spi-nor.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132
  1. /*
  2. * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
  3. * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
  4. *
  5. * Copyright (C) 2005, Intec Automation Inc.
  6. * Copyright (C) 2014, Freescale Semiconductor, Inc.
  7. *
  8. * This code is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/err.h>
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/device.h>
  16. #include <linux/mutex.h>
  17. #include <linux/math64.h>
  18. #include <linux/mtd/cfi.h>
  19. #include <linux/mtd/mtd.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/spi/flash.h>
  22. #include <linux/mtd/spi-nor.h>
  23. /* Define max times to check status register before we give up. */
  24. #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
  25. #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
  26. /*
  27. * Read the status register, returning its value in the location
  28. * Return the status register value.
  29. * Returns negative if error occurred.
  30. */
  31. static int read_sr(struct spi_nor *nor)
  32. {
  33. int ret;
  34. u8 val;
  35. ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
  36. if (ret < 0) {
  37. pr_err("error %d reading SR\n", (int) ret);
  38. return ret;
  39. }
  40. return val;
  41. }
  42. /*
  43. * Read the flag status register, returning its value in the location
  44. * Return the status register value.
  45. * Returns negative if error occurred.
  46. */
  47. static int read_fsr(struct spi_nor *nor)
  48. {
  49. int ret;
  50. u8 val;
  51. ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
  52. if (ret < 0) {
  53. pr_err("error %d reading FSR\n", ret);
  54. return ret;
  55. }
  56. return val;
  57. }
  58. /*
  59. * Read configuration register, returning its value in the
  60. * location. Return the configuration register value.
  61. * Returns negative if error occured.
  62. */
  63. static int read_cr(struct spi_nor *nor)
  64. {
  65. int ret;
  66. u8 val;
  67. ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
  68. if (ret < 0) {
  69. dev_err(nor->dev, "error %d reading CR\n", ret);
  70. return ret;
  71. }
  72. return val;
  73. }
  74. /*
  75. * Dummy Cycle calculation for different type of read.
  76. * It can be used to support more commands with
  77. * different dummy cycle requirements.
  78. */
  79. static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
  80. {
  81. switch (nor->flash_read) {
  82. case SPI_NOR_FAST:
  83. case SPI_NOR_DUAL:
  84. case SPI_NOR_QUAD:
  85. return 1;
  86. case SPI_NOR_NORMAL:
  87. return 0;
  88. }
  89. return 0;
  90. }
  91. /*
  92. * Write status register 1 byte
  93. * Returns negative if error occurred.
  94. */
  95. static inline int write_sr(struct spi_nor *nor, u8 val)
  96. {
  97. nor->cmd_buf[0] = val;
  98. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  99. }
  100. /*
  101. * Set write enable latch with Write Enable command.
  102. * Returns negative if error occurred.
  103. */
  104. static inline int write_enable(struct spi_nor *nor)
  105. {
  106. return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
  107. }
  108. /*
  109. * Send write disble instruction to the chip.
  110. */
  111. static inline int write_disable(struct spi_nor *nor)
  112. {
  113. return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
  114. }
  115. static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
  116. {
  117. return mtd->priv;
  118. }
  119. /* Enable/disable 4-byte addressing mode. */
  120. static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
  121. {
  122. int status;
  123. bool need_wren = false;
  124. u8 cmd;
  125. switch (JEDEC_MFR(jedec_id)) {
  126. case CFI_MFR_ST: /* Micron, actually */
  127. /* Some Micron need WREN command; all will accept it */
  128. need_wren = true;
  129. case CFI_MFR_MACRONIX:
  130. case 0xEF /* winbond */:
  131. if (need_wren)
  132. write_enable(nor);
  133. cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
  134. status = nor->write_reg(nor, cmd, NULL, 0, 0);
  135. if (need_wren)
  136. write_disable(nor);
  137. return status;
  138. default:
  139. /* Spansion style */
  140. nor->cmd_buf[0] = enable << 7;
  141. return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
  142. }
  143. }
  144. static int spi_nor_wait_till_ready(struct spi_nor *nor)
  145. {
  146. unsigned long deadline;
  147. int sr;
  148. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  149. do {
  150. cond_resched();
  151. sr = read_sr(nor);
  152. if (sr < 0)
  153. break;
  154. else if (!(sr & SR_WIP))
  155. return 0;
  156. } while (!time_after_eq(jiffies, deadline));
  157. return -ETIMEDOUT;
  158. }
  159. static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
  160. {
  161. unsigned long deadline;
  162. int sr;
  163. int fsr;
  164. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  165. do {
  166. cond_resched();
  167. sr = read_sr(nor);
  168. if (sr < 0) {
  169. break;
  170. } else if (!(sr & SR_WIP)) {
  171. fsr = read_fsr(nor);
  172. if (fsr < 0)
  173. break;
  174. if (fsr & FSR_READY)
  175. return 0;
  176. }
  177. } while (!time_after_eq(jiffies, deadline));
  178. return -ETIMEDOUT;
  179. }
  180. /*
  181. * Service routine to read status register until ready, or timeout occurs.
  182. * Returns non-zero if error.
  183. */
  184. static int wait_till_ready(struct spi_nor *nor)
  185. {
  186. return nor->wait_till_ready(nor);
  187. }
  188. /*
  189. * Erase the whole flash memory
  190. *
  191. * Returns 0 if successful, non-zero otherwise.
  192. */
  193. static int erase_chip(struct spi_nor *nor)
  194. {
  195. int ret;
  196. dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
  197. /* Wait until finished previous write command. */
  198. ret = wait_till_ready(nor);
  199. if (ret)
  200. return ret;
  201. /* Send write enable, then erase commands. */
  202. write_enable(nor);
  203. return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
  204. }
  205. static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  206. {
  207. int ret = 0;
  208. mutex_lock(&nor->lock);
  209. if (nor->prepare) {
  210. ret = nor->prepare(nor, ops);
  211. if (ret) {
  212. dev_err(nor->dev, "failed in the preparation.\n");
  213. mutex_unlock(&nor->lock);
  214. return ret;
  215. }
  216. }
  217. return ret;
  218. }
  219. static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  220. {
  221. if (nor->unprepare)
  222. nor->unprepare(nor, ops);
  223. mutex_unlock(&nor->lock);
  224. }
  225. /*
  226. * Erase an address range on the nor chip. The address range may extend
  227. * one or more erase sectors. Return an error is there is a problem erasing.
  228. */
  229. static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
  230. {
  231. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  232. u32 addr, len;
  233. uint32_t rem;
  234. int ret;
  235. dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
  236. (long long)instr->len);
  237. div_u64_rem(instr->len, mtd->erasesize, &rem);
  238. if (rem)
  239. return -EINVAL;
  240. addr = instr->addr;
  241. len = instr->len;
  242. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
  243. if (ret)
  244. return ret;
  245. /* whole-chip erase? */
  246. if (len == mtd->size) {
  247. if (erase_chip(nor)) {
  248. ret = -EIO;
  249. goto erase_err;
  250. }
  251. /* REVISIT in some cases we could speed up erasing large regions
  252. * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
  253. * to use "small sector erase", but that's not always optimal.
  254. */
  255. /* "sector"-at-a-time erase */
  256. } else {
  257. while (len) {
  258. if (nor->erase(nor, addr)) {
  259. ret = -EIO;
  260. goto erase_err;
  261. }
  262. addr += mtd->erasesize;
  263. len -= mtd->erasesize;
  264. }
  265. }
  266. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  267. instr->state = MTD_ERASE_DONE;
  268. mtd_erase_callback(instr);
  269. return ret;
  270. erase_err:
  271. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  272. instr->state = MTD_ERASE_FAILED;
  273. return ret;
  274. }
  275. static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  276. {
  277. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  278. uint32_t offset = ofs;
  279. uint8_t status_old, status_new;
  280. int ret = 0;
  281. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
  282. if (ret)
  283. return ret;
  284. /* Wait until finished previous command */
  285. ret = wait_till_ready(nor);
  286. if (ret)
  287. goto err;
  288. status_old = read_sr(nor);
  289. if (offset < mtd->size - (mtd->size / 2))
  290. status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
  291. else if (offset < mtd->size - (mtd->size / 4))
  292. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  293. else if (offset < mtd->size - (mtd->size / 8))
  294. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  295. else if (offset < mtd->size - (mtd->size / 16))
  296. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  297. else if (offset < mtd->size - (mtd->size / 32))
  298. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  299. else if (offset < mtd->size - (mtd->size / 64))
  300. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  301. else
  302. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  303. /* Only modify protection if it will not unlock other areas */
  304. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
  305. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  306. write_enable(nor);
  307. ret = write_sr(nor, status_new);
  308. if (ret)
  309. goto err;
  310. }
  311. err:
  312. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
  313. return ret;
  314. }
  315. static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  316. {
  317. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  318. uint32_t offset = ofs;
  319. uint8_t status_old, status_new;
  320. int ret = 0;
  321. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
  322. if (ret)
  323. return ret;
  324. /* Wait until finished previous command */
  325. ret = wait_till_ready(nor);
  326. if (ret)
  327. goto err;
  328. status_old = read_sr(nor);
  329. if (offset+len > mtd->size - (mtd->size / 64))
  330. status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
  331. else if (offset+len > mtd->size - (mtd->size / 32))
  332. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  333. else if (offset+len > mtd->size - (mtd->size / 16))
  334. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  335. else if (offset+len > mtd->size - (mtd->size / 8))
  336. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  337. else if (offset+len > mtd->size - (mtd->size / 4))
  338. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  339. else if (offset+len > mtd->size - (mtd->size / 2))
  340. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  341. else
  342. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  343. /* Only modify protection if it will not lock other areas */
  344. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
  345. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  346. write_enable(nor);
  347. ret = write_sr(nor, status_new);
  348. if (ret)
  349. goto err;
  350. }
  351. err:
  352. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
  353. return ret;
  354. }
  355. struct flash_info {
  356. /* JEDEC id zero means "no ID" (most older chips); otherwise it has
  357. * a high byte of zero plus three data bytes: the manufacturer id,
  358. * then a two byte device id.
  359. */
  360. u32 jedec_id;
  361. u16 ext_id;
  362. /* The size listed here is what works with SPINOR_OP_SE, which isn't
  363. * necessarily called a "sector" by the vendor.
  364. */
  365. unsigned sector_size;
  366. u16 n_sectors;
  367. u16 page_size;
  368. u16 addr_width;
  369. u16 flags;
  370. #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
  371. #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
  372. #define SST_WRITE 0x04 /* use SST byte programming */
  373. #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
  374. #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
  375. #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
  376. #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
  377. #define USE_FSR 0x80 /* use flag status register */
  378. };
  379. #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  380. ((kernel_ulong_t)&(struct flash_info) { \
  381. .jedec_id = (_jedec_id), \
  382. .ext_id = (_ext_id), \
  383. .sector_size = (_sector_size), \
  384. .n_sectors = (_n_sectors), \
  385. .page_size = 256, \
  386. .flags = (_flags), \
  387. })
  388. #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
  389. ((kernel_ulong_t)&(struct flash_info) { \
  390. .sector_size = (_sector_size), \
  391. .n_sectors = (_n_sectors), \
  392. .page_size = (_page_size), \
  393. .addr_width = (_addr_width), \
  394. .flags = (_flags), \
  395. })
  396. /* NOTE: double check command sets and memory organization when you add
  397. * more nor chips. This current list focusses on newer chips, which
  398. * have been converging on command sets which including JEDEC ID.
  399. */
  400. const struct spi_device_id spi_nor_ids[] = {
  401. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  402. { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
  403. { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
  404. { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
  405. { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
  406. { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
  407. { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
  408. { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
  409. { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
  410. { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
  411. { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
  412. /* EON -- en25xxx */
  413. { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
  414. { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
  415. { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
  416. { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
  417. { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
  418. { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
  419. { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
  420. /* ESMT */
  421. { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
  422. /* Everspin */
  423. { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  424. { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  425. /* GigaDevice */
  426. { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
  427. { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
  428. /* Intel/Numonyx -- xxxs33b */
  429. { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
  430. { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
  431. { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
  432. /* Macronix */
  433. { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
  434. { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
  435. { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
  436. { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
  437. { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
  438. { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
  439. { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
  440. { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
  441. { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
  442. { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
  443. { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
  444. { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
  445. { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
  446. /* Micron */
  447. { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
  448. { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
  449. { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
  450. { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
  451. { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
  452. { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
  453. { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
  454. /* PMC */
  455. { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
  456. { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
  457. { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
  458. /* Spansion -- single (large) sector size only, at least
  459. * for the chips listed here (without boot sectors).
  460. */
  461. { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  462. { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
  463. { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
  464. { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  465. { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  466. { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
  467. { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
  468. { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
  469. { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
  470. { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
  471. { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
  472. { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
  473. { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
  474. { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
  475. { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
  476. { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  477. { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
  478. { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  479. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  480. { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  481. { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
  482. { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
  483. { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
  484. { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
  485. { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
  486. { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
  487. { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
  488. { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  489. /* ST Microelectronics -- newer production may have feature updates */
  490. { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
  491. { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
  492. { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
  493. { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
  494. { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
  495. { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
  496. { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
  497. { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
  498. { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
  499. { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
  500. { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
  501. { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
  502. { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
  503. { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
  504. { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
  505. { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
  506. { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
  507. { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
  508. { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
  509. { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
  510. { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
  511. { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
  512. { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
  513. { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
  514. { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
  515. { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
  516. { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
  517. { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
  518. { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
  519. { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
  520. { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
  521. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  522. { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
  523. { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
  524. { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
  525. { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
  526. { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
  527. { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
  528. { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
  529. { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
  530. { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
  531. { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  532. { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
  533. { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  534. { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
  535. { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
  536. /* Catalyst / On Semiconductor -- non-JEDEC */
  537. { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  538. { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  539. { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  540. { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  541. { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  542. { },
  543. };
  544. EXPORT_SYMBOL_GPL(spi_nor_ids);
  545. static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
  546. {
  547. int tmp;
  548. u8 id[5];
  549. u32 jedec;
  550. u16 ext_jedec;
  551. struct flash_info *info;
  552. tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
  553. if (tmp < 0) {
  554. dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
  555. return ERR_PTR(tmp);
  556. }
  557. jedec = id[0];
  558. jedec = jedec << 8;
  559. jedec |= id[1];
  560. jedec = jedec << 8;
  561. jedec |= id[2];
  562. ext_jedec = id[3] << 8 | id[4];
  563. for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
  564. info = (void *)spi_nor_ids[tmp].driver_data;
  565. if (info->jedec_id == jedec) {
  566. if (info->ext_id == 0 || info->ext_id == ext_jedec)
  567. return &spi_nor_ids[tmp];
  568. }
  569. }
  570. dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
  571. return ERR_PTR(-ENODEV);
  572. }
  573. static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
  574. size_t *retlen, u_char *buf)
  575. {
  576. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  577. int ret;
  578. dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
  579. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
  580. if (ret)
  581. return ret;
  582. ret = nor->read(nor, from, len, retlen, buf);
  583. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
  584. return ret;
  585. }
  586. static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
  587. size_t *retlen, const u_char *buf)
  588. {
  589. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  590. size_t actual;
  591. int ret;
  592. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  593. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  594. if (ret)
  595. return ret;
  596. /* Wait until finished previous write command. */
  597. ret = wait_till_ready(nor);
  598. if (ret)
  599. goto time_out;
  600. write_enable(nor);
  601. nor->sst_write_second = false;
  602. actual = to % 2;
  603. /* Start write from odd address. */
  604. if (actual) {
  605. nor->program_opcode = SPINOR_OP_BP;
  606. /* write one byte. */
  607. nor->write(nor, to, 1, retlen, buf);
  608. ret = wait_till_ready(nor);
  609. if (ret)
  610. goto time_out;
  611. }
  612. to += actual;
  613. /* Write out most of the data here. */
  614. for (; actual < len - 1; actual += 2) {
  615. nor->program_opcode = SPINOR_OP_AAI_WP;
  616. /* write two bytes. */
  617. nor->write(nor, to, 2, retlen, buf + actual);
  618. ret = wait_till_ready(nor);
  619. if (ret)
  620. goto time_out;
  621. to += 2;
  622. nor->sst_write_second = true;
  623. }
  624. nor->sst_write_second = false;
  625. write_disable(nor);
  626. ret = wait_till_ready(nor);
  627. if (ret)
  628. goto time_out;
  629. /* Write out trailing byte if it exists. */
  630. if (actual != len) {
  631. write_enable(nor);
  632. nor->program_opcode = SPINOR_OP_BP;
  633. nor->write(nor, to, 1, retlen, buf + actual);
  634. ret = wait_till_ready(nor);
  635. if (ret)
  636. goto time_out;
  637. write_disable(nor);
  638. }
  639. time_out:
  640. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  641. return ret;
  642. }
  643. /*
  644. * Write an address range to the nor chip. Data must be written in
  645. * FLASH_PAGESIZE chunks. The address range may be any size provided
  646. * it is within the physical boundaries.
  647. */
  648. static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
  649. size_t *retlen, const u_char *buf)
  650. {
  651. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  652. u32 page_offset, page_size, i;
  653. int ret;
  654. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  655. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  656. if (ret)
  657. return ret;
  658. /* Wait until finished previous write command. */
  659. ret = wait_till_ready(nor);
  660. if (ret)
  661. goto write_err;
  662. write_enable(nor);
  663. page_offset = to & (nor->page_size - 1);
  664. /* do all the bytes fit onto one page? */
  665. if (page_offset + len <= nor->page_size) {
  666. nor->write(nor, to, len, retlen, buf);
  667. } else {
  668. /* the size of data remaining on the first page */
  669. page_size = nor->page_size - page_offset;
  670. nor->write(nor, to, page_size, retlen, buf);
  671. /* write everything in nor->page_size chunks */
  672. for (i = page_size; i < len; i += page_size) {
  673. page_size = len - i;
  674. if (page_size > nor->page_size)
  675. page_size = nor->page_size;
  676. wait_till_ready(nor);
  677. write_enable(nor);
  678. nor->write(nor, to + i, page_size, retlen, buf + i);
  679. }
  680. }
  681. write_err:
  682. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  683. return 0;
  684. }
  685. static int macronix_quad_enable(struct spi_nor *nor)
  686. {
  687. int ret, val;
  688. val = read_sr(nor);
  689. write_enable(nor);
  690. nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
  691. nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  692. if (wait_till_ready(nor))
  693. return 1;
  694. ret = read_sr(nor);
  695. if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
  696. dev_err(nor->dev, "Macronix Quad bit not set\n");
  697. return -EINVAL;
  698. }
  699. return 0;
  700. }
  701. /*
  702. * Write status Register and configuration register with 2 bytes
  703. * The first byte will be written to the status register, while the
  704. * second byte will be written to the configuration register.
  705. * Return negative if error occured.
  706. */
  707. static int write_sr_cr(struct spi_nor *nor, u16 val)
  708. {
  709. nor->cmd_buf[0] = val & 0xff;
  710. nor->cmd_buf[1] = (val >> 8);
  711. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
  712. }
  713. static int spansion_quad_enable(struct spi_nor *nor)
  714. {
  715. int ret;
  716. int quad_en = CR_QUAD_EN_SPAN << 8;
  717. write_enable(nor);
  718. ret = write_sr_cr(nor, quad_en);
  719. if (ret < 0) {
  720. dev_err(nor->dev,
  721. "error while writing configuration register\n");
  722. return -EINVAL;
  723. }
  724. /* read back and check it */
  725. ret = read_cr(nor);
  726. if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
  727. dev_err(nor->dev, "Spansion Quad bit not set\n");
  728. return -EINVAL;
  729. }
  730. return 0;
  731. }
  732. static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
  733. {
  734. int status;
  735. switch (JEDEC_MFR(jedec_id)) {
  736. case CFI_MFR_MACRONIX:
  737. status = macronix_quad_enable(nor);
  738. if (status) {
  739. dev_err(nor->dev, "Macronix quad-read not enabled\n");
  740. return -EINVAL;
  741. }
  742. return status;
  743. default:
  744. status = spansion_quad_enable(nor);
  745. if (status) {
  746. dev_err(nor->dev, "Spansion quad-read not enabled\n");
  747. return -EINVAL;
  748. }
  749. return status;
  750. }
  751. }
  752. static int spi_nor_check(struct spi_nor *nor)
  753. {
  754. if (!nor->dev || !nor->read || !nor->write ||
  755. !nor->read_reg || !nor->write_reg || !nor->erase) {
  756. pr_err("spi-nor: please fill all the necessary fields!\n");
  757. return -EINVAL;
  758. }
  759. if (!nor->read_id)
  760. nor->read_id = spi_nor_read_id;
  761. if (!nor->wait_till_ready)
  762. nor->wait_till_ready = spi_nor_wait_till_ready;
  763. return 0;
  764. }
  765. int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
  766. enum read_mode mode)
  767. {
  768. struct flash_info *info;
  769. struct device *dev = nor->dev;
  770. struct mtd_info *mtd = nor->mtd;
  771. struct device_node *np = dev->of_node;
  772. int ret;
  773. int i;
  774. ret = spi_nor_check(nor);
  775. if (ret)
  776. return ret;
  777. info = (void *)id->driver_data;
  778. if (info->jedec_id) {
  779. const struct spi_device_id *jid;
  780. jid = nor->read_id(nor);
  781. if (IS_ERR(jid)) {
  782. return PTR_ERR(jid);
  783. } else if (jid != id) {
  784. /*
  785. * JEDEC knows better, so overwrite platform ID. We
  786. * can't trust partitions any longer, but we'll let
  787. * mtd apply them anyway, since some partitions may be
  788. * marked read-only, and we don't want to lose that
  789. * information, even if it's not 100% accurate.
  790. */
  791. dev_warn(dev, "found %s, expected %s\n",
  792. jid->name, id->name);
  793. id = jid;
  794. info = (void *)jid->driver_data;
  795. }
  796. }
  797. mutex_init(&nor->lock);
  798. /*
  799. * Atmel, SST and Intel/Numonyx serial nor tend to power
  800. * up with the software protection bits set
  801. */
  802. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
  803. JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
  804. JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
  805. write_enable(nor);
  806. write_sr(nor, 0);
  807. }
  808. if (!mtd->name)
  809. mtd->name = dev_name(dev);
  810. mtd->type = MTD_NORFLASH;
  811. mtd->writesize = 1;
  812. mtd->flags = MTD_CAP_NORFLASH;
  813. mtd->size = info->sector_size * info->n_sectors;
  814. mtd->_erase = spi_nor_erase;
  815. mtd->_read = spi_nor_read;
  816. /* nor protection support for STmicro chips */
  817. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
  818. mtd->_lock = spi_nor_lock;
  819. mtd->_unlock = spi_nor_unlock;
  820. }
  821. /* sst nor chips use AAI word program */
  822. if (info->flags & SST_WRITE)
  823. mtd->_write = sst_write;
  824. else
  825. mtd->_write = spi_nor_write;
  826. if ((info->flags & USE_FSR) &&
  827. nor->wait_till_ready == spi_nor_wait_till_ready)
  828. nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
  829. #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
  830. /* prefer "small sector" erase if possible */
  831. if (info->flags & SECT_4K) {
  832. nor->erase_opcode = SPINOR_OP_BE_4K;
  833. mtd->erasesize = 4096;
  834. } else if (info->flags & SECT_4K_PMC) {
  835. nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
  836. mtd->erasesize = 4096;
  837. } else
  838. #endif
  839. {
  840. nor->erase_opcode = SPINOR_OP_SE;
  841. mtd->erasesize = info->sector_size;
  842. }
  843. if (info->flags & SPI_NOR_NO_ERASE)
  844. mtd->flags |= MTD_NO_ERASE;
  845. mtd->dev.parent = dev;
  846. nor->page_size = info->page_size;
  847. mtd->writebufsize = nor->page_size;
  848. if (np) {
  849. /* If we were instantiated by DT, use it */
  850. if (of_property_read_bool(np, "m25p,fast-read"))
  851. nor->flash_read = SPI_NOR_FAST;
  852. else
  853. nor->flash_read = SPI_NOR_NORMAL;
  854. } else {
  855. /* If we weren't instantiated by DT, default to fast-read */
  856. nor->flash_read = SPI_NOR_FAST;
  857. }
  858. /* Some devices cannot do fast-read, no matter what DT tells us */
  859. if (info->flags & SPI_NOR_NO_FR)
  860. nor->flash_read = SPI_NOR_NORMAL;
  861. /* Quad/Dual-read mode takes precedence over fast/normal */
  862. if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
  863. ret = set_quad_mode(nor, info->jedec_id);
  864. if (ret) {
  865. dev_err(dev, "quad mode not supported\n");
  866. return ret;
  867. }
  868. nor->flash_read = SPI_NOR_QUAD;
  869. } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
  870. nor->flash_read = SPI_NOR_DUAL;
  871. }
  872. /* Default commands */
  873. switch (nor->flash_read) {
  874. case SPI_NOR_QUAD:
  875. nor->read_opcode = SPINOR_OP_READ_1_1_4;
  876. break;
  877. case SPI_NOR_DUAL:
  878. nor->read_opcode = SPINOR_OP_READ_1_1_2;
  879. break;
  880. case SPI_NOR_FAST:
  881. nor->read_opcode = SPINOR_OP_READ_FAST;
  882. break;
  883. case SPI_NOR_NORMAL:
  884. nor->read_opcode = SPINOR_OP_READ;
  885. break;
  886. default:
  887. dev_err(dev, "No Read opcode defined\n");
  888. return -EINVAL;
  889. }
  890. nor->program_opcode = SPINOR_OP_PP;
  891. if (info->addr_width)
  892. nor->addr_width = info->addr_width;
  893. else if (mtd->size > 0x1000000) {
  894. /* enable 4-byte addressing if the device exceeds 16MiB */
  895. nor->addr_width = 4;
  896. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
  897. /* Dedicated 4-byte command set */
  898. switch (nor->flash_read) {
  899. case SPI_NOR_QUAD:
  900. nor->read_opcode = SPINOR_OP_READ4_1_1_4;
  901. break;
  902. case SPI_NOR_DUAL:
  903. nor->read_opcode = SPINOR_OP_READ4_1_1_2;
  904. break;
  905. case SPI_NOR_FAST:
  906. nor->read_opcode = SPINOR_OP_READ4_FAST;
  907. break;
  908. case SPI_NOR_NORMAL:
  909. nor->read_opcode = SPINOR_OP_READ4;
  910. break;
  911. }
  912. nor->program_opcode = SPINOR_OP_PP_4B;
  913. /* No small sector erase for 4-byte command set */
  914. nor->erase_opcode = SPINOR_OP_SE_4B;
  915. mtd->erasesize = info->sector_size;
  916. } else
  917. set_4byte(nor, info->jedec_id, 1);
  918. } else {
  919. nor->addr_width = 3;
  920. }
  921. nor->read_dummy = spi_nor_read_dummy_cycles(nor);
  922. dev_info(dev, "%s (%lld Kbytes)\n", id->name,
  923. (long long)mtd->size >> 10);
  924. dev_dbg(dev,
  925. "mtd .name = %s, .size = 0x%llx (%lldMiB), "
  926. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  927. mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
  928. mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
  929. if (mtd->numeraseregions)
  930. for (i = 0; i < mtd->numeraseregions; i++)
  931. dev_dbg(dev,
  932. "mtd.eraseregions[%d] = { .offset = 0x%llx, "
  933. ".erasesize = 0x%.8x (%uKiB), "
  934. ".numblocks = %d }\n",
  935. i, (long long)mtd->eraseregions[i].offset,
  936. mtd->eraseregions[i].erasesize,
  937. mtd->eraseregions[i].erasesize / 1024,
  938. mtd->eraseregions[i].numblocks);
  939. return 0;
  940. }
  941. EXPORT_SYMBOL_GPL(spi_nor_scan);
  942. const struct spi_device_id *spi_nor_match_id(char *name)
  943. {
  944. const struct spi_device_id *id = spi_nor_ids;
  945. while (id->name[0]) {
  946. if (!strcmp(name, id->name))
  947. return id;
  948. id++;
  949. }
  950. return NULL;
  951. }
  952. EXPORT_SYMBOL_GPL(spi_nor_match_id);
  953. MODULE_LICENSE("GPL");
  954. MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
  955. MODULE_AUTHOR("Mike Lavender");
  956. MODULE_DESCRIPTION("framework for SPI NOR");