amd_iommu.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/pci-ats.h>
  22. #include <linux/bitmap.h>
  23. #include <linux/slab.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/iommu.h>
  29. #include <linux/delay.h>
  30. #include <linux/amd-iommu.h>
  31. #include <linux/notifier.h>
  32. #include <linux/export.h>
  33. #include <linux/irq.h>
  34. #include <linux/msi.h>
  35. #include <asm/irq_remapping.h>
  36. #include <asm/io_apic.h>
  37. #include <asm/apic.h>
  38. #include <asm/hw_irq.h>
  39. #include <asm/msidef.h>
  40. #include <asm/proto.h>
  41. #include <asm/iommu.h>
  42. #include <asm/gart.h>
  43. #include <asm/dma.h>
  44. #include "amd_iommu_proto.h"
  45. #include "amd_iommu_types.h"
  46. #include "irq_remapping.h"
  47. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  48. #define LOOP_TIMEOUT 100000
  49. /*
  50. * This bitmap is used to advertise the page sizes our hardware support
  51. * to the IOMMU core, which will then use this information to split
  52. * physically contiguous memory regions it is mapping into page sizes
  53. * that we support.
  54. *
  55. * 512GB Pages are not supported due to a hardware bug
  56. */
  57. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  58. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  59. /* A list of preallocated protection domains */
  60. static LIST_HEAD(iommu_pd_list);
  61. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  62. /* List of all available dev_data structures */
  63. static LIST_HEAD(dev_data_list);
  64. static DEFINE_SPINLOCK(dev_data_list_lock);
  65. LIST_HEAD(ioapic_map);
  66. LIST_HEAD(hpet_map);
  67. /*
  68. * Domain for untranslated devices - only allocated
  69. * if iommu=pt passed on kernel cmd line.
  70. */
  71. static struct protection_domain *pt_domain;
  72. static const struct iommu_ops amd_iommu_ops;
  73. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  74. int amd_iommu_max_glx_val = -1;
  75. static struct dma_map_ops amd_iommu_dma_ops;
  76. /*
  77. * This struct contains device specific data for the IOMMU
  78. */
  79. struct iommu_dev_data {
  80. struct list_head list; /* For domain->dev_list */
  81. struct list_head dev_data_list; /* For global dev_data_list */
  82. struct list_head alias_list; /* Link alias-groups together */
  83. struct iommu_dev_data *alias_data;/* The alias dev_data */
  84. struct protection_domain *domain; /* Domain the device is bound to */
  85. u16 devid; /* PCI Device ID */
  86. bool iommu_v2; /* Device can make use of IOMMUv2 */
  87. bool passthrough; /* Default for device is pt_domain */
  88. struct {
  89. bool enabled;
  90. int qdep;
  91. } ats; /* ATS state */
  92. bool pri_tlp; /* PASID TLB required for
  93. PPR completions */
  94. u32 errata; /* Bitmap for errata to apply */
  95. };
  96. /*
  97. * general struct to manage commands send to an IOMMU
  98. */
  99. struct iommu_cmd {
  100. u32 data[4];
  101. };
  102. struct kmem_cache *amd_iommu_irq_cache;
  103. static void update_domain(struct protection_domain *domain);
  104. static int __init alloc_passthrough_domain(void);
  105. /****************************************************************************
  106. *
  107. * Helper functions
  108. *
  109. ****************************************************************************/
  110. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  111. {
  112. struct iommu_dev_data *dev_data;
  113. unsigned long flags;
  114. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  115. if (!dev_data)
  116. return NULL;
  117. INIT_LIST_HEAD(&dev_data->alias_list);
  118. dev_data->devid = devid;
  119. spin_lock_irqsave(&dev_data_list_lock, flags);
  120. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  121. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  122. return dev_data;
  123. }
  124. static void free_dev_data(struct iommu_dev_data *dev_data)
  125. {
  126. unsigned long flags;
  127. spin_lock_irqsave(&dev_data_list_lock, flags);
  128. list_del(&dev_data->dev_data_list);
  129. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  130. kfree(dev_data);
  131. }
  132. static struct iommu_dev_data *search_dev_data(u16 devid)
  133. {
  134. struct iommu_dev_data *dev_data;
  135. unsigned long flags;
  136. spin_lock_irqsave(&dev_data_list_lock, flags);
  137. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  138. if (dev_data->devid == devid)
  139. goto out_unlock;
  140. }
  141. dev_data = NULL;
  142. out_unlock:
  143. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  144. return dev_data;
  145. }
  146. static struct iommu_dev_data *find_dev_data(u16 devid)
  147. {
  148. struct iommu_dev_data *dev_data;
  149. dev_data = search_dev_data(devid);
  150. if (dev_data == NULL)
  151. dev_data = alloc_dev_data(devid);
  152. return dev_data;
  153. }
  154. static inline u16 get_device_id(struct device *dev)
  155. {
  156. struct pci_dev *pdev = to_pci_dev(dev);
  157. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  158. }
  159. static struct iommu_dev_data *get_dev_data(struct device *dev)
  160. {
  161. return dev->archdata.iommu;
  162. }
  163. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  164. {
  165. static const int caps[] = {
  166. PCI_EXT_CAP_ID_ATS,
  167. PCI_EXT_CAP_ID_PRI,
  168. PCI_EXT_CAP_ID_PASID,
  169. };
  170. int i, pos;
  171. for (i = 0; i < 3; ++i) {
  172. pos = pci_find_ext_capability(pdev, caps[i]);
  173. if (pos == 0)
  174. return false;
  175. }
  176. return true;
  177. }
  178. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  179. {
  180. struct iommu_dev_data *dev_data;
  181. dev_data = get_dev_data(&pdev->dev);
  182. return dev_data->errata & (1 << erratum) ? true : false;
  183. }
  184. /*
  185. * In this function the list of preallocated protection domains is traversed to
  186. * find the domain for a specific device
  187. */
  188. static struct dma_ops_domain *find_protection_domain(u16 devid)
  189. {
  190. struct dma_ops_domain *entry, *ret = NULL;
  191. unsigned long flags;
  192. u16 alias = amd_iommu_alias_table[devid];
  193. if (list_empty(&iommu_pd_list))
  194. return NULL;
  195. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  196. list_for_each_entry(entry, &iommu_pd_list, list) {
  197. if (entry->target_dev == devid ||
  198. entry->target_dev == alias) {
  199. ret = entry;
  200. break;
  201. }
  202. }
  203. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  204. return ret;
  205. }
  206. /*
  207. * This function checks if the driver got a valid device from the caller to
  208. * avoid dereferencing invalid pointers.
  209. */
  210. static bool check_device(struct device *dev)
  211. {
  212. u16 devid;
  213. if (!dev || !dev->dma_mask)
  214. return false;
  215. /* No PCI device */
  216. if (!dev_is_pci(dev))
  217. return false;
  218. devid = get_device_id(dev);
  219. /* Out of our scope? */
  220. if (devid > amd_iommu_last_bdf)
  221. return false;
  222. if (amd_iommu_rlookup_table[devid] == NULL)
  223. return false;
  224. return true;
  225. }
  226. static void init_iommu_group(struct device *dev)
  227. {
  228. struct iommu_group *group;
  229. group = iommu_group_get_for_dev(dev);
  230. if (!IS_ERR(group))
  231. iommu_group_put(group);
  232. }
  233. static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
  234. {
  235. *(u16 *)data = alias;
  236. return 0;
  237. }
  238. static u16 get_alias(struct device *dev)
  239. {
  240. struct pci_dev *pdev = to_pci_dev(dev);
  241. u16 devid, ivrs_alias, pci_alias;
  242. devid = get_device_id(dev);
  243. ivrs_alias = amd_iommu_alias_table[devid];
  244. pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
  245. if (ivrs_alias == pci_alias)
  246. return ivrs_alias;
  247. /*
  248. * DMA alias showdown
  249. *
  250. * The IVRS is fairly reliable in telling us about aliases, but it
  251. * can't know about every screwy device. If we don't have an IVRS
  252. * reported alias, use the PCI reported alias. In that case we may
  253. * still need to initialize the rlookup and dev_table entries if the
  254. * alias is to a non-existent device.
  255. */
  256. if (ivrs_alias == devid) {
  257. if (!amd_iommu_rlookup_table[pci_alias]) {
  258. amd_iommu_rlookup_table[pci_alias] =
  259. amd_iommu_rlookup_table[devid];
  260. memcpy(amd_iommu_dev_table[pci_alias].data,
  261. amd_iommu_dev_table[devid].data,
  262. sizeof(amd_iommu_dev_table[pci_alias].data));
  263. }
  264. return pci_alias;
  265. }
  266. pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
  267. "for device %s[%04x:%04x], kernel reported alias "
  268. "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
  269. PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
  270. PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
  271. PCI_FUNC(pci_alias));
  272. /*
  273. * If we don't have a PCI DMA alias and the IVRS alias is on the same
  274. * bus, then the IVRS table may know about a quirk that we don't.
  275. */
  276. if (pci_alias == devid &&
  277. PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
  278. pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
  279. pdev->dma_alias_devfn = ivrs_alias & 0xff;
  280. pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
  281. PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
  282. dev_name(dev));
  283. }
  284. return ivrs_alias;
  285. }
  286. static int iommu_init_device(struct device *dev)
  287. {
  288. struct pci_dev *pdev = to_pci_dev(dev);
  289. struct iommu_dev_data *dev_data;
  290. u16 alias;
  291. if (dev->archdata.iommu)
  292. return 0;
  293. dev_data = find_dev_data(get_device_id(dev));
  294. if (!dev_data)
  295. return -ENOMEM;
  296. alias = get_alias(dev);
  297. if (alias != dev_data->devid) {
  298. struct iommu_dev_data *alias_data;
  299. alias_data = find_dev_data(alias);
  300. if (alias_data == NULL) {
  301. pr_err("AMD-Vi: Warning: Unhandled device %s\n",
  302. dev_name(dev));
  303. free_dev_data(dev_data);
  304. return -ENOTSUPP;
  305. }
  306. dev_data->alias_data = alias_data;
  307. /* Add device to the alias_list */
  308. list_add(&dev_data->alias_list, &alias_data->alias_list);
  309. }
  310. if (pci_iommuv2_capable(pdev)) {
  311. struct amd_iommu *iommu;
  312. iommu = amd_iommu_rlookup_table[dev_data->devid];
  313. dev_data->iommu_v2 = iommu->is_iommu_v2;
  314. }
  315. dev->archdata.iommu = dev_data;
  316. iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  317. dev);
  318. return 0;
  319. }
  320. static void iommu_ignore_device(struct device *dev)
  321. {
  322. u16 devid, alias;
  323. devid = get_device_id(dev);
  324. alias = amd_iommu_alias_table[devid];
  325. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  326. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  327. amd_iommu_rlookup_table[devid] = NULL;
  328. amd_iommu_rlookup_table[alias] = NULL;
  329. }
  330. static void iommu_uninit_device(struct device *dev)
  331. {
  332. struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
  333. if (!dev_data)
  334. return;
  335. iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  336. dev);
  337. iommu_group_remove_device(dev);
  338. /* Unlink from alias, it may change if another device is re-plugged */
  339. dev_data->alias_data = NULL;
  340. /*
  341. * We keep dev_data around for unplugged devices and reuse it when the
  342. * device is re-plugged - not doing so would introduce a ton of races.
  343. */
  344. }
  345. void __init amd_iommu_uninit_devices(void)
  346. {
  347. struct iommu_dev_data *dev_data, *n;
  348. struct pci_dev *pdev = NULL;
  349. for_each_pci_dev(pdev) {
  350. if (!check_device(&pdev->dev))
  351. continue;
  352. iommu_uninit_device(&pdev->dev);
  353. }
  354. /* Free all of our dev_data structures */
  355. list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
  356. free_dev_data(dev_data);
  357. }
  358. int __init amd_iommu_init_devices(void)
  359. {
  360. struct pci_dev *pdev = NULL;
  361. int ret = 0;
  362. for_each_pci_dev(pdev) {
  363. if (!check_device(&pdev->dev))
  364. continue;
  365. ret = iommu_init_device(&pdev->dev);
  366. if (ret == -ENOTSUPP)
  367. iommu_ignore_device(&pdev->dev);
  368. else if (ret)
  369. goto out_free;
  370. }
  371. /*
  372. * Initialize IOMMU groups only after iommu_init_device() has
  373. * had a chance to populate any IVRS defined aliases.
  374. */
  375. for_each_pci_dev(pdev) {
  376. if (check_device(&pdev->dev))
  377. init_iommu_group(&pdev->dev);
  378. }
  379. return 0;
  380. out_free:
  381. amd_iommu_uninit_devices();
  382. return ret;
  383. }
  384. #ifdef CONFIG_AMD_IOMMU_STATS
  385. /*
  386. * Initialization code for statistics collection
  387. */
  388. DECLARE_STATS_COUNTER(compl_wait);
  389. DECLARE_STATS_COUNTER(cnt_map_single);
  390. DECLARE_STATS_COUNTER(cnt_unmap_single);
  391. DECLARE_STATS_COUNTER(cnt_map_sg);
  392. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  393. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  394. DECLARE_STATS_COUNTER(cnt_free_coherent);
  395. DECLARE_STATS_COUNTER(cross_page);
  396. DECLARE_STATS_COUNTER(domain_flush_single);
  397. DECLARE_STATS_COUNTER(domain_flush_all);
  398. DECLARE_STATS_COUNTER(alloced_io_mem);
  399. DECLARE_STATS_COUNTER(total_map_requests);
  400. DECLARE_STATS_COUNTER(complete_ppr);
  401. DECLARE_STATS_COUNTER(invalidate_iotlb);
  402. DECLARE_STATS_COUNTER(invalidate_iotlb_all);
  403. DECLARE_STATS_COUNTER(pri_requests);
  404. static struct dentry *stats_dir;
  405. static struct dentry *de_fflush;
  406. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  407. {
  408. if (stats_dir == NULL)
  409. return;
  410. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  411. &cnt->value);
  412. }
  413. static void amd_iommu_stats_init(void)
  414. {
  415. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  416. if (stats_dir == NULL)
  417. return;
  418. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  419. &amd_iommu_unmap_flush);
  420. amd_iommu_stats_add(&compl_wait);
  421. amd_iommu_stats_add(&cnt_map_single);
  422. amd_iommu_stats_add(&cnt_unmap_single);
  423. amd_iommu_stats_add(&cnt_map_sg);
  424. amd_iommu_stats_add(&cnt_unmap_sg);
  425. amd_iommu_stats_add(&cnt_alloc_coherent);
  426. amd_iommu_stats_add(&cnt_free_coherent);
  427. amd_iommu_stats_add(&cross_page);
  428. amd_iommu_stats_add(&domain_flush_single);
  429. amd_iommu_stats_add(&domain_flush_all);
  430. amd_iommu_stats_add(&alloced_io_mem);
  431. amd_iommu_stats_add(&total_map_requests);
  432. amd_iommu_stats_add(&complete_ppr);
  433. amd_iommu_stats_add(&invalidate_iotlb);
  434. amd_iommu_stats_add(&invalidate_iotlb_all);
  435. amd_iommu_stats_add(&pri_requests);
  436. }
  437. #endif
  438. /****************************************************************************
  439. *
  440. * Interrupt handling functions
  441. *
  442. ****************************************************************************/
  443. static void dump_dte_entry(u16 devid)
  444. {
  445. int i;
  446. for (i = 0; i < 4; ++i)
  447. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  448. amd_iommu_dev_table[devid].data[i]);
  449. }
  450. static void dump_command(unsigned long phys_addr)
  451. {
  452. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  453. int i;
  454. for (i = 0; i < 4; ++i)
  455. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  456. }
  457. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  458. {
  459. int type, devid, domid, flags;
  460. volatile u32 *event = __evt;
  461. int count = 0;
  462. u64 address;
  463. retry:
  464. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  465. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  466. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  467. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  468. address = (u64)(((u64)event[3]) << 32) | event[2];
  469. if (type == 0) {
  470. /* Did we hit the erratum? */
  471. if (++count == LOOP_TIMEOUT) {
  472. pr_err("AMD-Vi: No event written to event log\n");
  473. return;
  474. }
  475. udelay(1);
  476. goto retry;
  477. }
  478. printk(KERN_ERR "AMD-Vi: Event logged [");
  479. switch (type) {
  480. case EVENT_TYPE_ILL_DEV:
  481. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  482. "address=0x%016llx flags=0x%04x]\n",
  483. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  484. address, flags);
  485. dump_dte_entry(devid);
  486. break;
  487. case EVENT_TYPE_IO_FAULT:
  488. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  489. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  490. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  491. domid, address, flags);
  492. break;
  493. case EVENT_TYPE_DEV_TAB_ERR:
  494. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  495. "address=0x%016llx flags=0x%04x]\n",
  496. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  497. address, flags);
  498. break;
  499. case EVENT_TYPE_PAGE_TAB_ERR:
  500. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  501. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  502. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  503. domid, address, flags);
  504. break;
  505. case EVENT_TYPE_ILL_CMD:
  506. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  507. dump_command(address);
  508. break;
  509. case EVENT_TYPE_CMD_HARD_ERR:
  510. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  511. "flags=0x%04x]\n", address, flags);
  512. break;
  513. case EVENT_TYPE_IOTLB_INV_TO:
  514. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  515. "address=0x%016llx]\n",
  516. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  517. address);
  518. break;
  519. case EVENT_TYPE_INV_DEV_REQ:
  520. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  521. "address=0x%016llx flags=0x%04x]\n",
  522. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  523. address, flags);
  524. break;
  525. default:
  526. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  527. }
  528. memset(__evt, 0, 4 * sizeof(u32));
  529. }
  530. static void iommu_poll_events(struct amd_iommu *iommu)
  531. {
  532. u32 head, tail;
  533. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  534. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  535. while (head != tail) {
  536. iommu_print_event(iommu, iommu->evt_buf + head);
  537. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  538. }
  539. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  540. }
  541. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  542. {
  543. struct amd_iommu_fault fault;
  544. INC_STATS_COUNTER(pri_requests);
  545. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  546. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  547. return;
  548. }
  549. fault.address = raw[1];
  550. fault.pasid = PPR_PASID(raw[0]);
  551. fault.device_id = PPR_DEVID(raw[0]);
  552. fault.tag = PPR_TAG(raw[0]);
  553. fault.flags = PPR_FLAGS(raw[0]);
  554. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  555. }
  556. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  557. {
  558. u32 head, tail;
  559. if (iommu->ppr_log == NULL)
  560. return;
  561. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  562. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  563. while (head != tail) {
  564. volatile u64 *raw;
  565. u64 entry[2];
  566. int i;
  567. raw = (u64 *)(iommu->ppr_log + head);
  568. /*
  569. * Hardware bug: Interrupt may arrive before the entry is
  570. * written to memory. If this happens we need to wait for the
  571. * entry to arrive.
  572. */
  573. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  574. if (PPR_REQ_TYPE(raw[0]) != 0)
  575. break;
  576. udelay(1);
  577. }
  578. /* Avoid memcpy function-call overhead */
  579. entry[0] = raw[0];
  580. entry[1] = raw[1];
  581. /*
  582. * To detect the hardware bug we need to clear the entry
  583. * back to zero.
  584. */
  585. raw[0] = raw[1] = 0UL;
  586. /* Update head pointer of hardware ring-buffer */
  587. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  588. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  589. /* Handle PPR entry */
  590. iommu_handle_ppr_entry(iommu, entry);
  591. /* Refresh ring-buffer information */
  592. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  593. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  594. }
  595. }
  596. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  597. {
  598. struct amd_iommu *iommu = (struct amd_iommu *) data;
  599. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  600. while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
  601. /* Enable EVT and PPR interrupts again */
  602. writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
  603. iommu->mmio_base + MMIO_STATUS_OFFSET);
  604. if (status & MMIO_STATUS_EVT_INT_MASK) {
  605. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  606. iommu_poll_events(iommu);
  607. }
  608. if (status & MMIO_STATUS_PPR_INT_MASK) {
  609. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  610. iommu_poll_ppr_log(iommu);
  611. }
  612. /*
  613. * Hardware bug: ERBT1312
  614. * When re-enabling interrupt (by writing 1
  615. * to clear the bit), the hardware might also try to set
  616. * the interrupt bit in the event status register.
  617. * In this scenario, the bit will be set, and disable
  618. * subsequent interrupts.
  619. *
  620. * Workaround: The IOMMU driver should read back the
  621. * status register and check if the interrupt bits are cleared.
  622. * If not, driver will need to go through the interrupt handler
  623. * again and re-clear the bits
  624. */
  625. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  626. }
  627. return IRQ_HANDLED;
  628. }
  629. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  630. {
  631. return IRQ_WAKE_THREAD;
  632. }
  633. /****************************************************************************
  634. *
  635. * IOMMU command queuing functions
  636. *
  637. ****************************************************************************/
  638. static int wait_on_sem(volatile u64 *sem)
  639. {
  640. int i = 0;
  641. while (*sem == 0 && i < LOOP_TIMEOUT) {
  642. udelay(1);
  643. i += 1;
  644. }
  645. if (i == LOOP_TIMEOUT) {
  646. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  647. return -EIO;
  648. }
  649. return 0;
  650. }
  651. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  652. struct iommu_cmd *cmd,
  653. u32 tail)
  654. {
  655. u8 *target;
  656. target = iommu->cmd_buf + tail;
  657. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  658. /* Copy command to buffer */
  659. memcpy(target, cmd, sizeof(*cmd));
  660. /* Tell the IOMMU about it */
  661. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  662. }
  663. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  664. {
  665. WARN_ON(address & 0x7ULL);
  666. memset(cmd, 0, sizeof(*cmd));
  667. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  668. cmd->data[1] = upper_32_bits(__pa(address));
  669. cmd->data[2] = 1;
  670. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  671. }
  672. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  673. {
  674. memset(cmd, 0, sizeof(*cmd));
  675. cmd->data[0] = devid;
  676. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  677. }
  678. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  679. size_t size, u16 domid, int pde)
  680. {
  681. u64 pages;
  682. int s;
  683. pages = iommu_num_pages(address, size, PAGE_SIZE);
  684. s = 0;
  685. if (pages > 1) {
  686. /*
  687. * If we have to flush more than one page, flush all
  688. * TLB entries for this domain
  689. */
  690. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  691. s = 1;
  692. }
  693. address &= PAGE_MASK;
  694. memset(cmd, 0, sizeof(*cmd));
  695. cmd->data[1] |= domid;
  696. cmd->data[2] = lower_32_bits(address);
  697. cmd->data[3] = upper_32_bits(address);
  698. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  699. if (s) /* size bit - we flush more than one 4kb page */
  700. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  701. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  702. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  703. }
  704. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  705. u64 address, size_t size)
  706. {
  707. u64 pages;
  708. int s;
  709. pages = iommu_num_pages(address, size, PAGE_SIZE);
  710. s = 0;
  711. if (pages > 1) {
  712. /*
  713. * If we have to flush more than one page, flush all
  714. * TLB entries for this domain
  715. */
  716. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  717. s = 1;
  718. }
  719. address &= PAGE_MASK;
  720. memset(cmd, 0, sizeof(*cmd));
  721. cmd->data[0] = devid;
  722. cmd->data[0] |= (qdep & 0xff) << 24;
  723. cmd->data[1] = devid;
  724. cmd->data[2] = lower_32_bits(address);
  725. cmd->data[3] = upper_32_bits(address);
  726. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  727. if (s)
  728. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  729. }
  730. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  731. u64 address, bool size)
  732. {
  733. memset(cmd, 0, sizeof(*cmd));
  734. address &= ~(0xfffULL);
  735. cmd->data[0] = pasid;
  736. cmd->data[1] = domid;
  737. cmd->data[2] = lower_32_bits(address);
  738. cmd->data[3] = upper_32_bits(address);
  739. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  740. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  741. if (size)
  742. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  743. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  744. }
  745. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  746. int qdep, u64 address, bool size)
  747. {
  748. memset(cmd, 0, sizeof(*cmd));
  749. address &= ~(0xfffULL);
  750. cmd->data[0] = devid;
  751. cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
  752. cmd->data[0] |= (qdep & 0xff) << 24;
  753. cmd->data[1] = devid;
  754. cmd->data[1] |= (pasid & 0xff) << 16;
  755. cmd->data[2] = lower_32_bits(address);
  756. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  757. cmd->data[3] = upper_32_bits(address);
  758. if (size)
  759. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  760. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  761. }
  762. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  763. int status, int tag, bool gn)
  764. {
  765. memset(cmd, 0, sizeof(*cmd));
  766. cmd->data[0] = devid;
  767. if (gn) {
  768. cmd->data[1] = pasid;
  769. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  770. }
  771. cmd->data[3] = tag & 0x1ff;
  772. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  773. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  774. }
  775. static void build_inv_all(struct iommu_cmd *cmd)
  776. {
  777. memset(cmd, 0, sizeof(*cmd));
  778. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  779. }
  780. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  781. {
  782. memset(cmd, 0, sizeof(*cmd));
  783. cmd->data[0] = devid;
  784. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  785. }
  786. /*
  787. * Writes the command to the IOMMUs command buffer and informs the
  788. * hardware about the new command.
  789. */
  790. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  791. struct iommu_cmd *cmd,
  792. bool sync)
  793. {
  794. u32 left, tail, head, next_tail;
  795. unsigned long flags;
  796. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  797. again:
  798. spin_lock_irqsave(&iommu->lock, flags);
  799. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  800. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  801. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  802. left = (head - next_tail) % iommu->cmd_buf_size;
  803. if (left <= 2) {
  804. struct iommu_cmd sync_cmd;
  805. volatile u64 sem = 0;
  806. int ret;
  807. build_completion_wait(&sync_cmd, (u64)&sem);
  808. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  809. spin_unlock_irqrestore(&iommu->lock, flags);
  810. if ((ret = wait_on_sem(&sem)) != 0)
  811. return ret;
  812. goto again;
  813. }
  814. copy_cmd_to_buffer(iommu, cmd, tail);
  815. /* We need to sync now to make sure all commands are processed */
  816. iommu->need_sync = sync;
  817. spin_unlock_irqrestore(&iommu->lock, flags);
  818. return 0;
  819. }
  820. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  821. {
  822. return iommu_queue_command_sync(iommu, cmd, true);
  823. }
  824. /*
  825. * This function queues a completion wait command into the command
  826. * buffer of an IOMMU
  827. */
  828. static int iommu_completion_wait(struct amd_iommu *iommu)
  829. {
  830. struct iommu_cmd cmd;
  831. volatile u64 sem = 0;
  832. int ret;
  833. if (!iommu->need_sync)
  834. return 0;
  835. build_completion_wait(&cmd, (u64)&sem);
  836. ret = iommu_queue_command_sync(iommu, &cmd, false);
  837. if (ret)
  838. return ret;
  839. return wait_on_sem(&sem);
  840. }
  841. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  842. {
  843. struct iommu_cmd cmd;
  844. build_inv_dte(&cmd, devid);
  845. return iommu_queue_command(iommu, &cmd);
  846. }
  847. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  848. {
  849. u32 devid;
  850. for (devid = 0; devid <= 0xffff; ++devid)
  851. iommu_flush_dte(iommu, devid);
  852. iommu_completion_wait(iommu);
  853. }
  854. /*
  855. * This function uses heavy locking and may disable irqs for some time. But
  856. * this is no issue because it is only called during resume.
  857. */
  858. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  859. {
  860. u32 dom_id;
  861. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  862. struct iommu_cmd cmd;
  863. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  864. dom_id, 1);
  865. iommu_queue_command(iommu, &cmd);
  866. }
  867. iommu_completion_wait(iommu);
  868. }
  869. static void iommu_flush_all(struct amd_iommu *iommu)
  870. {
  871. struct iommu_cmd cmd;
  872. build_inv_all(&cmd);
  873. iommu_queue_command(iommu, &cmd);
  874. iommu_completion_wait(iommu);
  875. }
  876. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  877. {
  878. struct iommu_cmd cmd;
  879. build_inv_irt(&cmd, devid);
  880. iommu_queue_command(iommu, &cmd);
  881. }
  882. static void iommu_flush_irt_all(struct amd_iommu *iommu)
  883. {
  884. u32 devid;
  885. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  886. iommu_flush_irt(iommu, devid);
  887. iommu_completion_wait(iommu);
  888. }
  889. void iommu_flush_all_caches(struct amd_iommu *iommu)
  890. {
  891. if (iommu_feature(iommu, FEATURE_IA)) {
  892. iommu_flush_all(iommu);
  893. } else {
  894. iommu_flush_dte_all(iommu);
  895. iommu_flush_irt_all(iommu);
  896. iommu_flush_tlb_all(iommu);
  897. }
  898. }
  899. /*
  900. * Command send function for flushing on-device TLB
  901. */
  902. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  903. u64 address, size_t size)
  904. {
  905. struct amd_iommu *iommu;
  906. struct iommu_cmd cmd;
  907. int qdep;
  908. qdep = dev_data->ats.qdep;
  909. iommu = amd_iommu_rlookup_table[dev_data->devid];
  910. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  911. return iommu_queue_command(iommu, &cmd);
  912. }
  913. /*
  914. * Command send function for invalidating a device table entry
  915. */
  916. static int device_flush_dte(struct iommu_dev_data *dev_data)
  917. {
  918. struct amd_iommu *iommu;
  919. int ret;
  920. iommu = amd_iommu_rlookup_table[dev_data->devid];
  921. ret = iommu_flush_dte(iommu, dev_data->devid);
  922. if (ret)
  923. return ret;
  924. if (dev_data->ats.enabled)
  925. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  926. return ret;
  927. }
  928. /*
  929. * TLB invalidation function which is called from the mapping functions.
  930. * It invalidates a single PTE if the range to flush is within a single
  931. * page. Otherwise it flushes the whole TLB of the IOMMU.
  932. */
  933. static void __domain_flush_pages(struct protection_domain *domain,
  934. u64 address, size_t size, int pde)
  935. {
  936. struct iommu_dev_data *dev_data;
  937. struct iommu_cmd cmd;
  938. int ret = 0, i;
  939. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  940. for (i = 0; i < amd_iommus_present; ++i) {
  941. if (!domain->dev_iommu[i])
  942. continue;
  943. /*
  944. * Devices of this domain are behind this IOMMU
  945. * We need a TLB flush
  946. */
  947. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  948. }
  949. list_for_each_entry(dev_data, &domain->dev_list, list) {
  950. if (!dev_data->ats.enabled)
  951. continue;
  952. ret |= device_flush_iotlb(dev_data, address, size);
  953. }
  954. WARN_ON(ret);
  955. }
  956. static void domain_flush_pages(struct protection_domain *domain,
  957. u64 address, size_t size)
  958. {
  959. __domain_flush_pages(domain, address, size, 0);
  960. }
  961. /* Flush the whole IO/TLB for a given protection domain */
  962. static void domain_flush_tlb(struct protection_domain *domain)
  963. {
  964. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  965. }
  966. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  967. static void domain_flush_tlb_pde(struct protection_domain *domain)
  968. {
  969. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  970. }
  971. static void domain_flush_complete(struct protection_domain *domain)
  972. {
  973. int i;
  974. for (i = 0; i < amd_iommus_present; ++i) {
  975. if (!domain->dev_iommu[i])
  976. continue;
  977. /*
  978. * Devices of this domain are behind this IOMMU
  979. * We need to wait for completion of all commands.
  980. */
  981. iommu_completion_wait(amd_iommus[i]);
  982. }
  983. }
  984. /*
  985. * This function flushes the DTEs for all devices in domain
  986. */
  987. static void domain_flush_devices(struct protection_domain *domain)
  988. {
  989. struct iommu_dev_data *dev_data;
  990. list_for_each_entry(dev_data, &domain->dev_list, list)
  991. device_flush_dte(dev_data);
  992. }
  993. /****************************************************************************
  994. *
  995. * The functions below are used the create the page table mappings for
  996. * unity mapped regions.
  997. *
  998. ****************************************************************************/
  999. /*
  1000. * This function is used to add another level to an IO page table. Adding
  1001. * another level increases the size of the address space by 9 bits to a size up
  1002. * to 64 bits.
  1003. */
  1004. static bool increase_address_space(struct protection_domain *domain,
  1005. gfp_t gfp)
  1006. {
  1007. u64 *pte;
  1008. if (domain->mode == PAGE_MODE_6_LEVEL)
  1009. /* address space already 64 bit large */
  1010. return false;
  1011. pte = (void *)get_zeroed_page(gfp);
  1012. if (!pte)
  1013. return false;
  1014. *pte = PM_LEVEL_PDE(domain->mode,
  1015. virt_to_phys(domain->pt_root));
  1016. domain->pt_root = pte;
  1017. domain->mode += 1;
  1018. domain->updated = true;
  1019. return true;
  1020. }
  1021. static u64 *alloc_pte(struct protection_domain *domain,
  1022. unsigned long address,
  1023. unsigned long page_size,
  1024. u64 **pte_page,
  1025. gfp_t gfp)
  1026. {
  1027. int level, end_lvl;
  1028. u64 *pte, *page;
  1029. BUG_ON(!is_power_of_2(page_size));
  1030. while (address > PM_LEVEL_SIZE(domain->mode))
  1031. increase_address_space(domain, gfp);
  1032. level = domain->mode - 1;
  1033. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1034. address = PAGE_SIZE_ALIGN(address, page_size);
  1035. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1036. while (level > end_lvl) {
  1037. if (!IOMMU_PTE_PRESENT(*pte)) {
  1038. page = (u64 *)get_zeroed_page(gfp);
  1039. if (!page)
  1040. return NULL;
  1041. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  1042. }
  1043. /* No level skipping support yet */
  1044. if (PM_PTE_LEVEL(*pte) != level)
  1045. return NULL;
  1046. level -= 1;
  1047. pte = IOMMU_PTE_PAGE(*pte);
  1048. if (pte_page && level == end_lvl)
  1049. *pte_page = pte;
  1050. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1051. }
  1052. return pte;
  1053. }
  1054. /*
  1055. * This function checks if there is a PTE for a given dma address. If
  1056. * there is one, it returns the pointer to it.
  1057. */
  1058. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  1059. {
  1060. int level;
  1061. u64 *pte;
  1062. if (address > PM_LEVEL_SIZE(domain->mode))
  1063. return NULL;
  1064. level = domain->mode - 1;
  1065. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1066. while (level > 0) {
  1067. /* Not Present */
  1068. if (!IOMMU_PTE_PRESENT(*pte))
  1069. return NULL;
  1070. /* Large PTE */
  1071. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1072. unsigned long pte_mask, __pte;
  1073. /*
  1074. * If we have a series of large PTEs, make
  1075. * sure to return a pointer to the first one.
  1076. */
  1077. pte_mask = PTE_PAGE_SIZE(*pte);
  1078. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1079. __pte = ((unsigned long)pte) & pte_mask;
  1080. return (u64 *)__pte;
  1081. }
  1082. /* No level skipping support yet */
  1083. if (PM_PTE_LEVEL(*pte) != level)
  1084. return NULL;
  1085. level -= 1;
  1086. /* Walk to the next level */
  1087. pte = IOMMU_PTE_PAGE(*pte);
  1088. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1089. }
  1090. return pte;
  1091. }
  1092. /*
  1093. * Generic mapping functions. It maps a physical address into a DMA
  1094. * address space. It allocates the page table pages if necessary.
  1095. * In the future it can be extended to a generic mapping function
  1096. * supporting all features of AMD IOMMU page tables like level skipping
  1097. * and full 64 bit address spaces.
  1098. */
  1099. static int iommu_map_page(struct protection_domain *dom,
  1100. unsigned long bus_addr,
  1101. unsigned long phys_addr,
  1102. int prot,
  1103. unsigned long page_size)
  1104. {
  1105. u64 __pte, *pte;
  1106. int i, count;
  1107. if (!(prot & IOMMU_PROT_MASK))
  1108. return -EINVAL;
  1109. bus_addr = PAGE_ALIGN(bus_addr);
  1110. phys_addr = PAGE_ALIGN(phys_addr);
  1111. count = PAGE_SIZE_PTE_COUNT(page_size);
  1112. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  1113. if (!pte)
  1114. return -ENOMEM;
  1115. for (i = 0; i < count; ++i)
  1116. if (IOMMU_PTE_PRESENT(pte[i]))
  1117. return -EBUSY;
  1118. if (page_size > PAGE_SIZE) {
  1119. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1120. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1121. } else
  1122. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1123. if (prot & IOMMU_PROT_IR)
  1124. __pte |= IOMMU_PTE_IR;
  1125. if (prot & IOMMU_PROT_IW)
  1126. __pte |= IOMMU_PTE_IW;
  1127. for (i = 0; i < count; ++i)
  1128. pte[i] = __pte;
  1129. update_domain(dom);
  1130. return 0;
  1131. }
  1132. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1133. unsigned long bus_addr,
  1134. unsigned long page_size)
  1135. {
  1136. unsigned long long unmap_size, unmapped;
  1137. u64 *pte;
  1138. BUG_ON(!is_power_of_2(page_size));
  1139. unmapped = 0;
  1140. while (unmapped < page_size) {
  1141. pte = fetch_pte(dom, bus_addr);
  1142. if (!pte) {
  1143. /*
  1144. * No PTE for this address
  1145. * move forward in 4kb steps
  1146. */
  1147. unmap_size = PAGE_SIZE;
  1148. } else if (PM_PTE_LEVEL(*pte) == 0) {
  1149. /* 4kb PTE found for this address */
  1150. unmap_size = PAGE_SIZE;
  1151. *pte = 0ULL;
  1152. } else {
  1153. int count, i;
  1154. /* Large PTE found which maps this address */
  1155. unmap_size = PTE_PAGE_SIZE(*pte);
  1156. /* Only unmap from the first pte in the page */
  1157. if ((unmap_size - 1) & bus_addr)
  1158. break;
  1159. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1160. for (i = 0; i < count; i++)
  1161. pte[i] = 0ULL;
  1162. }
  1163. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1164. unmapped += unmap_size;
  1165. }
  1166. BUG_ON(unmapped && !is_power_of_2(unmapped));
  1167. return unmapped;
  1168. }
  1169. /*
  1170. * This function checks if a specific unity mapping entry is needed for
  1171. * this specific IOMMU.
  1172. */
  1173. static int iommu_for_unity_map(struct amd_iommu *iommu,
  1174. struct unity_map_entry *entry)
  1175. {
  1176. u16 bdf, i;
  1177. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  1178. bdf = amd_iommu_alias_table[i];
  1179. if (amd_iommu_rlookup_table[bdf] == iommu)
  1180. return 1;
  1181. }
  1182. return 0;
  1183. }
  1184. /*
  1185. * This function actually applies the mapping to the page table of the
  1186. * dma_ops domain.
  1187. */
  1188. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  1189. struct unity_map_entry *e)
  1190. {
  1191. u64 addr;
  1192. int ret;
  1193. for (addr = e->address_start; addr < e->address_end;
  1194. addr += PAGE_SIZE) {
  1195. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  1196. PAGE_SIZE);
  1197. if (ret)
  1198. return ret;
  1199. /*
  1200. * if unity mapping is in aperture range mark the page
  1201. * as allocated in the aperture
  1202. */
  1203. if (addr < dma_dom->aperture_size)
  1204. __set_bit(addr >> PAGE_SHIFT,
  1205. dma_dom->aperture[0]->bitmap);
  1206. }
  1207. return 0;
  1208. }
  1209. /*
  1210. * Init the unity mappings for a specific IOMMU in the system
  1211. *
  1212. * Basically iterates over all unity mapping entries and applies them to
  1213. * the default domain DMA of that IOMMU if necessary.
  1214. */
  1215. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  1216. {
  1217. struct unity_map_entry *entry;
  1218. int ret;
  1219. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  1220. if (!iommu_for_unity_map(iommu, entry))
  1221. continue;
  1222. ret = dma_ops_unity_map(iommu->default_dom, entry);
  1223. if (ret)
  1224. return ret;
  1225. }
  1226. return 0;
  1227. }
  1228. /*
  1229. * Inits the unity mappings required for a specific device
  1230. */
  1231. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  1232. u16 devid)
  1233. {
  1234. struct unity_map_entry *e;
  1235. int ret;
  1236. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  1237. if (!(devid >= e->devid_start && devid <= e->devid_end))
  1238. continue;
  1239. ret = dma_ops_unity_map(dma_dom, e);
  1240. if (ret)
  1241. return ret;
  1242. }
  1243. return 0;
  1244. }
  1245. /****************************************************************************
  1246. *
  1247. * The next functions belong to the address allocator for the dma_ops
  1248. * interface functions. They work like the allocators in the other IOMMU
  1249. * drivers. Its basically a bitmap which marks the allocated pages in
  1250. * the aperture. Maybe it could be enhanced in the future to a more
  1251. * efficient allocator.
  1252. *
  1253. ****************************************************************************/
  1254. /*
  1255. * The address allocator core functions.
  1256. *
  1257. * called with domain->lock held
  1258. */
  1259. /*
  1260. * Used to reserve address ranges in the aperture (e.g. for exclusion
  1261. * ranges.
  1262. */
  1263. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  1264. unsigned long start_page,
  1265. unsigned int pages)
  1266. {
  1267. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  1268. if (start_page + pages > last_page)
  1269. pages = last_page - start_page;
  1270. for (i = start_page; i < start_page + pages; ++i) {
  1271. int index = i / APERTURE_RANGE_PAGES;
  1272. int page = i % APERTURE_RANGE_PAGES;
  1273. __set_bit(page, dom->aperture[index]->bitmap);
  1274. }
  1275. }
  1276. /*
  1277. * This function is used to add a new aperture range to an existing
  1278. * aperture in case of dma_ops domain allocation or address allocation
  1279. * failure.
  1280. */
  1281. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  1282. bool populate, gfp_t gfp)
  1283. {
  1284. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1285. struct amd_iommu *iommu;
  1286. unsigned long i, old_size;
  1287. #ifdef CONFIG_IOMMU_STRESS
  1288. populate = false;
  1289. #endif
  1290. if (index >= APERTURE_MAX_RANGES)
  1291. return -ENOMEM;
  1292. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  1293. if (!dma_dom->aperture[index])
  1294. return -ENOMEM;
  1295. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  1296. if (!dma_dom->aperture[index]->bitmap)
  1297. goto out_free;
  1298. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  1299. if (populate) {
  1300. unsigned long address = dma_dom->aperture_size;
  1301. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  1302. u64 *pte, *pte_page;
  1303. for (i = 0; i < num_ptes; ++i) {
  1304. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  1305. &pte_page, gfp);
  1306. if (!pte)
  1307. goto out_free;
  1308. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  1309. address += APERTURE_RANGE_SIZE / 64;
  1310. }
  1311. }
  1312. old_size = dma_dom->aperture_size;
  1313. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  1314. /* Reserve address range used for MSI messages */
  1315. if (old_size < MSI_ADDR_BASE_LO &&
  1316. dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
  1317. unsigned long spage;
  1318. int pages;
  1319. pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
  1320. spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
  1321. dma_ops_reserve_addresses(dma_dom, spage, pages);
  1322. }
  1323. /* Initialize the exclusion range if necessary */
  1324. for_each_iommu(iommu) {
  1325. if (iommu->exclusion_start &&
  1326. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  1327. && iommu->exclusion_start < dma_dom->aperture_size) {
  1328. unsigned long startpage;
  1329. int pages = iommu_num_pages(iommu->exclusion_start,
  1330. iommu->exclusion_length,
  1331. PAGE_SIZE);
  1332. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  1333. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  1334. }
  1335. }
  1336. /*
  1337. * Check for areas already mapped as present in the new aperture
  1338. * range and mark those pages as reserved in the allocator. Such
  1339. * mappings may already exist as a result of requested unity
  1340. * mappings for devices.
  1341. */
  1342. for (i = dma_dom->aperture[index]->offset;
  1343. i < dma_dom->aperture_size;
  1344. i += PAGE_SIZE) {
  1345. u64 *pte = fetch_pte(&dma_dom->domain, i);
  1346. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1347. continue;
  1348. dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
  1349. }
  1350. update_domain(&dma_dom->domain);
  1351. return 0;
  1352. out_free:
  1353. update_domain(&dma_dom->domain);
  1354. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1355. kfree(dma_dom->aperture[index]);
  1356. dma_dom->aperture[index] = NULL;
  1357. return -ENOMEM;
  1358. }
  1359. static unsigned long dma_ops_area_alloc(struct device *dev,
  1360. struct dma_ops_domain *dom,
  1361. unsigned int pages,
  1362. unsigned long align_mask,
  1363. u64 dma_mask,
  1364. unsigned long start)
  1365. {
  1366. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1367. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1368. int i = start >> APERTURE_RANGE_SHIFT;
  1369. unsigned long boundary_size;
  1370. unsigned long address = -1;
  1371. unsigned long limit;
  1372. next_bit >>= PAGE_SHIFT;
  1373. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  1374. PAGE_SIZE) >> PAGE_SHIFT;
  1375. for (;i < max_index; ++i) {
  1376. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1377. if (dom->aperture[i]->offset >= dma_mask)
  1378. break;
  1379. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1380. dma_mask >> PAGE_SHIFT);
  1381. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1382. limit, next_bit, pages, 0,
  1383. boundary_size, align_mask);
  1384. if (address != -1) {
  1385. address = dom->aperture[i]->offset +
  1386. (address << PAGE_SHIFT);
  1387. dom->next_address = address + (pages << PAGE_SHIFT);
  1388. break;
  1389. }
  1390. next_bit = 0;
  1391. }
  1392. return address;
  1393. }
  1394. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1395. struct dma_ops_domain *dom,
  1396. unsigned int pages,
  1397. unsigned long align_mask,
  1398. u64 dma_mask)
  1399. {
  1400. unsigned long address;
  1401. #ifdef CONFIG_IOMMU_STRESS
  1402. dom->next_address = 0;
  1403. dom->need_flush = true;
  1404. #endif
  1405. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1406. dma_mask, dom->next_address);
  1407. if (address == -1) {
  1408. dom->next_address = 0;
  1409. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1410. dma_mask, 0);
  1411. dom->need_flush = true;
  1412. }
  1413. if (unlikely(address == -1))
  1414. address = DMA_ERROR_CODE;
  1415. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1416. return address;
  1417. }
  1418. /*
  1419. * The address free function.
  1420. *
  1421. * called with domain->lock held
  1422. */
  1423. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1424. unsigned long address,
  1425. unsigned int pages)
  1426. {
  1427. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1428. struct aperture_range *range = dom->aperture[i];
  1429. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1430. #ifdef CONFIG_IOMMU_STRESS
  1431. if (i < 4)
  1432. return;
  1433. #endif
  1434. if (address >= dom->next_address)
  1435. dom->need_flush = true;
  1436. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1437. bitmap_clear(range->bitmap, address, pages);
  1438. }
  1439. /****************************************************************************
  1440. *
  1441. * The next functions belong to the domain allocation. A domain is
  1442. * allocated for every IOMMU as the default domain. If device isolation
  1443. * is enabled, every device get its own domain. The most important thing
  1444. * about domains is the page table mapping the DMA address space they
  1445. * contain.
  1446. *
  1447. ****************************************************************************/
  1448. /*
  1449. * This function adds a protection domain to the global protection domain list
  1450. */
  1451. static void add_domain_to_list(struct protection_domain *domain)
  1452. {
  1453. unsigned long flags;
  1454. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1455. list_add(&domain->list, &amd_iommu_pd_list);
  1456. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1457. }
  1458. /*
  1459. * This function removes a protection domain to the global
  1460. * protection domain list
  1461. */
  1462. static void del_domain_from_list(struct protection_domain *domain)
  1463. {
  1464. unsigned long flags;
  1465. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1466. list_del(&domain->list);
  1467. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1468. }
  1469. static u16 domain_id_alloc(void)
  1470. {
  1471. unsigned long flags;
  1472. int id;
  1473. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1474. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1475. BUG_ON(id == 0);
  1476. if (id > 0 && id < MAX_DOMAIN_ID)
  1477. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1478. else
  1479. id = 0;
  1480. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1481. return id;
  1482. }
  1483. static void domain_id_free(int id)
  1484. {
  1485. unsigned long flags;
  1486. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1487. if (id > 0 && id < MAX_DOMAIN_ID)
  1488. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1489. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1490. }
  1491. #define DEFINE_FREE_PT_FN(LVL, FN) \
  1492. static void free_pt_##LVL (unsigned long __pt) \
  1493. { \
  1494. unsigned long p; \
  1495. u64 *pt; \
  1496. int i; \
  1497. \
  1498. pt = (u64 *)__pt; \
  1499. \
  1500. for (i = 0; i < 512; ++i) { \
  1501. if (!IOMMU_PTE_PRESENT(pt[i])) \
  1502. continue; \
  1503. \
  1504. p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
  1505. FN(p); \
  1506. } \
  1507. free_page((unsigned long)pt); \
  1508. }
  1509. DEFINE_FREE_PT_FN(l2, free_page)
  1510. DEFINE_FREE_PT_FN(l3, free_pt_l2)
  1511. DEFINE_FREE_PT_FN(l4, free_pt_l3)
  1512. DEFINE_FREE_PT_FN(l5, free_pt_l4)
  1513. DEFINE_FREE_PT_FN(l6, free_pt_l5)
  1514. static void free_pagetable(struct protection_domain *domain)
  1515. {
  1516. unsigned long root = (unsigned long)domain->pt_root;
  1517. switch (domain->mode) {
  1518. case PAGE_MODE_NONE:
  1519. break;
  1520. case PAGE_MODE_1_LEVEL:
  1521. free_page(root);
  1522. break;
  1523. case PAGE_MODE_2_LEVEL:
  1524. free_pt_l2(root);
  1525. break;
  1526. case PAGE_MODE_3_LEVEL:
  1527. free_pt_l3(root);
  1528. break;
  1529. case PAGE_MODE_4_LEVEL:
  1530. free_pt_l4(root);
  1531. break;
  1532. case PAGE_MODE_5_LEVEL:
  1533. free_pt_l5(root);
  1534. break;
  1535. case PAGE_MODE_6_LEVEL:
  1536. free_pt_l6(root);
  1537. break;
  1538. default:
  1539. BUG();
  1540. }
  1541. }
  1542. static void free_gcr3_tbl_level1(u64 *tbl)
  1543. {
  1544. u64 *ptr;
  1545. int i;
  1546. for (i = 0; i < 512; ++i) {
  1547. if (!(tbl[i] & GCR3_VALID))
  1548. continue;
  1549. ptr = __va(tbl[i] & PAGE_MASK);
  1550. free_page((unsigned long)ptr);
  1551. }
  1552. }
  1553. static void free_gcr3_tbl_level2(u64 *tbl)
  1554. {
  1555. u64 *ptr;
  1556. int i;
  1557. for (i = 0; i < 512; ++i) {
  1558. if (!(tbl[i] & GCR3_VALID))
  1559. continue;
  1560. ptr = __va(tbl[i] & PAGE_MASK);
  1561. free_gcr3_tbl_level1(ptr);
  1562. }
  1563. }
  1564. static void free_gcr3_table(struct protection_domain *domain)
  1565. {
  1566. if (domain->glx == 2)
  1567. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1568. else if (domain->glx == 1)
  1569. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1570. else if (domain->glx != 0)
  1571. BUG();
  1572. free_page((unsigned long)domain->gcr3_tbl);
  1573. }
  1574. /*
  1575. * Free a domain, only used if something went wrong in the
  1576. * allocation path and we need to free an already allocated page table
  1577. */
  1578. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1579. {
  1580. int i;
  1581. if (!dom)
  1582. return;
  1583. del_domain_from_list(&dom->domain);
  1584. free_pagetable(&dom->domain);
  1585. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1586. if (!dom->aperture[i])
  1587. continue;
  1588. free_page((unsigned long)dom->aperture[i]->bitmap);
  1589. kfree(dom->aperture[i]);
  1590. }
  1591. kfree(dom);
  1592. }
  1593. /*
  1594. * Allocates a new protection domain usable for the dma_ops functions.
  1595. * It also initializes the page table and the address allocator data
  1596. * structures required for the dma_ops interface
  1597. */
  1598. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1599. {
  1600. struct dma_ops_domain *dma_dom;
  1601. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1602. if (!dma_dom)
  1603. return NULL;
  1604. spin_lock_init(&dma_dom->domain.lock);
  1605. dma_dom->domain.id = domain_id_alloc();
  1606. if (dma_dom->domain.id == 0)
  1607. goto free_dma_dom;
  1608. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1609. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1610. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1611. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1612. dma_dom->domain.priv = dma_dom;
  1613. if (!dma_dom->domain.pt_root)
  1614. goto free_dma_dom;
  1615. dma_dom->need_flush = false;
  1616. dma_dom->target_dev = 0xffff;
  1617. add_domain_to_list(&dma_dom->domain);
  1618. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1619. goto free_dma_dom;
  1620. /*
  1621. * mark the first page as allocated so we never return 0 as
  1622. * a valid dma-address. So we can use 0 as error value
  1623. */
  1624. dma_dom->aperture[0]->bitmap[0] = 1;
  1625. dma_dom->next_address = 0;
  1626. return dma_dom;
  1627. free_dma_dom:
  1628. dma_ops_domain_free(dma_dom);
  1629. return NULL;
  1630. }
  1631. /*
  1632. * little helper function to check whether a given protection domain is a
  1633. * dma_ops domain
  1634. */
  1635. static bool dma_ops_domain(struct protection_domain *domain)
  1636. {
  1637. return domain->flags & PD_DMA_OPS_MASK;
  1638. }
  1639. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1640. {
  1641. u64 pte_root = 0;
  1642. u64 flags = 0;
  1643. if (domain->mode != PAGE_MODE_NONE)
  1644. pte_root = virt_to_phys(domain->pt_root);
  1645. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1646. << DEV_ENTRY_MODE_SHIFT;
  1647. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1648. flags = amd_iommu_dev_table[devid].data[1];
  1649. if (ats)
  1650. flags |= DTE_FLAG_IOTLB;
  1651. if (domain->flags & PD_IOMMUV2_MASK) {
  1652. u64 gcr3 = __pa(domain->gcr3_tbl);
  1653. u64 glx = domain->glx;
  1654. u64 tmp;
  1655. pte_root |= DTE_FLAG_GV;
  1656. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1657. /* First mask out possible old values for GCR3 table */
  1658. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1659. flags &= ~tmp;
  1660. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1661. flags &= ~tmp;
  1662. /* Encode GCR3 table into DTE */
  1663. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1664. pte_root |= tmp;
  1665. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1666. flags |= tmp;
  1667. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1668. flags |= tmp;
  1669. }
  1670. flags &= ~(0xffffUL);
  1671. flags |= domain->id;
  1672. amd_iommu_dev_table[devid].data[1] = flags;
  1673. amd_iommu_dev_table[devid].data[0] = pte_root;
  1674. }
  1675. static void clear_dte_entry(u16 devid)
  1676. {
  1677. /* remove entry from the device table seen by the hardware */
  1678. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1679. amd_iommu_dev_table[devid].data[1] = 0;
  1680. amd_iommu_apply_erratum_63(devid);
  1681. }
  1682. static void do_attach(struct iommu_dev_data *dev_data,
  1683. struct protection_domain *domain)
  1684. {
  1685. struct amd_iommu *iommu;
  1686. bool ats;
  1687. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1688. ats = dev_data->ats.enabled;
  1689. /* Update data structures */
  1690. dev_data->domain = domain;
  1691. list_add(&dev_data->list, &domain->dev_list);
  1692. set_dte_entry(dev_data->devid, domain, ats);
  1693. /* Do reference counting */
  1694. domain->dev_iommu[iommu->index] += 1;
  1695. domain->dev_cnt += 1;
  1696. /* Flush the DTE entry */
  1697. device_flush_dte(dev_data);
  1698. }
  1699. static void do_detach(struct iommu_dev_data *dev_data)
  1700. {
  1701. struct amd_iommu *iommu;
  1702. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1703. /* decrease reference counters */
  1704. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1705. dev_data->domain->dev_cnt -= 1;
  1706. /* Update data structures */
  1707. dev_data->domain = NULL;
  1708. list_del(&dev_data->list);
  1709. clear_dte_entry(dev_data->devid);
  1710. /* Flush the DTE entry */
  1711. device_flush_dte(dev_data);
  1712. }
  1713. /*
  1714. * If a device is not yet associated with a domain, this function does
  1715. * assigns it visible for the hardware
  1716. */
  1717. static int __attach_device(struct iommu_dev_data *dev_data,
  1718. struct protection_domain *domain)
  1719. {
  1720. struct iommu_dev_data *head, *entry;
  1721. int ret;
  1722. /* lock domain */
  1723. spin_lock(&domain->lock);
  1724. head = dev_data;
  1725. if (head->alias_data != NULL)
  1726. head = head->alias_data;
  1727. /* Now we have the root of the alias group, if any */
  1728. ret = -EBUSY;
  1729. if (head->domain != NULL)
  1730. goto out_unlock;
  1731. /* Attach alias group root */
  1732. do_attach(head, domain);
  1733. /* Attach other devices in the alias group */
  1734. list_for_each_entry(entry, &head->alias_list, alias_list)
  1735. do_attach(entry, domain);
  1736. ret = 0;
  1737. out_unlock:
  1738. /* ready */
  1739. spin_unlock(&domain->lock);
  1740. return ret;
  1741. }
  1742. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1743. {
  1744. pci_disable_ats(pdev);
  1745. pci_disable_pri(pdev);
  1746. pci_disable_pasid(pdev);
  1747. }
  1748. /* FIXME: Change generic reset-function to do the same */
  1749. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1750. {
  1751. u16 control;
  1752. int pos;
  1753. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1754. if (!pos)
  1755. return -EINVAL;
  1756. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1757. control |= PCI_PRI_CTRL_RESET;
  1758. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1759. return 0;
  1760. }
  1761. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1762. {
  1763. bool reset_enable;
  1764. int reqs, ret;
  1765. /* FIXME: Hardcode number of outstanding requests for now */
  1766. reqs = 32;
  1767. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1768. reqs = 1;
  1769. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1770. /* Only allow access to user-accessible pages */
  1771. ret = pci_enable_pasid(pdev, 0);
  1772. if (ret)
  1773. goto out_err;
  1774. /* First reset the PRI state of the device */
  1775. ret = pci_reset_pri(pdev);
  1776. if (ret)
  1777. goto out_err;
  1778. /* Enable PRI */
  1779. ret = pci_enable_pri(pdev, reqs);
  1780. if (ret)
  1781. goto out_err;
  1782. if (reset_enable) {
  1783. ret = pri_reset_while_enabled(pdev);
  1784. if (ret)
  1785. goto out_err;
  1786. }
  1787. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1788. if (ret)
  1789. goto out_err;
  1790. return 0;
  1791. out_err:
  1792. pci_disable_pri(pdev);
  1793. pci_disable_pasid(pdev);
  1794. return ret;
  1795. }
  1796. /* FIXME: Move this to PCI code */
  1797. #define PCI_PRI_TLP_OFF (1 << 15)
  1798. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1799. {
  1800. u16 status;
  1801. int pos;
  1802. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1803. if (!pos)
  1804. return false;
  1805. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1806. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1807. }
  1808. /*
  1809. * If a device is not yet associated with a domain, this function
  1810. * assigns it visible for the hardware
  1811. */
  1812. static int attach_device(struct device *dev,
  1813. struct protection_domain *domain)
  1814. {
  1815. struct pci_dev *pdev = to_pci_dev(dev);
  1816. struct iommu_dev_data *dev_data;
  1817. unsigned long flags;
  1818. int ret;
  1819. dev_data = get_dev_data(dev);
  1820. if (domain->flags & PD_IOMMUV2_MASK) {
  1821. if (!dev_data->iommu_v2 || !dev_data->passthrough)
  1822. return -EINVAL;
  1823. if (pdev_iommuv2_enable(pdev) != 0)
  1824. return -EINVAL;
  1825. dev_data->ats.enabled = true;
  1826. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1827. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1828. } else if (amd_iommu_iotlb_sup &&
  1829. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1830. dev_data->ats.enabled = true;
  1831. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1832. }
  1833. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1834. ret = __attach_device(dev_data, domain);
  1835. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1836. /*
  1837. * We might boot into a crash-kernel here. The crashed kernel
  1838. * left the caches in the IOMMU dirty. So we have to flush
  1839. * here to evict all dirty stuff.
  1840. */
  1841. domain_flush_tlb_pde(domain);
  1842. return ret;
  1843. }
  1844. /*
  1845. * Removes a device from a protection domain (unlocked)
  1846. */
  1847. static void __detach_device(struct iommu_dev_data *dev_data)
  1848. {
  1849. struct iommu_dev_data *head, *entry;
  1850. struct protection_domain *domain;
  1851. unsigned long flags;
  1852. BUG_ON(!dev_data->domain);
  1853. domain = dev_data->domain;
  1854. spin_lock_irqsave(&domain->lock, flags);
  1855. head = dev_data;
  1856. if (head->alias_data != NULL)
  1857. head = head->alias_data;
  1858. list_for_each_entry(entry, &head->alias_list, alias_list)
  1859. do_detach(entry);
  1860. do_detach(head);
  1861. spin_unlock_irqrestore(&domain->lock, flags);
  1862. /*
  1863. * If we run in passthrough mode the device must be assigned to the
  1864. * passthrough domain if it is detached from any other domain.
  1865. * Make sure we can deassign from the pt_domain itself.
  1866. */
  1867. if (dev_data->passthrough &&
  1868. (dev_data->domain == NULL && domain != pt_domain))
  1869. __attach_device(dev_data, pt_domain);
  1870. }
  1871. /*
  1872. * Removes a device from a protection domain (with devtable_lock held)
  1873. */
  1874. static void detach_device(struct device *dev)
  1875. {
  1876. struct protection_domain *domain;
  1877. struct iommu_dev_data *dev_data;
  1878. unsigned long flags;
  1879. dev_data = get_dev_data(dev);
  1880. domain = dev_data->domain;
  1881. /* lock device table */
  1882. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1883. __detach_device(dev_data);
  1884. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1885. if (domain->flags & PD_IOMMUV2_MASK)
  1886. pdev_iommuv2_disable(to_pci_dev(dev));
  1887. else if (dev_data->ats.enabled)
  1888. pci_disable_ats(to_pci_dev(dev));
  1889. dev_data->ats.enabled = false;
  1890. }
  1891. /*
  1892. * Find out the protection domain structure for a given PCI device. This
  1893. * will give us the pointer to the page table root for example.
  1894. */
  1895. static struct protection_domain *domain_for_device(struct device *dev)
  1896. {
  1897. struct iommu_dev_data *dev_data;
  1898. struct protection_domain *dom = NULL;
  1899. unsigned long flags;
  1900. dev_data = get_dev_data(dev);
  1901. if (dev_data->domain)
  1902. return dev_data->domain;
  1903. if (dev_data->alias_data != NULL) {
  1904. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1905. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1906. if (alias_data->domain != NULL) {
  1907. __attach_device(dev_data, alias_data->domain);
  1908. dom = alias_data->domain;
  1909. }
  1910. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1911. }
  1912. return dom;
  1913. }
  1914. static int device_change_notifier(struct notifier_block *nb,
  1915. unsigned long action, void *data)
  1916. {
  1917. struct dma_ops_domain *dma_domain;
  1918. struct protection_domain *domain;
  1919. struct iommu_dev_data *dev_data;
  1920. struct device *dev = data;
  1921. struct amd_iommu *iommu;
  1922. unsigned long flags;
  1923. u16 devid;
  1924. if (!check_device(dev))
  1925. return 0;
  1926. devid = get_device_id(dev);
  1927. iommu = amd_iommu_rlookup_table[devid];
  1928. dev_data = get_dev_data(dev);
  1929. switch (action) {
  1930. case BUS_NOTIFY_UNBOUND_DRIVER:
  1931. domain = domain_for_device(dev);
  1932. if (!domain)
  1933. goto out;
  1934. if (dev_data->passthrough)
  1935. break;
  1936. detach_device(dev);
  1937. break;
  1938. case BUS_NOTIFY_ADD_DEVICE:
  1939. iommu_init_device(dev);
  1940. init_iommu_group(dev);
  1941. /*
  1942. * dev_data is still NULL and
  1943. * got initialized in iommu_init_device
  1944. */
  1945. dev_data = get_dev_data(dev);
  1946. if (iommu_pass_through || dev_data->iommu_v2) {
  1947. dev_data->passthrough = true;
  1948. attach_device(dev, pt_domain);
  1949. break;
  1950. }
  1951. domain = domain_for_device(dev);
  1952. /* allocate a protection domain if a device is added */
  1953. dma_domain = find_protection_domain(devid);
  1954. if (!dma_domain) {
  1955. dma_domain = dma_ops_domain_alloc();
  1956. if (!dma_domain)
  1957. goto out;
  1958. dma_domain->target_dev = devid;
  1959. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1960. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1961. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1962. }
  1963. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1964. break;
  1965. case BUS_NOTIFY_DEL_DEVICE:
  1966. iommu_uninit_device(dev);
  1967. default:
  1968. goto out;
  1969. }
  1970. iommu_completion_wait(iommu);
  1971. out:
  1972. return 0;
  1973. }
  1974. static struct notifier_block device_nb = {
  1975. .notifier_call = device_change_notifier,
  1976. };
  1977. void amd_iommu_init_notifier(void)
  1978. {
  1979. bus_register_notifier(&pci_bus_type, &device_nb);
  1980. }
  1981. /*****************************************************************************
  1982. *
  1983. * The next functions belong to the dma_ops mapping/unmapping code.
  1984. *
  1985. *****************************************************************************/
  1986. /*
  1987. * In the dma_ops path we only have the struct device. This function
  1988. * finds the corresponding IOMMU, the protection domain and the
  1989. * requestor id for a given device.
  1990. * If the device is not yet associated with a domain this is also done
  1991. * in this function.
  1992. */
  1993. static struct protection_domain *get_domain(struct device *dev)
  1994. {
  1995. struct protection_domain *domain;
  1996. struct dma_ops_domain *dma_dom;
  1997. u16 devid = get_device_id(dev);
  1998. if (!check_device(dev))
  1999. return ERR_PTR(-EINVAL);
  2000. domain = domain_for_device(dev);
  2001. if (domain != NULL && !dma_ops_domain(domain))
  2002. return ERR_PTR(-EBUSY);
  2003. if (domain != NULL)
  2004. return domain;
  2005. /* Device not bound yet - bind it */
  2006. dma_dom = find_protection_domain(devid);
  2007. if (!dma_dom)
  2008. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  2009. attach_device(dev, &dma_dom->domain);
  2010. DUMP_printk("Using protection domain %d for device %s\n",
  2011. dma_dom->domain.id, dev_name(dev));
  2012. return &dma_dom->domain;
  2013. }
  2014. static void update_device_table(struct protection_domain *domain)
  2015. {
  2016. struct iommu_dev_data *dev_data;
  2017. list_for_each_entry(dev_data, &domain->dev_list, list)
  2018. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  2019. }
  2020. static void update_domain(struct protection_domain *domain)
  2021. {
  2022. if (!domain->updated)
  2023. return;
  2024. update_device_table(domain);
  2025. domain_flush_devices(domain);
  2026. domain_flush_tlb_pde(domain);
  2027. domain->updated = false;
  2028. }
  2029. /*
  2030. * This function fetches the PTE for a given address in the aperture
  2031. */
  2032. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  2033. unsigned long address)
  2034. {
  2035. struct aperture_range *aperture;
  2036. u64 *pte, *pte_page;
  2037. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  2038. if (!aperture)
  2039. return NULL;
  2040. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  2041. if (!pte) {
  2042. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  2043. GFP_ATOMIC);
  2044. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  2045. } else
  2046. pte += PM_LEVEL_INDEX(0, address);
  2047. update_domain(&dom->domain);
  2048. return pte;
  2049. }
  2050. /*
  2051. * This is the generic map function. It maps one 4kb page at paddr to
  2052. * the given address in the DMA address space for the domain.
  2053. */
  2054. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  2055. unsigned long address,
  2056. phys_addr_t paddr,
  2057. int direction)
  2058. {
  2059. u64 *pte, __pte;
  2060. WARN_ON(address > dom->aperture_size);
  2061. paddr &= PAGE_MASK;
  2062. pte = dma_ops_get_pte(dom, address);
  2063. if (!pte)
  2064. return DMA_ERROR_CODE;
  2065. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  2066. if (direction == DMA_TO_DEVICE)
  2067. __pte |= IOMMU_PTE_IR;
  2068. else if (direction == DMA_FROM_DEVICE)
  2069. __pte |= IOMMU_PTE_IW;
  2070. else if (direction == DMA_BIDIRECTIONAL)
  2071. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  2072. WARN_ON(*pte);
  2073. *pte = __pte;
  2074. return (dma_addr_t)address;
  2075. }
  2076. /*
  2077. * The generic unmapping function for on page in the DMA address space.
  2078. */
  2079. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  2080. unsigned long address)
  2081. {
  2082. struct aperture_range *aperture;
  2083. u64 *pte;
  2084. if (address >= dom->aperture_size)
  2085. return;
  2086. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  2087. if (!aperture)
  2088. return;
  2089. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  2090. if (!pte)
  2091. return;
  2092. pte += PM_LEVEL_INDEX(0, address);
  2093. WARN_ON(!*pte);
  2094. *pte = 0ULL;
  2095. }
  2096. /*
  2097. * This function contains common code for mapping of a physically
  2098. * contiguous memory region into DMA address space. It is used by all
  2099. * mapping functions provided with this IOMMU driver.
  2100. * Must be called with the domain lock held.
  2101. */
  2102. static dma_addr_t __map_single(struct device *dev,
  2103. struct dma_ops_domain *dma_dom,
  2104. phys_addr_t paddr,
  2105. size_t size,
  2106. int dir,
  2107. bool align,
  2108. u64 dma_mask)
  2109. {
  2110. dma_addr_t offset = paddr & ~PAGE_MASK;
  2111. dma_addr_t address, start, ret;
  2112. unsigned int pages;
  2113. unsigned long align_mask = 0;
  2114. int i;
  2115. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  2116. paddr &= PAGE_MASK;
  2117. INC_STATS_COUNTER(total_map_requests);
  2118. if (pages > 1)
  2119. INC_STATS_COUNTER(cross_page);
  2120. if (align)
  2121. align_mask = (1UL << get_order(size)) - 1;
  2122. retry:
  2123. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  2124. dma_mask);
  2125. if (unlikely(address == DMA_ERROR_CODE)) {
  2126. /*
  2127. * setting next_address here will let the address
  2128. * allocator only scan the new allocated range in the
  2129. * first run. This is a small optimization.
  2130. */
  2131. dma_dom->next_address = dma_dom->aperture_size;
  2132. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  2133. goto out;
  2134. /*
  2135. * aperture was successfully enlarged by 128 MB, try
  2136. * allocation again
  2137. */
  2138. goto retry;
  2139. }
  2140. start = address;
  2141. for (i = 0; i < pages; ++i) {
  2142. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  2143. if (ret == DMA_ERROR_CODE)
  2144. goto out_unmap;
  2145. paddr += PAGE_SIZE;
  2146. start += PAGE_SIZE;
  2147. }
  2148. address += offset;
  2149. ADD_STATS_COUNTER(alloced_io_mem, size);
  2150. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  2151. domain_flush_tlb(&dma_dom->domain);
  2152. dma_dom->need_flush = false;
  2153. } else if (unlikely(amd_iommu_np_cache))
  2154. domain_flush_pages(&dma_dom->domain, address, size);
  2155. out:
  2156. return address;
  2157. out_unmap:
  2158. for (--i; i >= 0; --i) {
  2159. start -= PAGE_SIZE;
  2160. dma_ops_domain_unmap(dma_dom, start);
  2161. }
  2162. dma_ops_free_addresses(dma_dom, address, pages);
  2163. return DMA_ERROR_CODE;
  2164. }
  2165. /*
  2166. * Does the reverse of the __map_single function. Must be called with
  2167. * the domain lock held too
  2168. */
  2169. static void __unmap_single(struct dma_ops_domain *dma_dom,
  2170. dma_addr_t dma_addr,
  2171. size_t size,
  2172. int dir)
  2173. {
  2174. dma_addr_t flush_addr;
  2175. dma_addr_t i, start;
  2176. unsigned int pages;
  2177. if ((dma_addr == DMA_ERROR_CODE) ||
  2178. (dma_addr + size > dma_dom->aperture_size))
  2179. return;
  2180. flush_addr = dma_addr;
  2181. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  2182. dma_addr &= PAGE_MASK;
  2183. start = dma_addr;
  2184. for (i = 0; i < pages; ++i) {
  2185. dma_ops_domain_unmap(dma_dom, start);
  2186. start += PAGE_SIZE;
  2187. }
  2188. SUB_STATS_COUNTER(alloced_io_mem, size);
  2189. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  2190. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  2191. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  2192. dma_dom->need_flush = false;
  2193. }
  2194. }
  2195. /*
  2196. * The exported map_single function for dma_ops.
  2197. */
  2198. static dma_addr_t map_page(struct device *dev, struct page *page,
  2199. unsigned long offset, size_t size,
  2200. enum dma_data_direction dir,
  2201. struct dma_attrs *attrs)
  2202. {
  2203. unsigned long flags;
  2204. struct protection_domain *domain;
  2205. dma_addr_t addr;
  2206. u64 dma_mask;
  2207. phys_addr_t paddr = page_to_phys(page) + offset;
  2208. INC_STATS_COUNTER(cnt_map_single);
  2209. domain = get_domain(dev);
  2210. if (PTR_ERR(domain) == -EINVAL)
  2211. return (dma_addr_t)paddr;
  2212. else if (IS_ERR(domain))
  2213. return DMA_ERROR_CODE;
  2214. dma_mask = *dev->dma_mask;
  2215. spin_lock_irqsave(&domain->lock, flags);
  2216. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  2217. dma_mask);
  2218. if (addr == DMA_ERROR_CODE)
  2219. goto out;
  2220. domain_flush_complete(domain);
  2221. out:
  2222. spin_unlock_irqrestore(&domain->lock, flags);
  2223. return addr;
  2224. }
  2225. /*
  2226. * The exported unmap_single function for dma_ops.
  2227. */
  2228. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  2229. enum dma_data_direction dir, struct dma_attrs *attrs)
  2230. {
  2231. unsigned long flags;
  2232. struct protection_domain *domain;
  2233. INC_STATS_COUNTER(cnt_unmap_single);
  2234. domain = get_domain(dev);
  2235. if (IS_ERR(domain))
  2236. return;
  2237. spin_lock_irqsave(&domain->lock, flags);
  2238. __unmap_single(domain->priv, dma_addr, size, dir);
  2239. domain_flush_complete(domain);
  2240. spin_unlock_irqrestore(&domain->lock, flags);
  2241. }
  2242. /*
  2243. * The exported map_sg function for dma_ops (handles scatter-gather
  2244. * lists).
  2245. */
  2246. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2247. int nelems, enum dma_data_direction dir,
  2248. struct dma_attrs *attrs)
  2249. {
  2250. unsigned long flags;
  2251. struct protection_domain *domain;
  2252. int i;
  2253. struct scatterlist *s;
  2254. phys_addr_t paddr;
  2255. int mapped_elems = 0;
  2256. u64 dma_mask;
  2257. INC_STATS_COUNTER(cnt_map_sg);
  2258. domain = get_domain(dev);
  2259. if (IS_ERR(domain))
  2260. return 0;
  2261. dma_mask = *dev->dma_mask;
  2262. spin_lock_irqsave(&domain->lock, flags);
  2263. for_each_sg(sglist, s, nelems, i) {
  2264. paddr = sg_phys(s);
  2265. s->dma_address = __map_single(dev, domain->priv,
  2266. paddr, s->length, dir, false,
  2267. dma_mask);
  2268. if (s->dma_address) {
  2269. s->dma_length = s->length;
  2270. mapped_elems++;
  2271. } else
  2272. goto unmap;
  2273. }
  2274. domain_flush_complete(domain);
  2275. out:
  2276. spin_unlock_irqrestore(&domain->lock, flags);
  2277. return mapped_elems;
  2278. unmap:
  2279. for_each_sg(sglist, s, mapped_elems, i) {
  2280. if (s->dma_address)
  2281. __unmap_single(domain->priv, s->dma_address,
  2282. s->dma_length, dir);
  2283. s->dma_address = s->dma_length = 0;
  2284. }
  2285. mapped_elems = 0;
  2286. goto out;
  2287. }
  2288. /*
  2289. * The exported map_sg function for dma_ops (handles scatter-gather
  2290. * lists).
  2291. */
  2292. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2293. int nelems, enum dma_data_direction dir,
  2294. struct dma_attrs *attrs)
  2295. {
  2296. unsigned long flags;
  2297. struct protection_domain *domain;
  2298. struct scatterlist *s;
  2299. int i;
  2300. INC_STATS_COUNTER(cnt_unmap_sg);
  2301. domain = get_domain(dev);
  2302. if (IS_ERR(domain))
  2303. return;
  2304. spin_lock_irqsave(&domain->lock, flags);
  2305. for_each_sg(sglist, s, nelems, i) {
  2306. __unmap_single(domain->priv, s->dma_address,
  2307. s->dma_length, dir);
  2308. s->dma_address = s->dma_length = 0;
  2309. }
  2310. domain_flush_complete(domain);
  2311. spin_unlock_irqrestore(&domain->lock, flags);
  2312. }
  2313. /*
  2314. * The exported alloc_coherent function for dma_ops.
  2315. */
  2316. static void *alloc_coherent(struct device *dev, size_t size,
  2317. dma_addr_t *dma_addr, gfp_t flag,
  2318. struct dma_attrs *attrs)
  2319. {
  2320. unsigned long flags;
  2321. void *virt_addr;
  2322. struct protection_domain *domain;
  2323. phys_addr_t paddr;
  2324. u64 dma_mask = dev->coherent_dma_mask;
  2325. INC_STATS_COUNTER(cnt_alloc_coherent);
  2326. domain = get_domain(dev);
  2327. if (PTR_ERR(domain) == -EINVAL) {
  2328. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2329. *dma_addr = __pa(virt_addr);
  2330. return virt_addr;
  2331. } else if (IS_ERR(domain))
  2332. return NULL;
  2333. dma_mask = dev->coherent_dma_mask;
  2334. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2335. flag |= __GFP_ZERO;
  2336. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2337. if (!virt_addr)
  2338. return NULL;
  2339. paddr = virt_to_phys(virt_addr);
  2340. if (!dma_mask)
  2341. dma_mask = *dev->dma_mask;
  2342. spin_lock_irqsave(&domain->lock, flags);
  2343. *dma_addr = __map_single(dev, domain->priv, paddr,
  2344. size, DMA_BIDIRECTIONAL, true, dma_mask);
  2345. if (*dma_addr == DMA_ERROR_CODE) {
  2346. spin_unlock_irqrestore(&domain->lock, flags);
  2347. goto out_free;
  2348. }
  2349. domain_flush_complete(domain);
  2350. spin_unlock_irqrestore(&domain->lock, flags);
  2351. return virt_addr;
  2352. out_free:
  2353. free_pages((unsigned long)virt_addr, get_order(size));
  2354. return NULL;
  2355. }
  2356. /*
  2357. * The exported free_coherent function for dma_ops.
  2358. */
  2359. static void free_coherent(struct device *dev, size_t size,
  2360. void *virt_addr, dma_addr_t dma_addr,
  2361. struct dma_attrs *attrs)
  2362. {
  2363. unsigned long flags;
  2364. struct protection_domain *domain;
  2365. INC_STATS_COUNTER(cnt_free_coherent);
  2366. domain = get_domain(dev);
  2367. if (IS_ERR(domain))
  2368. goto free_mem;
  2369. spin_lock_irqsave(&domain->lock, flags);
  2370. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  2371. domain_flush_complete(domain);
  2372. spin_unlock_irqrestore(&domain->lock, flags);
  2373. free_mem:
  2374. free_pages((unsigned long)virt_addr, get_order(size));
  2375. }
  2376. /*
  2377. * This function is called by the DMA layer to find out if we can handle a
  2378. * particular device. It is part of the dma_ops.
  2379. */
  2380. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2381. {
  2382. return check_device(dev);
  2383. }
  2384. /*
  2385. * The function for pre-allocating protection domains.
  2386. *
  2387. * If the driver core informs the DMA layer if a driver grabs a device
  2388. * we don't need to preallocate the protection domains anymore.
  2389. * For now we have to.
  2390. */
  2391. static void __init prealloc_protection_domains(void)
  2392. {
  2393. struct iommu_dev_data *dev_data;
  2394. struct dma_ops_domain *dma_dom;
  2395. struct pci_dev *dev = NULL;
  2396. u16 devid;
  2397. for_each_pci_dev(dev) {
  2398. /* Do we handle this device? */
  2399. if (!check_device(&dev->dev))
  2400. continue;
  2401. dev_data = get_dev_data(&dev->dev);
  2402. if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
  2403. /* Make sure passthrough domain is allocated */
  2404. alloc_passthrough_domain();
  2405. dev_data->passthrough = true;
  2406. attach_device(&dev->dev, pt_domain);
  2407. pr_info("AMD-Vi: Using passthrough domain for device %s\n",
  2408. dev_name(&dev->dev));
  2409. }
  2410. /* Is there already any domain for it? */
  2411. if (domain_for_device(&dev->dev))
  2412. continue;
  2413. devid = get_device_id(&dev->dev);
  2414. dma_dom = dma_ops_domain_alloc();
  2415. if (!dma_dom)
  2416. continue;
  2417. init_unity_mappings_for_device(dma_dom, devid);
  2418. dma_dom->target_dev = devid;
  2419. attach_device(&dev->dev, &dma_dom->domain);
  2420. list_add_tail(&dma_dom->list, &iommu_pd_list);
  2421. }
  2422. }
  2423. static struct dma_map_ops amd_iommu_dma_ops = {
  2424. .alloc = alloc_coherent,
  2425. .free = free_coherent,
  2426. .map_page = map_page,
  2427. .unmap_page = unmap_page,
  2428. .map_sg = map_sg,
  2429. .unmap_sg = unmap_sg,
  2430. .dma_supported = amd_iommu_dma_supported,
  2431. };
  2432. static unsigned device_dma_ops_init(void)
  2433. {
  2434. struct iommu_dev_data *dev_data;
  2435. struct pci_dev *pdev = NULL;
  2436. unsigned unhandled = 0;
  2437. for_each_pci_dev(pdev) {
  2438. if (!check_device(&pdev->dev)) {
  2439. iommu_ignore_device(&pdev->dev);
  2440. unhandled += 1;
  2441. continue;
  2442. }
  2443. dev_data = get_dev_data(&pdev->dev);
  2444. if (!dev_data->passthrough)
  2445. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  2446. else
  2447. pdev->dev.archdata.dma_ops = &nommu_dma_ops;
  2448. }
  2449. return unhandled;
  2450. }
  2451. /*
  2452. * The function which clues the AMD IOMMU driver into dma_ops.
  2453. */
  2454. void __init amd_iommu_init_api(void)
  2455. {
  2456. bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2457. }
  2458. int __init amd_iommu_init_dma_ops(void)
  2459. {
  2460. struct amd_iommu *iommu;
  2461. int ret, unhandled;
  2462. /*
  2463. * first allocate a default protection domain for every IOMMU we
  2464. * found in the system. Devices not assigned to any other
  2465. * protection domain will be assigned to the default one.
  2466. */
  2467. for_each_iommu(iommu) {
  2468. iommu->default_dom = dma_ops_domain_alloc();
  2469. if (iommu->default_dom == NULL)
  2470. return -ENOMEM;
  2471. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  2472. ret = iommu_init_unity_mappings(iommu);
  2473. if (ret)
  2474. goto free_domains;
  2475. }
  2476. /*
  2477. * Pre-allocate the protection domains for each device.
  2478. */
  2479. prealloc_protection_domains();
  2480. iommu_detected = 1;
  2481. swiotlb = 0;
  2482. /* Make the driver finally visible to the drivers */
  2483. unhandled = device_dma_ops_init();
  2484. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  2485. /* There are unhandled devices - initialize swiotlb for them */
  2486. swiotlb = 1;
  2487. }
  2488. amd_iommu_stats_init();
  2489. if (amd_iommu_unmap_flush)
  2490. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2491. else
  2492. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2493. return 0;
  2494. free_domains:
  2495. for_each_iommu(iommu) {
  2496. dma_ops_domain_free(iommu->default_dom);
  2497. }
  2498. return ret;
  2499. }
  2500. /*****************************************************************************
  2501. *
  2502. * The following functions belong to the exported interface of AMD IOMMU
  2503. *
  2504. * This interface allows access to lower level functions of the IOMMU
  2505. * like protection domain handling and assignement of devices to domains
  2506. * which is not possible with the dma_ops interface.
  2507. *
  2508. *****************************************************************************/
  2509. static void cleanup_domain(struct protection_domain *domain)
  2510. {
  2511. struct iommu_dev_data *entry;
  2512. unsigned long flags;
  2513. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2514. while (!list_empty(&domain->dev_list)) {
  2515. entry = list_first_entry(&domain->dev_list,
  2516. struct iommu_dev_data, list);
  2517. __detach_device(entry);
  2518. }
  2519. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2520. }
  2521. static void protection_domain_free(struct protection_domain *domain)
  2522. {
  2523. if (!domain)
  2524. return;
  2525. del_domain_from_list(domain);
  2526. if (domain->id)
  2527. domain_id_free(domain->id);
  2528. kfree(domain);
  2529. }
  2530. static struct protection_domain *protection_domain_alloc(void)
  2531. {
  2532. struct protection_domain *domain;
  2533. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2534. if (!domain)
  2535. return NULL;
  2536. spin_lock_init(&domain->lock);
  2537. mutex_init(&domain->api_lock);
  2538. domain->id = domain_id_alloc();
  2539. if (!domain->id)
  2540. goto out_err;
  2541. INIT_LIST_HEAD(&domain->dev_list);
  2542. add_domain_to_list(domain);
  2543. return domain;
  2544. out_err:
  2545. kfree(domain);
  2546. return NULL;
  2547. }
  2548. static int __init alloc_passthrough_domain(void)
  2549. {
  2550. if (pt_domain != NULL)
  2551. return 0;
  2552. /* allocate passthrough domain */
  2553. pt_domain = protection_domain_alloc();
  2554. if (!pt_domain)
  2555. return -ENOMEM;
  2556. pt_domain->mode = PAGE_MODE_NONE;
  2557. return 0;
  2558. }
  2559. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2560. {
  2561. struct protection_domain *domain;
  2562. domain = protection_domain_alloc();
  2563. if (!domain)
  2564. goto out_free;
  2565. domain->mode = PAGE_MODE_3_LEVEL;
  2566. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2567. if (!domain->pt_root)
  2568. goto out_free;
  2569. domain->iommu_domain = dom;
  2570. dom->priv = domain;
  2571. dom->geometry.aperture_start = 0;
  2572. dom->geometry.aperture_end = ~0ULL;
  2573. dom->geometry.force_aperture = true;
  2574. return 0;
  2575. out_free:
  2576. protection_domain_free(domain);
  2577. return -ENOMEM;
  2578. }
  2579. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2580. {
  2581. struct protection_domain *domain = dom->priv;
  2582. if (!domain)
  2583. return;
  2584. if (domain->dev_cnt > 0)
  2585. cleanup_domain(domain);
  2586. BUG_ON(domain->dev_cnt != 0);
  2587. if (domain->mode != PAGE_MODE_NONE)
  2588. free_pagetable(domain);
  2589. if (domain->flags & PD_IOMMUV2_MASK)
  2590. free_gcr3_table(domain);
  2591. protection_domain_free(domain);
  2592. dom->priv = NULL;
  2593. }
  2594. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2595. struct device *dev)
  2596. {
  2597. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2598. struct amd_iommu *iommu;
  2599. u16 devid;
  2600. if (!check_device(dev))
  2601. return;
  2602. devid = get_device_id(dev);
  2603. if (dev_data->domain != NULL)
  2604. detach_device(dev);
  2605. iommu = amd_iommu_rlookup_table[devid];
  2606. if (!iommu)
  2607. return;
  2608. iommu_completion_wait(iommu);
  2609. }
  2610. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2611. struct device *dev)
  2612. {
  2613. struct protection_domain *domain = dom->priv;
  2614. struct iommu_dev_data *dev_data;
  2615. struct amd_iommu *iommu;
  2616. int ret;
  2617. if (!check_device(dev))
  2618. return -EINVAL;
  2619. dev_data = dev->archdata.iommu;
  2620. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2621. if (!iommu)
  2622. return -EINVAL;
  2623. if (dev_data->domain)
  2624. detach_device(dev);
  2625. ret = attach_device(dev, domain);
  2626. iommu_completion_wait(iommu);
  2627. return ret;
  2628. }
  2629. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2630. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2631. {
  2632. struct protection_domain *domain = dom->priv;
  2633. int prot = 0;
  2634. int ret;
  2635. if (domain->mode == PAGE_MODE_NONE)
  2636. return -EINVAL;
  2637. if (iommu_prot & IOMMU_READ)
  2638. prot |= IOMMU_PROT_IR;
  2639. if (iommu_prot & IOMMU_WRITE)
  2640. prot |= IOMMU_PROT_IW;
  2641. mutex_lock(&domain->api_lock);
  2642. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2643. mutex_unlock(&domain->api_lock);
  2644. return ret;
  2645. }
  2646. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2647. size_t page_size)
  2648. {
  2649. struct protection_domain *domain = dom->priv;
  2650. size_t unmap_size;
  2651. if (domain->mode == PAGE_MODE_NONE)
  2652. return -EINVAL;
  2653. mutex_lock(&domain->api_lock);
  2654. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2655. mutex_unlock(&domain->api_lock);
  2656. domain_flush_tlb_pde(domain);
  2657. return unmap_size;
  2658. }
  2659. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2660. dma_addr_t iova)
  2661. {
  2662. struct protection_domain *domain = dom->priv;
  2663. unsigned long offset_mask;
  2664. phys_addr_t paddr;
  2665. u64 *pte, __pte;
  2666. if (domain->mode == PAGE_MODE_NONE)
  2667. return iova;
  2668. pte = fetch_pte(domain, iova);
  2669. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2670. return 0;
  2671. if (PM_PTE_LEVEL(*pte) == 0)
  2672. offset_mask = PAGE_SIZE - 1;
  2673. else
  2674. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2675. __pte = *pte & PM_ADDR_MASK;
  2676. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2677. return paddr;
  2678. }
  2679. static bool amd_iommu_capable(enum iommu_cap cap)
  2680. {
  2681. switch (cap) {
  2682. case IOMMU_CAP_CACHE_COHERENCY:
  2683. return true;
  2684. case IOMMU_CAP_INTR_REMAP:
  2685. return (irq_remapping_enabled == 1);
  2686. }
  2687. return false;
  2688. }
  2689. static const struct iommu_ops amd_iommu_ops = {
  2690. .capable = amd_iommu_capable,
  2691. .domain_init = amd_iommu_domain_init,
  2692. .domain_destroy = amd_iommu_domain_destroy,
  2693. .attach_dev = amd_iommu_attach_device,
  2694. .detach_dev = amd_iommu_detach_device,
  2695. .map = amd_iommu_map,
  2696. .unmap = amd_iommu_unmap,
  2697. .iova_to_phys = amd_iommu_iova_to_phys,
  2698. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2699. };
  2700. /*****************************************************************************
  2701. *
  2702. * The next functions do a basic initialization of IOMMU for pass through
  2703. * mode
  2704. *
  2705. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2706. * DMA-API translation.
  2707. *
  2708. *****************************************************************************/
  2709. int __init amd_iommu_init_passthrough(void)
  2710. {
  2711. struct iommu_dev_data *dev_data;
  2712. struct pci_dev *dev = NULL;
  2713. int ret;
  2714. ret = alloc_passthrough_domain();
  2715. if (ret)
  2716. return ret;
  2717. for_each_pci_dev(dev) {
  2718. if (!check_device(&dev->dev))
  2719. continue;
  2720. dev_data = get_dev_data(&dev->dev);
  2721. dev_data->passthrough = true;
  2722. attach_device(&dev->dev, pt_domain);
  2723. }
  2724. amd_iommu_stats_init();
  2725. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2726. return 0;
  2727. }
  2728. /* IOMMUv2 specific functions */
  2729. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2730. {
  2731. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2732. }
  2733. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2734. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2735. {
  2736. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2737. }
  2738. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2739. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2740. {
  2741. struct protection_domain *domain = dom->priv;
  2742. unsigned long flags;
  2743. spin_lock_irqsave(&domain->lock, flags);
  2744. /* Update data structure */
  2745. domain->mode = PAGE_MODE_NONE;
  2746. domain->updated = true;
  2747. /* Make changes visible to IOMMUs */
  2748. update_domain(domain);
  2749. /* Page-table is not visible to IOMMU anymore, so free it */
  2750. free_pagetable(domain);
  2751. spin_unlock_irqrestore(&domain->lock, flags);
  2752. }
  2753. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2754. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2755. {
  2756. struct protection_domain *domain = dom->priv;
  2757. unsigned long flags;
  2758. int levels, ret;
  2759. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2760. return -EINVAL;
  2761. /* Number of GCR3 table levels required */
  2762. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2763. levels += 1;
  2764. if (levels > amd_iommu_max_glx_val)
  2765. return -EINVAL;
  2766. spin_lock_irqsave(&domain->lock, flags);
  2767. /*
  2768. * Save us all sanity checks whether devices already in the
  2769. * domain support IOMMUv2. Just force that the domain has no
  2770. * devices attached when it is switched into IOMMUv2 mode.
  2771. */
  2772. ret = -EBUSY;
  2773. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2774. goto out;
  2775. ret = -ENOMEM;
  2776. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2777. if (domain->gcr3_tbl == NULL)
  2778. goto out;
  2779. domain->glx = levels;
  2780. domain->flags |= PD_IOMMUV2_MASK;
  2781. domain->updated = true;
  2782. update_domain(domain);
  2783. ret = 0;
  2784. out:
  2785. spin_unlock_irqrestore(&domain->lock, flags);
  2786. return ret;
  2787. }
  2788. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2789. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2790. u64 address, bool size)
  2791. {
  2792. struct iommu_dev_data *dev_data;
  2793. struct iommu_cmd cmd;
  2794. int i, ret;
  2795. if (!(domain->flags & PD_IOMMUV2_MASK))
  2796. return -EINVAL;
  2797. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2798. /*
  2799. * IOMMU TLB needs to be flushed before Device TLB to
  2800. * prevent device TLB refill from IOMMU TLB
  2801. */
  2802. for (i = 0; i < amd_iommus_present; ++i) {
  2803. if (domain->dev_iommu[i] == 0)
  2804. continue;
  2805. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2806. if (ret != 0)
  2807. goto out;
  2808. }
  2809. /* Wait until IOMMU TLB flushes are complete */
  2810. domain_flush_complete(domain);
  2811. /* Now flush device TLBs */
  2812. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2813. struct amd_iommu *iommu;
  2814. int qdep;
  2815. BUG_ON(!dev_data->ats.enabled);
  2816. qdep = dev_data->ats.qdep;
  2817. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2818. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2819. qdep, address, size);
  2820. ret = iommu_queue_command(iommu, &cmd);
  2821. if (ret != 0)
  2822. goto out;
  2823. }
  2824. /* Wait until all device TLBs are flushed */
  2825. domain_flush_complete(domain);
  2826. ret = 0;
  2827. out:
  2828. return ret;
  2829. }
  2830. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2831. u64 address)
  2832. {
  2833. INC_STATS_COUNTER(invalidate_iotlb);
  2834. return __flush_pasid(domain, pasid, address, false);
  2835. }
  2836. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2837. u64 address)
  2838. {
  2839. struct protection_domain *domain = dom->priv;
  2840. unsigned long flags;
  2841. int ret;
  2842. spin_lock_irqsave(&domain->lock, flags);
  2843. ret = __amd_iommu_flush_page(domain, pasid, address);
  2844. spin_unlock_irqrestore(&domain->lock, flags);
  2845. return ret;
  2846. }
  2847. EXPORT_SYMBOL(amd_iommu_flush_page);
  2848. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2849. {
  2850. INC_STATS_COUNTER(invalidate_iotlb_all);
  2851. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2852. true);
  2853. }
  2854. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2855. {
  2856. struct protection_domain *domain = dom->priv;
  2857. unsigned long flags;
  2858. int ret;
  2859. spin_lock_irqsave(&domain->lock, flags);
  2860. ret = __amd_iommu_flush_tlb(domain, pasid);
  2861. spin_unlock_irqrestore(&domain->lock, flags);
  2862. return ret;
  2863. }
  2864. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2865. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2866. {
  2867. int index;
  2868. u64 *pte;
  2869. while (true) {
  2870. index = (pasid >> (9 * level)) & 0x1ff;
  2871. pte = &root[index];
  2872. if (level == 0)
  2873. break;
  2874. if (!(*pte & GCR3_VALID)) {
  2875. if (!alloc)
  2876. return NULL;
  2877. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2878. if (root == NULL)
  2879. return NULL;
  2880. *pte = __pa(root) | GCR3_VALID;
  2881. }
  2882. root = __va(*pte & PAGE_MASK);
  2883. level -= 1;
  2884. }
  2885. return pte;
  2886. }
  2887. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2888. unsigned long cr3)
  2889. {
  2890. u64 *pte;
  2891. if (domain->mode != PAGE_MODE_NONE)
  2892. return -EINVAL;
  2893. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2894. if (pte == NULL)
  2895. return -ENOMEM;
  2896. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2897. return __amd_iommu_flush_tlb(domain, pasid);
  2898. }
  2899. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2900. {
  2901. u64 *pte;
  2902. if (domain->mode != PAGE_MODE_NONE)
  2903. return -EINVAL;
  2904. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2905. if (pte == NULL)
  2906. return 0;
  2907. *pte = 0;
  2908. return __amd_iommu_flush_tlb(domain, pasid);
  2909. }
  2910. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2911. unsigned long cr3)
  2912. {
  2913. struct protection_domain *domain = dom->priv;
  2914. unsigned long flags;
  2915. int ret;
  2916. spin_lock_irqsave(&domain->lock, flags);
  2917. ret = __set_gcr3(domain, pasid, cr3);
  2918. spin_unlock_irqrestore(&domain->lock, flags);
  2919. return ret;
  2920. }
  2921. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2922. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2923. {
  2924. struct protection_domain *domain = dom->priv;
  2925. unsigned long flags;
  2926. int ret;
  2927. spin_lock_irqsave(&domain->lock, flags);
  2928. ret = __clear_gcr3(domain, pasid);
  2929. spin_unlock_irqrestore(&domain->lock, flags);
  2930. return ret;
  2931. }
  2932. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2933. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2934. int status, int tag)
  2935. {
  2936. struct iommu_dev_data *dev_data;
  2937. struct amd_iommu *iommu;
  2938. struct iommu_cmd cmd;
  2939. INC_STATS_COUNTER(complete_ppr);
  2940. dev_data = get_dev_data(&pdev->dev);
  2941. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2942. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2943. tag, dev_data->pri_tlp);
  2944. return iommu_queue_command(iommu, &cmd);
  2945. }
  2946. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2947. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2948. {
  2949. struct protection_domain *domain;
  2950. domain = get_domain(&pdev->dev);
  2951. if (IS_ERR(domain))
  2952. return NULL;
  2953. /* Only return IOMMUv2 domains */
  2954. if (!(domain->flags & PD_IOMMUV2_MASK))
  2955. return NULL;
  2956. return domain->iommu_domain;
  2957. }
  2958. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2959. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2960. {
  2961. struct iommu_dev_data *dev_data;
  2962. if (!amd_iommu_v2_supported())
  2963. return;
  2964. dev_data = get_dev_data(&pdev->dev);
  2965. dev_data->errata |= (1 << erratum);
  2966. }
  2967. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2968. int amd_iommu_device_info(struct pci_dev *pdev,
  2969. struct amd_iommu_device_info *info)
  2970. {
  2971. int max_pasids;
  2972. int pos;
  2973. if (pdev == NULL || info == NULL)
  2974. return -EINVAL;
  2975. if (!amd_iommu_v2_supported())
  2976. return -EINVAL;
  2977. memset(info, 0, sizeof(*info));
  2978. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2979. if (pos)
  2980. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2981. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2982. if (pos)
  2983. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2984. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2985. if (pos) {
  2986. int features;
  2987. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2988. max_pasids = min(max_pasids, (1 << 20));
  2989. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2990. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2991. features = pci_pasid_features(pdev);
  2992. if (features & PCI_PASID_CAP_EXEC)
  2993. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2994. if (features & PCI_PASID_CAP_PRIV)
  2995. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2996. }
  2997. return 0;
  2998. }
  2999. EXPORT_SYMBOL(amd_iommu_device_info);
  3000. #ifdef CONFIG_IRQ_REMAP
  3001. /*****************************************************************************
  3002. *
  3003. * Interrupt Remapping Implementation
  3004. *
  3005. *****************************************************************************/
  3006. union irte {
  3007. u32 val;
  3008. struct {
  3009. u32 valid : 1,
  3010. no_fault : 1,
  3011. int_type : 3,
  3012. rq_eoi : 1,
  3013. dm : 1,
  3014. rsvd_1 : 1,
  3015. destination : 8,
  3016. vector : 8,
  3017. rsvd_2 : 8;
  3018. } fields;
  3019. };
  3020. #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
  3021. #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
  3022. #define DTE_IRQ_TABLE_LEN (8ULL << 1)
  3023. #define DTE_IRQ_REMAP_ENABLE 1ULL
  3024. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  3025. {
  3026. u64 dte;
  3027. dte = amd_iommu_dev_table[devid].data[2];
  3028. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  3029. dte |= virt_to_phys(table->table);
  3030. dte |= DTE_IRQ_REMAP_INTCTL;
  3031. dte |= DTE_IRQ_TABLE_LEN;
  3032. dte |= DTE_IRQ_REMAP_ENABLE;
  3033. amd_iommu_dev_table[devid].data[2] = dte;
  3034. }
  3035. #define IRTE_ALLOCATED (~1U)
  3036. static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
  3037. {
  3038. struct irq_remap_table *table = NULL;
  3039. struct amd_iommu *iommu;
  3040. unsigned long flags;
  3041. u16 alias;
  3042. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  3043. iommu = amd_iommu_rlookup_table[devid];
  3044. if (!iommu)
  3045. goto out_unlock;
  3046. table = irq_lookup_table[devid];
  3047. if (table)
  3048. goto out;
  3049. alias = amd_iommu_alias_table[devid];
  3050. table = irq_lookup_table[alias];
  3051. if (table) {
  3052. irq_lookup_table[devid] = table;
  3053. set_dte_irq_entry(devid, table);
  3054. iommu_flush_dte(iommu, devid);
  3055. goto out;
  3056. }
  3057. /* Nothing there yet, allocate new irq remapping table */
  3058. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  3059. if (!table)
  3060. goto out;
  3061. /* Initialize table spin-lock */
  3062. spin_lock_init(&table->lock);
  3063. if (ioapic)
  3064. /* Keep the first 32 indexes free for IOAPIC interrupts */
  3065. table->min_index = 32;
  3066. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
  3067. if (!table->table) {
  3068. kfree(table);
  3069. table = NULL;
  3070. goto out;
  3071. }
  3072. memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
  3073. if (ioapic) {
  3074. int i;
  3075. for (i = 0; i < 32; ++i)
  3076. table->table[i] = IRTE_ALLOCATED;
  3077. }
  3078. irq_lookup_table[devid] = table;
  3079. set_dte_irq_entry(devid, table);
  3080. iommu_flush_dte(iommu, devid);
  3081. if (devid != alias) {
  3082. irq_lookup_table[alias] = table;
  3083. set_dte_irq_entry(alias, table);
  3084. iommu_flush_dte(iommu, alias);
  3085. }
  3086. out:
  3087. iommu_completion_wait(iommu);
  3088. out_unlock:
  3089. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  3090. return table;
  3091. }
  3092. static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
  3093. {
  3094. struct irq_remap_table *table;
  3095. unsigned long flags;
  3096. int index, c;
  3097. table = get_irq_table(devid, false);
  3098. if (!table)
  3099. return -ENODEV;
  3100. spin_lock_irqsave(&table->lock, flags);
  3101. /* Scan table for free entries */
  3102. for (c = 0, index = table->min_index;
  3103. index < MAX_IRQS_PER_TABLE;
  3104. ++index) {
  3105. if (table->table[index] == 0)
  3106. c += 1;
  3107. else
  3108. c = 0;
  3109. if (c == count) {
  3110. struct irq_2_irte *irte_info;
  3111. for (; c != 0; --c)
  3112. table->table[index - c + 1] = IRTE_ALLOCATED;
  3113. index -= count - 1;
  3114. cfg->remapped = 1;
  3115. irte_info = &cfg->irq_2_irte;
  3116. irte_info->devid = devid;
  3117. irte_info->index = index;
  3118. goto out;
  3119. }
  3120. }
  3121. index = -ENOSPC;
  3122. out:
  3123. spin_unlock_irqrestore(&table->lock, flags);
  3124. return index;
  3125. }
  3126. static int get_irte(u16 devid, int index, union irte *irte)
  3127. {
  3128. struct irq_remap_table *table;
  3129. unsigned long flags;
  3130. table = get_irq_table(devid, false);
  3131. if (!table)
  3132. return -ENOMEM;
  3133. spin_lock_irqsave(&table->lock, flags);
  3134. irte->val = table->table[index];
  3135. spin_unlock_irqrestore(&table->lock, flags);
  3136. return 0;
  3137. }
  3138. static int modify_irte(u16 devid, int index, union irte irte)
  3139. {
  3140. struct irq_remap_table *table;
  3141. struct amd_iommu *iommu;
  3142. unsigned long flags;
  3143. iommu = amd_iommu_rlookup_table[devid];
  3144. if (iommu == NULL)
  3145. return -EINVAL;
  3146. table = get_irq_table(devid, false);
  3147. if (!table)
  3148. return -ENOMEM;
  3149. spin_lock_irqsave(&table->lock, flags);
  3150. table->table[index] = irte.val;
  3151. spin_unlock_irqrestore(&table->lock, flags);
  3152. iommu_flush_irt(iommu, devid);
  3153. iommu_completion_wait(iommu);
  3154. return 0;
  3155. }
  3156. static void free_irte(u16 devid, int index)
  3157. {
  3158. struct irq_remap_table *table;
  3159. struct amd_iommu *iommu;
  3160. unsigned long flags;
  3161. iommu = amd_iommu_rlookup_table[devid];
  3162. if (iommu == NULL)
  3163. return;
  3164. table = get_irq_table(devid, false);
  3165. if (!table)
  3166. return;
  3167. spin_lock_irqsave(&table->lock, flags);
  3168. table->table[index] = 0;
  3169. spin_unlock_irqrestore(&table->lock, flags);
  3170. iommu_flush_irt(iommu, devid);
  3171. iommu_completion_wait(iommu);
  3172. }
  3173. static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
  3174. unsigned int destination, int vector,
  3175. struct io_apic_irq_attr *attr)
  3176. {
  3177. struct irq_remap_table *table;
  3178. struct irq_2_irte *irte_info;
  3179. struct irq_cfg *cfg;
  3180. union irte irte;
  3181. int ioapic_id;
  3182. int index;
  3183. int devid;
  3184. int ret;
  3185. cfg = irq_get_chip_data(irq);
  3186. if (!cfg)
  3187. return -EINVAL;
  3188. irte_info = &cfg->irq_2_irte;
  3189. ioapic_id = mpc_ioapic_id(attr->ioapic);
  3190. devid = get_ioapic_devid(ioapic_id);
  3191. if (devid < 0)
  3192. return devid;
  3193. table = get_irq_table(devid, true);
  3194. if (table == NULL)
  3195. return -ENOMEM;
  3196. index = attr->ioapic_pin;
  3197. /* Setup IRQ remapping info */
  3198. cfg->remapped = 1;
  3199. irte_info->devid = devid;
  3200. irte_info->index = index;
  3201. /* Setup IRTE for IOMMU */
  3202. irte.val = 0;
  3203. irte.fields.vector = vector;
  3204. irte.fields.int_type = apic->irq_delivery_mode;
  3205. irte.fields.destination = destination;
  3206. irte.fields.dm = apic->irq_dest_mode;
  3207. irte.fields.valid = 1;
  3208. ret = modify_irte(devid, index, irte);
  3209. if (ret)
  3210. return ret;
  3211. /* Setup IOAPIC entry */
  3212. memset(entry, 0, sizeof(*entry));
  3213. entry->vector = index;
  3214. entry->mask = 0;
  3215. entry->trigger = attr->trigger;
  3216. entry->polarity = attr->polarity;
  3217. /*
  3218. * Mask level triggered irqs.
  3219. */
  3220. if (attr->trigger)
  3221. entry->mask = 1;
  3222. return 0;
  3223. }
  3224. static int set_affinity(struct irq_data *data, const struct cpumask *mask,
  3225. bool force)
  3226. {
  3227. struct irq_2_irte *irte_info;
  3228. unsigned int dest, irq;
  3229. struct irq_cfg *cfg;
  3230. union irte irte;
  3231. int err;
  3232. if (!config_enabled(CONFIG_SMP))
  3233. return -1;
  3234. cfg = data->chip_data;
  3235. irq = data->irq;
  3236. irte_info = &cfg->irq_2_irte;
  3237. if (!cpumask_intersects(mask, cpu_online_mask))
  3238. return -EINVAL;
  3239. if (get_irte(irte_info->devid, irte_info->index, &irte))
  3240. return -EBUSY;
  3241. if (assign_irq_vector(irq, cfg, mask))
  3242. return -EBUSY;
  3243. err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
  3244. if (err) {
  3245. if (assign_irq_vector(irq, cfg, data->affinity))
  3246. pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
  3247. return err;
  3248. }
  3249. irte.fields.vector = cfg->vector;
  3250. irte.fields.destination = dest;
  3251. modify_irte(irte_info->devid, irte_info->index, irte);
  3252. if (cfg->move_in_progress)
  3253. send_cleanup_vector(cfg);
  3254. cpumask_copy(data->affinity, mask);
  3255. return 0;
  3256. }
  3257. static int free_irq(int irq)
  3258. {
  3259. struct irq_2_irte *irte_info;
  3260. struct irq_cfg *cfg;
  3261. cfg = irq_get_chip_data(irq);
  3262. if (!cfg)
  3263. return -EINVAL;
  3264. irte_info = &cfg->irq_2_irte;
  3265. free_irte(irte_info->devid, irte_info->index);
  3266. return 0;
  3267. }
  3268. static void compose_msi_msg(struct pci_dev *pdev,
  3269. unsigned int irq, unsigned int dest,
  3270. struct msi_msg *msg, u8 hpet_id)
  3271. {
  3272. struct irq_2_irte *irte_info;
  3273. struct irq_cfg *cfg;
  3274. union irte irte;
  3275. cfg = irq_get_chip_data(irq);
  3276. if (!cfg)
  3277. return;
  3278. irte_info = &cfg->irq_2_irte;
  3279. irte.val = 0;
  3280. irte.fields.vector = cfg->vector;
  3281. irte.fields.int_type = apic->irq_delivery_mode;
  3282. irte.fields.destination = dest;
  3283. irte.fields.dm = apic->irq_dest_mode;
  3284. irte.fields.valid = 1;
  3285. modify_irte(irte_info->devid, irte_info->index, irte);
  3286. msg->address_hi = MSI_ADDR_BASE_HI;
  3287. msg->address_lo = MSI_ADDR_BASE_LO;
  3288. msg->data = irte_info->index;
  3289. }
  3290. static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
  3291. {
  3292. struct irq_cfg *cfg;
  3293. int index;
  3294. u16 devid;
  3295. if (!pdev)
  3296. return -EINVAL;
  3297. cfg = irq_get_chip_data(irq);
  3298. if (!cfg)
  3299. return -EINVAL;
  3300. devid = get_device_id(&pdev->dev);
  3301. index = alloc_irq_index(cfg, devid, nvec);
  3302. return index < 0 ? MAX_IRQS_PER_TABLE : index;
  3303. }
  3304. static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
  3305. int index, int offset)
  3306. {
  3307. struct irq_2_irte *irte_info;
  3308. struct irq_cfg *cfg;
  3309. u16 devid;
  3310. if (!pdev)
  3311. return -EINVAL;
  3312. cfg = irq_get_chip_data(irq);
  3313. if (!cfg)
  3314. return -EINVAL;
  3315. if (index >= MAX_IRQS_PER_TABLE)
  3316. return 0;
  3317. devid = get_device_id(&pdev->dev);
  3318. irte_info = &cfg->irq_2_irte;
  3319. cfg->remapped = 1;
  3320. irte_info->devid = devid;
  3321. irte_info->index = index + offset;
  3322. return 0;
  3323. }
  3324. static int alloc_hpet_msi(unsigned int irq, unsigned int id)
  3325. {
  3326. struct irq_2_irte *irte_info;
  3327. struct irq_cfg *cfg;
  3328. int index, devid;
  3329. cfg = irq_get_chip_data(irq);
  3330. if (!cfg)
  3331. return -EINVAL;
  3332. irte_info = &cfg->irq_2_irte;
  3333. devid = get_hpet_devid(id);
  3334. if (devid < 0)
  3335. return devid;
  3336. index = alloc_irq_index(cfg, devid, 1);
  3337. if (index < 0)
  3338. return index;
  3339. cfg->remapped = 1;
  3340. irte_info->devid = devid;
  3341. irte_info->index = index;
  3342. return 0;
  3343. }
  3344. struct irq_remap_ops amd_iommu_irq_ops = {
  3345. .supported = amd_iommu_supported,
  3346. .prepare = amd_iommu_prepare,
  3347. .enable = amd_iommu_enable,
  3348. .disable = amd_iommu_disable,
  3349. .reenable = amd_iommu_reenable,
  3350. .enable_faulting = amd_iommu_enable_faulting,
  3351. .setup_ioapic_entry = setup_ioapic_entry,
  3352. .set_affinity = set_affinity,
  3353. .free_irq = free_irq,
  3354. .compose_msi_msg = compose_msi_msg,
  3355. .msi_alloc_irq = msi_alloc_irq,
  3356. .msi_setup_irq = msi_setup_irq,
  3357. .alloc_hpet_msi = alloc_hpet_msi,
  3358. };
  3359. #endif