intel_ddi.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. };
  33. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  34. * them for both DP and FDI transports, allowing those ports to
  35. * automatically adapt to HDMI connections as well
  36. */
  37. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  38. { 0x00FFFFFF, 0x0006000E },
  39. { 0x00D75FFF, 0x0005000A },
  40. { 0x00C30FFF, 0x00040006 },
  41. { 0x80AAAFFF, 0x000B0000 },
  42. { 0x00FFFFFF, 0x0005000A },
  43. { 0x00D75FFF, 0x000C0004 },
  44. { 0x80C30FFF, 0x000B0000 },
  45. { 0x00FFFFFF, 0x00040006 },
  46. { 0x80D75FFF, 0x000B0000 },
  47. };
  48. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  49. { 0x00FFFFFF, 0x0007000E },
  50. { 0x00D75FFF, 0x000F000A },
  51. { 0x00C30FFF, 0x00060006 },
  52. { 0x00AAAFFF, 0x001E0000 },
  53. { 0x00FFFFFF, 0x000F000A },
  54. { 0x00D75FFF, 0x00160004 },
  55. { 0x00C30FFF, 0x001E0000 },
  56. { 0x00FFFFFF, 0x00060006 },
  57. { 0x00D75FFF, 0x001E0000 },
  58. };
  59. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  60. /* Idx NT mV d T mV d db */
  61. { 0x00FFFFFF, 0x0006000E }, /* 0: 400 400 0 */
  62. { 0x00E79FFF, 0x000E000C }, /* 1: 400 500 2 */
  63. { 0x00D75FFF, 0x0005000A }, /* 2: 400 600 3.5 */
  64. { 0x00FFFFFF, 0x0005000A }, /* 3: 600 600 0 */
  65. { 0x00E79FFF, 0x001D0007 }, /* 4: 600 750 2 */
  66. { 0x00D75FFF, 0x000C0004 }, /* 5: 600 900 3.5 */
  67. { 0x00FFFFFF, 0x00040006 }, /* 6: 800 800 0 */
  68. { 0x80E79FFF, 0x00030002 }, /* 7: 800 1000 2 */
  69. { 0x00FFFFFF, 0x00140005 }, /* 8: 850 850 0 */
  70. { 0x00FFFFFF, 0x000C0004 }, /* 9: 900 900 0 */
  71. { 0x00FFFFFF, 0x001C0003 }, /* 10: 950 950 0 */
  72. { 0x80FFFFFF, 0x00030002 }, /* 11: 1000 1000 0 */
  73. };
  74. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  75. { 0x00FFFFFF, 0x00000012 },
  76. { 0x00EBAFFF, 0x00020011 },
  77. { 0x00C71FFF, 0x0006000F },
  78. { 0x00AAAFFF, 0x000E000A },
  79. { 0x00FFFFFF, 0x00020011 },
  80. { 0x00DB6FFF, 0x0005000F },
  81. { 0x00BEEFFF, 0x000A000C },
  82. { 0x00FFFFFF, 0x0005000F },
  83. { 0x00DB6FFF, 0x000A000C },
  84. };
  85. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  86. { 0x00FFFFFF, 0x0007000E },
  87. { 0x00D75FFF, 0x000E000A },
  88. { 0x00BEFFFF, 0x00140006 },
  89. { 0x80B2CFFF, 0x001B0002 },
  90. { 0x00FFFFFF, 0x000E000A },
  91. { 0x00D75FFF, 0x00180004 },
  92. { 0x80CB2FFF, 0x001B0002 },
  93. { 0x00F7DFFF, 0x00180004 },
  94. { 0x80D75FFF, 0x001B0002 },
  95. };
  96. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  97. { 0x00FFFFFF, 0x0001000E },
  98. { 0x00D75FFF, 0x0004000A },
  99. { 0x00C30FFF, 0x00070006 },
  100. { 0x00AAAFFF, 0x000C0000 },
  101. { 0x00FFFFFF, 0x0004000A },
  102. { 0x00D75FFF, 0x00090004 },
  103. { 0x00C30FFF, 0x000C0000 },
  104. { 0x00FFFFFF, 0x00070006 },
  105. { 0x00D75FFF, 0x000C0000 },
  106. };
  107. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  108. /* Idx NT mV d T mV df db */
  109. { 0x00FFFFFF, 0x0007000E }, /* 0: 400 400 0 */
  110. { 0x00D75FFF, 0x000E000A }, /* 1: 400 600 3.5 */
  111. { 0x00BEFFFF, 0x00140006 }, /* 2: 400 800 6 */
  112. { 0x00FFFFFF, 0x0009000D }, /* 3: 450 450 0 */
  113. { 0x00FFFFFF, 0x000E000A }, /* 4: 600 600 0 */
  114. { 0x00D7FFFF, 0x00140006 }, /* 5: 600 800 2.5 */
  115. { 0x80CB2FFF, 0x001B0002 }, /* 6: 600 1000 4.5 */
  116. { 0x00FFFFFF, 0x00140006 }, /* 7: 800 800 0 */
  117. { 0x80E79FFF, 0x001B0002 }, /* 8: 800 1000 2 */
  118. { 0x80FFFFFF, 0x001B0002 }, /* 9: 1000 1000 0 */
  119. };
  120. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  121. {
  122. struct drm_encoder *encoder = &intel_encoder->base;
  123. int type = intel_encoder->type;
  124. if (type == INTEL_OUTPUT_DP_MST) {
  125. struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
  126. return intel_dig_port->port;
  127. } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  128. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  129. struct intel_digital_port *intel_dig_port =
  130. enc_to_dig_port(encoder);
  131. return intel_dig_port->port;
  132. } else if (type == INTEL_OUTPUT_ANALOG) {
  133. return PORT_E;
  134. } else {
  135. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  136. BUG();
  137. }
  138. }
  139. /*
  140. * Starting with Haswell, DDI port buffers must be programmed with correct
  141. * values in advance. The buffer values are different for FDI and DP modes,
  142. * but the HDMI/DVI fields are shared among those. So we program the DDI
  143. * in either FDI or DP modes only, as HDMI connections will work with both
  144. * of those
  145. */
  146. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  147. {
  148. struct drm_i915_private *dev_priv = dev->dev_private;
  149. u32 reg;
  150. int i, n_hdmi_entries, hdmi_800mV_0dB;
  151. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  152. const struct ddi_buf_trans *ddi_translations_fdi;
  153. const struct ddi_buf_trans *ddi_translations_dp;
  154. const struct ddi_buf_trans *ddi_translations_edp;
  155. const struct ddi_buf_trans *ddi_translations_hdmi;
  156. const struct ddi_buf_trans *ddi_translations;
  157. if (IS_BROADWELL(dev)) {
  158. ddi_translations_fdi = bdw_ddi_translations_fdi;
  159. ddi_translations_dp = bdw_ddi_translations_dp;
  160. ddi_translations_edp = bdw_ddi_translations_edp;
  161. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  162. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  163. hdmi_800mV_0dB = 7;
  164. } else if (IS_HASWELL(dev)) {
  165. ddi_translations_fdi = hsw_ddi_translations_fdi;
  166. ddi_translations_dp = hsw_ddi_translations_dp;
  167. ddi_translations_edp = hsw_ddi_translations_dp;
  168. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  169. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  170. hdmi_800mV_0dB = 6;
  171. } else {
  172. WARN(1, "ddi translation table missing\n");
  173. ddi_translations_edp = bdw_ddi_translations_dp;
  174. ddi_translations_fdi = bdw_ddi_translations_fdi;
  175. ddi_translations_dp = bdw_ddi_translations_dp;
  176. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  177. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  178. hdmi_800mV_0dB = 7;
  179. }
  180. switch (port) {
  181. case PORT_A:
  182. ddi_translations = ddi_translations_edp;
  183. break;
  184. case PORT_B:
  185. case PORT_C:
  186. ddi_translations = ddi_translations_dp;
  187. break;
  188. case PORT_D:
  189. if (intel_dp_is_edp(dev, PORT_D))
  190. ddi_translations = ddi_translations_edp;
  191. else
  192. ddi_translations = ddi_translations_dp;
  193. break;
  194. case PORT_E:
  195. ddi_translations = ddi_translations_fdi;
  196. break;
  197. default:
  198. BUG();
  199. }
  200. for (i = 0, reg = DDI_BUF_TRANS(port);
  201. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  202. I915_WRITE(reg, ddi_translations[i].trans1);
  203. reg += 4;
  204. I915_WRITE(reg, ddi_translations[i].trans2);
  205. reg += 4;
  206. }
  207. /* Choose a good default if VBT is badly populated */
  208. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  209. hdmi_level >= n_hdmi_entries)
  210. hdmi_level = hdmi_800mV_0dB;
  211. /* Entry 9 is for HDMI: */
  212. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
  213. reg += 4;
  214. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
  215. reg += 4;
  216. }
  217. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  218. * mode and port E for FDI.
  219. */
  220. void intel_prepare_ddi(struct drm_device *dev)
  221. {
  222. int port;
  223. if (!HAS_DDI(dev))
  224. return;
  225. for (port = PORT_A; port <= PORT_E; port++)
  226. intel_prepare_ddi_buffers(dev, port);
  227. }
  228. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  229. enum port port)
  230. {
  231. uint32_t reg = DDI_BUF_CTL(port);
  232. int i;
  233. for (i = 0; i < 8; i++) {
  234. udelay(1);
  235. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  236. return;
  237. }
  238. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  239. }
  240. /* Starting with Haswell, different DDI ports can work in FDI mode for
  241. * connection to the PCH-located connectors. For this, it is necessary to train
  242. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  243. *
  244. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  245. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  246. * DDI A (which is used for eDP)
  247. */
  248. void hsw_fdi_link_train(struct drm_crtc *crtc)
  249. {
  250. struct drm_device *dev = crtc->dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  253. u32 temp, i, rx_ctl_val;
  254. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  255. * mode set "sequence for CRT port" document:
  256. * - TP1 to TP2 time with the default value
  257. * - FDI delay to 90h
  258. *
  259. * WaFDIAutoLinkSetTimingOverrride:hsw
  260. */
  261. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  262. FDI_RX_PWRDN_LANE0_VAL(2) |
  263. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  264. /* Enable the PCH Receiver FDI PLL */
  265. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  266. FDI_RX_PLL_ENABLE |
  267. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  268. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  269. POSTING_READ(_FDI_RXA_CTL);
  270. udelay(220);
  271. /* Switch from Rawclk to PCDclk */
  272. rx_ctl_val |= FDI_PCDCLK;
  273. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  274. /* Configure Port Clock Select */
  275. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
  276. WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
  277. /* Start the training iterating through available voltages and emphasis,
  278. * testing each value twice. */
  279. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  280. /* Configure DP_TP_CTL with auto-training */
  281. I915_WRITE(DP_TP_CTL(PORT_E),
  282. DP_TP_CTL_FDI_AUTOTRAIN |
  283. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  284. DP_TP_CTL_LINK_TRAIN_PAT1 |
  285. DP_TP_CTL_ENABLE);
  286. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  287. * DDI E does not support port reversal, the functionality is
  288. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  289. * port reversal bit */
  290. I915_WRITE(DDI_BUF_CTL(PORT_E),
  291. DDI_BUF_CTL_ENABLE |
  292. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  293. DDI_BUF_TRANS_SELECT(i / 2));
  294. POSTING_READ(DDI_BUF_CTL(PORT_E));
  295. udelay(600);
  296. /* Program PCH FDI Receiver TU */
  297. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  298. /* Enable PCH FDI Receiver with auto-training */
  299. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  300. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  301. POSTING_READ(_FDI_RXA_CTL);
  302. /* Wait for FDI receiver lane calibration */
  303. udelay(30);
  304. /* Unset FDI_RX_MISC pwrdn lanes */
  305. temp = I915_READ(_FDI_RXA_MISC);
  306. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  307. I915_WRITE(_FDI_RXA_MISC, temp);
  308. POSTING_READ(_FDI_RXA_MISC);
  309. /* Wait for FDI auto training time */
  310. udelay(5);
  311. temp = I915_READ(DP_TP_STATUS(PORT_E));
  312. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  313. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  314. /* Enable normal pixel sending for FDI */
  315. I915_WRITE(DP_TP_CTL(PORT_E),
  316. DP_TP_CTL_FDI_AUTOTRAIN |
  317. DP_TP_CTL_LINK_TRAIN_NORMAL |
  318. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  319. DP_TP_CTL_ENABLE);
  320. return;
  321. }
  322. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  323. temp &= ~DDI_BUF_CTL_ENABLE;
  324. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  325. POSTING_READ(DDI_BUF_CTL(PORT_E));
  326. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  327. temp = I915_READ(DP_TP_CTL(PORT_E));
  328. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  329. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  330. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  331. POSTING_READ(DP_TP_CTL(PORT_E));
  332. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  333. rx_ctl_val &= ~FDI_RX_ENABLE;
  334. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  335. POSTING_READ(_FDI_RXA_CTL);
  336. /* Reset FDI_RX_MISC pwrdn lanes */
  337. temp = I915_READ(_FDI_RXA_MISC);
  338. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  339. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  340. I915_WRITE(_FDI_RXA_MISC, temp);
  341. POSTING_READ(_FDI_RXA_MISC);
  342. }
  343. DRM_ERROR("FDI link training failed!\n");
  344. }
  345. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  346. {
  347. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  348. struct intel_digital_port *intel_dig_port =
  349. enc_to_dig_port(&encoder->base);
  350. intel_dp->DP = intel_dig_port->saved_port_bits |
  351. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  352. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  353. }
  354. static struct intel_encoder *
  355. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  359. struct intel_encoder *intel_encoder, *ret = NULL;
  360. int num_encoders = 0;
  361. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  362. ret = intel_encoder;
  363. num_encoders++;
  364. }
  365. if (num_encoders != 1)
  366. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  367. pipe_name(intel_crtc->pipe));
  368. BUG_ON(ret == NULL);
  369. return ret;
  370. }
  371. #define LC_FREQ 2700
  372. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  373. #define P_MIN 2
  374. #define P_MAX 64
  375. #define P_INC 2
  376. /* Constraints for PLL good behavior */
  377. #define REF_MIN 48
  378. #define REF_MAX 400
  379. #define VCO_MIN 2400
  380. #define VCO_MAX 4800
  381. #define abs_diff(a, b) ({ \
  382. typeof(a) __a = (a); \
  383. typeof(b) __b = (b); \
  384. (void) (&__a == &__b); \
  385. __a > __b ? (__a - __b) : (__b - __a); })
  386. struct wrpll_rnp {
  387. unsigned p, n2, r2;
  388. };
  389. static unsigned wrpll_get_budget_for_freq(int clock)
  390. {
  391. unsigned budget;
  392. switch (clock) {
  393. case 25175000:
  394. case 25200000:
  395. case 27000000:
  396. case 27027000:
  397. case 37762500:
  398. case 37800000:
  399. case 40500000:
  400. case 40541000:
  401. case 54000000:
  402. case 54054000:
  403. case 59341000:
  404. case 59400000:
  405. case 72000000:
  406. case 74176000:
  407. case 74250000:
  408. case 81000000:
  409. case 81081000:
  410. case 89012000:
  411. case 89100000:
  412. case 108000000:
  413. case 108108000:
  414. case 111264000:
  415. case 111375000:
  416. case 148352000:
  417. case 148500000:
  418. case 162000000:
  419. case 162162000:
  420. case 222525000:
  421. case 222750000:
  422. case 296703000:
  423. case 297000000:
  424. budget = 0;
  425. break;
  426. case 233500000:
  427. case 245250000:
  428. case 247750000:
  429. case 253250000:
  430. case 298000000:
  431. budget = 1500;
  432. break;
  433. case 169128000:
  434. case 169500000:
  435. case 179500000:
  436. case 202000000:
  437. budget = 2000;
  438. break;
  439. case 256250000:
  440. case 262500000:
  441. case 270000000:
  442. case 272500000:
  443. case 273750000:
  444. case 280750000:
  445. case 281250000:
  446. case 286000000:
  447. case 291750000:
  448. budget = 4000;
  449. break;
  450. case 267250000:
  451. case 268500000:
  452. budget = 5000;
  453. break;
  454. default:
  455. budget = 1000;
  456. break;
  457. }
  458. return budget;
  459. }
  460. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  461. unsigned r2, unsigned n2, unsigned p,
  462. struct wrpll_rnp *best)
  463. {
  464. uint64_t a, b, c, d, diff, diff_best;
  465. /* No best (r,n,p) yet */
  466. if (best->p == 0) {
  467. best->p = p;
  468. best->n2 = n2;
  469. best->r2 = r2;
  470. return;
  471. }
  472. /*
  473. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  474. * freq2k.
  475. *
  476. * delta = 1e6 *
  477. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  478. * freq2k;
  479. *
  480. * and we would like delta <= budget.
  481. *
  482. * If the discrepancy is above the PPM-based budget, always prefer to
  483. * improve upon the previous solution. However, if you're within the
  484. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  485. */
  486. a = freq2k * budget * p * r2;
  487. b = freq2k * budget * best->p * best->r2;
  488. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  489. diff_best = abs_diff(freq2k * best->p * best->r2,
  490. LC_FREQ_2K * best->n2);
  491. c = 1000000 * diff;
  492. d = 1000000 * diff_best;
  493. if (a < c && b < d) {
  494. /* If both are above the budget, pick the closer */
  495. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  496. best->p = p;
  497. best->n2 = n2;
  498. best->r2 = r2;
  499. }
  500. } else if (a >= c && b < d) {
  501. /* If A is below the threshold but B is above it? Update. */
  502. best->p = p;
  503. best->n2 = n2;
  504. best->r2 = r2;
  505. } else if (a >= c && b >= d) {
  506. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  507. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  508. best->p = p;
  509. best->n2 = n2;
  510. best->r2 = r2;
  511. }
  512. }
  513. /* Otherwise a < c && b >= d, do nothing */
  514. }
  515. static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  516. int reg)
  517. {
  518. int refclk = LC_FREQ;
  519. int n, p, r;
  520. u32 wrpll;
  521. wrpll = I915_READ(reg);
  522. switch (wrpll & WRPLL_PLL_REF_MASK) {
  523. case WRPLL_PLL_SSC:
  524. case WRPLL_PLL_NON_SSC:
  525. /*
  526. * We could calculate spread here, but our checking
  527. * code only cares about 5% accuracy, and spread is a max of
  528. * 0.5% downspread.
  529. */
  530. refclk = 135;
  531. break;
  532. case WRPLL_PLL_LCPLL:
  533. refclk = LC_FREQ;
  534. break;
  535. default:
  536. WARN(1, "bad wrpll refclk\n");
  537. return 0;
  538. }
  539. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  540. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  541. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  542. /* Convert to KHz, p & r have a fixed point portion */
  543. return (refclk * n * 100) / (p * r);
  544. }
  545. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  546. struct intel_crtc_config *pipe_config)
  547. {
  548. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  549. int link_clock = 0;
  550. u32 val, pll;
  551. val = pipe_config->ddi_pll_sel;
  552. switch (val & PORT_CLK_SEL_MASK) {
  553. case PORT_CLK_SEL_LCPLL_810:
  554. link_clock = 81000;
  555. break;
  556. case PORT_CLK_SEL_LCPLL_1350:
  557. link_clock = 135000;
  558. break;
  559. case PORT_CLK_SEL_LCPLL_2700:
  560. link_clock = 270000;
  561. break;
  562. case PORT_CLK_SEL_WRPLL1:
  563. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
  564. break;
  565. case PORT_CLK_SEL_WRPLL2:
  566. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
  567. break;
  568. case PORT_CLK_SEL_SPLL:
  569. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  570. if (pll == SPLL_PLL_FREQ_810MHz)
  571. link_clock = 81000;
  572. else if (pll == SPLL_PLL_FREQ_1350MHz)
  573. link_clock = 135000;
  574. else if (pll == SPLL_PLL_FREQ_2700MHz)
  575. link_clock = 270000;
  576. else {
  577. WARN(1, "bad spll freq\n");
  578. return;
  579. }
  580. break;
  581. default:
  582. WARN(1, "bad port clock sel\n");
  583. return;
  584. }
  585. pipe_config->port_clock = link_clock * 2;
  586. if (pipe_config->has_pch_encoder)
  587. pipe_config->adjusted_mode.crtc_clock =
  588. intel_dotclock_calculate(pipe_config->port_clock,
  589. &pipe_config->fdi_m_n);
  590. else if (pipe_config->has_dp_encoder)
  591. pipe_config->adjusted_mode.crtc_clock =
  592. intel_dotclock_calculate(pipe_config->port_clock,
  593. &pipe_config->dp_m_n);
  594. else
  595. pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
  596. }
  597. void intel_ddi_clock_get(struct intel_encoder *encoder,
  598. struct intel_crtc_config *pipe_config)
  599. {
  600. hsw_ddi_clock_get(encoder, pipe_config);
  601. }
  602. static void
  603. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  604. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  605. {
  606. uint64_t freq2k;
  607. unsigned p, n2, r2;
  608. struct wrpll_rnp best = { 0, 0, 0 };
  609. unsigned budget;
  610. freq2k = clock / 100;
  611. budget = wrpll_get_budget_for_freq(clock);
  612. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  613. * and directly pass the LC PLL to it. */
  614. if (freq2k == 5400000) {
  615. *n2_out = 2;
  616. *p_out = 1;
  617. *r2_out = 2;
  618. return;
  619. }
  620. /*
  621. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  622. * the WR PLL.
  623. *
  624. * We want R so that REF_MIN <= Ref <= REF_MAX.
  625. * Injecting R2 = 2 * R gives:
  626. * REF_MAX * r2 > LC_FREQ * 2 and
  627. * REF_MIN * r2 < LC_FREQ * 2
  628. *
  629. * Which means the desired boundaries for r2 are:
  630. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  631. *
  632. */
  633. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  634. r2 <= LC_FREQ * 2 / REF_MIN;
  635. r2++) {
  636. /*
  637. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  638. *
  639. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  640. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  641. * VCO_MAX * r2 > n2 * LC_FREQ and
  642. * VCO_MIN * r2 < n2 * LC_FREQ)
  643. *
  644. * Which means the desired boundaries for n2 are:
  645. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  646. */
  647. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  648. n2 <= VCO_MAX * r2 / LC_FREQ;
  649. n2++) {
  650. for (p = P_MIN; p <= P_MAX; p += P_INC)
  651. wrpll_update_rnp(freq2k, budget,
  652. r2, n2, p, &best);
  653. }
  654. }
  655. *n2_out = best.n2;
  656. *p_out = best.p;
  657. *r2_out = best.r2;
  658. }
  659. static bool
  660. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  661. struct intel_encoder *intel_encoder,
  662. int clock)
  663. {
  664. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  665. struct intel_shared_dpll *pll;
  666. uint32_t val;
  667. unsigned p, n2, r2;
  668. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  669. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  670. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  671. WRPLL_DIVIDER_POST(p);
  672. intel_crtc->config.dpll_hw_state.wrpll = val;
  673. pll = intel_get_shared_dpll(intel_crtc);
  674. if (pll == NULL) {
  675. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  676. pipe_name(intel_crtc->pipe));
  677. return false;
  678. }
  679. intel_crtc->config.ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  680. }
  681. return true;
  682. }
  683. /*
  684. * Tries to find a *shared* PLL for the CRTC and store it in
  685. * intel_crtc->ddi_pll_sel.
  686. *
  687. * For private DPLLs, compute_config() should do the selection for us. This
  688. * function should be folded into compute_config() eventually.
  689. */
  690. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
  691. {
  692. struct drm_crtc *crtc = &intel_crtc->base;
  693. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  694. int clock = intel_crtc->config.port_clock;
  695. intel_put_shared_dpll(intel_crtc);
  696. return hsw_ddi_pll_select(intel_crtc, intel_encoder, clock);
  697. }
  698. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  699. {
  700. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  701. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  702. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  703. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  704. int type = intel_encoder->type;
  705. uint32_t temp;
  706. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  707. temp = TRANS_MSA_SYNC_CLK;
  708. switch (intel_crtc->config.pipe_bpp) {
  709. case 18:
  710. temp |= TRANS_MSA_6_BPC;
  711. break;
  712. case 24:
  713. temp |= TRANS_MSA_8_BPC;
  714. break;
  715. case 30:
  716. temp |= TRANS_MSA_10_BPC;
  717. break;
  718. case 36:
  719. temp |= TRANS_MSA_12_BPC;
  720. break;
  721. default:
  722. BUG();
  723. }
  724. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  725. }
  726. }
  727. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  728. {
  729. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  730. struct drm_device *dev = crtc->dev;
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  733. uint32_t temp;
  734. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  735. if (state == true)
  736. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  737. else
  738. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  739. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  740. }
  741. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  742. {
  743. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  744. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  745. struct drm_encoder *encoder = &intel_encoder->base;
  746. struct drm_device *dev = crtc->dev;
  747. struct drm_i915_private *dev_priv = dev->dev_private;
  748. enum pipe pipe = intel_crtc->pipe;
  749. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  750. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  751. int type = intel_encoder->type;
  752. uint32_t temp;
  753. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  754. temp = TRANS_DDI_FUNC_ENABLE;
  755. temp |= TRANS_DDI_SELECT_PORT(port);
  756. switch (intel_crtc->config.pipe_bpp) {
  757. case 18:
  758. temp |= TRANS_DDI_BPC_6;
  759. break;
  760. case 24:
  761. temp |= TRANS_DDI_BPC_8;
  762. break;
  763. case 30:
  764. temp |= TRANS_DDI_BPC_10;
  765. break;
  766. case 36:
  767. temp |= TRANS_DDI_BPC_12;
  768. break;
  769. default:
  770. BUG();
  771. }
  772. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  773. temp |= TRANS_DDI_PVSYNC;
  774. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  775. temp |= TRANS_DDI_PHSYNC;
  776. if (cpu_transcoder == TRANSCODER_EDP) {
  777. switch (pipe) {
  778. case PIPE_A:
  779. /* On Haswell, can only use the always-on power well for
  780. * eDP when not using the panel fitter, and when not
  781. * using motion blur mitigation (which we don't
  782. * support). */
  783. if (IS_HASWELL(dev) &&
  784. (intel_crtc->config.pch_pfit.enabled ||
  785. intel_crtc->config.pch_pfit.force_thru))
  786. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  787. else
  788. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  789. break;
  790. case PIPE_B:
  791. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  792. break;
  793. case PIPE_C:
  794. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  795. break;
  796. default:
  797. BUG();
  798. break;
  799. }
  800. }
  801. if (type == INTEL_OUTPUT_HDMI) {
  802. if (intel_crtc->config.has_hdmi_sink)
  803. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  804. else
  805. temp |= TRANS_DDI_MODE_SELECT_DVI;
  806. } else if (type == INTEL_OUTPUT_ANALOG) {
  807. temp |= TRANS_DDI_MODE_SELECT_FDI;
  808. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  809. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  810. type == INTEL_OUTPUT_EDP) {
  811. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  812. if (intel_dp->is_mst) {
  813. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  814. } else
  815. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  816. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  817. } else if (type == INTEL_OUTPUT_DP_MST) {
  818. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  819. if (intel_dp->is_mst) {
  820. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  821. } else
  822. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  823. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  824. } else {
  825. WARN(1, "Invalid encoder type %d for pipe %c\n",
  826. intel_encoder->type, pipe_name(pipe));
  827. }
  828. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  829. }
  830. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  831. enum transcoder cpu_transcoder)
  832. {
  833. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  834. uint32_t val = I915_READ(reg);
  835. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  836. val |= TRANS_DDI_PORT_NONE;
  837. I915_WRITE(reg, val);
  838. }
  839. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  840. {
  841. struct drm_device *dev = intel_connector->base.dev;
  842. struct drm_i915_private *dev_priv = dev->dev_private;
  843. struct intel_encoder *intel_encoder = intel_connector->encoder;
  844. int type = intel_connector->base.connector_type;
  845. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  846. enum pipe pipe = 0;
  847. enum transcoder cpu_transcoder;
  848. enum intel_display_power_domain power_domain;
  849. uint32_t tmp;
  850. power_domain = intel_display_port_power_domain(intel_encoder);
  851. if (!intel_display_power_enabled(dev_priv, power_domain))
  852. return false;
  853. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  854. return false;
  855. if (port == PORT_A)
  856. cpu_transcoder = TRANSCODER_EDP;
  857. else
  858. cpu_transcoder = (enum transcoder) pipe;
  859. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  860. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  861. case TRANS_DDI_MODE_SELECT_HDMI:
  862. case TRANS_DDI_MODE_SELECT_DVI:
  863. return (type == DRM_MODE_CONNECTOR_HDMIA);
  864. case TRANS_DDI_MODE_SELECT_DP_SST:
  865. if (type == DRM_MODE_CONNECTOR_eDP)
  866. return true;
  867. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  868. case TRANS_DDI_MODE_SELECT_DP_MST:
  869. /* if the transcoder is in MST state then
  870. * connector isn't connected */
  871. return false;
  872. case TRANS_DDI_MODE_SELECT_FDI:
  873. return (type == DRM_MODE_CONNECTOR_VGA);
  874. default:
  875. return false;
  876. }
  877. }
  878. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  879. enum pipe *pipe)
  880. {
  881. struct drm_device *dev = encoder->base.dev;
  882. struct drm_i915_private *dev_priv = dev->dev_private;
  883. enum port port = intel_ddi_get_encoder_port(encoder);
  884. enum intel_display_power_domain power_domain;
  885. u32 tmp;
  886. int i;
  887. power_domain = intel_display_port_power_domain(encoder);
  888. if (!intel_display_power_enabled(dev_priv, power_domain))
  889. return false;
  890. tmp = I915_READ(DDI_BUF_CTL(port));
  891. if (!(tmp & DDI_BUF_CTL_ENABLE))
  892. return false;
  893. if (port == PORT_A) {
  894. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  895. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  896. case TRANS_DDI_EDP_INPUT_A_ON:
  897. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  898. *pipe = PIPE_A;
  899. break;
  900. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  901. *pipe = PIPE_B;
  902. break;
  903. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  904. *pipe = PIPE_C;
  905. break;
  906. }
  907. return true;
  908. } else {
  909. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  910. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  911. if ((tmp & TRANS_DDI_PORT_MASK)
  912. == TRANS_DDI_SELECT_PORT(port)) {
  913. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
  914. return false;
  915. *pipe = i;
  916. return true;
  917. }
  918. }
  919. }
  920. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  921. return false;
  922. }
  923. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  924. {
  925. struct drm_crtc *crtc = &intel_crtc->base;
  926. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  927. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  928. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  929. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  930. if (cpu_transcoder != TRANSCODER_EDP)
  931. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  932. TRANS_CLK_SEL_PORT(port));
  933. }
  934. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  935. {
  936. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  937. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  938. if (cpu_transcoder != TRANSCODER_EDP)
  939. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  940. TRANS_CLK_SEL_DISABLED);
  941. }
  942. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  943. {
  944. struct drm_encoder *encoder = &intel_encoder->base;
  945. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  946. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  947. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  948. int type = intel_encoder->type;
  949. if (crtc->config.has_audio) {
  950. DRM_DEBUG_DRIVER("Audio on pipe %c on DDI\n",
  951. pipe_name(crtc->pipe));
  952. /* write eld */
  953. DRM_DEBUG_DRIVER("DDI audio: write eld information\n");
  954. intel_write_eld(encoder, &crtc->config.adjusted_mode);
  955. }
  956. if (type == INTEL_OUTPUT_EDP) {
  957. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  958. intel_edp_panel_on(intel_dp);
  959. }
  960. WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
  961. I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
  962. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  963. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  964. intel_ddi_init_dp_buf_reg(intel_encoder);
  965. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  966. intel_dp_start_link_train(intel_dp);
  967. intel_dp_complete_link_train(intel_dp);
  968. if (port != PORT_A)
  969. intel_dp_stop_link_train(intel_dp);
  970. } else if (type == INTEL_OUTPUT_HDMI) {
  971. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  972. intel_hdmi->set_infoframes(encoder,
  973. crtc->config.has_hdmi_sink,
  974. &crtc->config.adjusted_mode);
  975. }
  976. }
  977. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  978. {
  979. struct drm_encoder *encoder = &intel_encoder->base;
  980. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  981. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  982. int type = intel_encoder->type;
  983. uint32_t val;
  984. bool wait = false;
  985. val = I915_READ(DDI_BUF_CTL(port));
  986. if (val & DDI_BUF_CTL_ENABLE) {
  987. val &= ~DDI_BUF_CTL_ENABLE;
  988. I915_WRITE(DDI_BUF_CTL(port), val);
  989. wait = true;
  990. }
  991. val = I915_READ(DP_TP_CTL(port));
  992. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  993. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  994. I915_WRITE(DP_TP_CTL(port), val);
  995. if (wait)
  996. intel_wait_ddi_buf_idle(dev_priv, port);
  997. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  998. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  999. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1000. intel_edp_panel_vdd_on(intel_dp);
  1001. intel_edp_panel_off(intel_dp);
  1002. }
  1003. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1004. }
  1005. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  1006. {
  1007. struct drm_encoder *encoder = &intel_encoder->base;
  1008. struct drm_crtc *crtc = encoder->crtc;
  1009. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1010. int pipe = intel_crtc->pipe;
  1011. struct drm_device *dev = encoder->dev;
  1012. struct drm_i915_private *dev_priv = dev->dev_private;
  1013. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1014. int type = intel_encoder->type;
  1015. uint32_t tmp;
  1016. if (type == INTEL_OUTPUT_HDMI) {
  1017. struct intel_digital_port *intel_dig_port =
  1018. enc_to_dig_port(encoder);
  1019. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1020. * are ignored so nothing special needs to be done besides
  1021. * enabling the port.
  1022. */
  1023. I915_WRITE(DDI_BUF_CTL(port),
  1024. intel_dig_port->saved_port_bits |
  1025. DDI_BUF_CTL_ENABLE);
  1026. } else if (type == INTEL_OUTPUT_EDP) {
  1027. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1028. if (port == PORT_A)
  1029. intel_dp_stop_link_train(intel_dp);
  1030. intel_edp_backlight_on(intel_dp);
  1031. intel_edp_psr_enable(intel_dp);
  1032. }
  1033. if (intel_crtc->config.has_audio) {
  1034. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  1035. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1036. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  1037. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1038. }
  1039. }
  1040. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1041. {
  1042. struct drm_encoder *encoder = &intel_encoder->base;
  1043. struct drm_crtc *crtc = encoder->crtc;
  1044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1045. int pipe = intel_crtc->pipe;
  1046. int type = intel_encoder->type;
  1047. struct drm_device *dev = encoder->dev;
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. uint32_t tmp;
  1050. /* We can't touch HSW_AUD_PIN_ELD_CP_VLD uncionditionally because this
  1051. * register is part of the power well on Haswell. */
  1052. if (intel_crtc->config.has_audio) {
  1053. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1054. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  1055. (pipe * 4));
  1056. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1057. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  1058. }
  1059. if (type == INTEL_OUTPUT_EDP) {
  1060. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1061. intel_edp_psr_disable(intel_dp);
  1062. intel_edp_backlight_off(intel_dp);
  1063. }
  1064. }
  1065. static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1066. {
  1067. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1068. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1069. if (lcpll & LCPLL_CD_SOURCE_FCLK)
  1070. return 800000;
  1071. else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  1072. return 450000;
  1073. else if (freq == LCPLL_CLK_FREQ_450)
  1074. return 450000;
  1075. else if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1076. return 540000;
  1077. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1078. return 337500;
  1079. else
  1080. return 675000;
  1081. }
  1082. static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1083. {
  1084. struct drm_device *dev = dev_priv->dev;
  1085. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1086. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1087. if (lcpll & LCPLL_CD_SOURCE_FCLK)
  1088. return 800000;
  1089. else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  1090. return 450000;
  1091. else if (freq == LCPLL_CLK_FREQ_450)
  1092. return 450000;
  1093. else if (IS_ULT(dev))
  1094. return 337500;
  1095. else
  1096. return 540000;
  1097. }
  1098. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1099. {
  1100. struct drm_device *dev = dev_priv->dev;
  1101. if (IS_BROADWELL(dev))
  1102. return bdw_get_cdclk_freq(dev_priv);
  1103. /* Haswell */
  1104. return hsw_get_cdclk_freq(dev_priv);
  1105. }
  1106. static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1107. struct intel_shared_dpll *pll)
  1108. {
  1109. I915_WRITE(WRPLL_CTL(pll->id), pll->hw_state.wrpll);
  1110. POSTING_READ(WRPLL_CTL(pll->id));
  1111. udelay(20);
  1112. }
  1113. static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1114. struct intel_shared_dpll *pll)
  1115. {
  1116. uint32_t val;
  1117. val = I915_READ(WRPLL_CTL(pll->id));
  1118. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  1119. POSTING_READ(WRPLL_CTL(pll->id));
  1120. }
  1121. static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1122. struct intel_shared_dpll *pll,
  1123. struct intel_dpll_hw_state *hw_state)
  1124. {
  1125. uint32_t val;
  1126. if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1127. return false;
  1128. val = I915_READ(WRPLL_CTL(pll->id));
  1129. hw_state->wrpll = val;
  1130. return val & WRPLL_PLL_ENABLE;
  1131. }
  1132. static const char * const hsw_ddi_pll_names[] = {
  1133. "WRPLL 1",
  1134. "WRPLL 2",
  1135. };
  1136. static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
  1137. {
  1138. int i;
  1139. dev_priv->num_shared_dpll = 2;
  1140. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  1141. dev_priv->shared_dplls[i].id = i;
  1142. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  1143. dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
  1144. dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
  1145. dev_priv->shared_dplls[i].get_hw_state =
  1146. hsw_ddi_pll_get_hw_state;
  1147. }
  1148. }
  1149. void intel_ddi_pll_init(struct drm_device *dev)
  1150. {
  1151. struct drm_i915_private *dev_priv = dev->dev_private;
  1152. uint32_t val = I915_READ(LCPLL_CTL);
  1153. hsw_shared_dplls_init(dev_priv);
  1154. /* The LCPLL register should be turned on by the BIOS. For now let's
  1155. * just check its state and print errors in case something is wrong.
  1156. * Don't even try to turn it on.
  1157. */
  1158. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1159. intel_ddi_get_cdclk_freq(dev_priv));
  1160. if (val & LCPLL_CD_SOURCE_FCLK)
  1161. DRM_ERROR("CDCLK source is not LCPLL\n");
  1162. if (val & LCPLL_PLL_DISABLE)
  1163. DRM_ERROR("LCPLL is disabled\n");
  1164. }
  1165. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1166. {
  1167. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1168. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1169. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1170. enum port port = intel_dig_port->port;
  1171. uint32_t val;
  1172. bool wait = false;
  1173. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1174. val = I915_READ(DDI_BUF_CTL(port));
  1175. if (val & DDI_BUF_CTL_ENABLE) {
  1176. val &= ~DDI_BUF_CTL_ENABLE;
  1177. I915_WRITE(DDI_BUF_CTL(port), val);
  1178. wait = true;
  1179. }
  1180. val = I915_READ(DP_TP_CTL(port));
  1181. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1182. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1183. I915_WRITE(DP_TP_CTL(port), val);
  1184. POSTING_READ(DP_TP_CTL(port));
  1185. if (wait)
  1186. intel_wait_ddi_buf_idle(dev_priv, port);
  1187. }
  1188. val = DP_TP_CTL_ENABLE |
  1189. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1190. if (intel_dp->is_mst)
  1191. val |= DP_TP_CTL_MODE_MST;
  1192. else {
  1193. val |= DP_TP_CTL_MODE_SST;
  1194. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1195. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1196. }
  1197. I915_WRITE(DP_TP_CTL(port), val);
  1198. POSTING_READ(DP_TP_CTL(port));
  1199. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1200. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1201. POSTING_READ(DDI_BUF_CTL(port));
  1202. udelay(600);
  1203. }
  1204. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1205. {
  1206. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1207. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1208. uint32_t val;
  1209. intel_ddi_post_disable(intel_encoder);
  1210. val = I915_READ(_FDI_RXA_CTL);
  1211. val &= ~FDI_RX_ENABLE;
  1212. I915_WRITE(_FDI_RXA_CTL, val);
  1213. val = I915_READ(_FDI_RXA_MISC);
  1214. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1215. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1216. I915_WRITE(_FDI_RXA_MISC, val);
  1217. val = I915_READ(_FDI_RXA_CTL);
  1218. val &= ~FDI_PCDCLK;
  1219. I915_WRITE(_FDI_RXA_CTL, val);
  1220. val = I915_READ(_FDI_RXA_CTL);
  1221. val &= ~FDI_RX_PLL_ENABLE;
  1222. I915_WRITE(_FDI_RXA_CTL, val);
  1223. }
  1224. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1225. {
  1226. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  1227. int type = intel_dig_port->base.type;
  1228. if (type != INTEL_OUTPUT_DISPLAYPORT &&
  1229. type != INTEL_OUTPUT_EDP &&
  1230. type != INTEL_OUTPUT_UNKNOWN) {
  1231. return;
  1232. }
  1233. intel_dp_hot_plug(intel_encoder);
  1234. }
  1235. void intel_ddi_get_config(struct intel_encoder *encoder,
  1236. struct intel_crtc_config *pipe_config)
  1237. {
  1238. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1239. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1240. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1241. u32 temp, flags = 0;
  1242. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1243. if (temp & TRANS_DDI_PHSYNC)
  1244. flags |= DRM_MODE_FLAG_PHSYNC;
  1245. else
  1246. flags |= DRM_MODE_FLAG_NHSYNC;
  1247. if (temp & TRANS_DDI_PVSYNC)
  1248. flags |= DRM_MODE_FLAG_PVSYNC;
  1249. else
  1250. flags |= DRM_MODE_FLAG_NVSYNC;
  1251. pipe_config->adjusted_mode.flags |= flags;
  1252. switch (temp & TRANS_DDI_BPC_MASK) {
  1253. case TRANS_DDI_BPC_6:
  1254. pipe_config->pipe_bpp = 18;
  1255. break;
  1256. case TRANS_DDI_BPC_8:
  1257. pipe_config->pipe_bpp = 24;
  1258. break;
  1259. case TRANS_DDI_BPC_10:
  1260. pipe_config->pipe_bpp = 30;
  1261. break;
  1262. case TRANS_DDI_BPC_12:
  1263. pipe_config->pipe_bpp = 36;
  1264. break;
  1265. default:
  1266. break;
  1267. }
  1268. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1269. case TRANS_DDI_MODE_SELECT_HDMI:
  1270. pipe_config->has_hdmi_sink = true;
  1271. case TRANS_DDI_MODE_SELECT_DVI:
  1272. case TRANS_DDI_MODE_SELECT_FDI:
  1273. break;
  1274. case TRANS_DDI_MODE_SELECT_DP_SST:
  1275. case TRANS_DDI_MODE_SELECT_DP_MST:
  1276. pipe_config->has_dp_encoder = true;
  1277. intel_dp_get_m_n(intel_crtc, pipe_config);
  1278. break;
  1279. default:
  1280. break;
  1281. }
  1282. if (intel_display_power_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  1283. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1284. if (temp & (AUDIO_OUTPUT_ENABLE_A << (intel_crtc->pipe * 4)))
  1285. pipe_config->has_audio = true;
  1286. }
  1287. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  1288. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1289. /*
  1290. * This is a big fat ugly hack.
  1291. *
  1292. * Some machines in UEFI boot mode provide us a VBT that has 18
  1293. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1294. * unknown we fail to light up. Yet the same BIOS boots up with
  1295. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1296. * max, not what it tells us to use.
  1297. *
  1298. * Note: This will still be broken if the eDP panel is not lit
  1299. * up by the BIOS, and thus we can't get the mode at module
  1300. * load.
  1301. */
  1302. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1303. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1304. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1305. }
  1306. hsw_ddi_clock_get(encoder, pipe_config);
  1307. }
  1308. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1309. {
  1310. /* HDMI has nothing special to destroy, so we can go with this. */
  1311. intel_dp_encoder_destroy(encoder);
  1312. }
  1313. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1314. struct intel_crtc_config *pipe_config)
  1315. {
  1316. int type = encoder->type;
  1317. int port = intel_ddi_get_encoder_port(encoder);
  1318. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1319. if (port == PORT_A)
  1320. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1321. if (type == INTEL_OUTPUT_HDMI)
  1322. return intel_hdmi_compute_config(encoder, pipe_config);
  1323. else
  1324. return intel_dp_compute_config(encoder, pipe_config);
  1325. }
  1326. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1327. .destroy = intel_ddi_destroy,
  1328. };
  1329. static struct intel_connector *
  1330. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1331. {
  1332. struct intel_connector *connector;
  1333. enum port port = intel_dig_port->port;
  1334. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1335. if (!connector)
  1336. return NULL;
  1337. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1338. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1339. kfree(connector);
  1340. return NULL;
  1341. }
  1342. return connector;
  1343. }
  1344. static struct intel_connector *
  1345. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1346. {
  1347. struct intel_connector *connector;
  1348. enum port port = intel_dig_port->port;
  1349. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1350. if (!connector)
  1351. return NULL;
  1352. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1353. intel_hdmi_init_connector(intel_dig_port, connector);
  1354. return connector;
  1355. }
  1356. void intel_ddi_init(struct drm_device *dev, enum port port)
  1357. {
  1358. struct drm_i915_private *dev_priv = dev->dev_private;
  1359. struct intel_digital_port *intel_dig_port;
  1360. struct intel_encoder *intel_encoder;
  1361. struct drm_encoder *encoder;
  1362. bool init_hdmi, init_dp;
  1363. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1364. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1365. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1366. if (!init_dp && !init_hdmi) {
  1367. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
  1368. port_name(port));
  1369. init_hdmi = true;
  1370. init_dp = true;
  1371. }
  1372. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1373. if (!intel_dig_port)
  1374. return;
  1375. intel_encoder = &intel_dig_port->base;
  1376. encoder = &intel_encoder->base;
  1377. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1378. DRM_MODE_ENCODER_TMDS);
  1379. intel_encoder->compute_config = intel_ddi_compute_config;
  1380. intel_encoder->enable = intel_enable_ddi;
  1381. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1382. intel_encoder->disable = intel_disable_ddi;
  1383. intel_encoder->post_disable = intel_ddi_post_disable;
  1384. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1385. intel_encoder->get_config = intel_ddi_get_config;
  1386. intel_dig_port->port = port;
  1387. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1388. (DDI_BUF_PORT_REVERSAL |
  1389. DDI_A_4_LANES);
  1390. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1391. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1392. intel_encoder->cloneable = 0;
  1393. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1394. if (init_dp) {
  1395. if (!intel_ddi_init_dp_connector(intel_dig_port))
  1396. goto err;
  1397. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  1398. dev_priv->hpd_irq_port[port] = intel_dig_port;
  1399. }
  1400. /* In theory we don't need the encoder->type check, but leave it just in
  1401. * case we have some really bad VBTs... */
  1402. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  1403. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  1404. goto err;
  1405. }
  1406. return;
  1407. err:
  1408. drm_encoder_cleanup(encoder);
  1409. kfree(intel_dig_port);
  1410. }