aio.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/migrate.h>
  38. #include <linux/ramfs.h>
  39. #include <linux/percpu-refcount.h>
  40. #include <linux/mount.h>
  41. #include <asm/kmap_types.h>
  42. #include <asm/uaccess.h>
  43. #include "internal.h"
  44. #define AIO_RING_MAGIC 0xa10a10a1
  45. #define AIO_RING_COMPAT_FEATURES 1
  46. #define AIO_RING_INCOMPAT_FEATURES 0
  47. struct aio_ring {
  48. unsigned id; /* kernel internal index number */
  49. unsigned nr; /* number of io_events */
  50. unsigned head; /* Written to by userland or under ring_lock
  51. * mutex by aio_read_events_ring(). */
  52. unsigned tail;
  53. unsigned magic;
  54. unsigned compat_features;
  55. unsigned incompat_features;
  56. unsigned header_length; /* size of aio_ring */
  57. struct io_event io_events[0];
  58. }; /* 128 bytes + ring size */
  59. #define AIO_RING_PAGES 8
  60. struct kioctx_table {
  61. struct rcu_head rcu;
  62. unsigned nr;
  63. struct kioctx *table[];
  64. };
  65. struct kioctx_cpu {
  66. unsigned reqs_available;
  67. };
  68. struct kioctx {
  69. struct percpu_ref users;
  70. atomic_t dead;
  71. struct percpu_ref reqs;
  72. unsigned long user_id;
  73. struct __percpu kioctx_cpu *cpu;
  74. /*
  75. * For percpu reqs_available, number of slots we move to/from global
  76. * counter at a time:
  77. */
  78. unsigned req_batch;
  79. /*
  80. * This is what userspace passed to io_setup(), it's not used for
  81. * anything but counting against the global max_reqs quota.
  82. *
  83. * The real limit is nr_events - 1, which will be larger (see
  84. * aio_setup_ring())
  85. */
  86. unsigned max_reqs;
  87. /* Size of ringbuffer, in units of struct io_event */
  88. unsigned nr_events;
  89. unsigned long mmap_base;
  90. unsigned long mmap_size;
  91. struct page **ring_pages;
  92. long nr_pages;
  93. struct work_struct free_work;
  94. /*
  95. * signals when all in-flight requests are done
  96. */
  97. struct completion *requests_done;
  98. struct {
  99. /*
  100. * This counts the number of available slots in the ringbuffer,
  101. * so we avoid overflowing it: it's decremented (if positive)
  102. * when allocating a kiocb and incremented when the resulting
  103. * io_event is pulled off the ringbuffer.
  104. *
  105. * We batch accesses to it with a percpu version.
  106. */
  107. atomic_t reqs_available;
  108. } ____cacheline_aligned_in_smp;
  109. struct {
  110. spinlock_t ctx_lock;
  111. struct list_head active_reqs; /* used for cancellation */
  112. } ____cacheline_aligned_in_smp;
  113. struct {
  114. struct mutex ring_lock;
  115. wait_queue_head_t wait;
  116. } ____cacheline_aligned_in_smp;
  117. struct {
  118. unsigned tail;
  119. unsigned completed_events;
  120. spinlock_t completion_lock;
  121. } ____cacheline_aligned_in_smp;
  122. struct page *internal_pages[AIO_RING_PAGES];
  123. struct file *aio_ring_file;
  124. unsigned id;
  125. };
  126. /*------ sysctl variables----*/
  127. static DEFINE_SPINLOCK(aio_nr_lock);
  128. unsigned long aio_nr; /* current system wide number of aio requests */
  129. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  130. /*----end sysctl variables---*/
  131. static struct kmem_cache *kiocb_cachep;
  132. static struct kmem_cache *kioctx_cachep;
  133. static struct vfsmount *aio_mnt;
  134. static const struct file_operations aio_ring_fops;
  135. static const struct address_space_operations aio_ctx_aops;
  136. static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
  137. {
  138. struct qstr this = QSTR_INIT("[aio]", 5);
  139. struct file *file;
  140. struct path path;
  141. struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
  142. if (IS_ERR(inode))
  143. return ERR_CAST(inode);
  144. inode->i_mapping->a_ops = &aio_ctx_aops;
  145. inode->i_mapping->private_data = ctx;
  146. inode->i_size = PAGE_SIZE * nr_pages;
  147. path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
  148. if (!path.dentry) {
  149. iput(inode);
  150. return ERR_PTR(-ENOMEM);
  151. }
  152. path.mnt = mntget(aio_mnt);
  153. d_instantiate(path.dentry, inode);
  154. file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
  155. if (IS_ERR(file)) {
  156. path_put(&path);
  157. return file;
  158. }
  159. file->f_flags = O_RDWR;
  160. return file;
  161. }
  162. static struct dentry *aio_mount(struct file_system_type *fs_type,
  163. int flags, const char *dev_name, void *data)
  164. {
  165. static const struct dentry_operations ops = {
  166. .d_dname = simple_dname,
  167. };
  168. return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
  169. }
  170. /* aio_setup
  171. * Creates the slab caches used by the aio routines, panic on
  172. * failure as this is done early during the boot sequence.
  173. */
  174. static int __init aio_setup(void)
  175. {
  176. static struct file_system_type aio_fs = {
  177. .name = "aio",
  178. .mount = aio_mount,
  179. .kill_sb = kill_anon_super,
  180. };
  181. aio_mnt = kern_mount(&aio_fs);
  182. if (IS_ERR(aio_mnt))
  183. panic("Failed to create aio fs mount.");
  184. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  185. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  186. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  187. return 0;
  188. }
  189. __initcall(aio_setup);
  190. static void put_aio_ring_file(struct kioctx *ctx)
  191. {
  192. struct file *aio_ring_file = ctx->aio_ring_file;
  193. if (aio_ring_file) {
  194. truncate_setsize(aio_ring_file->f_inode, 0);
  195. /* Prevent further access to the kioctx from migratepages */
  196. spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
  197. aio_ring_file->f_inode->i_mapping->private_data = NULL;
  198. ctx->aio_ring_file = NULL;
  199. spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
  200. fput(aio_ring_file);
  201. }
  202. }
  203. static void aio_free_ring(struct kioctx *ctx)
  204. {
  205. int i;
  206. /* Disconnect the kiotx from the ring file. This prevents future
  207. * accesses to the kioctx from page migration.
  208. */
  209. put_aio_ring_file(ctx);
  210. for (i = 0; i < ctx->nr_pages; i++) {
  211. struct page *page;
  212. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  213. page_count(ctx->ring_pages[i]));
  214. page = ctx->ring_pages[i];
  215. if (!page)
  216. continue;
  217. ctx->ring_pages[i] = NULL;
  218. put_page(page);
  219. }
  220. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
  221. kfree(ctx->ring_pages);
  222. ctx->ring_pages = NULL;
  223. }
  224. }
  225. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  226. {
  227. vma->vm_ops = &generic_file_vm_ops;
  228. return 0;
  229. }
  230. static const struct file_operations aio_ring_fops = {
  231. .mmap = aio_ring_mmap,
  232. };
  233. static int aio_set_page_dirty(struct page *page)
  234. {
  235. return 0;
  236. }
  237. #if IS_ENABLED(CONFIG_MIGRATION)
  238. static int aio_migratepage(struct address_space *mapping, struct page *new,
  239. struct page *old, enum migrate_mode mode)
  240. {
  241. struct kioctx *ctx;
  242. unsigned long flags;
  243. pgoff_t idx;
  244. int rc;
  245. rc = 0;
  246. /* mapping->private_lock here protects against the kioctx teardown. */
  247. spin_lock(&mapping->private_lock);
  248. ctx = mapping->private_data;
  249. if (!ctx) {
  250. rc = -EINVAL;
  251. goto out;
  252. }
  253. /* The ring_lock mutex. The prevents aio_read_events() from writing
  254. * to the ring's head, and prevents page migration from mucking in
  255. * a partially initialized kiotx.
  256. */
  257. if (!mutex_trylock(&ctx->ring_lock)) {
  258. rc = -EAGAIN;
  259. goto out;
  260. }
  261. idx = old->index;
  262. if (idx < (pgoff_t)ctx->nr_pages) {
  263. /* Make sure the old page hasn't already been changed */
  264. if (ctx->ring_pages[idx] != old)
  265. rc = -EAGAIN;
  266. } else
  267. rc = -EINVAL;
  268. if (rc != 0)
  269. goto out_unlock;
  270. /* Writeback must be complete */
  271. BUG_ON(PageWriteback(old));
  272. get_page(new);
  273. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
  274. if (rc != MIGRATEPAGE_SUCCESS) {
  275. put_page(new);
  276. goto out_unlock;
  277. }
  278. /* Take completion_lock to prevent other writes to the ring buffer
  279. * while the old page is copied to the new. This prevents new
  280. * events from being lost.
  281. */
  282. spin_lock_irqsave(&ctx->completion_lock, flags);
  283. migrate_page_copy(new, old);
  284. BUG_ON(ctx->ring_pages[idx] != old);
  285. ctx->ring_pages[idx] = new;
  286. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  287. /* The old page is no longer accessible. */
  288. put_page(old);
  289. out_unlock:
  290. mutex_unlock(&ctx->ring_lock);
  291. out:
  292. spin_unlock(&mapping->private_lock);
  293. return rc;
  294. }
  295. #endif
  296. static const struct address_space_operations aio_ctx_aops = {
  297. .set_page_dirty = aio_set_page_dirty,
  298. #if IS_ENABLED(CONFIG_MIGRATION)
  299. .migratepage = aio_migratepage,
  300. #endif
  301. };
  302. static int aio_setup_ring(struct kioctx *ctx)
  303. {
  304. struct aio_ring *ring;
  305. unsigned nr_events = ctx->max_reqs;
  306. struct mm_struct *mm = current->mm;
  307. unsigned long size, unused;
  308. int nr_pages;
  309. int i;
  310. struct file *file;
  311. /* Compensate for the ring buffer's head/tail overlap entry */
  312. nr_events += 2; /* 1 is required, 2 for good luck */
  313. size = sizeof(struct aio_ring);
  314. size += sizeof(struct io_event) * nr_events;
  315. nr_pages = PFN_UP(size);
  316. if (nr_pages < 0)
  317. return -EINVAL;
  318. file = aio_private_file(ctx, nr_pages);
  319. if (IS_ERR(file)) {
  320. ctx->aio_ring_file = NULL;
  321. return -ENOMEM;
  322. }
  323. ctx->aio_ring_file = file;
  324. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  325. / sizeof(struct io_event);
  326. ctx->ring_pages = ctx->internal_pages;
  327. if (nr_pages > AIO_RING_PAGES) {
  328. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  329. GFP_KERNEL);
  330. if (!ctx->ring_pages) {
  331. put_aio_ring_file(ctx);
  332. return -ENOMEM;
  333. }
  334. }
  335. for (i = 0; i < nr_pages; i++) {
  336. struct page *page;
  337. page = find_or_create_page(file->f_inode->i_mapping,
  338. i, GFP_HIGHUSER | __GFP_ZERO);
  339. if (!page)
  340. break;
  341. pr_debug("pid(%d) page[%d]->count=%d\n",
  342. current->pid, i, page_count(page));
  343. SetPageUptodate(page);
  344. SetPageDirty(page);
  345. unlock_page(page);
  346. ctx->ring_pages[i] = page;
  347. }
  348. ctx->nr_pages = i;
  349. if (unlikely(i != nr_pages)) {
  350. aio_free_ring(ctx);
  351. return -ENOMEM;
  352. }
  353. ctx->mmap_size = nr_pages * PAGE_SIZE;
  354. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  355. down_write(&mm->mmap_sem);
  356. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  357. PROT_READ | PROT_WRITE,
  358. MAP_SHARED, 0, &unused);
  359. up_write(&mm->mmap_sem);
  360. if (IS_ERR((void *)ctx->mmap_base)) {
  361. ctx->mmap_size = 0;
  362. aio_free_ring(ctx);
  363. return -ENOMEM;
  364. }
  365. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  366. ctx->user_id = ctx->mmap_base;
  367. ctx->nr_events = nr_events; /* trusted copy */
  368. ring = kmap_atomic(ctx->ring_pages[0]);
  369. ring->nr = nr_events; /* user copy */
  370. ring->id = ~0U;
  371. ring->head = ring->tail = 0;
  372. ring->magic = AIO_RING_MAGIC;
  373. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  374. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  375. ring->header_length = sizeof(struct aio_ring);
  376. kunmap_atomic(ring);
  377. flush_dcache_page(ctx->ring_pages[0]);
  378. return 0;
  379. }
  380. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  381. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  382. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  383. void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
  384. {
  385. struct kioctx *ctx = req->ki_ctx;
  386. unsigned long flags;
  387. spin_lock_irqsave(&ctx->ctx_lock, flags);
  388. if (!req->ki_list.next)
  389. list_add(&req->ki_list, &ctx->active_reqs);
  390. req->ki_cancel = cancel;
  391. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  392. }
  393. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  394. static int kiocb_cancel(struct kiocb *kiocb)
  395. {
  396. kiocb_cancel_fn *old, *cancel;
  397. /*
  398. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  399. * actually has a cancel function, hence the cmpxchg()
  400. */
  401. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  402. do {
  403. if (!cancel || cancel == KIOCB_CANCELLED)
  404. return -EINVAL;
  405. old = cancel;
  406. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  407. } while (cancel != old);
  408. return cancel(kiocb);
  409. }
  410. static void free_ioctx(struct work_struct *work)
  411. {
  412. struct kioctx *ctx = container_of(work, struct kioctx, free_work);
  413. pr_debug("freeing %p\n", ctx);
  414. aio_free_ring(ctx);
  415. free_percpu(ctx->cpu);
  416. percpu_ref_exit(&ctx->reqs);
  417. percpu_ref_exit(&ctx->users);
  418. kmem_cache_free(kioctx_cachep, ctx);
  419. }
  420. static void free_ioctx_reqs(struct percpu_ref *ref)
  421. {
  422. struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
  423. /* At this point we know that there are no any in-flight requests */
  424. if (ctx->requests_done)
  425. complete(ctx->requests_done);
  426. INIT_WORK(&ctx->free_work, free_ioctx);
  427. schedule_work(&ctx->free_work);
  428. }
  429. /*
  430. * When this function runs, the kioctx has been removed from the "hash table"
  431. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  432. * now it's safe to cancel any that need to be.
  433. */
  434. static void free_ioctx_users(struct percpu_ref *ref)
  435. {
  436. struct kioctx *ctx = container_of(ref, struct kioctx, users);
  437. struct kiocb *req;
  438. spin_lock_irq(&ctx->ctx_lock);
  439. while (!list_empty(&ctx->active_reqs)) {
  440. req = list_first_entry(&ctx->active_reqs,
  441. struct kiocb, ki_list);
  442. list_del_init(&req->ki_list);
  443. kiocb_cancel(req);
  444. }
  445. spin_unlock_irq(&ctx->ctx_lock);
  446. percpu_ref_kill(&ctx->reqs);
  447. percpu_ref_put(&ctx->reqs);
  448. }
  449. static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
  450. {
  451. unsigned i, new_nr;
  452. struct kioctx_table *table, *old;
  453. struct aio_ring *ring;
  454. spin_lock(&mm->ioctx_lock);
  455. table = rcu_dereference_raw(mm->ioctx_table);
  456. while (1) {
  457. if (table)
  458. for (i = 0; i < table->nr; i++)
  459. if (!table->table[i]) {
  460. ctx->id = i;
  461. table->table[i] = ctx;
  462. spin_unlock(&mm->ioctx_lock);
  463. /* While kioctx setup is in progress,
  464. * we are protected from page migration
  465. * changes ring_pages by ->ring_lock.
  466. */
  467. ring = kmap_atomic(ctx->ring_pages[0]);
  468. ring->id = ctx->id;
  469. kunmap_atomic(ring);
  470. return 0;
  471. }
  472. new_nr = (table ? table->nr : 1) * 4;
  473. spin_unlock(&mm->ioctx_lock);
  474. table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
  475. new_nr, GFP_KERNEL);
  476. if (!table)
  477. return -ENOMEM;
  478. table->nr = new_nr;
  479. spin_lock(&mm->ioctx_lock);
  480. old = rcu_dereference_raw(mm->ioctx_table);
  481. if (!old) {
  482. rcu_assign_pointer(mm->ioctx_table, table);
  483. } else if (table->nr > old->nr) {
  484. memcpy(table->table, old->table,
  485. old->nr * sizeof(struct kioctx *));
  486. rcu_assign_pointer(mm->ioctx_table, table);
  487. kfree_rcu(old, rcu);
  488. } else {
  489. kfree(table);
  490. table = old;
  491. }
  492. }
  493. }
  494. static void aio_nr_sub(unsigned nr)
  495. {
  496. spin_lock(&aio_nr_lock);
  497. if (WARN_ON(aio_nr - nr > aio_nr))
  498. aio_nr = 0;
  499. else
  500. aio_nr -= nr;
  501. spin_unlock(&aio_nr_lock);
  502. }
  503. /* ioctx_alloc
  504. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  505. */
  506. static struct kioctx *ioctx_alloc(unsigned nr_events)
  507. {
  508. struct mm_struct *mm = current->mm;
  509. struct kioctx *ctx;
  510. int err = -ENOMEM;
  511. /*
  512. * We keep track of the number of available ringbuffer slots, to prevent
  513. * overflow (reqs_available), and we also use percpu counters for this.
  514. *
  515. * So since up to half the slots might be on other cpu's percpu counters
  516. * and unavailable, double nr_events so userspace sees what they
  517. * expected: additionally, we move req_batch slots to/from percpu
  518. * counters at a time, so make sure that isn't 0:
  519. */
  520. nr_events = max(nr_events, num_possible_cpus() * 4);
  521. nr_events *= 2;
  522. /* Prevent overflows */
  523. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  524. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  525. pr_debug("ENOMEM: nr_events too high\n");
  526. return ERR_PTR(-EINVAL);
  527. }
  528. if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
  529. return ERR_PTR(-EAGAIN);
  530. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  531. if (!ctx)
  532. return ERR_PTR(-ENOMEM);
  533. ctx->max_reqs = nr_events;
  534. spin_lock_init(&ctx->ctx_lock);
  535. spin_lock_init(&ctx->completion_lock);
  536. mutex_init(&ctx->ring_lock);
  537. /* Protect against page migration throughout kiotx setup by keeping
  538. * the ring_lock mutex held until setup is complete. */
  539. mutex_lock(&ctx->ring_lock);
  540. init_waitqueue_head(&ctx->wait);
  541. INIT_LIST_HEAD(&ctx->active_reqs);
  542. if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
  543. goto err;
  544. if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
  545. goto err;
  546. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  547. if (!ctx->cpu)
  548. goto err;
  549. err = aio_setup_ring(ctx);
  550. if (err < 0)
  551. goto err;
  552. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  553. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  554. if (ctx->req_batch < 1)
  555. ctx->req_batch = 1;
  556. /* limit the number of system wide aios */
  557. spin_lock(&aio_nr_lock);
  558. if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
  559. aio_nr + nr_events < aio_nr) {
  560. spin_unlock(&aio_nr_lock);
  561. err = -EAGAIN;
  562. goto err_ctx;
  563. }
  564. aio_nr += ctx->max_reqs;
  565. spin_unlock(&aio_nr_lock);
  566. percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
  567. percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
  568. err = ioctx_add_table(ctx, mm);
  569. if (err)
  570. goto err_cleanup;
  571. /* Release the ring_lock mutex now that all setup is complete. */
  572. mutex_unlock(&ctx->ring_lock);
  573. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  574. ctx, ctx->user_id, mm, ctx->nr_events);
  575. return ctx;
  576. err_cleanup:
  577. aio_nr_sub(ctx->max_reqs);
  578. err_ctx:
  579. aio_free_ring(ctx);
  580. err:
  581. mutex_unlock(&ctx->ring_lock);
  582. free_percpu(ctx->cpu);
  583. percpu_ref_exit(&ctx->reqs);
  584. percpu_ref_exit(&ctx->users);
  585. kmem_cache_free(kioctx_cachep, ctx);
  586. pr_debug("error allocating ioctx %d\n", err);
  587. return ERR_PTR(err);
  588. }
  589. /* kill_ioctx
  590. * Cancels all outstanding aio requests on an aio context. Used
  591. * when the processes owning a context have all exited to encourage
  592. * the rapid destruction of the kioctx.
  593. */
  594. static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
  595. struct completion *requests_done)
  596. {
  597. struct kioctx_table *table;
  598. if (atomic_xchg(&ctx->dead, 1))
  599. return -EINVAL;
  600. spin_lock(&mm->ioctx_lock);
  601. table = rcu_dereference_raw(mm->ioctx_table);
  602. WARN_ON(ctx != table->table[ctx->id]);
  603. table->table[ctx->id] = NULL;
  604. spin_unlock(&mm->ioctx_lock);
  605. /* percpu_ref_kill() will do the necessary call_rcu() */
  606. wake_up_all(&ctx->wait);
  607. /*
  608. * It'd be more correct to do this in free_ioctx(), after all
  609. * the outstanding kiocbs have finished - but by then io_destroy
  610. * has already returned, so io_setup() could potentially return
  611. * -EAGAIN with no ioctxs actually in use (as far as userspace
  612. * could tell).
  613. */
  614. aio_nr_sub(ctx->max_reqs);
  615. if (ctx->mmap_size)
  616. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  617. ctx->requests_done = requests_done;
  618. percpu_ref_kill(&ctx->users);
  619. return 0;
  620. }
  621. /* wait_on_sync_kiocb:
  622. * Waits on the given sync kiocb to complete.
  623. */
  624. ssize_t wait_on_sync_kiocb(struct kiocb *req)
  625. {
  626. while (!req->ki_ctx) {
  627. set_current_state(TASK_UNINTERRUPTIBLE);
  628. if (req->ki_ctx)
  629. break;
  630. io_schedule();
  631. }
  632. __set_current_state(TASK_RUNNING);
  633. return req->ki_user_data;
  634. }
  635. EXPORT_SYMBOL(wait_on_sync_kiocb);
  636. /*
  637. * exit_aio: called when the last user of mm goes away. At this point, there is
  638. * no way for any new requests to be submited or any of the io_* syscalls to be
  639. * called on the context.
  640. *
  641. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  642. * them.
  643. */
  644. void exit_aio(struct mm_struct *mm)
  645. {
  646. struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
  647. int i;
  648. if (!table)
  649. return;
  650. for (i = 0; i < table->nr; ++i) {
  651. struct kioctx *ctx = table->table[i];
  652. struct completion requests_done =
  653. COMPLETION_INITIALIZER_ONSTACK(requests_done);
  654. if (!ctx)
  655. continue;
  656. /*
  657. * We don't need to bother with munmap() here - exit_mmap(mm)
  658. * is coming and it'll unmap everything. And we simply can't,
  659. * this is not necessarily our ->mm.
  660. * Since kill_ioctx() uses non-zero ->mmap_size as indicator
  661. * that it needs to unmap the area, just set it to 0.
  662. */
  663. ctx->mmap_size = 0;
  664. kill_ioctx(mm, ctx, &requests_done);
  665. /* Wait until all IO for the context are done. */
  666. wait_for_completion(&requests_done);
  667. }
  668. RCU_INIT_POINTER(mm->ioctx_table, NULL);
  669. kfree(table);
  670. }
  671. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  672. {
  673. struct kioctx_cpu *kcpu;
  674. unsigned long flags;
  675. local_irq_save(flags);
  676. kcpu = this_cpu_ptr(ctx->cpu);
  677. kcpu->reqs_available += nr;
  678. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  679. kcpu->reqs_available -= ctx->req_batch;
  680. atomic_add(ctx->req_batch, &ctx->reqs_available);
  681. }
  682. local_irq_restore(flags);
  683. }
  684. static bool get_reqs_available(struct kioctx *ctx)
  685. {
  686. struct kioctx_cpu *kcpu;
  687. bool ret = false;
  688. unsigned long flags;
  689. local_irq_save(flags);
  690. kcpu = this_cpu_ptr(ctx->cpu);
  691. if (!kcpu->reqs_available) {
  692. int old, avail = atomic_read(&ctx->reqs_available);
  693. do {
  694. if (avail < ctx->req_batch)
  695. goto out;
  696. old = avail;
  697. avail = atomic_cmpxchg(&ctx->reqs_available,
  698. avail, avail - ctx->req_batch);
  699. } while (avail != old);
  700. kcpu->reqs_available += ctx->req_batch;
  701. }
  702. ret = true;
  703. kcpu->reqs_available--;
  704. out:
  705. local_irq_restore(flags);
  706. return ret;
  707. }
  708. /* refill_reqs_available
  709. * Updates the reqs_available reference counts used for tracking the
  710. * number of free slots in the completion ring. This can be called
  711. * from aio_complete() (to optimistically update reqs_available) or
  712. * from aio_get_req() (the we're out of events case). It must be
  713. * called holding ctx->completion_lock.
  714. */
  715. static void refill_reqs_available(struct kioctx *ctx, unsigned head,
  716. unsigned tail)
  717. {
  718. unsigned events_in_ring, completed;
  719. /* Clamp head since userland can write to it. */
  720. head %= ctx->nr_events;
  721. if (head <= tail)
  722. events_in_ring = tail - head;
  723. else
  724. events_in_ring = ctx->nr_events - (head - tail);
  725. completed = ctx->completed_events;
  726. if (events_in_ring < completed)
  727. completed -= events_in_ring;
  728. else
  729. completed = 0;
  730. if (!completed)
  731. return;
  732. ctx->completed_events -= completed;
  733. put_reqs_available(ctx, completed);
  734. }
  735. /* user_refill_reqs_available
  736. * Called to refill reqs_available when aio_get_req() encounters an
  737. * out of space in the completion ring.
  738. */
  739. static void user_refill_reqs_available(struct kioctx *ctx)
  740. {
  741. spin_lock_irq(&ctx->completion_lock);
  742. if (ctx->completed_events) {
  743. struct aio_ring *ring;
  744. unsigned head;
  745. /* Access of ring->head may race with aio_read_events_ring()
  746. * here, but that's okay since whether we read the old version
  747. * or the new version, and either will be valid. The important
  748. * part is that head cannot pass tail since we prevent
  749. * aio_complete() from updating tail by holding
  750. * ctx->completion_lock. Even if head is invalid, the check
  751. * against ctx->completed_events below will make sure we do the
  752. * safe/right thing.
  753. */
  754. ring = kmap_atomic(ctx->ring_pages[0]);
  755. head = ring->head;
  756. kunmap_atomic(ring);
  757. refill_reqs_available(ctx, head, ctx->tail);
  758. }
  759. spin_unlock_irq(&ctx->completion_lock);
  760. }
  761. /* aio_get_req
  762. * Allocate a slot for an aio request.
  763. * Returns NULL if no requests are free.
  764. */
  765. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  766. {
  767. struct kiocb *req;
  768. if (!get_reqs_available(ctx)) {
  769. user_refill_reqs_available(ctx);
  770. if (!get_reqs_available(ctx))
  771. return NULL;
  772. }
  773. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  774. if (unlikely(!req))
  775. goto out_put;
  776. percpu_ref_get(&ctx->reqs);
  777. req->ki_ctx = ctx;
  778. return req;
  779. out_put:
  780. put_reqs_available(ctx, 1);
  781. return NULL;
  782. }
  783. static void kiocb_free(struct kiocb *req)
  784. {
  785. if (req->ki_filp)
  786. fput(req->ki_filp);
  787. if (req->ki_eventfd != NULL)
  788. eventfd_ctx_put(req->ki_eventfd);
  789. kmem_cache_free(kiocb_cachep, req);
  790. }
  791. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  792. {
  793. struct aio_ring __user *ring = (void __user *)ctx_id;
  794. struct mm_struct *mm = current->mm;
  795. struct kioctx *ctx, *ret = NULL;
  796. struct kioctx_table *table;
  797. unsigned id;
  798. if (get_user(id, &ring->id))
  799. return NULL;
  800. rcu_read_lock();
  801. table = rcu_dereference(mm->ioctx_table);
  802. if (!table || id >= table->nr)
  803. goto out;
  804. ctx = table->table[id];
  805. if (ctx && ctx->user_id == ctx_id) {
  806. percpu_ref_get(&ctx->users);
  807. ret = ctx;
  808. }
  809. out:
  810. rcu_read_unlock();
  811. return ret;
  812. }
  813. /* aio_complete
  814. * Called when the io request on the given iocb is complete.
  815. */
  816. void aio_complete(struct kiocb *iocb, long res, long res2)
  817. {
  818. struct kioctx *ctx = iocb->ki_ctx;
  819. struct aio_ring *ring;
  820. struct io_event *ev_page, *event;
  821. unsigned tail, pos, head;
  822. unsigned long flags;
  823. /*
  824. * Special case handling for sync iocbs:
  825. * - events go directly into the iocb for fast handling
  826. * - the sync task with the iocb in its stack holds the single iocb
  827. * ref, no other paths have a way to get another ref
  828. * - the sync task helpfully left a reference to itself in the iocb
  829. */
  830. if (is_sync_kiocb(iocb)) {
  831. iocb->ki_user_data = res;
  832. smp_wmb();
  833. iocb->ki_ctx = ERR_PTR(-EXDEV);
  834. wake_up_process(iocb->ki_obj.tsk);
  835. return;
  836. }
  837. if (iocb->ki_list.next) {
  838. unsigned long flags;
  839. spin_lock_irqsave(&ctx->ctx_lock, flags);
  840. list_del(&iocb->ki_list);
  841. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  842. }
  843. /*
  844. * Add a completion event to the ring buffer. Must be done holding
  845. * ctx->completion_lock to prevent other code from messing with the tail
  846. * pointer since we might be called from irq context.
  847. */
  848. spin_lock_irqsave(&ctx->completion_lock, flags);
  849. tail = ctx->tail;
  850. pos = tail + AIO_EVENTS_OFFSET;
  851. if (++tail >= ctx->nr_events)
  852. tail = 0;
  853. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  854. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  855. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  856. event->data = iocb->ki_user_data;
  857. event->res = res;
  858. event->res2 = res2;
  859. kunmap_atomic(ev_page);
  860. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  861. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  862. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  863. res, res2);
  864. /* after flagging the request as done, we
  865. * must never even look at it again
  866. */
  867. smp_wmb(); /* make event visible before updating tail */
  868. ctx->tail = tail;
  869. ring = kmap_atomic(ctx->ring_pages[0]);
  870. head = ring->head;
  871. ring->tail = tail;
  872. kunmap_atomic(ring);
  873. flush_dcache_page(ctx->ring_pages[0]);
  874. ctx->completed_events++;
  875. if (ctx->completed_events > 1)
  876. refill_reqs_available(ctx, head, tail);
  877. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  878. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  879. /*
  880. * Check if the user asked us to deliver the result through an
  881. * eventfd. The eventfd_signal() function is safe to be called
  882. * from IRQ context.
  883. */
  884. if (iocb->ki_eventfd != NULL)
  885. eventfd_signal(iocb->ki_eventfd, 1);
  886. /* everything turned out well, dispose of the aiocb. */
  887. kiocb_free(iocb);
  888. /*
  889. * We have to order our ring_info tail store above and test
  890. * of the wait list below outside the wait lock. This is
  891. * like in wake_up_bit() where clearing a bit has to be
  892. * ordered with the unlocked test.
  893. */
  894. smp_mb();
  895. if (waitqueue_active(&ctx->wait))
  896. wake_up(&ctx->wait);
  897. percpu_ref_put(&ctx->reqs);
  898. }
  899. EXPORT_SYMBOL(aio_complete);
  900. /* aio_read_events_ring
  901. * Pull an event off of the ioctx's event ring. Returns the number of
  902. * events fetched
  903. */
  904. static long aio_read_events_ring(struct kioctx *ctx,
  905. struct io_event __user *event, long nr)
  906. {
  907. struct aio_ring *ring;
  908. unsigned head, tail, pos;
  909. long ret = 0;
  910. int copy_ret;
  911. mutex_lock(&ctx->ring_lock);
  912. /* Access to ->ring_pages here is protected by ctx->ring_lock. */
  913. ring = kmap_atomic(ctx->ring_pages[0]);
  914. head = ring->head;
  915. tail = ring->tail;
  916. kunmap_atomic(ring);
  917. /*
  918. * Ensure that once we've read the current tail pointer, that
  919. * we also see the events that were stored up to the tail.
  920. */
  921. smp_rmb();
  922. pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
  923. if (head == tail)
  924. goto out;
  925. head %= ctx->nr_events;
  926. tail %= ctx->nr_events;
  927. while (ret < nr) {
  928. long avail;
  929. struct io_event *ev;
  930. struct page *page;
  931. avail = (head <= tail ? tail : ctx->nr_events) - head;
  932. if (head == tail)
  933. break;
  934. avail = min(avail, nr - ret);
  935. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  936. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  937. pos = head + AIO_EVENTS_OFFSET;
  938. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  939. pos %= AIO_EVENTS_PER_PAGE;
  940. ev = kmap(page);
  941. copy_ret = copy_to_user(event + ret, ev + pos,
  942. sizeof(*ev) * avail);
  943. kunmap(page);
  944. if (unlikely(copy_ret)) {
  945. ret = -EFAULT;
  946. goto out;
  947. }
  948. ret += avail;
  949. head += avail;
  950. head %= ctx->nr_events;
  951. }
  952. ring = kmap_atomic(ctx->ring_pages[0]);
  953. ring->head = head;
  954. kunmap_atomic(ring);
  955. flush_dcache_page(ctx->ring_pages[0]);
  956. pr_debug("%li h%u t%u\n", ret, head, tail);
  957. out:
  958. mutex_unlock(&ctx->ring_lock);
  959. return ret;
  960. }
  961. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  962. struct io_event __user *event, long *i)
  963. {
  964. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  965. if (ret > 0)
  966. *i += ret;
  967. if (unlikely(atomic_read(&ctx->dead)))
  968. ret = -EINVAL;
  969. if (!*i)
  970. *i = ret;
  971. return ret < 0 || *i >= min_nr;
  972. }
  973. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  974. struct io_event __user *event,
  975. struct timespec __user *timeout)
  976. {
  977. ktime_t until = { .tv64 = KTIME_MAX };
  978. long ret = 0;
  979. if (timeout) {
  980. struct timespec ts;
  981. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  982. return -EFAULT;
  983. until = timespec_to_ktime(ts);
  984. }
  985. /*
  986. * Note that aio_read_events() is being called as the conditional - i.e.
  987. * we're calling it after prepare_to_wait() has set task state to
  988. * TASK_INTERRUPTIBLE.
  989. *
  990. * But aio_read_events() can block, and if it blocks it's going to flip
  991. * the task state back to TASK_RUNNING.
  992. *
  993. * This should be ok, provided it doesn't flip the state back to
  994. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  995. * will only happen if the mutex_lock() call blocks, and we then find
  996. * the ringbuffer empty. So in practice we should be ok, but it's
  997. * something to be aware of when touching this code.
  998. */
  999. wait_event_interruptible_hrtimeout(ctx->wait,
  1000. aio_read_events(ctx, min_nr, nr, event, &ret), until);
  1001. if (!ret && signal_pending(current))
  1002. ret = -EINTR;
  1003. return ret;
  1004. }
  1005. /* sys_io_setup:
  1006. * Create an aio_context capable of receiving at least nr_events.
  1007. * ctxp must not point to an aio_context that already exists, and
  1008. * must be initialized to 0 prior to the call. On successful
  1009. * creation of the aio_context, *ctxp is filled in with the resulting
  1010. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1011. * if the specified nr_events exceeds internal limits. May fail
  1012. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1013. * of available events. May fail with -ENOMEM if insufficient kernel
  1014. * resources are available. May fail with -EFAULT if an invalid
  1015. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1016. * implemented.
  1017. */
  1018. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  1019. {
  1020. struct kioctx *ioctx = NULL;
  1021. unsigned long ctx;
  1022. long ret;
  1023. ret = get_user(ctx, ctxp);
  1024. if (unlikely(ret))
  1025. goto out;
  1026. ret = -EINVAL;
  1027. if (unlikely(ctx || nr_events == 0)) {
  1028. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  1029. ctx, nr_events);
  1030. goto out;
  1031. }
  1032. ioctx = ioctx_alloc(nr_events);
  1033. ret = PTR_ERR(ioctx);
  1034. if (!IS_ERR(ioctx)) {
  1035. ret = put_user(ioctx->user_id, ctxp);
  1036. if (ret)
  1037. kill_ioctx(current->mm, ioctx, NULL);
  1038. percpu_ref_put(&ioctx->users);
  1039. }
  1040. out:
  1041. return ret;
  1042. }
  1043. /* sys_io_destroy:
  1044. * Destroy the aio_context specified. May cancel any outstanding
  1045. * AIOs and block on completion. Will fail with -ENOSYS if not
  1046. * implemented. May fail with -EINVAL if the context pointed to
  1047. * is invalid.
  1048. */
  1049. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  1050. {
  1051. struct kioctx *ioctx = lookup_ioctx(ctx);
  1052. if (likely(NULL != ioctx)) {
  1053. struct completion requests_done =
  1054. COMPLETION_INITIALIZER_ONSTACK(requests_done);
  1055. int ret;
  1056. /* Pass requests_done to kill_ioctx() where it can be set
  1057. * in a thread-safe way. If we try to set it here then we have
  1058. * a race condition if two io_destroy() called simultaneously.
  1059. */
  1060. ret = kill_ioctx(current->mm, ioctx, &requests_done);
  1061. percpu_ref_put(&ioctx->users);
  1062. /* Wait until all IO for the context are done. Otherwise kernel
  1063. * keep using user-space buffers even if user thinks the context
  1064. * is destroyed.
  1065. */
  1066. if (!ret)
  1067. wait_for_completion(&requests_done);
  1068. return ret;
  1069. }
  1070. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1071. return -EINVAL;
  1072. }
  1073. typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
  1074. unsigned long, loff_t);
  1075. typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
  1076. static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
  1077. int rw, char __user *buf,
  1078. unsigned long *nr_segs,
  1079. struct iovec **iovec,
  1080. bool compat)
  1081. {
  1082. ssize_t ret;
  1083. *nr_segs = kiocb->ki_nbytes;
  1084. #ifdef CONFIG_COMPAT
  1085. if (compat)
  1086. ret = compat_rw_copy_check_uvector(rw,
  1087. (struct compat_iovec __user *)buf,
  1088. *nr_segs, UIO_FASTIOV, *iovec, iovec);
  1089. else
  1090. #endif
  1091. ret = rw_copy_check_uvector(rw,
  1092. (struct iovec __user *)buf,
  1093. *nr_segs, UIO_FASTIOV, *iovec, iovec);
  1094. if (ret < 0)
  1095. return ret;
  1096. /* ki_nbytes now reflect bytes instead of segs */
  1097. kiocb->ki_nbytes = ret;
  1098. return 0;
  1099. }
  1100. static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
  1101. int rw, char __user *buf,
  1102. unsigned long *nr_segs,
  1103. struct iovec *iovec)
  1104. {
  1105. if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
  1106. return -EFAULT;
  1107. iovec->iov_base = buf;
  1108. iovec->iov_len = kiocb->ki_nbytes;
  1109. *nr_segs = 1;
  1110. return 0;
  1111. }
  1112. /*
  1113. * aio_run_iocb:
  1114. * Performs the initial checks and io submission.
  1115. */
  1116. static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
  1117. char __user *buf, bool compat)
  1118. {
  1119. struct file *file = req->ki_filp;
  1120. ssize_t ret;
  1121. unsigned long nr_segs;
  1122. int rw;
  1123. fmode_t mode;
  1124. aio_rw_op *rw_op;
  1125. rw_iter_op *iter_op;
  1126. struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
  1127. struct iov_iter iter;
  1128. switch (opcode) {
  1129. case IOCB_CMD_PREAD:
  1130. case IOCB_CMD_PREADV:
  1131. mode = FMODE_READ;
  1132. rw = READ;
  1133. rw_op = file->f_op->aio_read;
  1134. iter_op = file->f_op->read_iter;
  1135. goto rw_common;
  1136. case IOCB_CMD_PWRITE:
  1137. case IOCB_CMD_PWRITEV:
  1138. mode = FMODE_WRITE;
  1139. rw = WRITE;
  1140. rw_op = file->f_op->aio_write;
  1141. iter_op = file->f_op->write_iter;
  1142. goto rw_common;
  1143. rw_common:
  1144. if (unlikely(!(file->f_mode & mode)))
  1145. return -EBADF;
  1146. if (!rw_op && !iter_op)
  1147. return -EINVAL;
  1148. ret = (opcode == IOCB_CMD_PREADV ||
  1149. opcode == IOCB_CMD_PWRITEV)
  1150. ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
  1151. &iovec, compat)
  1152. : aio_setup_single_vector(req, rw, buf, &nr_segs,
  1153. iovec);
  1154. if (!ret)
  1155. ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
  1156. if (ret < 0) {
  1157. if (iovec != inline_vecs)
  1158. kfree(iovec);
  1159. return ret;
  1160. }
  1161. req->ki_nbytes = ret;
  1162. /* XXX: move/kill - rw_verify_area()? */
  1163. /* This matches the pread()/pwrite() logic */
  1164. if (req->ki_pos < 0) {
  1165. ret = -EINVAL;
  1166. break;
  1167. }
  1168. if (rw == WRITE)
  1169. file_start_write(file);
  1170. if (iter_op) {
  1171. iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
  1172. ret = iter_op(req, &iter);
  1173. } else {
  1174. ret = rw_op(req, iovec, nr_segs, req->ki_pos);
  1175. }
  1176. if (rw == WRITE)
  1177. file_end_write(file);
  1178. break;
  1179. case IOCB_CMD_FDSYNC:
  1180. if (!file->f_op->aio_fsync)
  1181. return -EINVAL;
  1182. ret = file->f_op->aio_fsync(req, 1);
  1183. break;
  1184. case IOCB_CMD_FSYNC:
  1185. if (!file->f_op->aio_fsync)
  1186. return -EINVAL;
  1187. ret = file->f_op->aio_fsync(req, 0);
  1188. break;
  1189. default:
  1190. pr_debug("EINVAL: no operation provided\n");
  1191. return -EINVAL;
  1192. }
  1193. if (iovec != inline_vecs)
  1194. kfree(iovec);
  1195. if (ret != -EIOCBQUEUED) {
  1196. /*
  1197. * There's no easy way to restart the syscall since other AIO's
  1198. * may be already running. Just fail this IO with EINTR.
  1199. */
  1200. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1201. ret == -ERESTARTNOHAND ||
  1202. ret == -ERESTART_RESTARTBLOCK))
  1203. ret = -EINTR;
  1204. aio_complete(req, ret, 0);
  1205. }
  1206. return 0;
  1207. }
  1208. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1209. struct iocb *iocb, bool compat)
  1210. {
  1211. struct kiocb *req;
  1212. ssize_t ret;
  1213. /* enforce forwards compatibility on users */
  1214. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1215. pr_debug("EINVAL: reserve field set\n");
  1216. return -EINVAL;
  1217. }
  1218. /* prevent overflows */
  1219. if (unlikely(
  1220. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1221. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1222. ((ssize_t)iocb->aio_nbytes < 0)
  1223. )) {
  1224. pr_debug("EINVAL: io_submit: overflow check\n");
  1225. return -EINVAL;
  1226. }
  1227. req = aio_get_req(ctx);
  1228. if (unlikely(!req))
  1229. return -EAGAIN;
  1230. req->ki_filp = fget(iocb->aio_fildes);
  1231. if (unlikely(!req->ki_filp)) {
  1232. ret = -EBADF;
  1233. goto out_put_req;
  1234. }
  1235. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1236. /*
  1237. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1238. * instance of the file* now. The file descriptor must be
  1239. * an eventfd() fd, and will be signaled for each completed
  1240. * event using the eventfd_signal() function.
  1241. */
  1242. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1243. if (IS_ERR(req->ki_eventfd)) {
  1244. ret = PTR_ERR(req->ki_eventfd);
  1245. req->ki_eventfd = NULL;
  1246. goto out_put_req;
  1247. }
  1248. }
  1249. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1250. if (unlikely(ret)) {
  1251. pr_debug("EFAULT: aio_key\n");
  1252. goto out_put_req;
  1253. }
  1254. req->ki_obj.user = user_iocb;
  1255. req->ki_user_data = iocb->aio_data;
  1256. req->ki_pos = iocb->aio_offset;
  1257. req->ki_nbytes = iocb->aio_nbytes;
  1258. ret = aio_run_iocb(req, iocb->aio_lio_opcode,
  1259. (char __user *)(unsigned long)iocb->aio_buf,
  1260. compat);
  1261. if (ret)
  1262. goto out_put_req;
  1263. return 0;
  1264. out_put_req:
  1265. put_reqs_available(ctx, 1);
  1266. percpu_ref_put(&ctx->reqs);
  1267. kiocb_free(req);
  1268. return ret;
  1269. }
  1270. long do_io_submit(aio_context_t ctx_id, long nr,
  1271. struct iocb __user *__user *iocbpp, bool compat)
  1272. {
  1273. struct kioctx *ctx;
  1274. long ret = 0;
  1275. int i = 0;
  1276. struct blk_plug plug;
  1277. if (unlikely(nr < 0))
  1278. return -EINVAL;
  1279. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1280. nr = LONG_MAX/sizeof(*iocbpp);
  1281. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1282. return -EFAULT;
  1283. ctx = lookup_ioctx(ctx_id);
  1284. if (unlikely(!ctx)) {
  1285. pr_debug("EINVAL: invalid context id\n");
  1286. return -EINVAL;
  1287. }
  1288. blk_start_plug(&plug);
  1289. /*
  1290. * AKPM: should this return a partial result if some of the IOs were
  1291. * successfully submitted?
  1292. */
  1293. for (i=0; i<nr; i++) {
  1294. struct iocb __user *user_iocb;
  1295. struct iocb tmp;
  1296. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1297. ret = -EFAULT;
  1298. break;
  1299. }
  1300. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1301. ret = -EFAULT;
  1302. break;
  1303. }
  1304. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1305. if (ret)
  1306. break;
  1307. }
  1308. blk_finish_plug(&plug);
  1309. percpu_ref_put(&ctx->users);
  1310. return i ? i : ret;
  1311. }
  1312. /* sys_io_submit:
  1313. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1314. * the number of iocbs queued. May return -EINVAL if the aio_context
  1315. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1316. * *iocbpp[0] is not properly initialized, if the operation specified
  1317. * is invalid for the file descriptor in the iocb. May fail with
  1318. * -EFAULT if any of the data structures point to invalid data. May
  1319. * fail with -EBADF if the file descriptor specified in the first
  1320. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1321. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1322. * fail with -ENOSYS if not implemented.
  1323. */
  1324. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1325. struct iocb __user * __user *, iocbpp)
  1326. {
  1327. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1328. }
  1329. /* lookup_kiocb
  1330. * Finds a given iocb for cancellation.
  1331. */
  1332. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1333. u32 key)
  1334. {
  1335. struct list_head *pos;
  1336. assert_spin_locked(&ctx->ctx_lock);
  1337. if (key != KIOCB_KEY)
  1338. return NULL;
  1339. /* TODO: use a hash or array, this sucks. */
  1340. list_for_each(pos, &ctx->active_reqs) {
  1341. struct kiocb *kiocb = list_kiocb(pos);
  1342. if (kiocb->ki_obj.user == iocb)
  1343. return kiocb;
  1344. }
  1345. return NULL;
  1346. }
  1347. /* sys_io_cancel:
  1348. * Attempts to cancel an iocb previously passed to io_submit. If
  1349. * the operation is successfully cancelled, the resulting event is
  1350. * copied into the memory pointed to by result without being placed
  1351. * into the completion queue and 0 is returned. May fail with
  1352. * -EFAULT if any of the data structures pointed to are invalid.
  1353. * May fail with -EINVAL if aio_context specified by ctx_id is
  1354. * invalid. May fail with -EAGAIN if the iocb specified was not
  1355. * cancelled. Will fail with -ENOSYS if not implemented.
  1356. */
  1357. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1358. struct io_event __user *, result)
  1359. {
  1360. struct kioctx *ctx;
  1361. struct kiocb *kiocb;
  1362. u32 key;
  1363. int ret;
  1364. ret = get_user(key, &iocb->aio_key);
  1365. if (unlikely(ret))
  1366. return -EFAULT;
  1367. ctx = lookup_ioctx(ctx_id);
  1368. if (unlikely(!ctx))
  1369. return -EINVAL;
  1370. spin_lock_irq(&ctx->ctx_lock);
  1371. kiocb = lookup_kiocb(ctx, iocb, key);
  1372. if (kiocb)
  1373. ret = kiocb_cancel(kiocb);
  1374. else
  1375. ret = -EINVAL;
  1376. spin_unlock_irq(&ctx->ctx_lock);
  1377. if (!ret) {
  1378. /*
  1379. * The result argument is no longer used - the io_event is
  1380. * always delivered via the ring buffer. -EINPROGRESS indicates
  1381. * cancellation is progress:
  1382. */
  1383. ret = -EINPROGRESS;
  1384. }
  1385. percpu_ref_put(&ctx->users);
  1386. return ret;
  1387. }
  1388. /* io_getevents:
  1389. * Attempts to read at least min_nr events and up to nr events from
  1390. * the completion queue for the aio_context specified by ctx_id. If
  1391. * it succeeds, the number of read events is returned. May fail with
  1392. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1393. * out of range, if timeout is out of range. May fail with -EFAULT
  1394. * if any of the memory specified is invalid. May return 0 or
  1395. * < min_nr if the timeout specified by timeout has elapsed
  1396. * before sufficient events are available, where timeout == NULL
  1397. * specifies an infinite timeout. Note that the timeout pointed to by
  1398. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1399. */
  1400. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1401. long, min_nr,
  1402. long, nr,
  1403. struct io_event __user *, events,
  1404. struct timespec __user *, timeout)
  1405. {
  1406. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1407. long ret = -EINVAL;
  1408. if (likely(ioctx)) {
  1409. if (likely(min_nr <= nr && min_nr >= 0))
  1410. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1411. percpu_ref_put(&ioctx->users);
  1412. }
  1413. return ret;
  1414. }