sun6i-dma.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030
  1. /*
  2. * Copyright (C) 2013-2014 Allwinner Tech Co., Ltd
  3. * Author: Sugar <shuge@allwinnertech.com>
  4. *
  5. * Copyright (C) 2014 Maxime Ripard
  6. * Maxime Ripard <maxime.ripard@free-electrons.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/dmaengine.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/of_dma.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/reset.h>
  22. #include <linux/slab.h>
  23. #include <linux/types.h>
  24. #include "virt-dma.h"
  25. /*
  26. * There's 16 physical channels that can work in parallel.
  27. *
  28. * However we have 30 different endpoints for our requests.
  29. *
  30. * Since the channels are able to handle only an unidirectional
  31. * transfer, we need to allocate more virtual channels so that
  32. * everyone can grab one channel.
  33. *
  34. * Some devices can't work in both direction (mostly because it
  35. * wouldn't make sense), so we have a bit fewer virtual channels than
  36. * 2 channels per endpoints.
  37. */
  38. #define NR_MAX_CHANNELS 16
  39. #define NR_MAX_REQUESTS 30
  40. #define NR_MAX_VCHANS 53
  41. /*
  42. * Common registers
  43. */
  44. #define DMA_IRQ_EN(x) ((x) * 0x04)
  45. #define DMA_IRQ_HALF BIT(0)
  46. #define DMA_IRQ_PKG BIT(1)
  47. #define DMA_IRQ_QUEUE BIT(2)
  48. #define DMA_IRQ_CHAN_NR 8
  49. #define DMA_IRQ_CHAN_WIDTH 4
  50. #define DMA_IRQ_STAT(x) ((x) * 0x04 + 0x10)
  51. #define DMA_STAT 0x30
  52. /*
  53. * Channels specific registers
  54. */
  55. #define DMA_CHAN_ENABLE 0x00
  56. #define DMA_CHAN_ENABLE_START BIT(0)
  57. #define DMA_CHAN_ENABLE_STOP 0
  58. #define DMA_CHAN_PAUSE 0x04
  59. #define DMA_CHAN_PAUSE_PAUSE BIT(1)
  60. #define DMA_CHAN_PAUSE_RESUME 0
  61. #define DMA_CHAN_LLI_ADDR 0x08
  62. #define DMA_CHAN_CUR_CFG 0x0c
  63. #define DMA_CHAN_CFG_SRC_DRQ(x) ((x) & 0x1f)
  64. #define DMA_CHAN_CFG_SRC_IO_MODE BIT(5)
  65. #define DMA_CHAN_CFG_SRC_LINEAR_MODE (0 << 5)
  66. #define DMA_CHAN_CFG_SRC_BURST(x) (((x) & 0x3) << 7)
  67. #define DMA_CHAN_CFG_SRC_WIDTH(x) (((x) & 0x3) << 9)
  68. #define DMA_CHAN_CFG_DST_DRQ(x) (DMA_CHAN_CFG_SRC_DRQ(x) << 16)
  69. #define DMA_CHAN_CFG_DST_IO_MODE (DMA_CHAN_CFG_SRC_IO_MODE << 16)
  70. #define DMA_CHAN_CFG_DST_LINEAR_MODE (DMA_CHAN_CFG_SRC_LINEAR_MODE << 16)
  71. #define DMA_CHAN_CFG_DST_BURST(x) (DMA_CHAN_CFG_SRC_BURST(x) << 16)
  72. #define DMA_CHAN_CFG_DST_WIDTH(x) (DMA_CHAN_CFG_SRC_WIDTH(x) << 16)
  73. #define DMA_CHAN_CUR_SRC 0x10
  74. #define DMA_CHAN_CUR_DST 0x14
  75. #define DMA_CHAN_CUR_CNT 0x18
  76. #define DMA_CHAN_CUR_PARA 0x1c
  77. /*
  78. * Various hardware related defines
  79. */
  80. #define LLI_LAST_ITEM 0xfffff800
  81. #define NORMAL_WAIT 8
  82. #define DRQ_SDRAM 1
  83. /*
  84. * Hardware representation of the LLI
  85. *
  86. * The hardware will be fed the physical address of this structure,
  87. * and read its content in order to start the transfer.
  88. */
  89. struct sun6i_dma_lli {
  90. u32 cfg;
  91. u32 src;
  92. u32 dst;
  93. u32 len;
  94. u32 para;
  95. u32 p_lli_next;
  96. /*
  97. * This field is not used by the DMA controller, but will be
  98. * used by the CPU to go through the list (mostly for dumping
  99. * or freeing it).
  100. */
  101. struct sun6i_dma_lli *v_lli_next;
  102. };
  103. struct sun6i_desc {
  104. struct virt_dma_desc vd;
  105. dma_addr_t p_lli;
  106. struct sun6i_dma_lli *v_lli;
  107. };
  108. struct sun6i_pchan {
  109. u32 idx;
  110. void __iomem *base;
  111. struct sun6i_vchan *vchan;
  112. struct sun6i_desc *desc;
  113. struct sun6i_desc *done;
  114. };
  115. struct sun6i_vchan {
  116. struct virt_dma_chan vc;
  117. struct list_head node;
  118. struct dma_slave_config cfg;
  119. struct sun6i_pchan *phy;
  120. u8 port;
  121. };
  122. struct sun6i_dma_dev {
  123. struct dma_device slave;
  124. void __iomem *base;
  125. struct clk *clk;
  126. int irq;
  127. spinlock_t lock;
  128. struct reset_control *rstc;
  129. struct tasklet_struct task;
  130. atomic_t tasklet_shutdown;
  131. struct list_head pending;
  132. struct dma_pool *pool;
  133. struct sun6i_pchan *pchans;
  134. struct sun6i_vchan *vchans;
  135. };
  136. static struct device *chan2dev(struct dma_chan *chan)
  137. {
  138. return &chan->dev->device;
  139. }
  140. static inline struct sun6i_dma_dev *to_sun6i_dma_dev(struct dma_device *d)
  141. {
  142. return container_of(d, struct sun6i_dma_dev, slave);
  143. }
  144. static inline struct sun6i_vchan *to_sun6i_vchan(struct dma_chan *chan)
  145. {
  146. return container_of(chan, struct sun6i_vchan, vc.chan);
  147. }
  148. static inline struct sun6i_desc *
  149. to_sun6i_desc(struct dma_async_tx_descriptor *tx)
  150. {
  151. return container_of(tx, struct sun6i_desc, vd.tx);
  152. }
  153. static inline void sun6i_dma_dump_com_regs(struct sun6i_dma_dev *sdev)
  154. {
  155. dev_dbg(sdev->slave.dev, "Common register:\n"
  156. "\tmask0(%04x): 0x%08x\n"
  157. "\tmask1(%04x): 0x%08x\n"
  158. "\tpend0(%04x): 0x%08x\n"
  159. "\tpend1(%04x): 0x%08x\n"
  160. "\tstats(%04x): 0x%08x\n",
  161. DMA_IRQ_EN(0), readl(sdev->base + DMA_IRQ_EN(0)),
  162. DMA_IRQ_EN(1), readl(sdev->base + DMA_IRQ_EN(1)),
  163. DMA_IRQ_STAT(0), readl(sdev->base + DMA_IRQ_STAT(0)),
  164. DMA_IRQ_STAT(1), readl(sdev->base + DMA_IRQ_STAT(1)),
  165. DMA_STAT, readl(sdev->base + DMA_STAT));
  166. }
  167. static inline void sun6i_dma_dump_chan_regs(struct sun6i_dma_dev *sdev,
  168. struct sun6i_pchan *pchan)
  169. {
  170. phys_addr_t reg = virt_to_phys(pchan->base);
  171. dev_dbg(sdev->slave.dev, "Chan %d reg: %pa\n"
  172. "\t___en(%04x): \t0x%08x\n"
  173. "\tpause(%04x): \t0x%08x\n"
  174. "\tstart(%04x): \t0x%08x\n"
  175. "\t__cfg(%04x): \t0x%08x\n"
  176. "\t__src(%04x): \t0x%08x\n"
  177. "\t__dst(%04x): \t0x%08x\n"
  178. "\tcount(%04x): \t0x%08x\n"
  179. "\t_para(%04x): \t0x%08x\n\n",
  180. pchan->idx, &reg,
  181. DMA_CHAN_ENABLE,
  182. readl(pchan->base + DMA_CHAN_ENABLE),
  183. DMA_CHAN_PAUSE,
  184. readl(pchan->base + DMA_CHAN_PAUSE),
  185. DMA_CHAN_LLI_ADDR,
  186. readl(pchan->base + DMA_CHAN_LLI_ADDR),
  187. DMA_CHAN_CUR_CFG,
  188. readl(pchan->base + DMA_CHAN_CUR_CFG),
  189. DMA_CHAN_CUR_SRC,
  190. readl(pchan->base + DMA_CHAN_CUR_SRC),
  191. DMA_CHAN_CUR_DST,
  192. readl(pchan->base + DMA_CHAN_CUR_DST),
  193. DMA_CHAN_CUR_CNT,
  194. readl(pchan->base + DMA_CHAN_CUR_CNT),
  195. DMA_CHAN_CUR_PARA,
  196. readl(pchan->base + DMA_CHAN_CUR_PARA));
  197. }
  198. static inline int convert_burst(u32 maxburst, u8 *burst)
  199. {
  200. switch (maxburst) {
  201. case 1:
  202. *burst = 0;
  203. break;
  204. case 8:
  205. *burst = 2;
  206. break;
  207. default:
  208. return -EINVAL;
  209. }
  210. return 0;
  211. }
  212. static inline int convert_buswidth(enum dma_slave_buswidth addr_width, u8 *width)
  213. {
  214. if ((addr_width < DMA_SLAVE_BUSWIDTH_1_BYTE) ||
  215. (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES))
  216. return -EINVAL;
  217. *width = addr_width >> 1;
  218. return 0;
  219. }
  220. static void *sun6i_dma_lli_add(struct sun6i_dma_lli *prev,
  221. struct sun6i_dma_lli *next,
  222. dma_addr_t next_phy,
  223. struct sun6i_desc *txd)
  224. {
  225. if ((!prev && !txd) || !next)
  226. return NULL;
  227. if (!prev) {
  228. txd->p_lli = next_phy;
  229. txd->v_lli = next;
  230. } else {
  231. prev->p_lli_next = next_phy;
  232. prev->v_lli_next = next;
  233. }
  234. next->p_lli_next = LLI_LAST_ITEM;
  235. next->v_lli_next = NULL;
  236. return next;
  237. }
  238. static inline int sun6i_dma_cfg_lli(struct sun6i_dma_lli *lli,
  239. dma_addr_t src,
  240. dma_addr_t dst, u32 len,
  241. struct dma_slave_config *config)
  242. {
  243. u8 src_width, dst_width, src_burst, dst_burst;
  244. int ret;
  245. if (!config)
  246. return -EINVAL;
  247. ret = convert_burst(config->src_maxburst, &src_burst);
  248. if (ret)
  249. return ret;
  250. ret = convert_burst(config->dst_maxburst, &dst_burst);
  251. if (ret)
  252. return ret;
  253. ret = convert_buswidth(config->src_addr_width, &src_width);
  254. if (ret)
  255. return ret;
  256. ret = convert_buswidth(config->dst_addr_width, &dst_width);
  257. if (ret)
  258. return ret;
  259. lli->cfg = DMA_CHAN_CFG_SRC_BURST(src_burst) |
  260. DMA_CHAN_CFG_SRC_WIDTH(src_width) |
  261. DMA_CHAN_CFG_DST_BURST(dst_burst) |
  262. DMA_CHAN_CFG_DST_WIDTH(dst_width);
  263. lli->src = src;
  264. lli->dst = dst;
  265. lli->len = len;
  266. lli->para = NORMAL_WAIT;
  267. return 0;
  268. }
  269. static inline void sun6i_dma_dump_lli(struct sun6i_vchan *vchan,
  270. struct sun6i_dma_lli *lli)
  271. {
  272. phys_addr_t p_lli = virt_to_phys(lli);
  273. dev_dbg(chan2dev(&vchan->vc.chan),
  274. "\n\tdesc: p - %pa v - 0x%p\n"
  275. "\t\tc - 0x%08x s - 0x%08x d - 0x%08x\n"
  276. "\t\tl - 0x%08x p - 0x%08x n - 0x%08x\n",
  277. &p_lli, lli,
  278. lli->cfg, lli->src, lli->dst,
  279. lli->len, lli->para, lli->p_lli_next);
  280. }
  281. static void sun6i_dma_free_desc(struct virt_dma_desc *vd)
  282. {
  283. struct sun6i_desc *txd = to_sun6i_desc(&vd->tx);
  284. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vd->tx.chan->device);
  285. struct sun6i_dma_lli *v_lli, *v_next;
  286. dma_addr_t p_lli, p_next;
  287. if (unlikely(!txd))
  288. return;
  289. p_lli = txd->p_lli;
  290. v_lli = txd->v_lli;
  291. while (v_lli) {
  292. v_next = v_lli->v_lli_next;
  293. p_next = v_lli->p_lli_next;
  294. dma_pool_free(sdev->pool, v_lli, p_lli);
  295. v_lli = v_next;
  296. p_lli = p_next;
  297. }
  298. kfree(txd);
  299. }
  300. static int sun6i_dma_terminate_all(struct sun6i_vchan *vchan)
  301. {
  302. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vchan->vc.chan.device);
  303. struct sun6i_pchan *pchan = vchan->phy;
  304. unsigned long flags;
  305. LIST_HEAD(head);
  306. spin_lock(&sdev->lock);
  307. list_del_init(&vchan->node);
  308. spin_unlock(&sdev->lock);
  309. spin_lock_irqsave(&vchan->vc.lock, flags);
  310. vchan_get_all_descriptors(&vchan->vc, &head);
  311. if (pchan) {
  312. writel(DMA_CHAN_ENABLE_STOP, pchan->base + DMA_CHAN_ENABLE);
  313. writel(DMA_CHAN_PAUSE_RESUME, pchan->base + DMA_CHAN_PAUSE);
  314. vchan->phy = NULL;
  315. pchan->vchan = NULL;
  316. pchan->desc = NULL;
  317. pchan->done = NULL;
  318. }
  319. spin_unlock_irqrestore(&vchan->vc.lock, flags);
  320. vchan_dma_desc_free_list(&vchan->vc, &head);
  321. return 0;
  322. }
  323. static int sun6i_dma_start_desc(struct sun6i_vchan *vchan)
  324. {
  325. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vchan->vc.chan.device);
  326. struct virt_dma_desc *desc = vchan_next_desc(&vchan->vc);
  327. struct sun6i_pchan *pchan = vchan->phy;
  328. u32 irq_val, irq_reg, irq_offset;
  329. if (!pchan)
  330. return -EAGAIN;
  331. if (!desc) {
  332. pchan->desc = NULL;
  333. pchan->done = NULL;
  334. return -EAGAIN;
  335. }
  336. list_del(&desc->node);
  337. pchan->desc = to_sun6i_desc(&desc->tx);
  338. pchan->done = NULL;
  339. sun6i_dma_dump_lli(vchan, pchan->desc->v_lli);
  340. irq_reg = pchan->idx / DMA_IRQ_CHAN_NR;
  341. irq_offset = pchan->idx % DMA_IRQ_CHAN_NR;
  342. irq_val = readl(sdev->base + DMA_IRQ_EN(irq_offset));
  343. irq_val |= DMA_IRQ_QUEUE << (irq_offset * DMA_IRQ_CHAN_WIDTH);
  344. writel(irq_val, sdev->base + DMA_IRQ_EN(irq_offset));
  345. writel(pchan->desc->p_lli, pchan->base + DMA_CHAN_LLI_ADDR);
  346. writel(DMA_CHAN_ENABLE_START, pchan->base + DMA_CHAN_ENABLE);
  347. sun6i_dma_dump_com_regs(sdev);
  348. sun6i_dma_dump_chan_regs(sdev, pchan);
  349. return 0;
  350. }
  351. static void sun6i_dma_tasklet(unsigned long data)
  352. {
  353. struct sun6i_dma_dev *sdev = (struct sun6i_dma_dev *)data;
  354. struct sun6i_vchan *vchan;
  355. struct sun6i_pchan *pchan;
  356. unsigned int pchan_alloc = 0;
  357. unsigned int pchan_idx;
  358. list_for_each_entry(vchan, &sdev->slave.channels, vc.chan.device_node) {
  359. spin_lock_irq(&vchan->vc.lock);
  360. pchan = vchan->phy;
  361. if (pchan && pchan->done) {
  362. if (sun6i_dma_start_desc(vchan)) {
  363. /*
  364. * No current txd associated with this channel
  365. */
  366. dev_dbg(sdev->slave.dev, "pchan %u: free\n",
  367. pchan->idx);
  368. /* Mark this channel free */
  369. vchan->phy = NULL;
  370. pchan->vchan = NULL;
  371. }
  372. }
  373. spin_unlock_irq(&vchan->vc.lock);
  374. }
  375. spin_lock_irq(&sdev->lock);
  376. for (pchan_idx = 0; pchan_idx < NR_MAX_CHANNELS; pchan_idx++) {
  377. pchan = &sdev->pchans[pchan_idx];
  378. if (pchan->vchan || list_empty(&sdev->pending))
  379. continue;
  380. vchan = list_first_entry(&sdev->pending,
  381. struct sun6i_vchan, node);
  382. /* Remove from pending channels */
  383. list_del_init(&vchan->node);
  384. pchan_alloc |= BIT(pchan_idx);
  385. /* Mark this channel allocated */
  386. pchan->vchan = vchan;
  387. vchan->phy = pchan;
  388. dev_dbg(sdev->slave.dev, "pchan %u: alloc vchan %p\n",
  389. pchan->idx, &vchan->vc);
  390. }
  391. spin_unlock_irq(&sdev->lock);
  392. for (pchan_idx = 0; pchan_idx < NR_MAX_CHANNELS; pchan_idx++) {
  393. if (!(pchan_alloc & BIT(pchan_idx)))
  394. continue;
  395. pchan = sdev->pchans + pchan_idx;
  396. vchan = pchan->vchan;
  397. if (vchan) {
  398. spin_lock_irq(&vchan->vc.lock);
  399. sun6i_dma_start_desc(vchan);
  400. spin_unlock_irq(&vchan->vc.lock);
  401. }
  402. }
  403. }
  404. static irqreturn_t sun6i_dma_interrupt(int irq, void *dev_id)
  405. {
  406. struct sun6i_dma_dev *sdev = dev_id;
  407. struct sun6i_vchan *vchan;
  408. struct sun6i_pchan *pchan;
  409. int i, j, ret = IRQ_NONE;
  410. u32 status;
  411. for (i = 0; i < 2; i++) {
  412. status = readl(sdev->base + DMA_IRQ_STAT(i));
  413. if (!status)
  414. continue;
  415. dev_dbg(sdev->slave.dev, "DMA irq status %s: 0x%x\n",
  416. i ? "high" : "low", status);
  417. writel(status, sdev->base + DMA_IRQ_STAT(i));
  418. for (j = 0; (j < 8) && status; j++) {
  419. if (status & DMA_IRQ_QUEUE) {
  420. pchan = sdev->pchans + j;
  421. vchan = pchan->vchan;
  422. if (vchan) {
  423. spin_lock(&vchan->vc.lock);
  424. vchan_cookie_complete(&pchan->desc->vd);
  425. pchan->done = pchan->desc;
  426. spin_unlock(&vchan->vc.lock);
  427. }
  428. }
  429. status = status >> 4;
  430. }
  431. if (!atomic_read(&sdev->tasklet_shutdown))
  432. tasklet_schedule(&sdev->task);
  433. ret = IRQ_HANDLED;
  434. }
  435. return ret;
  436. }
  437. static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_memcpy(
  438. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  439. size_t len, unsigned long flags)
  440. {
  441. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
  442. struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
  443. struct dma_slave_config *sconfig = &vchan->cfg;
  444. struct sun6i_dma_lli *v_lli;
  445. struct sun6i_desc *txd;
  446. dma_addr_t p_lli;
  447. int ret;
  448. dev_dbg(chan2dev(chan),
  449. "%s; chan: %d, dest: %pad, src: %pad, len: %zu. flags: 0x%08lx\n",
  450. __func__, vchan->vc.chan.chan_id, &dest, &src, len, flags);
  451. if (!len)
  452. return NULL;
  453. txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  454. if (!txd)
  455. return NULL;
  456. v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
  457. if (!v_lli) {
  458. dev_err(sdev->slave.dev, "Failed to alloc lli memory\n");
  459. goto err_txd_free;
  460. }
  461. ret = sun6i_dma_cfg_lli(v_lli, src, dest, len, sconfig);
  462. if (ret)
  463. goto err_dma_free;
  464. v_lli->cfg |= DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
  465. DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
  466. DMA_CHAN_CFG_DST_LINEAR_MODE |
  467. DMA_CHAN_CFG_SRC_LINEAR_MODE;
  468. sun6i_dma_lli_add(NULL, v_lli, p_lli, txd);
  469. sun6i_dma_dump_lli(vchan, v_lli);
  470. return vchan_tx_prep(&vchan->vc, &txd->vd, flags);
  471. err_dma_free:
  472. dma_pool_free(sdev->pool, v_lli, p_lli);
  473. err_txd_free:
  474. kfree(txd);
  475. return NULL;
  476. }
  477. static struct dma_async_tx_descriptor *sun6i_dma_prep_slave_sg(
  478. struct dma_chan *chan, struct scatterlist *sgl,
  479. unsigned int sg_len, enum dma_transfer_direction dir,
  480. unsigned long flags, void *context)
  481. {
  482. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
  483. struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
  484. struct dma_slave_config *sconfig = &vchan->cfg;
  485. struct sun6i_dma_lli *v_lli, *prev = NULL;
  486. struct sun6i_desc *txd;
  487. struct scatterlist *sg;
  488. dma_addr_t p_lli;
  489. int i, ret;
  490. if (!sgl)
  491. return NULL;
  492. if (!is_slave_direction(dir)) {
  493. dev_err(chan2dev(chan), "Invalid DMA direction\n");
  494. return NULL;
  495. }
  496. txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  497. if (!txd)
  498. return NULL;
  499. for_each_sg(sgl, sg, sg_len, i) {
  500. v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
  501. if (!v_lli)
  502. goto err_lli_free;
  503. if (dir == DMA_MEM_TO_DEV) {
  504. ret = sun6i_dma_cfg_lli(v_lli, sg_dma_address(sg),
  505. sconfig->dst_addr, sg_dma_len(sg),
  506. sconfig);
  507. if (ret)
  508. goto err_cur_lli_free;
  509. v_lli->cfg |= DMA_CHAN_CFG_DST_IO_MODE |
  510. DMA_CHAN_CFG_SRC_LINEAR_MODE |
  511. DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
  512. DMA_CHAN_CFG_DST_DRQ(vchan->port);
  513. dev_dbg(chan2dev(chan),
  514. "%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n",
  515. __func__, vchan->vc.chan.chan_id,
  516. &sconfig->dst_addr, &sg_dma_address(sg),
  517. sg_dma_len(sg), flags);
  518. } else {
  519. ret = sun6i_dma_cfg_lli(v_lli, sconfig->src_addr,
  520. sg_dma_address(sg), sg_dma_len(sg),
  521. sconfig);
  522. if (ret)
  523. goto err_cur_lli_free;
  524. v_lli->cfg |= DMA_CHAN_CFG_DST_LINEAR_MODE |
  525. DMA_CHAN_CFG_SRC_IO_MODE |
  526. DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
  527. DMA_CHAN_CFG_SRC_DRQ(vchan->port);
  528. dev_dbg(chan2dev(chan),
  529. "%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n",
  530. __func__, vchan->vc.chan.chan_id,
  531. &sg_dma_address(sg), &sconfig->src_addr,
  532. sg_dma_len(sg), flags);
  533. }
  534. prev = sun6i_dma_lli_add(prev, v_lli, p_lli, txd);
  535. }
  536. dev_dbg(chan2dev(chan), "First: %pad\n", &txd->p_lli);
  537. for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
  538. sun6i_dma_dump_lli(vchan, prev);
  539. return vchan_tx_prep(&vchan->vc, &txd->vd, flags);
  540. err_cur_lli_free:
  541. dma_pool_free(sdev->pool, v_lli, p_lli);
  542. err_lli_free:
  543. for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
  544. dma_pool_free(sdev->pool, prev, virt_to_phys(prev));
  545. kfree(txd);
  546. return NULL;
  547. }
  548. static int sun6i_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  549. unsigned long arg)
  550. {
  551. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
  552. struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
  553. struct sun6i_pchan *pchan = vchan->phy;
  554. unsigned long flags;
  555. int ret = 0;
  556. switch (cmd) {
  557. case DMA_RESUME:
  558. dev_dbg(chan2dev(chan), "vchan %p: resume\n", &vchan->vc);
  559. spin_lock_irqsave(&vchan->vc.lock, flags);
  560. if (pchan) {
  561. writel(DMA_CHAN_PAUSE_RESUME,
  562. pchan->base + DMA_CHAN_PAUSE);
  563. } else if (!list_empty(&vchan->vc.desc_issued)) {
  564. spin_lock(&sdev->lock);
  565. list_add_tail(&vchan->node, &sdev->pending);
  566. spin_unlock(&sdev->lock);
  567. }
  568. spin_unlock_irqrestore(&vchan->vc.lock, flags);
  569. break;
  570. case DMA_PAUSE:
  571. dev_dbg(chan2dev(chan), "vchan %p: pause\n", &vchan->vc);
  572. if (pchan) {
  573. writel(DMA_CHAN_PAUSE_PAUSE,
  574. pchan->base + DMA_CHAN_PAUSE);
  575. } else {
  576. spin_lock(&sdev->lock);
  577. list_del_init(&vchan->node);
  578. spin_unlock(&sdev->lock);
  579. }
  580. break;
  581. case DMA_TERMINATE_ALL:
  582. ret = sun6i_dma_terminate_all(vchan);
  583. break;
  584. case DMA_SLAVE_CONFIG:
  585. memcpy(&vchan->cfg, (void *)arg, sizeof(struct dma_slave_config));
  586. break;
  587. default:
  588. ret = -ENXIO;
  589. break;
  590. }
  591. return ret;
  592. }
  593. static enum dma_status sun6i_dma_tx_status(struct dma_chan *chan,
  594. dma_cookie_t cookie,
  595. struct dma_tx_state *state)
  596. {
  597. struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
  598. struct sun6i_pchan *pchan = vchan->phy;
  599. struct sun6i_dma_lli *lli;
  600. struct virt_dma_desc *vd;
  601. struct sun6i_desc *txd;
  602. enum dma_status ret;
  603. unsigned long flags;
  604. size_t bytes = 0;
  605. ret = dma_cookie_status(chan, cookie, state);
  606. if (ret == DMA_COMPLETE)
  607. return ret;
  608. spin_lock_irqsave(&vchan->vc.lock, flags);
  609. vd = vchan_find_desc(&vchan->vc, cookie);
  610. txd = to_sun6i_desc(&vd->tx);
  611. if (vd) {
  612. for (lli = txd->v_lli; lli != NULL; lli = lli->v_lli_next)
  613. bytes += lli->len;
  614. } else if (!pchan || !pchan->desc) {
  615. bytes = 0;
  616. } else {
  617. bytes = readl(pchan->base + DMA_CHAN_CUR_CNT);
  618. }
  619. spin_unlock_irqrestore(&vchan->vc.lock, flags);
  620. dma_set_residue(state, bytes);
  621. return ret;
  622. }
  623. static void sun6i_dma_issue_pending(struct dma_chan *chan)
  624. {
  625. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
  626. struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
  627. unsigned long flags;
  628. spin_lock_irqsave(&vchan->vc.lock, flags);
  629. if (vchan_issue_pending(&vchan->vc)) {
  630. spin_lock(&sdev->lock);
  631. if (!vchan->phy && list_empty(&vchan->node)) {
  632. list_add_tail(&vchan->node, &sdev->pending);
  633. tasklet_schedule(&sdev->task);
  634. dev_dbg(chan2dev(chan), "vchan %p: issued\n",
  635. &vchan->vc);
  636. }
  637. spin_unlock(&sdev->lock);
  638. } else {
  639. dev_dbg(chan2dev(chan), "vchan %p: nothing to issue\n",
  640. &vchan->vc);
  641. }
  642. spin_unlock_irqrestore(&vchan->vc.lock, flags);
  643. }
  644. static int sun6i_dma_alloc_chan_resources(struct dma_chan *chan)
  645. {
  646. return 0;
  647. }
  648. static void sun6i_dma_free_chan_resources(struct dma_chan *chan)
  649. {
  650. struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
  651. struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
  652. unsigned long flags;
  653. spin_lock_irqsave(&sdev->lock, flags);
  654. list_del_init(&vchan->node);
  655. spin_unlock_irqrestore(&sdev->lock, flags);
  656. vchan_free_chan_resources(&vchan->vc);
  657. }
  658. static struct dma_chan *sun6i_dma_of_xlate(struct of_phandle_args *dma_spec,
  659. struct of_dma *ofdma)
  660. {
  661. struct sun6i_dma_dev *sdev = ofdma->of_dma_data;
  662. struct sun6i_vchan *vchan;
  663. struct dma_chan *chan;
  664. u8 port = dma_spec->args[0];
  665. if (port > NR_MAX_REQUESTS)
  666. return NULL;
  667. chan = dma_get_any_slave_channel(&sdev->slave);
  668. if (!chan)
  669. return NULL;
  670. vchan = to_sun6i_vchan(chan);
  671. vchan->port = port;
  672. return chan;
  673. }
  674. static inline void sun6i_kill_tasklet(struct sun6i_dma_dev *sdev)
  675. {
  676. /* Disable all interrupts from DMA */
  677. writel(0, sdev->base + DMA_IRQ_EN(0));
  678. writel(0, sdev->base + DMA_IRQ_EN(1));
  679. /* Prevent spurious interrupts from scheduling the tasklet */
  680. atomic_inc(&sdev->tasklet_shutdown);
  681. /* Make sure we won't have any further interrupts */
  682. devm_free_irq(sdev->slave.dev, sdev->irq, sdev);
  683. /* Actually prevent the tasklet from being scheduled */
  684. tasklet_kill(&sdev->task);
  685. }
  686. static inline void sun6i_dma_free(struct sun6i_dma_dev *sdev)
  687. {
  688. int i;
  689. for (i = 0; i < NR_MAX_VCHANS; i++) {
  690. struct sun6i_vchan *vchan = &sdev->vchans[i];
  691. list_del(&vchan->vc.chan.device_node);
  692. tasklet_kill(&vchan->vc.task);
  693. }
  694. }
  695. static int sun6i_dma_probe(struct platform_device *pdev)
  696. {
  697. struct sun6i_dma_dev *sdc;
  698. struct resource *res;
  699. int ret, i;
  700. sdc = devm_kzalloc(&pdev->dev, sizeof(*sdc), GFP_KERNEL);
  701. if (!sdc)
  702. return -ENOMEM;
  703. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  704. sdc->base = devm_ioremap_resource(&pdev->dev, res);
  705. if (IS_ERR(sdc->base))
  706. return PTR_ERR(sdc->base);
  707. sdc->irq = platform_get_irq(pdev, 0);
  708. if (sdc->irq < 0) {
  709. dev_err(&pdev->dev, "Cannot claim IRQ\n");
  710. return sdc->irq;
  711. }
  712. sdc->clk = devm_clk_get(&pdev->dev, NULL);
  713. if (IS_ERR(sdc->clk)) {
  714. dev_err(&pdev->dev, "No clock specified\n");
  715. return PTR_ERR(sdc->clk);
  716. }
  717. sdc->rstc = devm_reset_control_get(&pdev->dev, NULL);
  718. if (IS_ERR(sdc->rstc)) {
  719. dev_err(&pdev->dev, "No reset controller specified\n");
  720. return PTR_ERR(sdc->rstc);
  721. }
  722. sdc->pool = dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
  723. sizeof(struct sun6i_dma_lli), 4, 0);
  724. if (!sdc->pool) {
  725. dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
  726. return -ENOMEM;
  727. }
  728. platform_set_drvdata(pdev, sdc);
  729. INIT_LIST_HEAD(&sdc->pending);
  730. spin_lock_init(&sdc->lock);
  731. dma_cap_set(DMA_PRIVATE, sdc->slave.cap_mask);
  732. dma_cap_set(DMA_MEMCPY, sdc->slave.cap_mask);
  733. dma_cap_set(DMA_SLAVE, sdc->slave.cap_mask);
  734. INIT_LIST_HEAD(&sdc->slave.channels);
  735. sdc->slave.device_alloc_chan_resources = sun6i_dma_alloc_chan_resources;
  736. sdc->slave.device_free_chan_resources = sun6i_dma_free_chan_resources;
  737. sdc->slave.device_tx_status = sun6i_dma_tx_status;
  738. sdc->slave.device_issue_pending = sun6i_dma_issue_pending;
  739. sdc->slave.device_prep_slave_sg = sun6i_dma_prep_slave_sg;
  740. sdc->slave.device_prep_dma_memcpy = sun6i_dma_prep_dma_memcpy;
  741. sdc->slave.device_control = sun6i_dma_control;
  742. sdc->slave.chancnt = NR_MAX_VCHANS;
  743. sdc->slave.dev = &pdev->dev;
  744. sdc->pchans = devm_kcalloc(&pdev->dev, NR_MAX_CHANNELS,
  745. sizeof(struct sun6i_pchan), GFP_KERNEL);
  746. if (!sdc->pchans)
  747. return -ENOMEM;
  748. sdc->vchans = devm_kcalloc(&pdev->dev, NR_MAX_VCHANS,
  749. sizeof(struct sun6i_vchan), GFP_KERNEL);
  750. if (!sdc->vchans)
  751. return -ENOMEM;
  752. tasklet_init(&sdc->task, sun6i_dma_tasklet, (unsigned long)sdc);
  753. for (i = 0; i < NR_MAX_CHANNELS; i++) {
  754. struct sun6i_pchan *pchan = &sdc->pchans[i];
  755. pchan->idx = i;
  756. pchan->base = sdc->base + 0x100 + i * 0x40;
  757. }
  758. for (i = 0; i < NR_MAX_VCHANS; i++) {
  759. struct sun6i_vchan *vchan = &sdc->vchans[i];
  760. INIT_LIST_HEAD(&vchan->node);
  761. vchan->vc.desc_free = sun6i_dma_free_desc;
  762. vchan_init(&vchan->vc, &sdc->slave);
  763. }
  764. ret = reset_control_deassert(sdc->rstc);
  765. if (ret) {
  766. dev_err(&pdev->dev, "Couldn't deassert the device from reset\n");
  767. goto err_chan_free;
  768. }
  769. ret = clk_prepare_enable(sdc->clk);
  770. if (ret) {
  771. dev_err(&pdev->dev, "Couldn't enable the clock\n");
  772. goto err_reset_assert;
  773. }
  774. ret = devm_request_irq(&pdev->dev, sdc->irq, sun6i_dma_interrupt, 0,
  775. dev_name(&pdev->dev), sdc);
  776. if (ret) {
  777. dev_err(&pdev->dev, "Cannot request IRQ\n");
  778. goto err_clk_disable;
  779. }
  780. ret = dma_async_device_register(&sdc->slave);
  781. if (ret) {
  782. dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
  783. goto err_irq_disable;
  784. }
  785. ret = of_dma_controller_register(pdev->dev.of_node, sun6i_dma_of_xlate,
  786. sdc);
  787. if (ret) {
  788. dev_err(&pdev->dev, "of_dma_controller_register failed\n");
  789. goto err_dma_unregister;
  790. }
  791. return 0;
  792. err_dma_unregister:
  793. dma_async_device_unregister(&sdc->slave);
  794. err_irq_disable:
  795. sun6i_kill_tasklet(sdc);
  796. err_clk_disable:
  797. clk_disable_unprepare(sdc->clk);
  798. err_reset_assert:
  799. reset_control_assert(sdc->rstc);
  800. err_chan_free:
  801. sun6i_dma_free(sdc);
  802. return ret;
  803. }
  804. static int sun6i_dma_remove(struct platform_device *pdev)
  805. {
  806. struct sun6i_dma_dev *sdc = platform_get_drvdata(pdev);
  807. of_dma_controller_free(pdev->dev.of_node);
  808. dma_async_device_unregister(&sdc->slave);
  809. sun6i_kill_tasklet(sdc);
  810. clk_disable_unprepare(sdc->clk);
  811. reset_control_assert(sdc->rstc);
  812. sun6i_dma_free(sdc);
  813. return 0;
  814. }
  815. static struct of_device_id sun6i_dma_match[] = {
  816. { .compatible = "allwinner,sun6i-a31-dma" },
  817. { /* sentinel */ }
  818. };
  819. static struct platform_driver sun6i_dma_driver = {
  820. .probe = sun6i_dma_probe,
  821. .remove = sun6i_dma_remove,
  822. .driver = {
  823. .name = "sun6i-dma",
  824. .of_match_table = sun6i_dma_match,
  825. },
  826. };
  827. module_platform_driver(sun6i_dma_driver);
  828. MODULE_DESCRIPTION("Allwinner A31 DMA Controller Driver");
  829. MODULE_AUTHOR("Sugar <shuge@allwinnertech.com>");
  830. MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
  831. MODULE_LICENSE("GPL");