exynos-iommu.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228
  1. /* linux/drivers/iommu/exynos_iommu.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
  11. #define DEBUG
  12. #endif
  13. #include <linux/io.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/slab.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/clk.h>
  19. #include <linux/err.h>
  20. #include <linux/mm.h>
  21. #include <linux/iommu.h>
  22. #include <linux/errno.h>
  23. #include <linux/list.h>
  24. #include <linux/memblock.h>
  25. #include <linux/export.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/pgtable.h>
  28. typedef u32 sysmmu_iova_t;
  29. typedef u32 sysmmu_pte_t;
  30. /* We do not consider super section mapping (16MB) */
  31. #define SECT_ORDER 20
  32. #define LPAGE_ORDER 16
  33. #define SPAGE_ORDER 12
  34. #define SECT_SIZE (1 << SECT_ORDER)
  35. #define LPAGE_SIZE (1 << LPAGE_ORDER)
  36. #define SPAGE_SIZE (1 << SPAGE_ORDER)
  37. #define SECT_MASK (~(SECT_SIZE - 1))
  38. #define LPAGE_MASK (~(LPAGE_SIZE - 1))
  39. #define SPAGE_MASK (~(SPAGE_SIZE - 1))
  40. #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  41. ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  42. #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  43. #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  44. #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  45. ((*(sent) & 3) == 1))
  46. #define lv1ent_section(sent) ((*(sent) & 3) == 2)
  47. #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  48. #define lv2ent_small(pent) ((*(pent) & 2) == 2)
  49. #define lv2ent_large(pent) ((*(pent) & 3) == 1)
  50. static u32 sysmmu_page_offset(sysmmu_iova_t iova, u32 size)
  51. {
  52. return iova & (size - 1);
  53. }
  54. #define section_phys(sent) (*(sent) & SECT_MASK)
  55. #define section_offs(iova) sysmmu_page_offset((iova), SECT_SIZE)
  56. #define lpage_phys(pent) (*(pent) & LPAGE_MASK)
  57. #define lpage_offs(iova) sysmmu_page_offset((iova), LPAGE_SIZE)
  58. #define spage_phys(pent) (*(pent) & SPAGE_MASK)
  59. #define spage_offs(iova) sysmmu_page_offset((iova), SPAGE_SIZE)
  60. #define NUM_LV1ENTRIES 4096
  61. #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
  62. static u32 lv1ent_offset(sysmmu_iova_t iova)
  63. {
  64. return iova >> SECT_ORDER;
  65. }
  66. static u32 lv2ent_offset(sysmmu_iova_t iova)
  67. {
  68. return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
  69. }
  70. #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
  71. #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
  72. #define lv2table_base(sent) (*(sent) & 0xFFFFFC00)
  73. #define mk_lv1ent_sect(pa) ((pa) | 2)
  74. #define mk_lv1ent_page(pa) ((pa) | 1)
  75. #define mk_lv2ent_lpage(pa) ((pa) | 1)
  76. #define mk_lv2ent_spage(pa) ((pa) | 2)
  77. #define CTRL_ENABLE 0x5
  78. #define CTRL_BLOCK 0x7
  79. #define CTRL_DISABLE 0x0
  80. #define CFG_LRU 0x1
  81. #define CFG_QOS(n) ((n & 0xF) << 7)
  82. #define CFG_MASK 0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */
  83. #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
  84. #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
  85. #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
  86. #define REG_MMU_CTRL 0x000
  87. #define REG_MMU_CFG 0x004
  88. #define REG_MMU_STATUS 0x008
  89. #define REG_MMU_FLUSH 0x00C
  90. #define REG_MMU_FLUSH_ENTRY 0x010
  91. #define REG_PT_BASE_ADDR 0x014
  92. #define REG_INT_STATUS 0x018
  93. #define REG_INT_CLEAR 0x01C
  94. #define REG_PAGE_FAULT_ADDR 0x024
  95. #define REG_AW_FAULT_ADDR 0x028
  96. #define REG_AR_FAULT_ADDR 0x02C
  97. #define REG_DEFAULT_SLAVE_ADDR 0x030
  98. #define REG_MMU_VERSION 0x034
  99. #define MMU_MAJ_VER(val) ((val) >> 7)
  100. #define MMU_MIN_VER(val) ((val) & 0x7F)
  101. #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
  102. #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
  103. #define REG_PB0_SADDR 0x04C
  104. #define REG_PB0_EADDR 0x050
  105. #define REG_PB1_SADDR 0x054
  106. #define REG_PB1_EADDR 0x058
  107. #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
  108. static struct kmem_cache *lv2table_kmem_cache;
  109. static sysmmu_pte_t *zero_lv2_table;
  110. #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
  111. static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
  112. {
  113. return pgtable + lv1ent_offset(iova);
  114. }
  115. static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
  116. {
  117. return (sysmmu_pte_t *)phys_to_virt(
  118. lv2table_base(sent)) + lv2ent_offset(iova);
  119. }
  120. enum exynos_sysmmu_inttype {
  121. SYSMMU_PAGEFAULT,
  122. SYSMMU_AR_MULTIHIT,
  123. SYSMMU_AW_MULTIHIT,
  124. SYSMMU_BUSERROR,
  125. SYSMMU_AR_SECURITY,
  126. SYSMMU_AR_ACCESS,
  127. SYSMMU_AW_SECURITY,
  128. SYSMMU_AW_PROTECTION, /* 7 */
  129. SYSMMU_FAULT_UNKNOWN,
  130. SYSMMU_FAULTS_NUM
  131. };
  132. static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = {
  133. REG_PAGE_FAULT_ADDR,
  134. REG_AR_FAULT_ADDR,
  135. REG_AW_FAULT_ADDR,
  136. REG_DEFAULT_SLAVE_ADDR,
  137. REG_AR_FAULT_ADDR,
  138. REG_AR_FAULT_ADDR,
  139. REG_AW_FAULT_ADDR,
  140. REG_AW_FAULT_ADDR
  141. };
  142. static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
  143. "PAGE FAULT",
  144. "AR MULTI-HIT FAULT",
  145. "AW MULTI-HIT FAULT",
  146. "BUS ERROR",
  147. "AR SECURITY PROTECTION FAULT",
  148. "AR ACCESS PROTECTION FAULT",
  149. "AW SECURITY PROTECTION FAULT",
  150. "AW ACCESS PROTECTION FAULT",
  151. "UNKNOWN FAULT"
  152. };
  153. /* attached to dev.archdata.iommu of the master device */
  154. struct exynos_iommu_owner {
  155. struct list_head client; /* entry of exynos_iommu_domain.clients */
  156. struct device *dev;
  157. struct device *sysmmu;
  158. struct iommu_domain *domain;
  159. void *vmm_data; /* IO virtual memory manager's data */
  160. spinlock_t lock; /* Lock to preserve consistency of System MMU */
  161. };
  162. struct exynos_iommu_domain {
  163. struct list_head clients; /* list of sysmmu_drvdata.node */
  164. sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
  165. short *lv2entcnt; /* free lv2 entry counter for each section */
  166. spinlock_t lock; /* lock for this structure */
  167. spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
  168. };
  169. struct sysmmu_drvdata {
  170. struct device *sysmmu; /* System MMU's device descriptor */
  171. struct device *master; /* Owner of system MMU */
  172. void __iomem *sfrbase;
  173. struct clk *clk;
  174. struct clk *clk_master;
  175. int activations;
  176. spinlock_t lock;
  177. struct iommu_domain *domain;
  178. phys_addr_t pgtable;
  179. };
  180. static bool set_sysmmu_active(struct sysmmu_drvdata *data)
  181. {
  182. /* return true if the System MMU was not active previously
  183. and it needs to be initialized */
  184. return ++data->activations == 1;
  185. }
  186. static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
  187. {
  188. /* return true if the System MMU is needed to be disabled */
  189. BUG_ON(data->activations < 1);
  190. return --data->activations == 0;
  191. }
  192. static bool is_sysmmu_active(struct sysmmu_drvdata *data)
  193. {
  194. return data->activations > 0;
  195. }
  196. static void sysmmu_unblock(void __iomem *sfrbase)
  197. {
  198. __raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL);
  199. }
  200. static unsigned int __raw_sysmmu_version(struct sysmmu_drvdata *data)
  201. {
  202. return MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION));
  203. }
  204. static bool sysmmu_block(void __iomem *sfrbase)
  205. {
  206. int i = 120;
  207. __raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL);
  208. while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1))
  209. --i;
  210. if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) {
  211. sysmmu_unblock(sfrbase);
  212. return false;
  213. }
  214. return true;
  215. }
  216. static void __sysmmu_tlb_invalidate(void __iomem *sfrbase)
  217. {
  218. __raw_writel(0x1, sfrbase + REG_MMU_FLUSH);
  219. }
  220. static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase,
  221. sysmmu_iova_t iova, unsigned int num_inv)
  222. {
  223. unsigned int i;
  224. for (i = 0; i < num_inv; i++) {
  225. __raw_writel((iova & SPAGE_MASK) | 1,
  226. sfrbase + REG_MMU_FLUSH_ENTRY);
  227. iova += SPAGE_SIZE;
  228. }
  229. }
  230. static void __sysmmu_set_ptbase(void __iomem *sfrbase,
  231. phys_addr_t pgd)
  232. {
  233. __raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR);
  234. __sysmmu_tlb_invalidate(sfrbase);
  235. }
  236. static void show_fault_information(const char *name,
  237. enum exynos_sysmmu_inttype itype,
  238. phys_addr_t pgtable_base, sysmmu_iova_t fault_addr)
  239. {
  240. sysmmu_pte_t *ent;
  241. if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT))
  242. itype = SYSMMU_FAULT_UNKNOWN;
  243. pr_err("%s occurred at %#x by %s(Page table base: %pa)\n",
  244. sysmmu_fault_name[itype], fault_addr, name, &pgtable_base);
  245. ent = section_entry(phys_to_virt(pgtable_base), fault_addr);
  246. pr_err("\tLv1 entry: %#x\n", *ent);
  247. if (lv1ent_page(ent)) {
  248. ent = page_entry(ent, fault_addr);
  249. pr_err("\t Lv2 entry: %#x\n", *ent);
  250. }
  251. }
  252. static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
  253. {
  254. /* SYSMMU is in blocked state when interrupt occurred. */
  255. struct sysmmu_drvdata *data = dev_id;
  256. enum exynos_sysmmu_inttype itype;
  257. sysmmu_iova_t addr = -1;
  258. int ret = -ENOSYS;
  259. WARN_ON(!is_sysmmu_active(data));
  260. spin_lock(&data->lock);
  261. if (!IS_ERR(data->clk_master))
  262. clk_enable(data->clk_master);
  263. itype = (enum exynos_sysmmu_inttype)
  264. __ffs(__raw_readl(data->sfrbase + REG_INT_STATUS));
  265. if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN))))
  266. itype = SYSMMU_FAULT_UNKNOWN;
  267. else
  268. addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]);
  269. if (itype == SYSMMU_FAULT_UNKNOWN) {
  270. pr_err("%s: Fault is not occurred by System MMU '%s'!\n",
  271. __func__, dev_name(data->sysmmu));
  272. pr_err("%s: Please check if IRQ is correctly configured.\n",
  273. __func__);
  274. BUG();
  275. } else {
  276. unsigned int base =
  277. __raw_readl(data->sfrbase + REG_PT_BASE_ADDR);
  278. show_fault_information(dev_name(data->sysmmu),
  279. itype, base, addr);
  280. if (data->domain)
  281. ret = report_iommu_fault(data->domain,
  282. data->master, addr, itype);
  283. }
  284. /* fault is not recovered by fault handler */
  285. BUG_ON(ret != 0);
  286. __raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR);
  287. sysmmu_unblock(data->sfrbase);
  288. if (!IS_ERR(data->clk_master))
  289. clk_disable(data->clk_master);
  290. spin_unlock(&data->lock);
  291. return IRQ_HANDLED;
  292. }
  293. static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
  294. {
  295. if (!IS_ERR(data->clk_master))
  296. clk_enable(data->clk_master);
  297. __raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
  298. __raw_writel(0, data->sfrbase + REG_MMU_CFG);
  299. clk_disable(data->clk);
  300. if (!IS_ERR(data->clk_master))
  301. clk_disable(data->clk_master);
  302. }
  303. static bool __sysmmu_disable(struct sysmmu_drvdata *data)
  304. {
  305. bool disabled;
  306. unsigned long flags;
  307. spin_lock_irqsave(&data->lock, flags);
  308. disabled = set_sysmmu_inactive(data);
  309. if (disabled) {
  310. data->pgtable = 0;
  311. data->domain = NULL;
  312. __sysmmu_disable_nocount(data);
  313. dev_dbg(data->sysmmu, "Disabled\n");
  314. } else {
  315. dev_dbg(data->sysmmu, "%d times left to disable\n",
  316. data->activations);
  317. }
  318. spin_unlock_irqrestore(&data->lock, flags);
  319. return disabled;
  320. }
  321. static void __sysmmu_init_config(struct sysmmu_drvdata *data)
  322. {
  323. unsigned int cfg = CFG_LRU | CFG_QOS(15);
  324. unsigned int ver;
  325. ver = __raw_sysmmu_version(data);
  326. if (MMU_MAJ_VER(ver) == 3) {
  327. if (MMU_MIN_VER(ver) >= 2) {
  328. cfg |= CFG_FLPDCACHE;
  329. if (MMU_MIN_VER(ver) == 3) {
  330. cfg |= CFG_ACGEN;
  331. cfg &= ~CFG_LRU;
  332. } else {
  333. cfg |= CFG_SYSSEL;
  334. }
  335. }
  336. }
  337. __raw_writel(cfg, data->sfrbase + REG_MMU_CFG);
  338. }
  339. static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
  340. {
  341. if (!IS_ERR(data->clk_master))
  342. clk_enable(data->clk_master);
  343. clk_enable(data->clk);
  344. __raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
  345. __sysmmu_init_config(data);
  346. __sysmmu_set_ptbase(data->sfrbase, data->pgtable);
  347. __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
  348. if (!IS_ERR(data->clk_master))
  349. clk_disable(data->clk_master);
  350. }
  351. static int __sysmmu_enable(struct sysmmu_drvdata *data,
  352. phys_addr_t pgtable, struct iommu_domain *domain)
  353. {
  354. int ret = 0;
  355. unsigned long flags;
  356. spin_lock_irqsave(&data->lock, flags);
  357. if (set_sysmmu_active(data)) {
  358. data->pgtable = pgtable;
  359. data->domain = domain;
  360. __sysmmu_enable_nocount(data);
  361. dev_dbg(data->sysmmu, "Enabled\n");
  362. } else {
  363. ret = (pgtable == data->pgtable) ? 1 : -EBUSY;
  364. dev_dbg(data->sysmmu, "already enabled\n");
  365. }
  366. if (WARN_ON(ret < 0))
  367. set_sysmmu_inactive(data); /* decrement count */
  368. spin_unlock_irqrestore(&data->lock, flags);
  369. return ret;
  370. }
  371. /* __exynos_sysmmu_enable: Enables System MMU
  372. *
  373. * returns -error if an error occurred and System MMU is not enabled,
  374. * 0 if the System MMU has been just enabled and 1 if System MMU was already
  375. * enabled before.
  376. */
  377. static int __exynos_sysmmu_enable(struct device *dev, phys_addr_t pgtable,
  378. struct iommu_domain *domain)
  379. {
  380. int ret = 0;
  381. unsigned long flags;
  382. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  383. struct sysmmu_drvdata *data;
  384. BUG_ON(!has_sysmmu(dev));
  385. spin_lock_irqsave(&owner->lock, flags);
  386. data = dev_get_drvdata(owner->sysmmu);
  387. ret = __sysmmu_enable(data, pgtable, domain);
  388. if (ret >= 0)
  389. data->master = dev;
  390. spin_unlock_irqrestore(&owner->lock, flags);
  391. return ret;
  392. }
  393. int exynos_sysmmu_enable(struct device *dev, phys_addr_t pgtable)
  394. {
  395. BUG_ON(!memblock_is_memory(pgtable));
  396. return __exynos_sysmmu_enable(dev, pgtable, NULL);
  397. }
  398. static bool exynos_sysmmu_disable(struct device *dev)
  399. {
  400. unsigned long flags;
  401. bool disabled = true;
  402. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  403. struct sysmmu_drvdata *data;
  404. BUG_ON(!has_sysmmu(dev));
  405. spin_lock_irqsave(&owner->lock, flags);
  406. data = dev_get_drvdata(owner->sysmmu);
  407. disabled = __sysmmu_disable(data);
  408. if (disabled)
  409. data->master = NULL;
  410. spin_unlock_irqrestore(&owner->lock, flags);
  411. return disabled;
  412. }
  413. static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
  414. sysmmu_iova_t iova)
  415. {
  416. if (__raw_sysmmu_version(data) == MAKE_MMU_VER(3, 3))
  417. __raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY);
  418. }
  419. static void sysmmu_tlb_invalidate_flpdcache(struct device *dev,
  420. sysmmu_iova_t iova)
  421. {
  422. unsigned long flags;
  423. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  424. struct sysmmu_drvdata *data = dev_get_drvdata(owner->sysmmu);
  425. if (!IS_ERR(data->clk_master))
  426. clk_enable(data->clk_master);
  427. spin_lock_irqsave(&data->lock, flags);
  428. if (is_sysmmu_active(data))
  429. __sysmmu_tlb_invalidate_flpdcache(data, iova);
  430. spin_unlock_irqrestore(&data->lock, flags);
  431. if (!IS_ERR(data->clk_master))
  432. clk_disable(data->clk_master);
  433. }
  434. static void sysmmu_tlb_invalidate_entry(struct device *dev, sysmmu_iova_t iova,
  435. size_t size)
  436. {
  437. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  438. unsigned long flags;
  439. struct sysmmu_drvdata *data;
  440. data = dev_get_drvdata(owner->sysmmu);
  441. spin_lock_irqsave(&data->lock, flags);
  442. if (is_sysmmu_active(data)) {
  443. unsigned int num_inv = 1;
  444. if (!IS_ERR(data->clk_master))
  445. clk_enable(data->clk_master);
  446. /*
  447. * L2TLB invalidation required
  448. * 4KB page: 1 invalidation
  449. * 64KB page: 16 invalidations
  450. * 1MB page: 64 invalidations
  451. * because it is set-associative TLB
  452. * with 8-way and 64 sets.
  453. * 1MB page can be cached in one of all sets.
  454. * 64KB page can be one of 16 consecutive sets.
  455. */
  456. if (MMU_MAJ_VER(__raw_sysmmu_version(data)) == 2)
  457. num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
  458. if (sysmmu_block(data->sfrbase)) {
  459. __sysmmu_tlb_invalidate_entry(
  460. data->sfrbase, iova, num_inv);
  461. sysmmu_unblock(data->sfrbase);
  462. }
  463. if (!IS_ERR(data->clk_master))
  464. clk_disable(data->clk_master);
  465. } else {
  466. dev_dbg(dev, "disabled. Skipping TLB invalidation @ %#x\n",
  467. iova);
  468. }
  469. spin_unlock_irqrestore(&data->lock, flags);
  470. }
  471. void exynos_sysmmu_tlb_invalidate(struct device *dev)
  472. {
  473. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  474. unsigned long flags;
  475. struct sysmmu_drvdata *data;
  476. data = dev_get_drvdata(owner->sysmmu);
  477. spin_lock_irqsave(&data->lock, flags);
  478. if (is_sysmmu_active(data)) {
  479. if (!IS_ERR(data->clk_master))
  480. clk_enable(data->clk_master);
  481. if (sysmmu_block(data->sfrbase)) {
  482. __sysmmu_tlb_invalidate(data->sfrbase);
  483. sysmmu_unblock(data->sfrbase);
  484. }
  485. if (!IS_ERR(data->clk_master))
  486. clk_disable(data->clk_master);
  487. } else {
  488. dev_dbg(dev, "disabled. Skipping TLB invalidation\n");
  489. }
  490. spin_unlock_irqrestore(&data->lock, flags);
  491. }
  492. static int __init exynos_sysmmu_probe(struct platform_device *pdev)
  493. {
  494. int irq, ret;
  495. struct device *dev = &pdev->dev;
  496. struct sysmmu_drvdata *data;
  497. struct resource *res;
  498. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  499. if (!data)
  500. return -ENOMEM;
  501. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  502. data->sfrbase = devm_ioremap_resource(dev, res);
  503. if (IS_ERR(data->sfrbase))
  504. return PTR_ERR(data->sfrbase);
  505. irq = platform_get_irq(pdev, 0);
  506. if (irq <= 0) {
  507. dev_err(dev, "Unable to find IRQ resource\n");
  508. return irq;
  509. }
  510. ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
  511. dev_name(dev), data);
  512. if (ret) {
  513. dev_err(dev, "Unabled to register handler of irq %d\n", irq);
  514. return ret;
  515. }
  516. data->clk = devm_clk_get(dev, "sysmmu");
  517. if (IS_ERR(data->clk)) {
  518. dev_err(dev, "Failed to get clock!\n");
  519. return PTR_ERR(data->clk);
  520. } else {
  521. ret = clk_prepare(data->clk);
  522. if (ret) {
  523. dev_err(dev, "Failed to prepare clk\n");
  524. return ret;
  525. }
  526. }
  527. data->clk_master = devm_clk_get(dev, "master");
  528. if (!IS_ERR(data->clk_master)) {
  529. ret = clk_prepare(data->clk_master);
  530. if (ret) {
  531. clk_unprepare(data->clk);
  532. dev_err(dev, "Failed to prepare master's clk\n");
  533. return ret;
  534. }
  535. }
  536. data->sysmmu = dev;
  537. spin_lock_init(&data->lock);
  538. platform_set_drvdata(pdev, data);
  539. pm_runtime_enable(dev);
  540. return 0;
  541. }
  542. static const struct of_device_id sysmmu_of_match[] __initconst = {
  543. { .compatible = "samsung,exynos-sysmmu", },
  544. { },
  545. };
  546. static struct platform_driver exynos_sysmmu_driver __refdata = {
  547. .probe = exynos_sysmmu_probe,
  548. .driver = {
  549. .owner = THIS_MODULE,
  550. .name = "exynos-sysmmu",
  551. .of_match_table = sysmmu_of_match,
  552. }
  553. };
  554. static inline void pgtable_flush(void *vastart, void *vaend)
  555. {
  556. dmac_flush_range(vastart, vaend);
  557. outer_flush_range(virt_to_phys(vastart),
  558. virt_to_phys(vaend));
  559. }
  560. static int exynos_iommu_domain_init(struct iommu_domain *domain)
  561. {
  562. struct exynos_iommu_domain *priv;
  563. int i;
  564. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  565. if (!priv)
  566. return -ENOMEM;
  567. priv->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
  568. if (!priv->pgtable)
  569. goto err_pgtable;
  570. priv->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
  571. if (!priv->lv2entcnt)
  572. goto err_counter;
  573. /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
  574. for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
  575. priv->pgtable[i + 0] = ZERO_LV2LINK;
  576. priv->pgtable[i + 1] = ZERO_LV2LINK;
  577. priv->pgtable[i + 2] = ZERO_LV2LINK;
  578. priv->pgtable[i + 3] = ZERO_LV2LINK;
  579. priv->pgtable[i + 4] = ZERO_LV2LINK;
  580. priv->pgtable[i + 5] = ZERO_LV2LINK;
  581. priv->pgtable[i + 6] = ZERO_LV2LINK;
  582. priv->pgtable[i + 7] = ZERO_LV2LINK;
  583. }
  584. pgtable_flush(priv->pgtable, priv->pgtable + NUM_LV1ENTRIES);
  585. spin_lock_init(&priv->lock);
  586. spin_lock_init(&priv->pgtablelock);
  587. INIT_LIST_HEAD(&priv->clients);
  588. domain->geometry.aperture_start = 0;
  589. domain->geometry.aperture_end = ~0UL;
  590. domain->geometry.force_aperture = true;
  591. domain->priv = priv;
  592. return 0;
  593. err_counter:
  594. free_pages((unsigned long)priv->pgtable, 2);
  595. err_pgtable:
  596. kfree(priv);
  597. return -ENOMEM;
  598. }
  599. static void exynos_iommu_domain_destroy(struct iommu_domain *domain)
  600. {
  601. struct exynos_iommu_domain *priv = domain->priv;
  602. struct exynos_iommu_owner *owner;
  603. unsigned long flags;
  604. int i;
  605. WARN_ON(!list_empty(&priv->clients));
  606. spin_lock_irqsave(&priv->lock, flags);
  607. list_for_each_entry(owner, &priv->clients, client) {
  608. while (!exynos_sysmmu_disable(owner->dev))
  609. ; /* until System MMU is actually disabled */
  610. }
  611. while (!list_empty(&priv->clients))
  612. list_del_init(priv->clients.next);
  613. spin_unlock_irqrestore(&priv->lock, flags);
  614. for (i = 0; i < NUM_LV1ENTRIES; i++)
  615. if (lv1ent_page(priv->pgtable + i))
  616. kmem_cache_free(lv2table_kmem_cache,
  617. phys_to_virt(lv2table_base(priv->pgtable + i)));
  618. free_pages((unsigned long)priv->pgtable, 2);
  619. free_pages((unsigned long)priv->lv2entcnt, 1);
  620. kfree(domain->priv);
  621. domain->priv = NULL;
  622. }
  623. static int exynos_iommu_attach_device(struct iommu_domain *domain,
  624. struct device *dev)
  625. {
  626. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  627. struct exynos_iommu_domain *priv = domain->priv;
  628. phys_addr_t pagetable = virt_to_phys(priv->pgtable);
  629. unsigned long flags;
  630. int ret;
  631. spin_lock_irqsave(&priv->lock, flags);
  632. ret = __exynos_sysmmu_enable(dev, pagetable, domain);
  633. if (ret == 0) {
  634. list_add_tail(&owner->client, &priv->clients);
  635. owner->domain = domain;
  636. }
  637. spin_unlock_irqrestore(&priv->lock, flags);
  638. if (ret < 0) {
  639. dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
  640. __func__, &pagetable);
  641. return ret;
  642. }
  643. dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
  644. __func__, &pagetable, (ret == 0) ? "" : ", again");
  645. return ret;
  646. }
  647. static void exynos_iommu_detach_device(struct iommu_domain *domain,
  648. struct device *dev)
  649. {
  650. struct exynos_iommu_owner *owner;
  651. struct exynos_iommu_domain *priv = domain->priv;
  652. phys_addr_t pagetable = virt_to_phys(priv->pgtable);
  653. unsigned long flags;
  654. spin_lock_irqsave(&priv->lock, flags);
  655. list_for_each_entry(owner, &priv->clients, client) {
  656. if (owner == dev->archdata.iommu) {
  657. if (exynos_sysmmu_disable(dev)) {
  658. list_del_init(&owner->client);
  659. owner->domain = NULL;
  660. }
  661. break;
  662. }
  663. }
  664. spin_unlock_irqrestore(&priv->lock, flags);
  665. if (owner == dev->archdata.iommu)
  666. dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
  667. __func__, &pagetable);
  668. else
  669. dev_err(dev, "%s: No IOMMU is attached\n", __func__);
  670. }
  671. static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *priv,
  672. sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
  673. {
  674. if (lv1ent_section(sent)) {
  675. WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
  676. return ERR_PTR(-EADDRINUSE);
  677. }
  678. if (lv1ent_fault(sent)) {
  679. sysmmu_pte_t *pent;
  680. bool need_flush_flpd_cache = lv1ent_zero(sent);
  681. pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
  682. BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1));
  683. if (!pent)
  684. return ERR_PTR(-ENOMEM);
  685. *sent = mk_lv1ent_page(virt_to_phys(pent));
  686. *pgcounter = NUM_LV2ENTRIES;
  687. pgtable_flush(pent, pent + NUM_LV2ENTRIES);
  688. pgtable_flush(sent, sent + 1);
  689. /*
  690. * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
  691. * FLPD cache may cache the address of zero_l2_table. This
  692. * function replaces the zero_l2_table with new L2 page table
  693. * to write valid mappings.
  694. * Accessing the valid area may cause page fault since FLPD
  695. * cache may still cache zero_l2_table for the valid area
  696. * instead of new L2 page table that has the mapping
  697. * information of the valid area.
  698. * Thus any replacement of zero_l2_table with other valid L2
  699. * page table must involve FLPD cache invalidation for System
  700. * MMU v3.3.
  701. * FLPD cache invalidation is performed with TLB invalidation
  702. * by VPN without blocking. It is safe to invalidate TLB without
  703. * blocking because the target address of TLB invalidation is
  704. * not currently mapped.
  705. */
  706. if (need_flush_flpd_cache) {
  707. struct exynos_iommu_owner *owner;
  708. spin_lock(&priv->lock);
  709. list_for_each_entry(owner, &priv->clients, client)
  710. sysmmu_tlb_invalidate_flpdcache(
  711. owner->dev, iova);
  712. spin_unlock(&priv->lock);
  713. }
  714. }
  715. return page_entry(sent, iova);
  716. }
  717. static int lv1set_section(struct exynos_iommu_domain *priv,
  718. sysmmu_pte_t *sent, sysmmu_iova_t iova,
  719. phys_addr_t paddr, short *pgcnt)
  720. {
  721. if (lv1ent_section(sent)) {
  722. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  723. iova);
  724. return -EADDRINUSE;
  725. }
  726. if (lv1ent_page(sent)) {
  727. if (*pgcnt != NUM_LV2ENTRIES) {
  728. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  729. iova);
  730. return -EADDRINUSE;
  731. }
  732. kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
  733. *pgcnt = 0;
  734. }
  735. *sent = mk_lv1ent_sect(paddr);
  736. pgtable_flush(sent, sent + 1);
  737. spin_lock(&priv->lock);
  738. if (lv1ent_page_zero(sent)) {
  739. struct exynos_iommu_owner *owner;
  740. /*
  741. * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
  742. * entry by speculative prefetch of SLPD which has no mapping.
  743. */
  744. list_for_each_entry(owner, &priv->clients, client)
  745. sysmmu_tlb_invalidate_flpdcache(owner->dev, iova);
  746. }
  747. spin_unlock(&priv->lock);
  748. return 0;
  749. }
  750. static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
  751. short *pgcnt)
  752. {
  753. if (size == SPAGE_SIZE) {
  754. if (WARN_ON(!lv2ent_fault(pent)))
  755. return -EADDRINUSE;
  756. *pent = mk_lv2ent_spage(paddr);
  757. pgtable_flush(pent, pent + 1);
  758. *pgcnt -= 1;
  759. } else { /* size == LPAGE_SIZE */
  760. int i;
  761. for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
  762. if (WARN_ON(!lv2ent_fault(pent))) {
  763. if (i > 0)
  764. memset(pent - i, 0, sizeof(*pent) * i);
  765. return -EADDRINUSE;
  766. }
  767. *pent = mk_lv2ent_lpage(paddr);
  768. }
  769. pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
  770. *pgcnt -= SPAGES_PER_LPAGE;
  771. }
  772. return 0;
  773. }
  774. /*
  775. * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
  776. *
  777. * System MMU v3.x has advanced logic to improve address translation
  778. * performance with caching more page table entries by a page table walk.
  779. * However, the logic has a bug that while caching faulty page table entries,
  780. * System MMU reports page fault if the cached fault entry is hit even though
  781. * the fault entry is updated to a valid entry after the entry is cached.
  782. * To prevent caching faulty page table entries which may be updated to valid
  783. * entries later, the virtual memory manager should care about the workaround
  784. * for the problem. The following describes the workaround.
  785. *
  786. * Any two consecutive I/O virtual address regions must have a hole of 128KiB
  787. * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
  788. *
  789. * Precisely, any start address of I/O virtual region must be aligned with
  790. * the following sizes for System MMU v3.1 and v3.2.
  791. * System MMU v3.1: 128KiB
  792. * System MMU v3.2: 256KiB
  793. *
  794. * Because System MMU v3.3 caches page table entries more aggressively, it needs
  795. * more workarounds.
  796. * - Any two consecutive I/O virtual regions must have a hole of size larger
  797. * than or equal to 128KiB.
  798. * - Start address of an I/O virtual region must be aligned by 128KiB.
  799. */
  800. static int exynos_iommu_map(struct iommu_domain *domain, unsigned long l_iova,
  801. phys_addr_t paddr, size_t size, int prot)
  802. {
  803. struct exynos_iommu_domain *priv = domain->priv;
  804. sysmmu_pte_t *entry;
  805. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  806. unsigned long flags;
  807. int ret = -ENOMEM;
  808. BUG_ON(priv->pgtable == NULL);
  809. spin_lock_irqsave(&priv->pgtablelock, flags);
  810. entry = section_entry(priv->pgtable, iova);
  811. if (size == SECT_SIZE) {
  812. ret = lv1set_section(priv, entry, iova, paddr,
  813. &priv->lv2entcnt[lv1ent_offset(iova)]);
  814. } else {
  815. sysmmu_pte_t *pent;
  816. pent = alloc_lv2entry(priv, entry, iova,
  817. &priv->lv2entcnt[lv1ent_offset(iova)]);
  818. if (IS_ERR(pent))
  819. ret = PTR_ERR(pent);
  820. else
  821. ret = lv2set_page(pent, paddr, size,
  822. &priv->lv2entcnt[lv1ent_offset(iova)]);
  823. }
  824. if (ret)
  825. pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
  826. __func__, ret, size, iova);
  827. spin_unlock_irqrestore(&priv->pgtablelock, flags);
  828. return ret;
  829. }
  830. static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *priv,
  831. sysmmu_iova_t iova, size_t size)
  832. {
  833. struct exynos_iommu_owner *owner;
  834. unsigned long flags;
  835. spin_lock_irqsave(&priv->lock, flags);
  836. list_for_each_entry(owner, &priv->clients, client)
  837. sysmmu_tlb_invalidate_entry(owner->dev, iova, size);
  838. spin_unlock_irqrestore(&priv->lock, flags);
  839. }
  840. static size_t exynos_iommu_unmap(struct iommu_domain *domain,
  841. unsigned long l_iova, size_t size)
  842. {
  843. struct exynos_iommu_domain *priv = domain->priv;
  844. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  845. sysmmu_pte_t *ent;
  846. size_t err_pgsize;
  847. unsigned long flags;
  848. BUG_ON(priv->pgtable == NULL);
  849. spin_lock_irqsave(&priv->pgtablelock, flags);
  850. ent = section_entry(priv->pgtable, iova);
  851. if (lv1ent_section(ent)) {
  852. if (WARN_ON(size < SECT_SIZE)) {
  853. err_pgsize = SECT_SIZE;
  854. goto err;
  855. }
  856. /* workaround for h/w bug in System MMU v3.3 */
  857. *ent = ZERO_LV2LINK;
  858. pgtable_flush(ent, ent + 1);
  859. size = SECT_SIZE;
  860. goto done;
  861. }
  862. if (unlikely(lv1ent_fault(ent))) {
  863. if (size > SECT_SIZE)
  864. size = SECT_SIZE;
  865. goto done;
  866. }
  867. /* lv1ent_page(sent) == true here */
  868. ent = page_entry(ent, iova);
  869. if (unlikely(lv2ent_fault(ent))) {
  870. size = SPAGE_SIZE;
  871. goto done;
  872. }
  873. if (lv2ent_small(ent)) {
  874. *ent = 0;
  875. size = SPAGE_SIZE;
  876. pgtable_flush(ent, ent + 1);
  877. priv->lv2entcnt[lv1ent_offset(iova)] += 1;
  878. goto done;
  879. }
  880. /* lv1ent_large(ent) == true here */
  881. if (WARN_ON(size < LPAGE_SIZE)) {
  882. err_pgsize = LPAGE_SIZE;
  883. goto err;
  884. }
  885. memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
  886. pgtable_flush(ent, ent + SPAGES_PER_LPAGE);
  887. size = LPAGE_SIZE;
  888. priv->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
  889. done:
  890. spin_unlock_irqrestore(&priv->pgtablelock, flags);
  891. exynos_iommu_tlb_invalidate_entry(priv, iova, size);
  892. return size;
  893. err:
  894. spin_unlock_irqrestore(&priv->pgtablelock, flags);
  895. pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
  896. __func__, size, iova, err_pgsize);
  897. return 0;
  898. }
  899. static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *domain,
  900. dma_addr_t iova)
  901. {
  902. struct exynos_iommu_domain *priv = domain->priv;
  903. sysmmu_pte_t *entry;
  904. unsigned long flags;
  905. phys_addr_t phys = 0;
  906. spin_lock_irqsave(&priv->pgtablelock, flags);
  907. entry = section_entry(priv->pgtable, iova);
  908. if (lv1ent_section(entry)) {
  909. phys = section_phys(entry) + section_offs(iova);
  910. } else if (lv1ent_page(entry)) {
  911. entry = page_entry(entry, iova);
  912. if (lv2ent_large(entry))
  913. phys = lpage_phys(entry) + lpage_offs(iova);
  914. else if (lv2ent_small(entry))
  915. phys = spage_phys(entry) + spage_offs(iova);
  916. }
  917. spin_unlock_irqrestore(&priv->pgtablelock, flags);
  918. return phys;
  919. }
  920. static int exynos_iommu_add_device(struct device *dev)
  921. {
  922. struct iommu_group *group;
  923. int ret;
  924. group = iommu_group_get(dev);
  925. if (!group) {
  926. group = iommu_group_alloc();
  927. if (IS_ERR(group)) {
  928. dev_err(dev, "Failed to allocate IOMMU group\n");
  929. return PTR_ERR(group);
  930. }
  931. }
  932. ret = iommu_group_add_device(group, dev);
  933. iommu_group_put(group);
  934. return ret;
  935. }
  936. static void exynos_iommu_remove_device(struct device *dev)
  937. {
  938. iommu_group_remove_device(dev);
  939. }
  940. static const struct iommu_ops exynos_iommu_ops = {
  941. .domain_init = exynos_iommu_domain_init,
  942. .domain_destroy = exynos_iommu_domain_destroy,
  943. .attach_dev = exynos_iommu_attach_device,
  944. .detach_dev = exynos_iommu_detach_device,
  945. .map = exynos_iommu_map,
  946. .unmap = exynos_iommu_unmap,
  947. .iova_to_phys = exynos_iommu_iova_to_phys,
  948. .add_device = exynos_iommu_add_device,
  949. .remove_device = exynos_iommu_remove_device,
  950. .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
  951. };
  952. static int __init exynos_iommu_init(void)
  953. {
  954. int ret;
  955. lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
  956. LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
  957. if (!lv2table_kmem_cache) {
  958. pr_err("%s: Failed to create kmem cache\n", __func__);
  959. return -ENOMEM;
  960. }
  961. ret = platform_driver_register(&exynos_sysmmu_driver);
  962. if (ret) {
  963. pr_err("%s: Failed to register driver\n", __func__);
  964. goto err_reg_driver;
  965. }
  966. zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
  967. if (zero_lv2_table == NULL) {
  968. pr_err("%s: Failed to allocate zero level2 page table\n",
  969. __func__);
  970. ret = -ENOMEM;
  971. goto err_zero_lv2;
  972. }
  973. ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
  974. if (ret) {
  975. pr_err("%s: Failed to register exynos-iommu driver.\n",
  976. __func__);
  977. goto err_set_iommu;
  978. }
  979. return 0;
  980. err_set_iommu:
  981. kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
  982. err_zero_lv2:
  983. platform_driver_unregister(&exynos_sysmmu_driver);
  984. err_reg_driver:
  985. kmem_cache_destroy(lv2table_kmem_cache);
  986. return ret;
  987. }
  988. subsys_initcall(exynos_iommu_init);