knav_qmss_queue.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816
  1. /*
  2. * Keystone Queue Manager subsystem driver
  3. *
  4. * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
  5. * Authors: Sandeep Nair <sandeep_n@ti.com>
  6. * Cyril Chemparathy <cyril@ti.com>
  7. * Santosh Shilimkar <santosh.shilimkar@ti.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/clk.h>
  22. #include <linux/io.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/bitops.h>
  25. #include <linux/slab.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/of.h>
  30. #include <linux/of_irq.h>
  31. #include <linux/of_device.h>
  32. #include <linux/of_address.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/firmware.h>
  35. #include <linux/debugfs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/string.h>
  38. #include <linux/soc/ti/knav_qmss.h>
  39. #include "knav_qmss.h"
  40. static struct knav_device *kdev;
  41. static DEFINE_MUTEX(knav_dev_lock);
  42. /* Queue manager register indices in DTS */
  43. #define KNAV_QUEUE_PEEK_REG_INDEX 0
  44. #define KNAV_QUEUE_STATUS_REG_INDEX 1
  45. #define KNAV_QUEUE_CONFIG_REG_INDEX 2
  46. #define KNAV_QUEUE_REGION_REG_INDEX 3
  47. #define KNAV_QUEUE_PUSH_REG_INDEX 4
  48. #define KNAV_QUEUE_POP_REG_INDEX 5
  49. /* PDSP register indices in DTS */
  50. #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
  51. #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
  52. #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
  53. #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
  54. #define knav_queue_idx_to_inst(kdev, idx) \
  55. (kdev->instances + (idx << kdev->inst_shift))
  56. #define for_each_handle_rcu(qh, inst) \
  57. list_for_each_entry_rcu(qh, &inst->handles, list)
  58. #define for_each_instance(idx, inst, kdev) \
  59. for (idx = 0, inst = kdev->instances; \
  60. idx < (kdev)->num_queues_in_use; \
  61. idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  62. /**
  63. * knav_queue_notify: qmss queue notfier call
  64. *
  65. * @inst: qmss queue instance like accumulator
  66. */
  67. void knav_queue_notify(struct knav_queue_inst *inst)
  68. {
  69. struct knav_queue *qh;
  70. if (!inst)
  71. return;
  72. rcu_read_lock();
  73. for_each_handle_rcu(qh, inst) {
  74. if (atomic_read(&qh->notifier_enabled) <= 0)
  75. continue;
  76. if (WARN_ON(!qh->notifier_fn))
  77. continue;
  78. atomic_inc(&qh->stats.notifies);
  79. qh->notifier_fn(qh->notifier_fn_arg);
  80. }
  81. rcu_read_unlock();
  82. }
  83. EXPORT_SYMBOL_GPL(knav_queue_notify);
  84. static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
  85. {
  86. struct knav_queue_inst *inst = _instdata;
  87. knav_queue_notify(inst);
  88. return IRQ_HANDLED;
  89. }
  90. static int knav_queue_setup_irq(struct knav_range_info *range,
  91. struct knav_queue_inst *inst)
  92. {
  93. unsigned queue = inst->id - range->queue_base;
  94. unsigned long cpu_map;
  95. int ret = 0, irq;
  96. if (range->flags & RANGE_HAS_IRQ) {
  97. irq = range->irqs[queue].irq;
  98. cpu_map = range->irqs[queue].cpu_map;
  99. ret = request_irq(irq, knav_queue_int_handler, 0,
  100. inst->irq_name, inst);
  101. if (ret)
  102. return ret;
  103. disable_irq(irq);
  104. if (cpu_map) {
  105. ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
  106. if (ret) {
  107. dev_warn(range->kdev->dev,
  108. "Failed to set IRQ affinity\n");
  109. return ret;
  110. }
  111. }
  112. }
  113. return ret;
  114. }
  115. static void knav_queue_free_irq(struct knav_queue_inst *inst)
  116. {
  117. struct knav_range_info *range = inst->range;
  118. unsigned queue = inst->id - inst->range->queue_base;
  119. int irq;
  120. if (range->flags & RANGE_HAS_IRQ) {
  121. irq = range->irqs[queue].irq;
  122. irq_set_affinity_hint(irq, NULL);
  123. free_irq(irq, inst);
  124. }
  125. }
  126. static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
  127. {
  128. return !list_empty(&inst->handles);
  129. }
  130. static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
  131. {
  132. return inst->range->flags & RANGE_RESERVED;
  133. }
  134. static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
  135. {
  136. struct knav_queue *tmp;
  137. rcu_read_lock();
  138. for_each_handle_rcu(tmp, inst) {
  139. if (tmp->flags & KNAV_QUEUE_SHARED) {
  140. rcu_read_unlock();
  141. return true;
  142. }
  143. }
  144. rcu_read_unlock();
  145. return false;
  146. }
  147. static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
  148. unsigned type)
  149. {
  150. if ((type == KNAV_QUEUE_QPEND) &&
  151. (inst->range->flags & RANGE_HAS_IRQ)) {
  152. return true;
  153. } else if ((type == KNAV_QUEUE_ACC) &&
  154. (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
  155. return true;
  156. } else if ((type == KNAV_QUEUE_GP) &&
  157. !(inst->range->flags &
  158. (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
  159. return true;
  160. }
  161. return false;
  162. }
  163. static inline struct knav_queue_inst *
  164. knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
  165. {
  166. struct knav_queue_inst *inst;
  167. int idx;
  168. for_each_instance(idx, inst, kdev) {
  169. if (inst->id == id)
  170. return inst;
  171. }
  172. return NULL;
  173. }
  174. static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
  175. {
  176. if (kdev->base_id <= id &&
  177. kdev->base_id + kdev->num_queues > id) {
  178. id -= kdev->base_id;
  179. return knav_queue_match_id_to_inst(kdev, id);
  180. }
  181. return NULL;
  182. }
  183. static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
  184. const char *name, unsigned flags)
  185. {
  186. struct knav_queue *qh;
  187. unsigned id;
  188. int ret = 0;
  189. qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
  190. if (!qh)
  191. return ERR_PTR(-ENOMEM);
  192. qh->flags = flags;
  193. qh->inst = inst;
  194. id = inst->id - inst->qmgr->start_queue;
  195. qh->reg_push = &inst->qmgr->reg_push[id];
  196. qh->reg_pop = &inst->qmgr->reg_pop[id];
  197. qh->reg_peek = &inst->qmgr->reg_peek[id];
  198. /* first opener? */
  199. if (!knav_queue_is_busy(inst)) {
  200. struct knav_range_info *range = inst->range;
  201. inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
  202. if (range->ops && range->ops->open_queue)
  203. ret = range->ops->open_queue(range, inst, flags);
  204. if (ret) {
  205. devm_kfree(inst->kdev->dev, qh);
  206. return ERR_PTR(ret);
  207. }
  208. }
  209. list_add_tail_rcu(&qh->list, &inst->handles);
  210. return qh;
  211. }
  212. static struct knav_queue *
  213. knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
  214. {
  215. struct knav_queue_inst *inst;
  216. struct knav_queue *qh;
  217. mutex_lock(&knav_dev_lock);
  218. qh = ERR_PTR(-ENODEV);
  219. inst = knav_queue_find_by_id(id);
  220. if (!inst)
  221. goto unlock_ret;
  222. qh = ERR_PTR(-EEXIST);
  223. if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
  224. goto unlock_ret;
  225. qh = ERR_PTR(-EBUSY);
  226. if ((flags & KNAV_QUEUE_SHARED) &&
  227. (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
  228. goto unlock_ret;
  229. qh = __knav_queue_open(inst, name, flags);
  230. unlock_ret:
  231. mutex_unlock(&knav_dev_lock);
  232. return qh;
  233. }
  234. static struct knav_queue *knav_queue_open_by_type(const char *name,
  235. unsigned type, unsigned flags)
  236. {
  237. struct knav_queue_inst *inst;
  238. struct knav_queue *qh = ERR_PTR(-EINVAL);
  239. int idx;
  240. mutex_lock(&knav_dev_lock);
  241. for_each_instance(idx, inst, kdev) {
  242. if (knav_queue_is_reserved(inst))
  243. continue;
  244. if (!knav_queue_match_type(inst, type))
  245. continue;
  246. if (knav_queue_is_busy(inst))
  247. continue;
  248. qh = __knav_queue_open(inst, name, flags);
  249. goto unlock_ret;
  250. }
  251. unlock_ret:
  252. mutex_unlock(&knav_dev_lock);
  253. return qh;
  254. }
  255. static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
  256. {
  257. struct knav_range_info *range = inst->range;
  258. if (range->ops && range->ops->set_notify)
  259. range->ops->set_notify(range, inst, enabled);
  260. }
  261. static int knav_queue_enable_notifier(struct knav_queue *qh)
  262. {
  263. struct knav_queue_inst *inst = qh->inst;
  264. bool first;
  265. if (WARN_ON(!qh->notifier_fn))
  266. return -EINVAL;
  267. /* Adjust the per handle notifier count */
  268. first = (atomic_inc_return(&qh->notifier_enabled) == 1);
  269. if (!first)
  270. return 0; /* nothing to do */
  271. /* Now adjust the per instance notifier count */
  272. first = (atomic_inc_return(&inst->num_notifiers) == 1);
  273. if (first)
  274. knav_queue_set_notify(inst, true);
  275. return 0;
  276. }
  277. static int knav_queue_disable_notifier(struct knav_queue *qh)
  278. {
  279. struct knav_queue_inst *inst = qh->inst;
  280. bool last;
  281. last = (atomic_dec_return(&qh->notifier_enabled) == 0);
  282. if (!last)
  283. return 0; /* nothing to do */
  284. last = (atomic_dec_return(&inst->num_notifiers) == 0);
  285. if (last)
  286. knav_queue_set_notify(inst, false);
  287. return 0;
  288. }
  289. static int knav_queue_set_notifier(struct knav_queue *qh,
  290. struct knav_queue_notify_config *cfg)
  291. {
  292. knav_queue_notify_fn old_fn = qh->notifier_fn;
  293. if (!cfg)
  294. return -EINVAL;
  295. if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
  296. return -ENOTSUPP;
  297. if (!cfg->fn && old_fn)
  298. knav_queue_disable_notifier(qh);
  299. qh->notifier_fn = cfg->fn;
  300. qh->notifier_fn_arg = cfg->fn_arg;
  301. if (cfg->fn && !old_fn)
  302. knav_queue_enable_notifier(qh);
  303. return 0;
  304. }
  305. static int knav_gp_set_notify(struct knav_range_info *range,
  306. struct knav_queue_inst *inst,
  307. bool enabled)
  308. {
  309. unsigned queue;
  310. if (range->flags & RANGE_HAS_IRQ) {
  311. queue = inst->id - range->queue_base;
  312. if (enabled)
  313. enable_irq(range->irqs[queue].irq);
  314. else
  315. disable_irq_nosync(range->irqs[queue].irq);
  316. }
  317. return 0;
  318. }
  319. static int knav_gp_open_queue(struct knav_range_info *range,
  320. struct knav_queue_inst *inst, unsigned flags)
  321. {
  322. return knav_queue_setup_irq(range, inst);
  323. }
  324. static int knav_gp_close_queue(struct knav_range_info *range,
  325. struct knav_queue_inst *inst)
  326. {
  327. knav_queue_free_irq(inst);
  328. return 0;
  329. }
  330. struct knav_range_ops knav_gp_range_ops = {
  331. .set_notify = knav_gp_set_notify,
  332. .open_queue = knav_gp_open_queue,
  333. .close_queue = knav_gp_close_queue,
  334. };
  335. static int knav_queue_get_count(void *qhandle)
  336. {
  337. struct knav_queue *qh = qhandle;
  338. struct knav_queue_inst *inst = qh->inst;
  339. return readl_relaxed(&qh->reg_peek[0].entry_count) +
  340. atomic_read(&inst->desc_count);
  341. }
  342. static void knav_queue_debug_show_instance(struct seq_file *s,
  343. struct knav_queue_inst *inst)
  344. {
  345. struct knav_device *kdev = inst->kdev;
  346. struct knav_queue *qh;
  347. if (!knav_queue_is_busy(inst))
  348. return;
  349. seq_printf(s, "\tqueue id %d (%s)\n",
  350. kdev->base_id + inst->id, inst->name);
  351. for_each_handle_rcu(qh, inst) {
  352. seq_printf(s, "\t\thandle %p: ", qh);
  353. seq_printf(s, "pushes %8d, ",
  354. atomic_read(&qh->stats.pushes));
  355. seq_printf(s, "pops %8d, ",
  356. atomic_read(&qh->stats.pops));
  357. seq_printf(s, "count %8d, ",
  358. knav_queue_get_count(qh));
  359. seq_printf(s, "notifies %8d, ",
  360. atomic_read(&qh->stats.notifies));
  361. seq_printf(s, "push errors %8d, ",
  362. atomic_read(&qh->stats.push_errors));
  363. seq_printf(s, "pop errors %8d\n",
  364. atomic_read(&qh->stats.pop_errors));
  365. }
  366. }
  367. static int knav_queue_debug_show(struct seq_file *s, void *v)
  368. {
  369. struct knav_queue_inst *inst;
  370. int idx;
  371. mutex_lock(&knav_dev_lock);
  372. seq_printf(s, "%s: %u-%u\n",
  373. dev_name(kdev->dev), kdev->base_id,
  374. kdev->base_id + kdev->num_queues - 1);
  375. for_each_instance(idx, inst, kdev)
  376. knav_queue_debug_show_instance(s, inst);
  377. mutex_unlock(&knav_dev_lock);
  378. return 0;
  379. }
  380. static int knav_queue_debug_open(struct inode *inode, struct file *file)
  381. {
  382. return single_open(file, knav_queue_debug_show, NULL);
  383. }
  384. static const struct file_operations knav_queue_debug_ops = {
  385. .open = knav_queue_debug_open,
  386. .read = seq_read,
  387. .llseek = seq_lseek,
  388. .release = single_release,
  389. };
  390. static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
  391. u32 flags)
  392. {
  393. unsigned long end;
  394. u32 val = 0;
  395. end = jiffies + msecs_to_jiffies(timeout);
  396. while (time_after(end, jiffies)) {
  397. val = readl_relaxed(addr);
  398. if (flags)
  399. val &= flags;
  400. if (!val)
  401. break;
  402. cpu_relax();
  403. }
  404. return val ? -ETIMEDOUT : 0;
  405. }
  406. static int knav_queue_flush(struct knav_queue *qh)
  407. {
  408. struct knav_queue_inst *inst = qh->inst;
  409. unsigned id = inst->id - inst->qmgr->start_queue;
  410. atomic_set(&inst->desc_count, 0);
  411. writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
  412. return 0;
  413. }
  414. /**
  415. * knav_queue_open() - open a hardware queue
  416. * @name - name to give the queue handle
  417. * @id - desired queue number if any or specifes the type
  418. * of queue
  419. * @flags - the following flags are applicable to queues:
  420. * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
  421. * exclusive by default.
  422. * Subsequent attempts to open a shared queue should
  423. * also have this flag.
  424. *
  425. * Returns a handle to the open hardware queue if successful. Use IS_ERR()
  426. * to check the returned value for error codes.
  427. */
  428. void *knav_queue_open(const char *name, unsigned id,
  429. unsigned flags)
  430. {
  431. struct knav_queue *qh = ERR_PTR(-EINVAL);
  432. switch (id) {
  433. case KNAV_QUEUE_QPEND:
  434. case KNAV_QUEUE_ACC:
  435. case KNAV_QUEUE_GP:
  436. qh = knav_queue_open_by_type(name, id, flags);
  437. break;
  438. default:
  439. qh = knav_queue_open_by_id(name, id, flags);
  440. break;
  441. }
  442. return qh;
  443. }
  444. EXPORT_SYMBOL_GPL(knav_queue_open);
  445. /**
  446. * knav_queue_close() - close a hardware queue handle
  447. * @qh - handle to close
  448. */
  449. void knav_queue_close(void *qhandle)
  450. {
  451. struct knav_queue *qh = qhandle;
  452. struct knav_queue_inst *inst = qh->inst;
  453. while (atomic_read(&qh->notifier_enabled) > 0)
  454. knav_queue_disable_notifier(qh);
  455. mutex_lock(&knav_dev_lock);
  456. list_del_rcu(&qh->list);
  457. mutex_unlock(&knav_dev_lock);
  458. synchronize_rcu();
  459. if (!knav_queue_is_busy(inst)) {
  460. struct knav_range_info *range = inst->range;
  461. if (range->ops && range->ops->close_queue)
  462. range->ops->close_queue(range, inst);
  463. }
  464. devm_kfree(inst->kdev->dev, qh);
  465. }
  466. EXPORT_SYMBOL_GPL(knav_queue_close);
  467. /**
  468. * knav_queue_device_control() - Perform control operations on a queue
  469. * @qh - queue handle
  470. * @cmd - control commands
  471. * @arg - command argument
  472. *
  473. * Returns 0 on success, errno otherwise.
  474. */
  475. int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
  476. unsigned long arg)
  477. {
  478. struct knav_queue *qh = qhandle;
  479. struct knav_queue_notify_config *cfg;
  480. int ret;
  481. switch ((int)cmd) {
  482. case KNAV_QUEUE_GET_ID:
  483. ret = qh->inst->kdev->base_id + qh->inst->id;
  484. break;
  485. case KNAV_QUEUE_FLUSH:
  486. ret = knav_queue_flush(qh);
  487. break;
  488. case KNAV_QUEUE_SET_NOTIFIER:
  489. cfg = (void *)arg;
  490. ret = knav_queue_set_notifier(qh, cfg);
  491. break;
  492. case KNAV_QUEUE_ENABLE_NOTIFY:
  493. ret = knav_queue_enable_notifier(qh);
  494. break;
  495. case KNAV_QUEUE_DISABLE_NOTIFY:
  496. ret = knav_queue_disable_notifier(qh);
  497. break;
  498. case KNAV_QUEUE_GET_COUNT:
  499. ret = knav_queue_get_count(qh);
  500. break;
  501. default:
  502. ret = -ENOTSUPP;
  503. break;
  504. }
  505. return ret;
  506. }
  507. EXPORT_SYMBOL_GPL(knav_queue_device_control);
  508. /**
  509. * knav_queue_push() - push data (or descriptor) to the tail of a queue
  510. * @qh - hardware queue handle
  511. * @data - data to push
  512. * @size - size of data to push
  513. * @flags - can be used to pass additional information
  514. *
  515. * Returns 0 on success, errno otherwise.
  516. */
  517. int knav_queue_push(void *qhandle, dma_addr_t dma,
  518. unsigned size, unsigned flags)
  519. {
  520. struct knav_queue *qh = qhandle;
  521. u32 val;
  522. val = (u32)dma | ((size / 16) - 1);
  523. writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
  524. atomic_inc(&qh->stats.pushes);
  525. return 0;
  526. }
  527. /**
  528. * knav_queue_pop() - pop data (or descriptor) from the head of a queue
  529. * @qh - hardware queue handle
  530. * @size - (optional) size of the data pop'ed.
  531. *
  532. * Returns a DMA address on success, 0 on failure.
  533. */
  534. dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
  535. {
  536. struct knav_queue *qh = qhandle;
  537. struct knav_queue_inst *inst = qh->inst;
  538. dma_addr_t dma;
  539. u32 val, idx;
  540. /* are we accumulated? */
  541. if (inst->descs) {
  542. if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
  543. atomic_inc(&inst->desc_count);
  544. return 0;
  545. }
  546. idx = atomic_inc_return(&inst->desc_head);
  547. idx &= ACC_DESCS_MASK;
  548. val = inst->descs[idx];
  549. } else {
  550. val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
  551. if (unlikely(!val))
  552. return 0;
  553. }
  554. dma = val & DESC_PTR_MASK;
  555. if (size)
  556. *size = ((val & DESC_SIZE_MASK) + 1) * 16;
  557. atomic_inc(&qh->stats.pops);
  558. return dma;
  559. }
  560. /* carve out descriptors and push into queue */
  561. static void kdesc_fill_pool(struct knav_pool *pool)
  562. {
  563. struct knav_region *region;
  564. int i;
  565. region = pool->region;
  566. pool->desc_size = region->desc_size;
  567. for (i = 0; i < pool->num_desc; i++) {
  568. int index = pool->region_offset + i;
  569. dma_addr_t dma_addr;
  570. unsigned dma_size;
  571. dma_addr = region->dma_start + (region->desc_size * index);
  572. dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
  573. dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
  574. DMA_TO_DEVICE);
  575. knav_queue_push(pool->queue, dma_addr, dma_size, 0);
  576. }
  577. }
  578. /* pop out descriptors and close the queue */
  579. static void kdesc_empty_pool(struct knav_pool *pool)
  580. {
  581. dma_addr_t dma;
  582. unsigned size;
  583. void *desc;
  584. int i;
  585. if (!pool->queue)
  586. return;
  587. for (i = 0;; i++) {
  588. dma = knav_queue_pop(pool->queue, &size);
  589. if (!dma)
  590. break;
  591. desc = knav_pool_desc_dma_to_virt(pool, dma);
  592. if (!desc) {
  593. dev_dbg(pool->kdev->dev,
  594. "couldn't unmap desc, continuing\n");
  595. continue;
  596. }
  597. }
  598. WARN_ON(i != pool->num_desc);
  599. knav_queue_close(pool->queue);
  600. }
  601. /* Get the DMA address of a descriptor */
  602. dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
  603. {
  604. struct knav_pool *pool = ph;
  605. return pool->region->dma_start + (virt - pool->region->virt_start);
  606. }
  607. void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
  608. {
  609. struct knav_pool *pool = ph;
  610. return pool->region->virt_start + (dma - pool->region->dma_start);
  611. }
  612. /**
  613. * knav_pool_create() - Create a pool of descriptors
  614. * @name - name to give the pool handle
  615. * @num_desc - numbers of descriptors in the pool
  616. * @region_id - QMSS region id from which the descriptors are to be
  617. * allocated.
  618. *
  619. * Returns a pool handle on success.
  620. * Use IS_ERR_OR_NULL() to identify error values on return.
  621. */
  622. void *knav_pool_create(const char *name,
  623. int num_desc, int region_id)
  624. {
  625. struct knav_region *reg_itr, *region = NULL;
  626. struct knav_pool *pool, *pi;
  627. struct list_head *node;
  628. unsigned last_offset;
  629. bool slot_found;
  630. int ret;
  631. if (!kdev->dev)
  632. return ERR_PTR(-ENODEV);
  633. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  634. if (!pool) {
  635. dev_err(kdev->dev, "out of memory allocating pool\n");
  636. return ERR_PTR(-ENOMEM);
  637. }
  638. for_each_region(kdev, reg_itr) {
  639. if (reg_itr->id != region_id)
  640. continue;
  641. region = reg_itr;
  642. break;
  643. }
  644. if (!region) {
  645. dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
  646. ret = -EINVAL;
  647. goto err;
  648. }
  649. pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  650. if (IS_ERR_OR_NULL(pool->queue)) {
  651. dev_err(kdev->dev,
  652. "failed to open queue for pool(%s), error %ld\n",
  653. name, PTR_ERR(pool->queue));
  654. ret = PTR_ERR(pool->queue);
  655. goto err;
  656. }
  657. pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
  658. pool->kdev = kdev;
  659. pool->dev = kdev->dev;
  660. mutex_lock(&knav_dev_lock);
  661. if (num_desc > (region->num_desc - region->used_desc)) {
  662. dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
  663. region_id, name);
  664. ret = -ENOMEM;
  665. goto err;
  666. }
  667. /* Region maintains a sorted (by region offset) list of pools
  668. * use the first free slot which is large enough to accomodate
  669. * the request
  670. */
  671. last_offset = 0;
  672. slot_found = false;
  673. node = &region->pools;
  674. list_for_each_entry(pi, &region->pools, region_inst) {
  675. if ((pi->region_offset - last_offset) >= num_desc) {
  676. slot_found = true;
  677. break;
  678. }
  679. last_offset = pi->region_offset + pi->num_desc;
  680. }
  681. node = &pi->region_inst;
  682. if (slot_found) {
  683. pool->region = region;
  684. pool->num_desc = num_desc;
  685. pool->region_offset = last_offset;
  686. region->used_desc += num_desc;
  687. list_add_tail(&pool->list, &kdev->pools);
  688. list_add_tail(&pool->region_inst, node);
  689. } else {
  690. dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
  691. name, region_id);
  692. ret = -ENOMEM;
  693. goto err;
  694. }
  695. mutex_unlock(&knav_dev_lock);
  696. kdesc_fill_pool(pool);
  697. return pool;
  698. err:
  699. mutex_unlock(&knav_dev_lock);
  700. kfree(pool->name);
  701. devm_kfree(kdev->dev, pool);
  702. return ERR_PTR(ret);
  703. }
  704. EXPORT_SYMBOL_GPL(knav_pool_create);
  705. /**
  706. * knav_pool_destroy() - Free a pool of descriptors
  707. * @pool - pool handle
  708. */
  709. void knav_pool_destroy(void *ph)
  710. {
  711. struct knav_pool *pool = ph;
  712. if (!pool)
  713. return;
  714. if (!pool->region)
  715. return;
  716. kdesc_empty_pool(pool);
  717. mutex_lock(&knav_dev_lock);
  718. pool->region->used_desc -= pool->num_desc;
  719. list_del(&pool->region_inst);
  720. list_del(&pool->list);
  721. mutex_unlock(&knav_dev_lock);
  722. kfree(pool->name);
  723. devm_kfree(kdev->dev, pool);
  724. }
  725. EXPORT_SYMBOL_GPL(knav_pool_destroy);
  726. /**
  727. * knav_pool_desc_get() - Get a descriptor from the pool
  728. * @pool - pool handle
  729. *
  730. * Returns descriptor from the pool.
  731. */
  732. void *knav_pool_desc_get(void *ph)
  733. {
  734. struct knav_pool *pool = ph;
  735. dma_addr_t dma;
  736. unsigned size;
  737. void *data;
  738. dma = knav_queue_pop(pool->queue, &size);
  739. if (unlikely(!dma))
  740. return ERR_PTR(-ENOMEM);
  741. data = knav_pool_desc_dma_to_virt(pool, dma);
  742. return data;
  743. }
  744. /**
  745. * knav_pool_desc_put() - return a descriptor to the pool
  746. * @pool - pool handle
  747. */
  748. void knav_pool_desc_put(void *ph, void *desc)
  749. {
  750. struct knav_pool *pool = ph;
  751. dma_addr_t dma;
  752. dma = knav_pool_desc_virt_to_dma(pool, desc);
  753. knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
  754. }
  755. /**
  756. * knav_pool_desc_map() - Map descriptor for DMA transfer
  757. * @pool - pool handle
  758. * @desc - address of descriptor to map
  759. * @size - size of descriptor to map
  760. * @dma - DMA address return pointer
  761. * @dma_sz - adjusted return pointer
  762. *
  763. * Returns 0 on success, errno otherwise.
  764. */
  765. int knav_pool_desc_map(void *ph, void *desc, unsigned size,
  766. dma_addr_t *dma, unsigned *dma_sz)
  767. {
  768. struct knav_pool *pool = ph;
  769. *dma = knav_pool_desc_virt_to_dma(pool, desc);
  770. size = min(size, pool->region->desc_size);
  771. size = ALIGN(size, SMP_CACHE_BYTES);
  772. *dma_sz = size;
  773. dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
  774. /* Ensure the descriptor reaches to the memory */
  775. __iowmb();
  776. return 0;
  777. }
  778. /**
  779. * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
  780. * @pool - pool handle
  781. * @dma - DMA address of descriptor to unmap
  782. * @dma_sz - size of descriptor to unmap
  783. *
  784. * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
  785. * error values on return.
  786. */
  787. void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
  788. {
  789. struct knav_pool *pool = ph;
  790. unsigned desc_sz;
  791. void *desc;
  792. desc_sz = min(dma_sz, pool->region->desc_size);
  793. desc = knav_pool_desc_dma_to_virt(pool, dma);
  794. dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
  795. prefetch(desc);
  796. return desc;
  797. }
  798. /**
  799. * knav_pool_count() - Get the number of descriptors in pool.
  800. * @pool - pool handle
  801. * Returns number of elements in the pool.
  802. */
  803. int knav_pool_count(void *ph)
  804. {
  805. struct knav_pool *pool = ph;
  806. return knav_queue_get_count(pool->queue);
  807. }
  808. static void knav_queue_setup_region(struct knav_device *kdev,
  809. struct knav_region *region)
  810. {
  811. unsigned hw_num_desc, hw_desc_size, size;
  812. struct knav_reg_region __iomem *regs;
  813. struct knav_qmgr_info *qmgr;
  814. struct knav_pool *pool;
  815. int id = region->id;
  816. struct page *page;
  817. /* unused region? */
  818. if (!region->num_desc) {
  819. dev_warn(kdev->dev, "unused region %s\n", region->name);
  820. return;
  821. }
  822. /* get hardware descriptor value */
  823. hw_num_desc = ilog2(region->num_desc - 1) + 1;
  824. /* did we force fit ourselves into nothingness? */
  825. if (region->num_desc < 32) {
  826. region->num_desc = 0;
  827. dev_warn(kdev->dev, "too few descriptors in region %s\n",
  828. region->name);
  829. return;
  830. }
  831. size = region->num_desc * region->desc_size;
  832. region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
  833. GFP_DMA32);
  834. if (!region->virt_start) {
  835. region->num_desc = 0;
  836. dev_err(kdev->dev, "memory alloc failed for region %s\n",
  837. region->name);
  838. return;
  839. }
  840. region->virt_end = region->virt_start + size;
  841. page = virt_to_page(region->virt_start);
  842. region->dma_start = dma_map_page(kdev->dev, page, 0, size,
  843. DMA_BIDIRECTIONAL);
  844. if (dma_mapping_error(kdev->dev, region->dma_start)) {
  845. dev_err(kdev->dev, "dma map failed for region %s\n",
  846. region->name);
  847. goto fail;
  848. }
  849. region->dma_end = region->dma_start + size;
  850. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  851. if (!pool) {
  852. dev_err(kdev->dev, "out of memory allocating dummy pool\n");
  853. goto fail;
  854. }
  855. pool->num_desc = 0;
  856. pool->region_offset = region->num_desc;
  857. list_add(&pool->region_inst, &region->pools);
  858. dev_dbg(kdev->dev,
  859. "region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
  860. region->name, id, region->desc_size, region->num_desc,
  861. region->link_index, region->dma_start, region->dma_end,
  862. region->virt_start, region->virt_end);
  863. hw_desc_size = (region->desc_size / 16) - 1;
  864. hw_num_desc -= 5;
  865. for_each_qmgr(kdev, qmgr) {
  866. regs = qmgr->reg_region + id;
  867. writel_relaxed(region->dma_start, &regs->base);
  868. writel_relaxed(region->link_index, &regs->start_index);
  869. writel_relaxed(hw_desc_size << 16 | hw_num_desc,
  870. &regs->size_count);
  871. }
  872. return;
  873. fail:
  874. if (region->dma_start)
  875. dma_unmap_page(kdev->dev, region->dma_start, size,
  876. DMA_BIDIRECTIONAL);
  877. if (region->virt_start)
  878. free_pages_exact(region->virt_start, size);
  879. region->num_desc = 0;
  880. return;
  881. }
  882. static const char *knav_queue_find_name(struct device_node *node)
  883. {
  884. const char *name;
  885. if (of_property_read_string(node, "label", &name) < 0)
  886. name = node->name;
  887. if (!name)
  888. name = "unknown";
  889. return name;
  890. }
  891. static int knav_queue_setup_regions(struct knav_device *kdev,
  892. struct device_node *regions)
  893. {
  894. struct device *dev = kdev->dev;
  895. struct knav_region *region;
  896. struct device_node *child;
  897. u32 temp[2];
  898. int ret;
  899. for_each_child_of_node(regions, child) {
  900. region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
  901. if (!region) {
  902. dev_err(dev, "out of memory allocating region\n");
  903. return -ENOMEM;
  904. }
  905. region->name = knav_queue_find_name(child);
  906. of_property_read_u32(child, "id", &region->id);
  907. ret = of_property_read_u32_array(child, "region-spec", temp, 2);
  908. if (!ret) {
  909. region->num_desc = temp[0];
  910. region->desc_size = temp[1];
  911. } else {
  912. dev_err(dev, "invalid region info %s\n", region->name);
  913. devm_kfree(dev, region);
  914. continue;
  915. }
  916. if (!of_get_property(child, "link-index", NULL)) {
  917. dev_err(dev, "No link info for %s\n", region->name);
  918. devm_kfree(dev, region);
  919. continue;
  920. }
  921. ret = of_property_read_u32(child, "link-index",
  922. &region->link_index);
  923. if (ret) {
  924. dev_err(dev, "link index not found for %s\n",
  925. region->name);
  926. devm_kfree(dev, region);
  927. continue;
  928. }
  929. INIT_LIST_HEAD(&region->pools);
  930. list_add_tail(&region->list, &kdev->regions);
  931. }
  932. if (list_empty(&kdev->regions)) {
  933. dev_err(dev, "no valid region information found\n");
  934. return -ENODEV;
  935. }
  936. /* Next, we run through the regions and set things up */
  937. for_each_region(kdev, region)
  938. knav_queue_setup_region(kdev, region);
  939. return 0;
  940. }
  941. static int knav_get_link_ram(struct knav_device *kdev,
  942. const char *name,
  943. struct knav_link_ram_block *block)
  944. {
  945. struct platform_device *pdev = to_platform_device(kdev->dev);
  946. struct device_node *node = pdev->dev.of_node;
  947. u32 temp[2];
  948. /*
  949. * Note: link ram resources are specified in "entry" sized units. In
  950. * reality, although entries are ~40bits in hardware, we treat them as
  951. * 64-bit entities here.
  952. *
  953. * For example, to specify the internal link ram for Keystone-I class
  954. * devices, we would set the linkram0 resource to 0x80000-0x83fff.
  955. *
  956. * This gets a bit weird when other link rams are used. For example,
  957. * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
  958. * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
  959. * which accounts for 64-bits per entry, for 16K entries.
  960. */
  961. if (!of_property_read_u32_array(node, name , temp, 2)) {
  962. if (temp[0]) {
  963. /*
  964. * queue_base specified => using internal or onchip
  965. * link ram WARNING - we do not "reserve" this block
  966. */
  967. block->phys = (dma_addr_t)temp[0];
  968. block->virt = NULL;
  969. block->size = temp[1];
  970. } else {
  971. block->size = temp[1];
  972. /* queue_base not specific => allocate requested size */
  973. block->virt = dmam_alloc_coherent(kdev->dev,
  974. 8 * block->size, &block->phys,
  975. GFP_KERNEL);
  976. if (!block->virt) {
  977. dev_err(kdev->dev, "failed to alloc linkram\n");
  978. return -ENOMEM;
  979. }
  980. }
  981. } else {
  982. return -ENODEV;
  983. }
  984. return 0;
  985. }
  986. static int knav_queue_setup_link_ram(struct knav_device *kdev)
  987. {
  988. struct knav_link_ram_block *block;
  989. struct knav_qmgr_info *qmgr;
  990. for_each_qmgr(kdev, qmgr) {
  991. block = &kdev->link_rams[0];
  992. dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
  993. block->phys, block->virt, block->size);
  994. writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
  995. writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
  996. block++;
  997. if (!block->size)
  998. return 0;
  999. dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
  1000. block->phys, block->virt, block->size);
  1001. writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
  1002. }
  1003. return 0;
  1004. }
  1005. static int knav_setup_queue_range(struct knav_device *kdev,
  1006. struct device_node *node)
  1007. {
  1008. struct device *dev = kdev->dev;
  1009. struct knav_range_info *range;
  1010. struct knav_qmgr_info *qmgr;
  1011. u32 temp[2], start, end, id, index;
  1012. int ret, i;
  1013. range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
  1014. if (!range) {
  1015. dev_err(dev, "out of memory allocating range\n");
  1016. return -ENOMEM;
  1017. }
  1018. range->kdev = kdev;
  1019. range->name = knav_queue_find_name(node);
  1020. ret = of_property_read_u32_array(node, "qrange", temp, 2);
  1021. if (!ret) {
  1022. range->queue_base = temp[0] - kdev->base_id;
  1023. range->num_queues = temp[1];
  1024. } else {
  1025. dev_err(dev, "invalid queue range %s\n", range->name);
  1026. devm_kfree(dev, range);
  1027. return -EINVAL;
  1028. }
  1029. for (i = 0; i < RANGE_MAX_IRQS; i++) {
  1030. struct of_phandle_args oirq;
  1031. if (of_irq_parse_one(node, i, &oirq))
  1032. break;
  1033. range->irqs[i].irq = irq_create_of_mapping(&oirq);
  1034. if (range->irqs[i].irq == IRQ_NONE)
  1035. break;
  1036. range->num_irqs++;
  1037. if (oirq.args_count == 3)
  1038. range->irqs[i].cpu_map =
  1039. (oirq.args[2] & 0x0000ff00) >> 8;
  1040. }
  1041. range->num_irqs = min(range->num_irqs, range->num_queues);
  1042. if (range->num_irqs)
  1043. range->flags |= RANGE_HAS_IRQ;
  1044. if (of_get_property(node, "qalloc-by-id", NULL))
  1045. range->flags |= RANGE_RESERVED;
  1046. if (of_get_property(node, "accumulator", NULL)) {
  1047. ret = knav_init_acc_range(kdev, node, range);
  1048. if (ret < 0) {
  1049. devm_kfree(dev, range);
  1050. return ret;
  1051. }
  1052. } else {
  1053. range->ops = &knav_gp_range_ops;
  1054. }
  1055. /* set threshold to 1, and flush out the queues */
  1056. for_each_qmgr(kdev, qmgr) {
  1057. start = max(qmgr->start_queue, range->queue_base);
  1058. end = min(qmgr->start_queue + qmgr->num_queues,
  1059. range->queue_base + range->num_queues);
  1060. for (id = start; id < end; id++) {
  1061. index = id - qmgr->start_queue;
  1062. writel_relaxed(THRESH_GTE | 1,
  1063. &qmgr->reg_peek[index].ptr_size_thresh);
  1064. writel_relaxed(0,
  1065. &qmgr->reg_push[index].ptr_size_thresh);
  1066. }
  1067. }
  1068. list_add_tail(&range->list, &kdev->queue_ranges);
  1069. dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
  1070. range->name, range->queue_base,
  1071. range->queue_base + range->num_queues - 1,
  1072. range->num_irqs,
  1073. (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
  1074. (range->flags & RANGE_RESERVED) ? ", reserved" : "",
  1075. (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
  1076. kdev->num_queues_in_use += range->num_queues;
  1077. return 0;
  1078. }
  1079. static int knav_setup_queue_pools(struct knav_device *kdev,
  1080. struct device_node *queue_pools)
  1081. {
  1082. struct device_node *type, *range;
  1083. int ret;
  1084. for_each_child_of_node(queue_pools, type) {
  1085. for_each_child_of_node(type, range) {
  1086. ret = knav_setup_queue_range(kdev, range);
  1087. /* return value ignored, we init the rest... */
  1088. }
  1089. }
  1090. /* ... and barf if they all failed! */
  1091. if (list_empty(&kdev->queue_ranges)) {
  1092. dev_err(kdev->dev, "no valid queue range found\n");
  1093. return -ENODEV;
  1094. }
  1095. return 0;
  1096. }
  1097. static void knav_free_queue_range(struct knav_device *kdev,
  1098. struct knav_range_info *range)
  1099. {
  1100. if (range->ops && range->ops->free_range)
  1101. range->ops->free_range(range);
  1102. list_del(&range->list);
  1103. devm_kfree(kdev->dev, range);
  1104. }
  1105. static void knav_free_queue_ranges(struct knav_device *kdev)
  1106. {
  1107. struct knav_range_info *range;
  1108. for (;;) {
  1109. range = first_queue_range(kdev);
  1110. if (!range)
  1111. break;
  1112. knav_free_queue_range(kdev, range);
  1113. }
  1114. }
  1115. static void knav_queue_free_regions(struct knav_device *kdev)
  1116. {
  1117. struct knav_region *region;
  1118. struct knav_pool *pool;
  1119. unsigned size;
  1120. for (;;) {
  1121. region = first_region(kdev);
  1122. if (!region)
  1123. break;
  1124. list_for_each_entry(pool, &region->pools, region_inst)
  1125. knav_pool_destroy(pool);
  1126. size = region->virt_end - region->virt_start;
  1127. if (size)
  1128. free_pages_exact(region->virt_start, size);
  1129. list_del(&region->list);
  1130. devm_kfree(kdev->dev, region);
  1131. }
  1132. }
  1133. static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
  1134. struct device_node *node, int index)
  1135. {
  1136. struct resource res;
  1137. void __iomem *regs;
  1138. int ret;
  1139. ret = of_address_to_resource(node, index, &res);
  1140. if (ret) {
  1141. dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
  1142. node->name, index);
  1143. return ERR_PTR(ret);
  1144. }
  1145. regs = devm_ioremap_resource(kdev->dev, &res);
  1146. if (IS_ERR(regs))
  1147. dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
  1148. index, node->name);
  1149. return regs;
  1150. }
  1151. static int knav_queue_init_qmgrs(struct knav_device *kdev,
  1152. struct device_node *qmgrs)
  1153. {
  1154. struct device *dev = kdev->dev;
  1155. struct knav_qmgr_info *qmgr;
  1156. struct device_node *child;
  1157. u32 temp[2];
  1158. int ret;
  1159. for_each_child_of_node(qmgrs, child) {
  1160. qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
  1161. if (!qmgr) {
  1162. dev_err(dev, "out of memory allocating qmgr\n");
  1163. return -ENOMEM;
  1164. }
  1165. ret = of_property_read_u32_array(child, "managed-queues",
  1166. temp, 2);
  1167. if (!ret) {
  1168. qmgr->start_queue = temp[0];
  1169. qmgr->num_queues = temp[1];
  1170. } else {
  1171. dev_err(dev, "invalid qmgr queue range\n");
  1172. devm_kfree(dev, qmgr);
  1173. continue;
  1174. }
  1175. dev_info(dev, "qmgr start queue %d, number of queues %d\n",
  1176. qmgr->start_queue, qmgr->num_queues);
  1177. qmgr->reg_peek =
  1178. knav_queue_map_reg(kdev, child,
  1179. KNAV_QUEUE_PEEK_REG_INDEX);
  1180. qmgr->reg_status =
  1181. knav_queue_map_reg(kdev, child,
  1182. KNAV_QUEUE_STATUS_REG_INDEX);
  1183. qmgr->reg_config =
  1184. knav_queue_map_reg(kdev, child,
  1185. KNAV_QUEUE_CONFIG_REG_INDEX);
  1186. qmgr->reg_region =
  1187. knav_queue_map_reg(kdev, child,
  1188. KNAV_QUEUE_REGION_REG_INDEX);
  1189. qmgr->reg_push =
  1190. knav_queue_map_reg(kdev, child,
  1191. KNAV_QUEUE_PUSH_REG_INDEX);
  1192. qmgr->reg_pop =
  1193. knav_queue_map_reg(kdev, child,
  1194. KNAV_QUEUE_POP_REG_INDEX);
  1195. if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
  1196. IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
  1197. IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
  1198. dev_err(dev, "failed to map qmgr regs\n");
  1199. if (!IS_ERR(qmgr->reg_peek))
  1200. devm_iounmap(dev, qmgr->reg_peek);
  1201. if (!IS_ERR(qmgr->reg_status))
  1202. devm_iounmap(dev, qmgr->reg_status);
  1203. if (!IS_ERR(qmgr->reg_config))
  1204. devm_iounmap(dev, qmgr->reg_config);
  1205. if (!IS_ERR(qmgr->reg_region))
  1206. devm_iounmap(dev, qmgr->reg_region);
  1207. if (!IS_ERR(qmgr->reg_push))
  1208. devm_iounmap(dev, qmgr->reg_push);
  1209. if (!IS_ERR(qmgr->reg_pop))
  1210. devm_iounmap(dev, qmgr->reg_pop);
  1211. devm_kfree(dev, qmgr);
  1212. continue;
  1213. }
  1214. list_add_tail(&qmgr->list, &kdev->qmgrs);
  1215. dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
  1216. qmgr->start_queue, qmgr->num_queues,
  1217. qmgr->reg_peek, qmgr->reg_status,
  1218. qmgr->reg_config, qmgr->reg_region,
  1219. qmgr->reg_push, qmgr->reg_pop);
  1220. }
  1221. return 0;
  1222. }
  1223. static int knav_queue_init_pdsps(struct knav_device *kdev,
  1224. struct device_node *pdsps)
  1225. {
  1226. struct device *dev = kdev->dev;
  1227. struct knav_pdsp_info *pdsp;
  1228. struct device_node *child;
  1229. int ret;
  1230. for_each_child_of_node(pdsps, child) {
  1231. pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
  1232. if (!pdsp) {
  1233. dev_err(dev, "out of memory allocating pdsp\n");
  1234. return -ENOMEM;
  1235. }
  1236. pdsp->name = knav_queue_find_name(child);
  1237. ret = of_property_read_string(child, "firmware",
  1238. &pdsp->firmware);
  1239. if (ret < 0 || !pdsp->firmware) {
  1240. dev_err(dev, "unknown firmware for pdsp %s\n",
  1241. pdsp->name);
  1242. devm_kfree(dev, pdsp);
  1243. continue;
  1244. }
  1245. dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
  1246. pdsp->firmware);
  1247. pdsp->iram =
  1248. knav_queue_map_reg(kdev, child,
  1249. KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
  1250. pdsp->regs =
  1251. knav_queue_map_reg(kdev, child,
  1252. KNAV_QUEUE_PDSP_REGS_REG_INDEX);
  1253. pdsp->intd =
  1254. knav_queue_map_reg(kdev, child,
  1255. KNAV_QUEUE_PDSP_INTD_REG_INDEX);
  1256. pdsp->command =
  1257. knav_queue_map_reg(kdev, child,
  1258. KNAV_QUEUE_PDSP_CMD_REG_INDEX);
  1259. if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
  1260. IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
  1261. dev_err(dev, "failed to map pdsp %s regs\n",
  1262. pdsp->name);
  1263. if (!IS_ERR(pdsp->command))
  1264. devm_iounmap(dev, pdsp->command);
  1265. if (!IS_ERR(pdsp->iram))
  1266. devm_iounmap(dev, pdsp->iram);
  1267. if (!IS_ERR(pdsp->regs))
  1268. devm_iounmap(dev, pdsp->regs);
  1269. if (!IS_ERR(pdsp->intd))
  1270. devm_iounmap(dev, pdsp->intd);
  1271. devm_kfree(dev, pdsp);
  1272. continue;
  1273. }
  1274. of_property_read_u32(child, "id", &pdsp->id);
  1275. list_add_tail(&pdsp->list, &kdev->pdsps);
  1276. dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
  1277. pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
  1278. pdsp->intd, pdsp->firmware);
  1279. }
  1280. return 0;
  1281. }
  1282. static int knav_queue_stop_pdsp(struct knav_device *kdev,
  1283. struct knav_pdsp_info *pdsp)
  1284. {
  1285. u32 val, timeout = 1000;
  1286. int ret;
  1287. val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
  1288. writel_relaxed(val, &pdsp->regs->control);
  1289. ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
  1290. PDSP_CTRL_RUNNING);
  1291. if (ret < 0) {
  1292. dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
  1293. return ret;
  1294. }
  1295. return 0;
  1296. }
  1297. static int knav_queue_load_pdsp(struct knav_device *kdev,
  1298. struct knav_pdsp_info *pdsp)
  1299. {
  1300. int i, ret, fwlen;
  1301. const struct firmware *fw;
  1302. u32 *fwdata;
  1303. ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
  1304. if (ret) {
  1305. dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
  1306. pdsp->firmware, pdsp->name);
  1307. return ret;
  1308. }
  1309. writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
  1310. /* download the firmware */
  1311. fwdata = (u32 *)fw->data;
  1312. fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
  1313. for (i = 0; i < fwlen; i++)
  1314. writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
  1315. release_firmware(fw);
  1316. return 0;
  1317. }
  1318. static int knav_queue_start_pdsp(struct knav_device *kdev,
  1319. struct knav_pdsp_info *pdsp)
  1320. {
  1321. u32 val, timeout = 1000;
  1322. int ret;
  1323. /* write a command for sync */
  1324. writel_relaxed(0xffffffff, pdsp->command);
  1325. while (readl_relaxed(pdsp->command) != 0xffffffff)
  1326. cpu_relax();
  1327. /* soft reset the PDSP */
  1328. val = readl_relaxed(&pdsp->regs->control);
  1329. val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
  1330. writel_relaxed(val, &pdsp->regs->control);
  1331. /* enable pdsp */
  1332. val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
  1333. writel_relaxed(val, &pdsp->regs->control);
  1334. /* wait for command register to clear */
  1335. ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
  1336. if (ret < 0) {
  1337. dev_err(kdev->dev,
  1338. "timed out on pdsp %s command register wait\n",
  1339. pdsp->name);
  1340. return ret;
  1341. }
  1342. return 0;
  1343. }
  1344. static void knav_queue_stop_pdsps(struct knav_device *kdev)
  1345. {
  1346. struct knav_pdsp_info *pdsp;
  1347. /* disable all pdsps */
  1348. for_each_pdsp(kdev, pdsp)
  1349. knav_queue_stop_pdsp(kdev, pdsp);
  1350. }
  1351. static int knav_queue_start_pdsps(struct knav_device *kdev)
  1352. {
  1353. struct knav_pdsp_info *pdsp;
  1354. int ret;
  1355. knav_queue_stop_pdsps(kdev);
  1356. /* now load them all */
  1357. for_each_pdsp(kdev, pdsp) {
  1358. ret = knav_queue_load_pdsp(kdev, pdsp);
  1359. if (ret < 0)
  1360. return ret;
  1361. }
  1362. for_each_pdsp(kdev, pdsp) {
  1363. ret = knav_queue_start_pdsp(kdev, pdsp);
  1364. WARN_ON(ret);
  1365. }
  1366. return 0;
  1367. }
  1368. static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
  1369. {
  1370. struct knav_qmgr_info *qmgr;
  1371. for_each_qmgr(kdev, qmgr) {
  1372. if ((id >= qmgr->start_queue) &&
  1373. (id < qmgr->start_queue + qmgr->num_queues))
  1374. return qmgr;
  1375. }
  1376. return NULL;
  1377. }
  1378. static int knav_queue_init_queue(struct knav_device *kdev,
  1379. struct knav_range_info *range,
  1380. struct knav_queue_inst *inst,
  1381. unsigned id)
  1382. {
  1383. char irq_name[KNAV_NAME_SIZE];
  1384. inst->qmgr = knav_find_qmgr(id);
  1385. if (!inst->qmgr)
  1386. return -1;
  1387. INIT_LIST_HEAD(&inst->handles);
  1388. inst->kdev = kdev;
  1389. inst->range = range;
  1390. inst->irq_num = -1;
  1391. inst->id = id;
  1392. scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
  1393. inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
  1394. if (range->ops && range->ops->init_queue)
  1395. return range->ops->init_queue(range, inst);
  1396. else
  1397. return 0;
  1398. }
  1399. static int knav_queue_init_queues(struct knav_device *kdev)
  1400. {
  1401. struct knav_range_info *range;
  1402. int size, id, base_idx;
  1403. int idx = 0, ret = 0;
  1404. /* how much do we need for instance data? */
  1405. size = sizeof(struct knav_queue_inst);
  1406. /* round this up to a power of 2, keep the index to instance
  1407. * arithmetic fast.
  1408. * */
  1409. kdev->inst_shift = order_base_2(size);
  1410. size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
  1411. kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
  1412. if (!kdev->instances)
  1413. return -1;
  1414. for_each_queue_range(kdev, range) {
  1415. if (range->ops && range->ops->init_range)
  1416. range->ops->init_range(range);
  1417. base_idx = idx;
  1418. for (id = range->queue_base;
  1419. id < range->queue_base + range->num_queues; id++, idx++) {
  1420. ret = knav_queue_init_queue(kdev, range,
  1421. knav_queue_idx_to_inst(kdev, idx), id);
  1422. if (ret < 0)
  1423. return ret;
  1424. }
  1425. range->queue_base_inst =
  1426. knav_queue_idx_to_inst(kdev, base_idx);
  1427. }
  1428. return 0;
  1429. }
  1430. static int knav_queue_probe(struct platform_device *pdev)
  1431. {
  1432. struct device_node *node = pdev->dev.of_node;
  1433. struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
  1434. struct device *dev = &pdev->dev;
  1435. u32 temp[2];
  1436. int ret;
  1437. if (!node) {
  1438. dev_err(dev, "device tree info unavailable\n");
  1439. return -ENODEV;
  1440. }
  1441. kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
  1442. if (!kdev) {
  1443. dev_err(dev, "memory allocation failed\n");
  1444. return -ENOMEM;
  1445. }
  1446. platform_set_drvdata(pdev, kdev);
  1447. kdev->dev = dev;
  1448. INIT_LIST_HEAD(&kdev->queue_ranges);
  1449. INIT_LIST_HEAD(&kdev->qmgrs);
  1450. INIT_LIST_HEAD(&kdev->pools);
  1451. INIT_LIST_HEAD(&kdev->regions);
  1452. INIT_LIST_HEAD(&kdev->pdsps);
  1453. pm_runtime_enable(&pdev->dev);
  1454. ret = pm_runtime_get_sync(&pdev->dev);
  1455. if (ret < 0) {
  1456. dev_err(dev, "Failed to enable QMSS\n");
  1457. return ret;
  1458. }
  1459. if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
  1460. dev_err(dev, "queue-range not specified\n");
  1461. ret = -ENODEV;
  1462. goto err;
  1463. }
  1464. kdev->base_id = temp[0];
  1465. kdev->num_queues = temp[1];
  1466. /* Initialize queue managers using device tree configuration */
  1467. qmgrs = of_get_child_by_name(node, "qmgrs");
  1468. if (!qmgrs) {
  1469. dev_err(dev, "queue manager info not specified\n");
  1470. ret = -ENODEV;
  1471. goto err;
  1472. }
  1473. ret = knav_queue_init_qmgrs(kdev, qmgrs);
  1474. of_node_put(qmgrs);
  1475. if (ret)
  1476. goto err;
  1477. /* get pdsp configuration values from device tree */
  1478. pdsps = of_get_child_by_name(node, "pdsps");
  1479. if (pdsps) {
  1480. ret = knav_queue_init_pdsps(kdev, pdsps);
  1481. if (ret)
  1482. goto err;
  1483. ret = knav_queue_start_pdsps(kdev);
  1484. if (ret)
  1485. goto err;
  1486. }
  1487. of_node_put(pdsps);
  1488. /* get usable queue range values from device tree */
  1489. queue_pools = of_get_child_by_name(node, "queue-pools");
  1490. if (!queue_pools) {
  1491. dev_err(dev, "queue-pools not specified\n");
  1492. ret = -ENODEV;
  1493. goto err;
  1494. }
  1495. ret = knav_setup_queue_pools(kdev, queue_pools);
  1496. of_node_put(queue_pools);
  1497. if (ret)
  1498. goto err;
  1499. ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
  1500. if (ret) {
  1501. dev_err(kdev->dev, "could not setup linking ram\n");
  1502. goto err;
  1503. }
  1504. ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
  1505. if (ret) {
  1506. /*
  1507. * nothing really, we have one linking ram already, so we just
  1508. * live within our means
  1509. */
  1510. }
  1511. ret = knav_queue_setup_link_ram(kdev);
  1512. if (ret)
  1513. goto err;
  1514. regions = of_get_child_by_name(node, "descriptor-regions");
  1515. if (!regions) {
  1516. dev_err(dev, "descriptor-regions not specified\n");
  1517. goto err;
  1518. }
  1519. ret = knav_queue_setup_regions(kdev, regions);
  1520. of_node_put(regions);
  1521. if (ret)
  1522. goto err;
  1523. ret = knav_queue_init_queues(kdev);
  1524. if (ret < 0) {
  1525. dev_err(dev, "hwqueue initialization failed\n");
  1526. goto err;
  1527. }
  1528. debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
  1529. &knav_queue_debug_ops);
  1530. return 0;
  1531. err:
  1532. knav_queue_stop_pdsps(kdev);
  1533. knav_queue_free_regions(kdev);
  1534. knav_free_queue_ranges(kdev);
  1535. pm_runtime_put_sync(&pdev->dev);
  1536. pm_runtime_disable(&pdev->dev);
  1537. return ret;
  1538. }
  1539. static int knav_queue_remove(struct platform_device *pdev)
  1540. {
  1541. /* TODO: Free resources */
  1542. pm_runtime_put_sync(&pdev->dev);
  1543. pm_runtime_disable(&pdev->dev);
  1544. return 0;
  1545. }
  1546. /* Match table for of_platform binding */
  1547. static struct of_device_id keystone_qmss_of_match[] = {
  1548. { .compatible = "ti,keystone-navigator-qmss", },
  1549. {},
  1550. };
  1551. MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
  1552. static struct platform_driver keystone_qmss_driver = {
  1553. .probe = knav_queue_probe,
  1554. .remove = knav_queue_remove,
  1555. .driver = {
  1556. .name = "keystone-navigator-qmss",
  1557. .owner = THIS_MODULE,
  1558. .of_match_table = keystone_qmss_of_match,
  1559. },
  1560. };
  1561. module_platform_driver(keystone_qmss_driver);
  1562. MODULE_LICENSE("GPL v2");
  1563. MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
  1564. MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
  1565. MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");