dm-table.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654
  1. /*
  2. * Copyright (C) 2001 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include <linux/module.h>
  9. #include <linux/vmalloc.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/namei.h>
  12. #include <linux/ctype.h>
  13. #include <linux/string.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/mutex.h>
  17. #include <linux/delay.h>
  18. #include <linux/atomic.h>
  19. #define DM_MSG_PREFIX "table"
  20. #define MAX_DEPTH 16
  21. #define NODE_SIZE L1_CACHE_BYTES
  22. #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  23. #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  24. struct dm_table {
  25. struct mapped_device *md;
  26. unsigned type;
  27. /* btree table */
  28. unsigned int depth;
  29. unsigned int counts[MAX_DEPTH]; /* in nodes */
  30. sector_t *index[MAX_DEPTH];
  31. unsigned int num_targets;
  32. unsigned int num_allocated;
  33. sector_t *highs;
  34. struct dm_target *targets;
  35. struct target_type *immutable_target_type;
  36. unsigned integrity_supported:1;
  37. unsigned singleton:1;
  38. /*
  39. * Indicates the rw permissions for the new logical
  40. * device. This should be a combination of FMODE_READ
  41. * and FMODE_WRITE.
  42. */
  43. fmode_t mode;
  44. /* a list of devices used by this table */
  45. struct list_head devices;
  46. /* events get handed up using this callback */
  47. void (*event_fn)(void *);
  48. void *event_context;
  49. struct dm_md_mempools *mempools;
  50. struct list_head target_callbacks;
  51. };
  52. /*
  53. * Similar to ceiling(log_size(n))
  54. */
  55. static unsigned int int_log(unsigned int n, unsigned int base)
  56. {
  57. int result = 0;
  58. while (n > 1) {
  59. n = dm_div_up(n, base);
  60. result++;
  61. }
  62. return result;
  63. }
  64. /*
  65. * Calculate the index of the child node of the n'th node k'th key.
  66. */
  67. static inline unsigned int get_child(unsigned int n, unsigned int k)
  68. {
  69. return (n * CHILDREN_PER_NODE) + k;
  70. }
  71. /*
  72. * Return the n'th node of level l from table t.
  73. */
  74. static inline sector_t *get_node(struct dm_table *t,
  75. unsigned int l, unsigned int n)
  76. {
  77. return t->index[l] + (n * KEYS_PER_NODE);
  78. }
  79. /*
  80. * Return the highest key that you could lookup from the n'th
  81. * node on level l of the btree.
  82. */
  83. static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  84. {
  85. for (; l < t->depth - 1; l++)
  86. n = get_child(n, CHILDREN_PER_NODE - 1);
  87. if (n >= t->counts[l])
  88. return (sector_t) - 1;
  89. return get_node(t, l, n)[KEYS_PER_NODE - 1];
  90. }
  91. /*
  92. * Fills in a level of the btree based on the highs of the level
  93. * below it.
  94. */
  95. static int setup_btree_index(unsigned int l, struct dm_table *t)
  96. {
  97. unsigned int n, k;
  98. sector_t *node;
  99. for (n = 0U; n < t->counts[l]; n++) {
  100. node = get_node(t, l, n);
  101. for (k = 0U; k < KEYS_PER_NODE; k++)
  102. node[k] = high(t, l + 1, get_child(n, k));
  103. }
  104. return 0;
  105. }
  106. void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
  107. {
  108. unsigned long size;
  109. void *addr;
  110. /*
  111. * Check that we're not going to overflow.
  112. */
  113. if (nmemb > (ULONG_MAX / elem_size))
  114. return NULL;
  115. size = nmemb * elem_size;
  116. addr = vzalloc(size);
  117. return addr;
  118. }
  119. EXPORT_SYMBOL(dm_vcalloc);
  120. /*
  121. * highs, and targets are managed as dynamic arrays during a
  122. * table load.
  123. */
  124. static int alloc_targets(struct dm_table *t, unsigned int num)
  125. {
  126. sector_t *n_highs;
  127. struct dm_target *n_targets;
  128. /*
  129. * Allocate both the target array and offset array at once.
  130. * Append an empty entry to catch sectors beyond the end of
  131. * the device.
  132. */
  133. n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
  134. sizeof(sector_t));
  135. if (!n_highs)
  136. return -ENOMEM;
  137. n_targets = (struct dm_target *) (n_highs + num);
  138. memset(n_highs, -1, sizeof(*n_highs) * num);
  139. vfree(t->highs);
  140. t->num_allocated = num;
  141. t->highs = n_highs;
  142. t->targets = n_targets;
  143. return 0;
  144. }
  145. int dm_table_create(struct dm_table **result, fmode_t mode,
  146. unsigned num_targets, struct mapped_device *md)
  147. {
  148. struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
  149. if (!t)
  150. return -ENOMEM;
  151. INIT_LIST_HEAD(&t->devices);
  152. INIT_LIST_HEAD(&t->target_callbacks);
  153. if (!num_targets)
  154. num_targets = KEYS_PER_NODE;
  155. num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
  156. if (!num_targets) {
  157. kfree(t);
  158. return -ENOMEM;
  159. }
  160. if (alloc_targets(t, num_targets)) {
  161. kfree(t);
  162. return -ENOMEM;
  163. }
  164. t->mode = mode;
  165. t->md = md;
  166. *result = t;
  167. return 0;
  168. }
  169. static void free_devices(struct list_head *devices, struct mapped_device *md)
  170. {
  171. struct list_head *tmp, *next;
  172. list_for_each_safe(tmp, next, devices) {
  173. struct dm_dev_internal *dd =
  174. list_entry(tmp, struct dm_dev_internal, list);
  175. DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
  176. dm_device_name(md), dd->dm_dev->name);
  177. dm_put_table_device(md, dd->dm_dev);
  178. kfree(dd);
  179. }
  180. }
  181. void dm_table_destroy(struct dm_table *t)
  182. {
  183. unsigned int i;
  184. if (!t)
  185. return;
  186. /* free the indexes */
  187. if (t->depth >= 2)
  188. vfree(t->index[t->depth - 2]);
  189. /* free the targets */
  190. for (i = 0; i < t->num_targets; i++) {
  191. struct dm_target *tgt = t->targets + i;
  192. if (tgt->type->dtr)
  193. tgt->type->dtr(tgt);
  194. dm_put_target_type(tgt->type);
  195. }
  196. vfree(t->highs);
  197. /* free the device list */
  198. free_devices(&t->devices, t->md);
  199. dm_free_md_mempools(t->mempools);
  200. kfree(t);
  201. }
  202. /*
  203. * See if we've already got a device in the list.
  204. */
  205. static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
  206. {
  207. struct dm_dev_internal *dd;
  208. list_for_each_entry (dd, l, list)
  209. if (dd->dm_dev->bdev->bd_dev == dev)
  210. return dd;
  211. return NULL;
  212. }
  213. /*
  214. * If possible, this checks an area of a destination device is invalid.
  215. */
  216. static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
  217. sector_t start, sector_t len, void *data)
  218. {
  219. struct request_queue *q;
  220. struct queue_limits *limits = data;
  221. struct block_device *bdev = dev->bdev;
  222. sector_t dev_size =
  223. i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  224. unsigned short logical_block_size_sectors =
  225. limits->logical_block_size >> SECTOR_SHIFT;
  226. char b[BDEVNAME_SIZE];
  227. /*
  228. * Some devices exist without request functions,
  229. * such as loop devices not yet bound to backing files.
  230. * Forbid the use of such devices.
  231. */
  232. q = bdev_get_queue(bdev);
  233. if (!q || !q->make_request_fn) {
  234. DMWARN("%s: %s is not yet initialised: "
  235. "start=%llu, len=%llu, dev_size=%llu",
  236. dm_device_name(ti->table->md), bdevname(bdev, b),
  237. (unsigned long long)start,
  238. (unsigned long long)len,
  239. (unsigned long long)dev_size);
  240. return 1;
  241. }
  242. if (!dev_size)
  243. return 0;
  244. if ((start >= dev_size) || (start + len > dev_size)) {
  245. DMWARN("%s: %s too small for target: "
  246. "start=%llu, len=%llu, dev_size=%llu",
  247. dm_device_name(ti->table->md), bdevname(bdev, b),
  248. (unsigned long long)start,
  249. (unsigned long long)len,
  250. (unsigned long long)dev_size);
  251. return 1;
  252. }
  253. if (logical_block_size_sectors <= 1)
  254. return 0;
  255. if (start & (logical_block_size_sectors - 1)) {
  256. DMWARN("%s: start=%llu not aligned to h/w "
  257. "logical block size %u of %s",
  258. dm_device_name(ti->table->md),
  259. (unsigned long long)start,
  260. limits->logical_block_size, bdevname(bdev, b));
  261. return 1;
  262. }
  263. if (len & (logical_block_size_sectors - 1)) {
  264. DMWARN("%s: len=%llu not aligned to h/w "
  265. "logical block size %u of %s",
  266. dm_device_name(ti->table->md),
  267. (unsigned long long)len,
  268. limits->logical_block_size, bdevname(bdev, b));
  269. return 1;
  270. }
  271. return 0;
  272. }
  273. /*
  274. * This upgrades the mode on an already open dm_dev, being
  275. * careful to leave things as they were if we fail to reopen the
  276. * device and not to touch the existing bdev field in case
  277. * it is accessed concurrently inside dm_table_any_congested().
  278. */
  279. static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
  280. struct mapped_device *md)
  281. {
  282. int r;
  283. struct dm_dev *old_dev, *new_dev;
  284. old_dev = dd->dm_dev;
  285. r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
  286. dd->dm_dev->mode | new_mode, &new_dev);
  287. if (r)
  288. return r;
  289. dd->dm_dev = new_dev;
  290. dm_put_table_device(md, old_dev);
  291. return 0;
  292. }
  293. /*
  294. * Add a device to the list, or just increment the usage count if
  295. * it's already present.
  296. */
  297. int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
  298. struct dm_dev **result)
  299. {
  300. int r;
  301. dev_t uninitialized_var(dev);
  302. struct dm_dev_internal *dd;
  303. unsigned int major, minor;
  304. struct dm_table *t = ti->table;
  305. char dummy;
  306. BUG_ON(!t);
  307. if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
  308. /* Extract the major/minor numbers */
  309. dev = MKDEV(major, minor);
  310. if (MAJOR(dev) != major || MINOR(dev) != minor)
  311. return -EOVERFLOW;
  312. } else {
  313. /* convert the path to a device */
  314. struct block_device *bdev = lookup_bdev(path);
  315. if (IS_ERR(bdev))
  316. return PTR_ERR(bdev);
  317. dev = bdev->bd_dev;
  318. bdput(bdev);
  319. }
  320. dd = find_device(&t->devices, dev);
  321. if (!dd) {
  322. dd = kmalloc(sizeof(*dd), GFP_KERNEL);
  323. if (!dd)
  324. return -ENOMEM;
  325. if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
  326. kfree(dd);
  327. return r;
  328. }
  329. atomic_set(&dd->count, 0);
  330. list_add(&dd->list, &t->devices);
  331. } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
  332. r = upgrade_mode(dd, mode, t->md);
  333. if (r)
  334. return r;
  335. }
  336. atomic_inc(&dd->count);
  337. *result = dd->dm_dev;
  338. return 0;
  339. }
  340. EXPORT_SYMBOL(dm_get_device);
  341. static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
  342. sector_t start, sector_t len, void *data)
  343. {
  344. struct queue_limits *limits = data;
  345. struct block_device *bdev = dev->bdev;
  346. struct request_queue *q = bdev_get_queue(bdev);
  347. char b[BDEVNAME_SIZE];
  348. if (unlikely(!q)) {
  349. DMWARN("%s: Cannot set limits for nonexistent device %s",
  350. dm_device_name(ti->table->md), bdevname(bdev, b));
  351. return 0;
  352. }
  353. if (bdev_stack_limits(limits, bdev, start) < 0)
  354. DMWARN("%s: adding target device %s caused an alignment inconsistency: "
  355. "physical_block_size=%u, logical_block_size=%u, "
  356. "alignment_offset=%u, start=%llu",
  357. dm_device_name(ti->table->md), bdevname(bdev, b),
  358. q->limits.physical_block_size,
  359. q->limits.logical_block_size,
  360. q->limits.alignment_offset,
  361. (unsigned long long) start << SECTOR_SHIFT);
  362. /*
  363. * Check if merge fn is supported.
  364. * If not we'll force DM to use PAGE_SIZE or
  365. * smaller I/O, just to be safe.
  366. */
  367. if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
  368. blk_limits_max_hw_sectors(limits,
  369. (unsigned int) (PAGE_SIZE >> 9));
  370. return 0;
  371. }
  372. /*
  373. * Decrement a device's use count and remove it if necessary.
  374. */
  375. void dm_put_device(struct dm_target *ti, struct dm_dev *d)
  376. {
  377. int found = 0;
  378. struct list_head *devices = &ti->table->devices;
  379. struct dm_dev_internal *dd;
  380. list_for_each_entry(dd, devices, list) {
  381. if (dd->dm_dev == d) {
  382. found = 1;
  383. break;
  384. }
  385. }
  386. if (!found) {
  387. DMWARN("%s: device %s not in table devices list",
  388. dm_device_name(ti->table->md), d->name);
  389. return;
  390. }
  391. if (atomic_dec_and_test(&dd->count)) {
  392. dm_put_table_device(ti->table->md, d);
  393. list_del(&dd->list);
  394. kfree(dd);
  395. }
  396. }
  397. EXPORT_SYMBOL(dm_put_device);
  398. /*
  399. * Checks to see if the target joins onto the end of the table.
  400. */
  401. static int adjoin(struct dm_table *table, struct dm_target *ti)
  402. {
  403. struct dm_target *prev;
  404. if (!table->num_targets)
  405. return !ti->begin;
  406. prev = &table->targets[table->num_targets - 1];
  407. return (ti->begin == (prev->begin + prev->len));
  408. }
  409. /*
  410. * Used to dynamically allocate the arg array.
  411. *
  412. * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
  413. * process messages even if some device is suspended. These messages have a
  414. * small fixed number of arguments.
  415. *
  416. * On the other hand, dm-switch needs to process bulk data using messages and
  417. * excessive use of GFP_NOIO could cause trouble.
  418. */
  419. static char **realloc_argv(unsigned *array_size, char **old_argv)
  420. {
  421. char **argv;
  422. unsigned new_size;
  423. gfp_t gfp;
  424. if (*array_size) {
  425. new_size = *array_size * 2;
  426. gfp = GFP_KERNEL;
  427. } else {
  428. new_size = 8;
  429. gfp = GFP_NOIO;
  430. }
  431. argv = kmalloc(new_size * sizeof(*argv), gfp);
  432. if (argv) {
  433. memcpy(argv, old_argv, *array_size * sizeof(*argv));
  434. *array_size = new_size;
  435. }
  436. kfree(old_argv);
  437. return argv;
  438. }
  439. /*
  440. * Destructively splits up the argument list to pass to ctr.
  441. */
  442. int dm_split_args(int *argc, char ***argvp, char *input)
  443. {
  444. char *start, *end = input, *out, **argv = NULL;
  445. unsigned array_size = 0;
  446. *argc = 0;
  447. if (!input) {
  448. *argvp = NULL;
  449. return 0;
  450. }
  451. argv = realloc_argv(&array_size, argv);
  452. if (!argv)
  453. return -ENOMEM;
  454. while (1) {
  455. /* Skip whitespace */
  456. start = skip_spaces(end);
  457. if (!*start)
  458. break; /* success, we hit the end */
  459. /* 'out' is used to remove any back-quotes */
  460. end = out = start;
  461. while (*end) {
  462. /* Everything apart from '\0' can be quoted */
  463. if (*end == '\\' && *(end + 1)) {
  464. *out++ = *(end + 1);
  465. end += 2;
  466. continue;
  467. }
  468. if (isspace(*end))
  469. break; /* end of token */
  470. *out++ = *end++;
  471. }
  472. /* have we already filled the array ? */
  473. if ((*argc + 1) > array_size) {
  474. argv = realloc_argv(&array_size, argv);
  475. if (!argv)
  476. return -ENOMEM;
  477. }
  478. /* we know this is whitespace */
  479. if (*end)
  480. end++;
  481. /* terminate the string and put it in the array */
  482. *out = '\0';
  483. argv[*argc] = start;
  484. (*argc)++;
  485. }
  486. *argvp = argv;
  487. return 0;
  488. }
  489. /*
  490. * Impose necessary and sufficient conditions on a devices's table such
  491. * that any incoming bio which respects its logical_block_size can be
  492. * processed successfully. If it falls across the boundary between
  493. * two or more targets, the size of each piece it gets split into must
  494. * be compatible with the logical_block_size of the target processing it.
  495. */
  496. static int validate_hardware_logical_block_alignment(struct dm_table *table,
  497. struct queue_limits *limits)
  498. {
  499. /*
  500. * This function uses arithmetic modulo the logical_block_size
  501. * (in units of 512-byte sectors).
  502. */
  503. unsigned short device_logical_block_size_sects =
  504. limits->logical_block_size >> SECTOR_SHIFT;
  505. /*
  506. * Offset of the start of the next table entry, mod logical_block_size.
  507. */
  508. unsigned short next_target_start = 0;
  509. /*
  510. * Given an aligned bio that extends beyond the end of a
  511. * target, how many sectors must the next target handle?
  512. */
  513. unsigned short remaining = 0;
  514. struct dm_target *uninitialized_var(ti);
  515. struct queue_limits ti_limits;
  516. unsigned i = 0;
  517. /*
  518. * Check each entry in the table in turn.
  519. */
  520. while (i < dm_table_get_num_targets(table)) {
  521. ti = dm_table_get_target(table, i++);
  522. blk_set_stacking_limits(&ti_limits);
  523. /* combine all target devices' limits */
  524. if (ti->type->iterate_devices)
  525. ti->type->iterate_devices(ti, dm_set_device_limits,
  526. &ti_limits);
  527. /*
  528. * If the remaining sectors fall entirely within this
  529. * table entry are they compatible with its logical_block_size?
  530. */
  531. if (remaining < ti->len &&
  532. remaining & ((ti_limits.logical_block_size >>
  533. SECTOR_SHIFT) - 1))
  534. break; /* Error */
  535. next_target_start =
  536. (unsigned short) ((next_target_start + ti->len) &
  537. (device_logical_block_size_sects - 1));
  538. remaining = next_target_start ?
  539. device_logical_block_size_sects - next_target_start : 0;
  540. }
  541. if (remaining) {
  542. DMWARN("%s: table line %u (start sect %llu len %llu) "
  543. "not aligned to h/w logical block size %u",
  544. dm_device_name(table->md), i,
  545. (unsigned long long) ti->begin,
  546. (unsigned long long) ti->len,
  547. limits->logical_block_size);
  548. return -EINVAL;
  549. }
  550. return 0;
  551. }
  552. int dm_table_add_target(struct dm_table *t, const char *type,
  553. sector_t start, sector_t len, char *params)
  554. {
  555. int r = -EINVAL, argc;
  556. char **argv;
  557. struct dm_target *tgt;
  558. if (t->singleton) {
  559. DMERR("%s: target type %s must appear alone in table",
  560. dm_device_name(t->md), t->targets->type->name);
  561. return -EINVAL;
  562. }
  563. BUG_ON(t->num_targets >= t->num_allocated);
  564. tgt = t->targets + t->num_targets;
  565. memset(tgt, 0, sizeof(*tgt));
  566. if (!len) {
  567. DMERR("%s: zero-length target", dm_device_name(t->md));
  568. return -EINVAL;
  569. }
  570. tgt->type = dm_get_target_type(type);
  571. if (!tgt->type) {
  572. DMERR("%s: %s: unknown target type", dm_device_name(t->md),
  573. type);
  574. return -EINVAL;
  575. }
  576. if (dm_target_needs_singleton(tgt->type)) {
  577. if (t->num_targets) {
  578. DMERR("%s: target type %s must appear alone in table",
  579. dm_device_name(t->md), type);
  580. return -EINVAL;
  581. }
  582. t->singleton = 1;
  583. }
  584. if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
  585. DMERR("%s: target type %s may not be included in read-only tables",
  586. dm_device_name(t->md), type);
  587. return -EINVAL;
  588. }
  589. if (t->immutable_target_type) {
  590. if (t->immutable_target_type != tgt->type) {
  591. DMERR("%s: immutable target type %s cannot be mixed with other target types",
  592. dm_device_name(t->md), t->immutable_target_type->name);
  593. return -EINVAL;
  594. }
  595. } else if (dm_target_is_immutable(tgt->type)) {
  596. if (t->num_targets) {
  597. DMERR("%s: immutable target type %s cannot be mixed with other target types",
  598. dm_device_name(t->md), tgt->type->name);
  599. return -EINVAL;
  600. }
  601. t->immutable_target_type = tgt->type;
  602. }
  603. tgt->table = t;
  604. tgt->begin = start;
  605. tgt->len = len;
  606. tgt->error = "Unknown error";
  607. /*
  608. * Does this target adjoin the previous one ?
  609. */
  610. if (!adjoin(t, tgt)) {
  611. tgt->error = "Gap in table";
  612. r = -EINVAL;
  613. goto bad;
  614. }
  615. r = dm_split_args(&argc, &argv, params);
  616. if (r) {
  617. tgt->error = "couldn't split parameters (insufficient memory)";
  618. goto bad;
  619. }
  620. r = tgt->type->ctr(tgt, argc, argv);
  621. kfree(argv);
  622. if (r)
  623. goto bad;
  624. t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
  625. if (!tgt->num_discard_bios && tgt->discards_supported)
  626. DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
  627. dm_device_name(t->md), type);
  628. return 0;
  629. bad:
  630. DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
  631. dm_put_target_type(tgt->type);
  632. return r;
  633. }
  634. /*
  635. * Target argument parsing helpers.
  636. */
  637. static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  638. unsigned *value, char **error, unsigned grouped)
  639. {
  640. const char *arg_str = dm_shift_arg(arg_set);
  641. char dummy;
  642. if (!arg_str ||
  643. (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
  644. (*value < arg->min) ||
  645. (*value > arg->max) ||
  646. (grouped && arg_set->argc < *value)) {
  647. *error = arg->error;
  648. return -EINVAL;
  649. }
  650. return 0;
  651. }
  652. int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  653. unsigned *value, char **error)
  654. {
  655. return validate_next_arg(arg, arg_set, value, error, 0);
  656. }
  657. EXPORT_SYMBOL(dm_read_arg);
  658. int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
  659. unsigned *value, char **error)
  660. {
  661. return validate_next_arg(arg, arg_set, value, error, 1);
  662. }
  663. EXPORT_SYMBOL(dm_read_arg_group);
  664. const char *dm_shift_arg(struct dm_arg_set *as)
  665. {
  666. char *r;
  667. if (as->argc) {
  668. as->argc--;
  669. r = *as->argv;
  670. as->argv++;
  671. return r;
  672. }
  673. return NULL;
  674. }
  675. EXPORT_SYMBOL(dm_shift_arg);
  676. void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
  677. {
  678. BUG_ON(as->argc < num_args);
  679. as->argc -= num_args;
  680. as->argv += num_args;
  681. }
  682. EXPORT_SYMBOL(dm_consume_args);
  683. static int dm_table_set_type(struct dm_table *t)
  684. {
  685. unsigned i;
  686. unsigned bio_based = 0, request_based = 0, hybrid = 0;
  687. struct dm_target *tgt;
  688. struct dm_dev_internal *dd;
  689. struct list_head *devices;
  690. unsigned live_md_type;
  691. for (i = 0; i < t->num_targets; i++) {
  692. tgt = t->targets + i;
  693. if (dm_target_hybrid(tgt))
  694. hybrid = 1;
  695. else if (dm_target_request_based(tgt))
  696. request_based = 1;
  697. else
  698. bio_based = 1;
  699. if (bio_based && request_based) {
  700. DMWARN("Inconsistent table: different target types"
  701. " can't be mixed up");
  702. return -EINVAL;
  703. }
  704. }
  705. if (hybrid && !bio_based && !request_based) {
  706. /*
  707. * The targets can work either way.
  708. * Determine the type from the live device.
  709. * Default to bio-based if device is new.
  710. */
  711. live_md_type = dm_get_md_type(t->md);
  712. if (live_md_type == DM_TYPE_REQUEST_BASED)
  713. request_based = 1;
  714. else
  715. bio_based = 1;
  716. }
  717. if (bio_based) {
  718. /* We must use this table as bio-based */
  719. t->type = DM_TYPE_BIO_BASED;
  720. return 0;
  721. }
  722. BUG_ON(!request_based); /* No targets in this table */
  723. /* Non-request-stackable devices can't be used for request-based dm */
  724. devices = dm_table_get_devices(t);
  725. list_for_each_entry(dd, devices, list) {
  726. if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev->bdev))) {
  727. DMWARN("table load rejected: including"
  728. " non-request-stackable devices");
  729. return -EINVAL;
  730. }
  731. }
  732. /*
  733. * Request-based dm supports only tables that have a single target now.
  734. * To support multiple targets, request splitting support is needed,
  735. * and that needs lots of changes in the block-layer.
  736. * (e.g. request completion process for partial completion.)
  737. */
  738. if (t->num_targets > 1) {
  739. DMWARN("Request-based dm doesn't support multiple targets yet");
  740. return -EINVAL;
  741. }
  742. t->type = DM_TYPE_REQUEST_BASED;
  743. return 0;
  744. }
  745. unsigned dm_table_get_type(struct dm_table *t)
  746. {
  747. return t->type;
  748. }
  749. struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
  750. {
  751. return t->immutable_target_type;
  752. }
  753. bool dm_table_request_based(struct dm_table *t)
  754. {
  755. return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
  756. }
  757. static int dm_table_alloc_md_mempools(struct dm_table *t)
  758. {
  759. unsigned type = dm_table_get_type(t);
  760. unsigned per_bio_data_size = 0;
  761. struct dm_target *tgt;
  762. unsigned i;
  763. if (unlikely(type == DM_TYPE_NONE)) {
  764. DMWARN("no table type is set, can't allocate mempools");
  765. return -EINVAL;
  766. }
  767. if (type == DM_TYPE_BIO_BASED)
  768. for (i = 0; i < t->num_targets; i++) {
  769. tgt = t->targets + i;
  770. per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
  771. }
  772. t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
  773. if (!t->mempools)
  774. return -ENOMEM;
  775. return 0;
  776. }
  777. void dm_table_free_md_mempools(struct dm_table *t)
  778. {
  779. dm_free_md_mempools(t->mempools);
  780. t->mempools = NULL;
  781. }
  782. struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
  783. {
  784. return t->mempools;
  785. }
  786. static int setup_indexes(struct dm_table *t)
  787. {
  788. int i;
  789. unsigned int total = 0;
  790. sector_t *indexes;
  791. /* allocate the space for *all* the indexes */
  792. for (i = t->depth - 2; i >= 0; i--) {
  793. t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
  794. total += t->counts[i];
  795. }
  796. indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
  797. if (!indexes)
  798. return -ENOMEM;
  799. /* set up internal nodes, bottom-up */
  800. for (i = t->depth - 2; i >= 0; i--) {
  801. t->index[i] = indexes;
  802. indexes += (KEYS_PER_NODE * t->counts[i]);
  803. setup_btree_index(i, t);
  804. }
  805. return 0;
  806. }
  807. /*
  808. * Builds the btree to index the map.
  809. */
  810. static int dm_table_build_index(struct dm_table *t)
  811. {
  812. int r = 0;
  813. unsigned int leaf_nodes;
  814. /* how many indexes will the btree have ? */
  815. leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
  816. t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
  817. /* leaf layer has already been set up */
  818. t->counts[t->depth - 1] = leaf_nodes;
  819. t->index[t->depth - 1] = t->highs;
  820. if (t->depth >= 2)
  821. r = setup_indexes(t);
  822. return r;
  823. }
  824. /*
  825. * Get a disk whose integrity profile reflects the table's profile.
  826. * If %match_all is true, all devices' profiles must match.
  827. * If %match_all is false, all devices must at least have an
  828. * allocated integrity profile; but uninitialized is ok.
  829. * Returns NULL if integrity support was inconsistent or unavailable.
  830. */
  831. static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
  832. bool match_all)
  833. {
  834. struct list_head *devices = dm_table_get_devices(t);
  835. struct dm_dev_internal *dd = NULL;
  836. struct gendisk *prev_disk = NULL, *template_disk = NULL;
  837. list_for_each_entry(dd, devices, list) {
  838. template_disk = dd->dm_dev->bdev->bd_disk;
  839. if (!blk_get_integrity(template_disk))
  840. goto no_integrity;
  841. if (!match_all && !blk_integrity_is_initialized(template_disk))
  842. continue; /* skip uninitialized profiles */
  843. else if (prev_disk &&
  844. blk_integrity_compare(prev_disk, template_disk) < 0)
  845. goto no_integrity;
  846. prev_disk = template_disk;
  847. }
  848. return template_disk;
  849. no_integrity:
  850. if (prev_disk)
  851. DMWARN("%s: integrity not set: %s and %s profile mismatch",
  852. dm_device_name(t->md),
  853. prev_disk->disk_name,
  854. template_disk->disk_name);
  855. return NULL;
  856. }
  857. /*
  858. * Register the mapped device for blk_integrity support if
  859. * the underlying devices have an integrity profile. But all devices
  860. * may not have matching profiles (checking all devices isn't reliable
  861. * during table load because this table may use other DM device(s) which
  862. * must be resumed before they will have an initialized integity profile).
  863. * Stacked DM devices force a 2 stage integrity profile validation:
  864. * 1 - during load, validate all initialized integrity profiles match
  865. * 2 - during resume, validate all integrity profiles match
  866. */
  867. static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
  868. {
  869. struct gendisk *template_disk = NULL;
  870. template_disk = dm_table_get_integrity_disk(t, false);
  871. if (!template_disk)
  872. return 0;
  873. if (!blk_integrity_is_initialized(dm_disk(md))) {
  874. t->integrity_supported = 1;
  875. return blk_integrity_register(dm_disk(md), NULL);
  876. }
  877. /*
  878. * If DM device already has an initalized integrity
  879. * profile the new profile should not conflict.
  880. */
  881. if (blk_integrity_is_initialized(template_disk) &&
  882. blk_integrity_compare(dm_disk(md), template_disk) < 0) {
  883. DMWARN("%s: conflict with existing integrity profile: "
  884. "%s profile mismatch",
  885. dm_device_name(t->md),
  886. template_disk->disk_name);
  887. return 1;
  888. }
  889. /* Preserve existing initialized integrity profile */
  890. t->integrity_supported = 1;
  891. return 0;
  892. }
  893. /*
  894. * Prepares the table for use by building the indices,
  895. * setting the type, and allocating mempools.
  896. */
  897. int dm_table_complete(struct dm_table *t)
  898. {
  899. int r;
  900. r = dm_table_set_type(t);
  901. if (r) {
  902. DMERR("unable to set table type");
  903. return r;
  904. }
  905. r = dm_table_build_index(t);
  906. if (r) {
  907. DMERR("unable to build btrees");
  908. return r;
  909. }
  910. r = dm_table_prealloc_integrity(t, t->md);
  911. if (r) {
  912. DMERR("could not register integrity profile.");
  913. return r;
  914. }
  915. r = dm_table_alloc_md_mempools(t);
  916. if (r)
  917. DMERR("unable to allocate mempools");
  918. return r;
  919. }
  920. static DEFINE_MUTEX(_event_lock);
  921. void dm_table_event_callback(struct dm_table *t,
  922. void (*fn)(void *), void *context)
  923. {
  924. mutex_lock(&_event_lock);
  925. t->event_fn = fn;
  926. t->event_context = context;
  927. mutex_unlock(&_event_lock);
  928. }
  929. void dm_table_event(struct dm_table *t)
  930. {
  931. /*
  932. * You can no longer call dm_table_event() from interrupt
  933. * context, use a bottom half instead.
  934. */
  935. BUG_ON(in_interrupt());
  936. mutex_lock(&_event_lock);
  937. if (t->event_fn)
  938. t->event_fn(t->event_context);
  939. mutex_unlock(&_event_lock);
  940. }
  941. EXPORT_SYMBOL(dm_table_event);
  942. sector_t dm_table_get_size(struct dm_table *t)
  943. {
  944. return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
  945. }
  946. EXPORT_SYMBOL(dm_table_get_size);
  947. struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
  948. {
  949. if (index >= t->num_targets)
  950. return NULL;
  951. return t->targets + index;
  952. }
  953. /*
  954. * Search the btree for the correct target.
  955. *
  956. * Caller should check returned pointer with dm_target_is_valid()
  957. * to trap I/O beyond end of device.
  958. */
  959. struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
  960. {
  961. unsigned int l, n = 0, k = 0;
  962. sector_t *node;
  963. for (l = 0; l < t->depth; l++) {
  964. n = get_child(n, k);
  965. node = get_node(t, l, n);
  966. for (k = 0; k < KEYS_PER_NODE; k++)
  967. if (node[k] >= sector)
  968. break;
  969. }
  970. return &t->targets[(KEYS_PER_NODE * n) + k];
  971. }
  972. static int count_device(struct dm_target *ti, struct dm_dev *dev,
  973. sector_t start, sector_t len, void *data)
  974. {
  975. unsigned *num_devices = data;
  976. (*num_devices)++;
  977. return 0;
  978. }
  979. /*
  980. * Check whether a table has no data devices attached using each
  981. * target's iterate_devices method.
  982. * Returns false if the result is unknown because a target doesn't
  983. * support iterate_devices.
  984. */
  985. bool dm_table_has_no_data_devices(struct dm_table *table)
  986. {
  987. struct dm_target *uninitialized_var(ti);
  988. unsigned i = 0, num_devices = 0;
  989. while (i < dm_table_get_num_targets(table)) {
  990. ti = dm_table_get_target(table, i++);
  991. if (!ti->type->iterate_devices)
  992. return false;
  993. ti->type->iterate_devices(ti, count_device, &num_devices);
  994. if (num_devices)
  995. return false;
  996. }
  997. return true;
  998. }
  999. /*
  1000. * Establish the new table's queue_limits and validate them.
  1001. */
  1002. int dm_calculate_queue_limits(struct dm_table *table,
  1003. struct queue_limits *limits)
  1004. {
  1005. struct dm_target *uninitialized_var(ti);
  1006. struct queue_limits ti_limits;
  1007. unsigned i = 0;
  1008. blk_set_stacking_limits(limits);
  1009. while (i < dm_table_get_num_targets(table)) {
  1010. blk_set_stacking_limits(&ti_limits);
  1011. ti = dm_table_get_target(table, i++);
  1012. if (!ti->type->iterate_devices)
  1013. goto combine_limits;
  1014. /*
  1015. * Combine queue limits of all the devices this target uses.
  1016. */
  1017. ti->type->iterate_devices(ti, dm_set_device_limits,
  1018. &ti_limits);
  1019. /* Set I/O hints portion of queue limits */
  1020. if (ti->type->io_hints)
  1021. ti->type->io_hints(ti, &ti_limits);
  1022. /*
  1023. * Check each device area is consistent with the target's
  1024. * overall queue limits.
  1025. */
  1026. if (ti->type->iterate_devices(ti, device_area_is_invalid,
  1027. &ti_limits))
  1028. return -EINVAL;
  1029. combine_limits:
  1030. /*
  1031. * Merge this target's queue limits into the overall limits
  1032. * for the table.
  1033. */
  1034. if (blk_stack_limits(limits, &ti_limits, 0) < 0)
  1035. DMWARN("%s: adding target device "
  1036. "(start sect %llu len %llu) "
  1037. "caused an alignment inconsistency",
  1038. dm_device_name(table->md),
  1039. (unsigned long long) ti->begin,
  1040. (unsigned long long) ti->len);
  1041. }
  1042. return validate_hardware_logical_block_alignment(table, limits);
  1043. }
  1044. /*
  1045. * Set the integrity profile for this device if all devices used have
  1046. * matching profiles. We're quite deep in the resume path but still
  1047. * don't know if all devices (particularly DM devices this device
  1048. * may be stacked on) have matching profiles. Even if the profiles
  1049. * don't match we have no way to fail (to resume) at this point.
  1050. */
  1051. static void dm_table_set_integrity(struct dm_table *t)
  1052. {
  1053. struct gendisk *template_disk = NULL;
  1054. if (!blk_get_integrity(dm_disk(t->md)))
  1055. return;
  1056. template_disk = dm_table_get_integrity_disk(t, true);
  1057. if (template_disk)
  1058. blk_integrity_register(dm_disk(t->md),
  1059. blk_get_integrity(template_disk));
  1060. else if (blk_integrity_is_initialized(dm_disk(t->md)))
  1061. DMWARN("%s: device no longer has a valid integrity profile",
  1062. dm_device_name(t->md));
  1063. else
  1064. DMWARN("%s: unable to establish an integrity profile",
  1065. dm_device_name(t->md));
  1066. }
  1067. static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
  1068. sector_t start, sector_t len, void *data)
  1069. {
  1070. unsigned flush = (*(unsigned *)data);
  1071. struct request_queue *q = bdev_get_queue(dev->bdev);
  1072. return q && (q->flush_flags & flush);
  1073. }
  1074. static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
  1075. {
  1076. struct dm_target *ti;
  1077. unsigned i = 0;
  1078. /*
  1079. * Require at least one underlying device to support flushes.
  1080. * t->devices includes internal dm devices such as mirror logs
  1081. * so we need to use iterate_devices here, which targets
  1082. * supporting flushes must provide.
  1083. */
  1084. while (i < dm_table_get_num_targets(t)) {
  1085. ti = dm_table_get_target(t, i++);
  1086. if (!ti->num_flush_bios)
  1087. continue;
  1088. if (ti->flush_supported)
  1089. return 1;
  1090. if (ti->type->iterate_devices &&
  1091. ti->type->iterate_devices(ti, device_flush_capable, &flush))
  1092. return 1;
  1093. }
  1094. return 0;
  1095. }
  1096. static bool dm_table_discard_zeroes_data(struct dm_table *t)
  1097. {
  1098. struct dm_target *ti;
  1099. unsigned i = 0;
  1100. /* Ensure that all targets supports discard_zeroes_data. */
  1101. while (i < dm_table_get_num_targets(t)) {
  1102. ti = dm_table_get_target(t, i++);
  1103. if (ti->discard_zeroes_data_unsupported)
  1104. return 0;
  1105. }
  1106. return 1;
  1107. }
  1108. static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
  1109. sector_t start, sector_t len, void *data)
  1110. {
  1111. struct request_queue *q = bdev_get_queue(dev->bdev);
  1112. return q && blk_queue_nonrot(q);
  1113. }
  1114. static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
  1115. sector_t start, sector_t len, void *data)
  1116. {
  1117. struct request_queue *q = bdev_get_queue(dev->bdev);
  1118. return q && !blk_queue_add_random(q);
  1119. }
  1120. static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
  1121. sector_t start, sector_t len, void *data)
  1122. {
  1123. struct request_queue *q = bdev_get_queue(dev->bdev);
  1124. return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
  1125. }
  1126. static bool dm_table_all_devices_attribute(struct dm_table *t,
  1127. iterate_devices_callout_fn func)
  1128. {
  1129. struct dm_target *ti;
  1130. unsigned i = 0;
  1131. while (i < dm_table_get_num_targets(t)) {
  1132. ti = dm_table_get_target(t, i++);
  1133. if (!ti->type->iterate_devices ||
  1134. !ti->type->iterate_devices(ti, func, NULL))
  1135. return 0;
  1136. }
  1137. return 1;
  1138. }
  1139. static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
  1140. sector_t start, sector_t len, void *data)
  1141. {
  1142. struct request_queue *q = bdev_get_queue(dev->bdev);
  1143. return q && !q->limits.max_write_same_sectors;
  1144. }
  1145. static bool dm_table_supports_write_same(struct dm_table *t)
  1146. {
  1147. struct dm_target *ti;
  1148. unsigned i = 0;
  1149. while (i < dm_table_get_num_targets(t)) {
  1150. ti = dm_table_get_target(t, i++);
  1151. if (!ti->num_write_same_bios)
  1152. return false;
  1153. if (!ti->type->iterate_devices ||
  1154. ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
  1155. return false;
  1156. }
  1157. return true;
  1158. }
  1159. static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
  1160. sector_t start, sector_t len, void *data)
  1161. {
  1162. struct request_queue *q = bdev_get_queue(dev->bdev);
  1163. return q && blk_queue_discard(q);
  1164. }
  1165. static bool dm_table_supports_discards(struct dm_table *t)
  1166. {
  1167. struct dm_target *ti;
  1168. unsigned i = 0;
  1169. /*
  1170. * Unless any target used by the table set discards_supported,
  1171. * require at least one underlying device to support discards.
  1172. * t->devices includes internal dm devices such as mirror logs
  1173. * so we need to use iterate_devices here, which targets
  1174. * supporting discard selectively must provide.
  1175. */
  1176. while (i < dm_table_get_num_targets(t)) {
  1177. ti = dm_table_get_target(t, i++);
  1178. if (!ti->num_discard_bios)
  1179. continue;
  1180. if (ti->discards_supported)
  1181. return 1;
  1182. if (ti->type->iterate_devices &&
  1183. ti->type->iterate_devices(ti, device_discard_capable, NULL))
  1184. return 1;
  1185. }
  1186. return 0;
  1187. }
  1188. void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
  1189. struct queue_limits *limits)
  1190. {
  1191. unsigned flush = 0;
  1192. /*
  1193. * Copy table's limits to the DM device's request_queue
  1194. */
  1195. q->limits = *limits;
  1196. if (!dm_table_supports_discards(t))
  1197. queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
  1198. else
  1199. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
  1200. if (dm_table_supports_flush(t, REQ_FLUSH)) {
  1201. flush |= REQ_FLUSH;
  1202. if (dm_table_supports_flush(t, REQ_FUA))
  1203. flush |= REQ_FUA;
  1204. }
  1205. blk_queue_flush(q, flush);
  1206. if (!dm_table_discard_zeroes_data(t))
  1207. q->limits.discard_zeroes_data = 0;
  1208. /* Ensure that all underlying devices are non-rotational. */
  1209. if (dm_table_all_devices_attribute(t, device_is_nonrot))
  1210. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  1211. else
  1212. queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
  1213. if (!dm_table_supports_write_same(t))
  1214. q->limits.max_write_same_sectors = 0;
  1215. if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
  1216. queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
  1217. else
  1218. queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
  1219. dm_table_set_integrity(t);
  1220. /*
  1221. * Determine whether or not this queue's I/O timings contribute
  1222. * to the entropy pool, Only request-based targets use this.
  1223. * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
  1224. * have it set.
  1225. */
  1226. if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
  1227. queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
  1228. /*
  1229. * QUEUE_FLAG_STACKABLE must be set after all queue settings are
  1230. * visible to other CPUs because, once the flag is set, incoming bios
  1231. * are processed by request-based dm, which refers to the queue
  1232. * settings.
  1233. * Until the flag set, bios are passed to bio-based dm and queued to
  1234. * md->deferred where queue settings are not needed yet.
  1235. * Those bios are passed to request-based dm at the resume time.
  1236. */
  1237. smp_mb();
  1238. if (dm_table_request_based(t))
  1239. queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
  1240. }
  1241. unsigned int dm_table_get_num_targets(struct dm_table *t)
  1242. {
  1243. return t->num_targets;
  1244. }
  1245. struct list_head *dm_table_get_devices(struct dm_table *t)
  1246. {
  1247. return &t->devices;
  1248. }
  1249. fmode_t dm_table_get_mode(struct dm_table *t)
  1250. {
  1251. return t->mode;
  1252. }
  1253. EXPORT_SYMBOL(dm_table_get_mode);
  1254. static void suspend_targets(struct dm_table *t, unsigned postsuspend)
  1255. {
  1256. int i = t->num_targets;
  1257. struct dm_target *ti = t->targets;
  1258. while (i--) {
  1259. if (postsuspend) {
  1260. if (ti->type->postsuspend)
  1261. ti->type->postsuspend(ti);
  1262. } else if (ti->type->presuspend)
  1263. ti->type->presuspend(ti);
  1264. ti++;
  1265. }
  1266. }
  1267. void dm_table_presuspend_targets(struct dm_table *t)
  1268. {
  1269. if (!t)
  1270. return;
  1271. suspend_targets(t, 0);
  1272. }
  1273. void dm_table_postsuspend_targets(struct dm_table *t)
  1274. {
  1275. if (!t)
  1276. return;
  1277. suspend_targets(t, 1);
  1278. }
  1279. int dm_table_resume_targets(struct dm_table *t)
  1280. {
  1281. int i, r = 0;
  1282. for (i = 0; i < t->num_targets; i++) {
  1283. struct dm_target *ti = t->targets + i;
  1284. if (!ti->type->preresume)
  1285. continue;
  1286. r = ti->type->preresume(ti);
  1287. if (r) {
  1288. DMERR("%s: %s: preresume failed, error = %d",
  1289. dm_device_name(t->md), ti->type->name, r);
  1290. return r;
  1291. }
  1292. }
  1293. for (i = 0; i < t->num_targets; i++) {
  1294. struct dm_target *ti = t->targets + i;
  1295. if (ti->type->resume)
  1296. ti->type->resume(ti);
  1297. }
  1298. return 0;
  1299. }
  1300. void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
  1301. {
  1302. list_add(&cb->list, &t->target_callbacks);
  1303. }
  1304. EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
  1305. int dm_table_any_congested(struct dm_table *t, int bdi_bits)
  1306. {
  1307. struct dm_dev_internal *dd;
  1308. struct list_head *devices = dm_table_get_devices(t);
  1309. struct dm_target_callbacks *cb;
  1310. int r = 0;
  1311. list_for_each_entry(dd, devices, list) {
  1312. struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
  1313. char b[BDEVNAME_SIZE];
  1314. if (likely(q))
  1315. r |= bdi_congested(&q->backing_dev_info, bdi_bits);
  1316. else
  1317. DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
  1318. dm_device_name(t->md),
  1319. bdevname(dd->dm_dev->bdev, b));
  1320. }
  1321. list_for_each_entry(cb, &t->target_callbacks, list)
  1322. if (cb->congested_fn)
  1323. r |= cb->congested_fn(cb, bdi_bits);
  1324. return r;
  1325. }
  1326. int dm_table_any_busy_target(struct dm_table *t)
  1327. {
  1328. unsigned i;
  1329. struct dm_target *ti;
  1330. for (i = 0; i < t->num_targets; i++) {
  1331. ti = t->targets + i;
  1332. if (ti->type->busy && ti->type->busy(ti))
  1333. return 1;
  1334. }
  1335. return 0;
  1336. }
  1337. struct mapped_device *dm_table_get_md(struct dm_table *t)
  1338. {
  1339. return t->md;
  1340. }
  1341. EXPORT_SYMBOL(dm_table_get_md);
  1342. void dm_table_run_md_queue_async(struct dm_table *t)
  1343. {
  1344. struct mapped_device *md;
  1345. struct request_queue *queue;
  1346. unsigned long flags;
  1347. if (!dm_table_request_based(t))
  1348. return;
  1349. md = dm_table_get_md(t);
  1350. queue = dm_get_md_queue(md);
  1351. if (queue) {
  1352. spin_lock_irqsave(queue->queue_lock, flags);
  1353. blk_run_queue_async(queue);
  1354. spin_unlock_irqrestore(queue->queue_lock, flags);
  1355. }
  1356. }
  1357. EXPORT_SYMBOL(dm_table_run_md_queue_async);