct ext4_map_blocks *map,
  248. loff_t *offset)
  249. {
  250. struct pagevec pvec;
  251. unsigned int blkbits;
  252. pgoff_t index;
  253. pgoff_t end;
  254. loff_t endoff;
  255. loff_t startoff;
  256. loff_t lastoff;
  257. int found = 0;
  258. blkbits = inode->i_sb->s_blocksize_bits;
  259. startoff = *offset;
  260. lastoff = startoff;
  261. endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits;
  262. index = startoff >> PAGE_CACHE_SHIFT;
  263. end = endoff >> PAGE_CACHE_SHIFT;
  264. pagevec_init(&pvec, 0);
  265. do {
  266. int i, num;
  267. unsigned long nr_pages;
  268. num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
  269. nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
  270. (pgoff_t)num);
  271. if (nr_pages == 0) {
  272. if (whence == SEEK_DATA)
  273. break;
  274. BUG_ON(whence != SEEK_HOLE);
  275. /*
  276. * If this is the first time to go into the loop and
  277. * offset is not beyond the end offset, it will be a
  278. * hole at this offset
  279. */
  280. if (lastoff == startoff || lastoff < endoff)
  281. found = 1;
  282. break;
  283. }
  284. /*
  285. * If this is the first time to go into the loop and
  286. * offset is smaller than the first page offset, it will be a
  287. * hole at this offset.
  288. */
  289. if (lastoff == startoff && whence == SEEK_HOLE &&
  290. lastoff < page_offset(pvec.pages[0])) {
  291. found = 1;
  292. break;
  293. }
  294. for (i = 0; i < nr_pages; i++) {
  295. struct page *page = pvec.pages[i];
  296. struct buffer_head *bh, *head;
  297. /*
  298. * If the current offset is not beyond the end of given
  299. * range, it will be a hole.
  300. */
  301. if (lastoff < endoff && whence == SEEK_HOLE &&
  302. page->index > end) {
  303. found = 1;
  304. *offset = lastoff;
  305. goto out;
  306. }
  307. lock_page(page);
  308. if (unlikely(page->mapping != inode->i_mapping)) {
  309. unlock_page(page);
  310. continue;
  311. }
  312. if (!page_has_buffers(page)) {
  313. unlock_page(page);
  314. continue;
  315. }
  316. if (page_has_buffers(page)) {
  317. lastoff = page_offset(page);
  318. bh = head = page_buffers(page);
  319. do {
  320. if (buffer_uptodate(bh) ||
  321. buffer_unwritten(bh)) {
  322. if (whence == SEEK_DATA)
  323. found = 1;
  324. } else {
  325. if (whence == SEEK_HOLE)
  326. found = 1;
  327. }
  328. if (found) {
  329. *offset = max_t(loff_t,
  330. startoff, lastoff);
  331. unlock_page(page);
  332. goto out;
  333. }
  334. lastoff += bh->b_size;
  335. bh = bh->b_this_page;
  336. } while (bh != head);
  337. }
  338. lastoff = page_offset(page) + PAGE_SIZE;
  339. unlock_page(page);
  340. }
  341. /*
  342. * The no. of pages is less than our desired, that would be a
  343. * hole in there.
  344. */
  345. if (nr_pages < num && whence == SEEK_HOLE) {
  346. found = 1;
  347. *offset = lastoff;
  348. break;
  349. }
  350. index = pvec.pages[i - 1]->index + 1;
  351. pagevec_release(&pvec);
  352. } while (index <= end);
  353. out:
  354. pagevec_release(&pvec);
  355. return found;
  356. }
  357. /*
  358. * ext4_seek_data() retrieves the offset for SEEK_DATA.
  359. */
  360. static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
  361. {
  362. struct inode *inode = file->f_mapping->host;
  363. struct ext4_map_blocks map;
  364. struct extent_status es;
  365. ext4_lblk_t start, last, end;
  366. loff_t dataoff, isize;
  367. int blkbits;
  368. int ret = 0;
  369. mutex_lock(&inode->i_mutex);
  370. isize = i_size_read(inode);
  371. if (offset >= isize) {
  372. mutex_unlock(&inode->i_mutex);
  373. return -ENXIO;
  374. }
  375. blkbits = inode->i_sb->s_blocksize_bits;
  376. start = offset >> blkbits;
  377. last = start;
  378. end = isize >> blkbits;
  379. dataoff = offset;
  380. do {
  381. map.m_lblk = last;
  382. map.m_len = end - last + 1;
  383. ret = ext4_map_blocks(NULL, inode, &map, 0);
  384. if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
  385. if (last != start)
  386. dataoff = (loff_t)last << blkbits;
  387. break;
  388. }
  389. /*
  390. * If there is a delay extent at this offset,
  391. * it will be as a data.
  392. */
  393. ext4_es_find_delayed_extent_range(inode, last, last, &es);
  394. if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
  395. if (last != start)
  396. dataoff = (loff_t)last << blkbits;
  397. break;
  398. }
  399. /*
  400. * If there is a unwritten extent at this offset,
  401. * it will be as a data or a hole according to page
  402. * cache that has data or not.
  403. */
  404. if (map.m_flags & EXT4_MAP_UNWRITTEN) {
  405. int unwritten;
  406. unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA,
  407. &map, &dataoff);
  408. if (unwritten)
  409. break;
  410. }
  411. last++;
  412. dataoff = (loff_t)last << blkbits;
  413. } while (last <= end);
  414. mutex_unlock(&inode->i_mutex);
  415. if (dataoff > isize)
  416. return -ENXIO;
  417. return vfs_setpos(file, dataoff, maxsize);
  418. }
  419. /*
  420. * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
  421. */
  422. static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
  423. {
  424. struct inode *inode = file->f_mapping->host;
  425. struct ext4_map_blocks map;
  426. struct extent_status es;
  427. ext4_lblk_t start, last, end;
  428. loff_t holeoff, isize;
  429. int blkbits;
  430. int ret = 0;
  431. mutex_lock(&inode->i_mutex);
  432. isize = i_size_read(inode);
  433. if (offset >= isize) {
  434. mutex_unlock(&inode->i_mutex);
  435. return -ENXIO;
  436. }
  437. blkbits = inode->i_sb->s_blocksize_bits;
  438. start = offset >> blkbits;
  439. last = start;
  440. end = isize >> blkbits;
  441. holeoff = offset;
  442. do {
  443. map.m_lblk = last;
  444. map.m_len = end - last + 1;
  445. ret = ext4_map_blocks(NULL, inode, &map, 0);
  446. if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
  447. last += ret;
  448. holeoff = (loff_t)last << blkbits;
  449. continue;
  450. }
  451. /*
  452. * If there is a delay extent at this offset,
  453. * we will skip this extent.
  454. */
  455. ext4_es_find_delayed_extent_range(inode, last, last, &es);
  456. if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
  457. last = es.es_lblk + es.es_len;
  458. holeoff = (loff_t)last << blkbits;
  459. continue;
  460. }
  461. /*
  462. * If there is a unwritten extent at this offset,
  463. * it will be as a data or a hole according to page
  464. * cache that has data or not.
  465. */
  466. if (map.m_flags & EXT4_MAP_UNWRITTEN) {
  467. int unwritten;
  468. unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
  469. &map, &holeoff);
  470. if (!unwritten) {
  471. last += ret;
  472. holeoff = (loff_t)last << blkbits;
  473. continue;
  474. }
  475. }
  476. /* find a hole */
  477. break;
  478. } while (last <= end);
  479. mutex_unlock(&inode->i_mutex);
  480. if (holeoff > isize)
  481. holeoff = isize;
  482. return vfs_setpos(file, holeoff, maxsize);
  483. }
  484. /*
  485. * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
  486. * by calling generic_file_llseek_size() with the appropriate maxbytes
  487. * value for each.
  488. */
  489. loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
  490. {
  491. struct inode *inode = file->f_mapping->host;
  492. loff_t maxbytes;
  493. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
  494. maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
  495. else
  496. maxbytes = inode->i_sb->s_maxbytes;
  497. switch (whence) {
  498. case SEEK_SET:
  499. case SEEK_CUR:
  500. case SEEK_END:
  501. return generic_file_llseek_size(file, offset, whence,
  502. maxbytes, i_size_read(inode));
  503. case SEEK_DATA:
  504. return ext4_seek_data(file, offset, maxbytes);
  505. case SEEK_HOLE:
  506. return ext4_seek_hole(file, offset, maxbytes);
  507. }
  508. return -EINVAL;
  509. }
  510. const struct file_operations ext4_file_operations = {
  511. .llseek = ext4_llseek,
  512. .read = new_sync_read,
  513. .write = new_sync_write,
  514. .read_iter = generic_file_read_iter,
  515. .write_iter = ext4_file_write_iter,
  516. .unlocked_ioctl = ext4_ioctl,
  517. #ifdef CONFIG_COMPAT
  518. .compat_ioctl = ext4_compat_ioctl,
  519. #endif
  520. .mmap = ext4_file_mmap,
  521. .open = ext4_file_open,
  522. .release = ext4_release_file,
  523. .fsync = ext4_sync_file,
  524. .splice_read = generic_file_splice_read,
  525. .splice_write = iter_file_splice_write,
  526. .fallocate = ext4_fallocate,
  527. };
  528. const struct inode_operations ext4_file_inode_operations = {
  529. .setattr = ext4_setattr,
  530. .getattr = ext4_getattr,
  531. .setxattr = generic_setxattr,
  532. .getxattr = generic_getxattr,
  533. .listxattr = ext4_listxattr,
  534. .removexattr = generic_removexattr,
  535. .get_acl = ext4_get_acl,
  536. .set_acl = ext4_set_acl,
  537. .fiemap = ext4_fiemap,
  538. };