imx6q-cpufreq.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpu.h>
  10. #include <linux/cpufreq.h>
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/of.h>
  14. #include <linux/pm_opp.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/regulator/consumer.h>
  17. #define PU_SOC_VOLTAGE_NORMAL 1250000
  18. #define PU_SOC_VOLTAGE_HIGH 1275000
  19. #define FREQ_1P2_GHZ 1200000000
  20. static struct regulator *arm_reg;
  21. static struct regulator *pu_reg;
  22. static struct regulator *soc_reg;
  23. static struct clk *arm_clk;
  24. static struct clk *pll1_sys_clk;
  25. static struct clk *pll1_sw_clk;
  26. static struct clk *step_clk;
  27. static struct clk *pll2_pfd2_396m_clk;
  28. static struct device *cpu_dev;
  29. static struct cpufreq_frequency_table *freq_table;
  30. static unsigned int transition_latency;
  31. static u32 *imx6_soc_volt;
  32. static u32 soc_opp_count;
  33. static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
  34. {
  35. struct dev_pm_opp *opp;
  36. unsigned long freq_hz, volt, volt_old;
  37. unsigned int old_freq, new_freq;
  38. int ret;
  39. new_freq = freq_table[index].frequency;
  40. freq_hz = new_freq * 1000;
  41. old_freq = clk_get_rate(arm_clk) / 1000;
  42. rcu_read_lock();
  43. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  44. if (IS_ERR(opp)) {
  45. rcu_read_unlock();
  46. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  47. return PTR_ERR(opp);
  48. }
  49. volt = dev_pm_opp_get_voltage(opp);
  50. rcu_read_unlock();
  51. volt_old = regulator_get_voltage(arm_reg);
  52. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  53. old_freq / 1000, volt_old / 1000,
  54. new_freq / 1000, volt / 1000);
  55. /* scaling up? scale voltage before frequency */
  56. if (new_freq > old_freq) {
  57. if (!IS_ERR(pu_reg)) {
  58. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  59. if (ret) {
  60. dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
  61. return ret;
  62. }
  63. }
  64. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  65. if (ret) {
  66. dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
  67. return ret;
  68. }
  69. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  70. if (ret) {
  71. dev_err(cpu_dev,
  72. "failed to scale vddarm up: %d\n", ret);
  73. return ret;
  74. }
  75. }
  76. /*
  77. * The setpoints are selected per PLL/PDF frequencies, so we need to
  78. * reprogram PLL for frequency scaling. The procedure of reprogramming
  79. * PLL1 is as below.
  80. *
  81. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  82. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  83. * - Disable pll2_pfd2_396m_clk
  84. */
  85. clk_set_parent(step_clk, pll2_pfd2_396m_clk);
  86. clk_set_parent(pll1_sw_clk, step_clk);
  87. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
  88. clk_set_rate(pll1_sys_clk, new_freq * 1000);
  89. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  90. }
  91. /* Ensure the arm clock divider is what we expect */
  92. ret = clk_set_rate(arm_clk, new_freq * 1000);
  93. if (ret) {
  94. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  95. regulator_set_voltage_tol(arm_reg, volt_old, 0);
  96. return ret;
  97. }
  98. /* scaling down? scale voltage after frequency */
  99. if (new_freq < old_freq) {
  100. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  101. if (ret) {
  102. dev_warn(cpu_dev,
  103. "failed to scale vddarm down: %d\n", ret);
  104. ret = 0;
  105. }
  106. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  107. if (ret) {
  108. dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
  109. ret = 0;
  110. }
  111. if (!IS_ERR(pu_reg)) {
  112. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  113. if (ret) {
  114. dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
  115. ret = 0;
  116. }
  117. }
  118. }
  119. return 0;
  120. }
  121. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  122. {
  123. policy->clk = arm_clk;
  124. return cpufreq_generic_init(policy, freq_table, transition_latency);
  125. }
  126. static struct cpufreq_driver imx6q_cpufreq_driver = {
  127. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  128. .verify = cpufreq_generic_frequency_table_verify,
  129. .target_index = imx6q_set_target,
  130. .get = cpufreq_generic_get,
  131. .init = imx6q_cpufreq_init,
  132. .name = "imx6q-cpufreq",
  133. .attr = cpufreq_generic_attr,
  134. };
  135. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  136. {
  137. struct device_node *np;
  138. struct dev_pm_opp *opp;
  139. unsigned long min_volt, max_volt;
  140. int num, ret;
  141. const struct property *prop;
  142. const __be32 *val;
  143. u32 nr, i, j;
  144. cpu_dev = get_cpu_device(0);
  145. if (!cpu_dev) {
  146. pr_err("failed to get cpu0 device\n");
  147. return -ENODEV;
  148. }
  149. np = of_node_get(cpu_dev->of_node);
  150. if (!np) {
  151. dev_err(cpu_dev, "failed to find cpu0 node\n");
  152. return -ENOENT;
  153. }
  154. arm_clk = clk_get(cpu_dev, "arm");
  155. pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
  156. pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
  157. step_clk = clk_get(cpu_dev, "step");
  158. pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
  159. if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
  160. IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
  161. dev_err(cpu_dev, "failed to get clocks\n");
  162. ret = -ENOENT;
  163. goto put_clk;
  164. }
  165. arm_reg = regulator_get(cpu_dev, "arm");
  166. pu_reg = regulator_get_optional(cpu_dev, "pu");
  167. soc_reg = regulator_get(cpu_dev, "soc");
  168. if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
  169. dev_err(cpu_dev, "failed to get regulators\n");
  170. ret = -ENOENT;
  171. goto put_reg;
  172. }
  173. /*
  174. * We expect an OPP table supplied by platform.
  175. * Just, incase the platform did not supply the OPP
  176. * table, it will try to get it.
  177. */
  178. num = dev_pm_opp_get_opp_count(cpu_dev);
  179. if (num < 0) {
  180. ret = of_init_opp_table(cpu_dev);
  181. if (ret < 0) {
  182. dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
  183. goto put_reg;
  184. }
  185. num = dev_pm_opp_get_opp_count(cpu_dev);
  186. if (num < 0) {
  187. ret = num;
  188. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  189. goto put_reg;
  190. }
  191. }
  192. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
  193. if (ret) {
  194. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  195. goto put_reg;
  196. }
  197. /* Make imx6_soc_volt array's size same as arm opp number */
  198. imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
  199. if (imx6_soc_volt == NULL) {
  200. ret = -ENOMEM;
  201. goto free_freq_table;
  202. }
  203. prop = of_find_property(np, "fsl,soc-operating-points", NULL);
  204. if (!prop || !prop->value)
  205. goto soc_opp_out;
  206. /*
  207. * Each OPP is a set of tuples consisting of frequency and
  208. * voltage like <freq-kHz vol-uV>.
  209. */
  210. nr = prop->length / sizeof(u32);
  211. if (nr % 2 || (nr / 2) < num)
  212. goto soc_opp_out;
  213. for (j = 0; j < num; j++) {
  214. val = prop->value;
  215. for (i = 0; i < nr / 2; i++) {
  216. unsigned long freq = be32_to_cpup(val++);
  217. unsigned long volt = be32_to_cpup(val++);
  218. if (freq_table[j].frequency == freq) {
  219. imx6_soc_volt[soc_opp_count++] = volt;
  220. break;
  221. }
  222. }
  223. }
  224. soc_opp_out:
  225. /* use fixed soc opp volt if no valid soc opp info found in dtb */
  226. if (soc_opp_count != num) {
  227. dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
  228. for (j = 0; j < num; j++)
  229. imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
  230. if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
  231. imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
  232. }
  233. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  234. transition_latency = CPUFREQ_ETERNAL;
  235. /*
  236. * Calculate the ramp time for max voltage change in the
  237. * VDDSOC and VDDPU regulators.
  238. */
  239. ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  240. if (ret > 0)
  241. transition_latency += ret * 1000;
  242. if (!IS_ERR(pu_reg)) {
  243. ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  244. if (ret > 0)
  245. transition_latency += ret * 1000;
  246. }
  247. /*
  248. * OPP is maintained in order of increasing frequency, and
  249. * freq_table initialised from OPP is therefore sorted in the
  250. * same order.
  251. */
  252. rcu_read_lock();
  253. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  254. freq_table[0].frequency * 1000, true);
  255. min_volt = dev_pm_opp_get_voltage(opp);
  256. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  257. freq_table[--num].frequency * 1000, true);
  258. max_volt = dev_pm_opp_get_voltage(opp);
  259. rcu_read_unlock();
  260. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  261. if (ret > 0)
  262. transition_latency += ret * 1000;
  263. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  264. if (ret) {
  265. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  266. goto free_freq_table;
  267. }
  268. of_node_put(np);
  269. return 0;
  270. free_freq_table:
  271. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  272. put_reg:
  273. if (!IS_ERR(arm_reg))
  274. regulator_put(arm_reg);
  275. if (!IS_ERR(pu_reg))
  276. regulator_put(pu_reg);
  277. if (!IS_ERR(soc_reg))
  278. regulator_put(soc_reg);
  279. put_clk:
  280. if (!IS_ERR(arm_clk))
  281. clk_put(arm_clk);
  282. if (!IS_ERR(pll1_sys_clk))
  283. clk_put(pll1_sys_clk);
  284. if (!IS_ERR(pll1_sw_clk))
  285. clk_put(pll1_sw_clk);
  286. if (!IS_ERR(step_clk))
  287. clk_put(step_clk);
  288. if (!IS_ERR(pll2_pfd2_396m_clk))
  289. clk_put(pll2_pfd2_396m_clk);
  290. of_node_put(np);
  291. return ret;
  292. }
  293. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  294. {
  295. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  296. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  297. regulator_put(arm_reg);
  298. if (!IS_ERR(pu_reg))
  299. regulator_put(pu_reg);
  300. regulator_put(soc_reg);
  301. clk_put(arm_clk);
  302. clk_put(pll1_sys_clk);
  303. clk_put(pll1_sw_clk);
  304. clk_put(step_clk);
  305. clk_put(pll2_pfd2_396m_clk);
  306. return 0;
  307. }
  308. static struct platform_driver imx6q_cpufreq_platdrv = {
  309. .driver = {
  310. .name = "imx6q-cpufreq",
  311. .owner = THIS_MODULE,
  312. },
  313. .probe = imx6q_cpufreq_probe,
  314. .remove = imx6q_cpufreq_remove,
  315. };
  316. module_platform_driver(imx6q_cpufreq_platdrv);
  317. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  318. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  319. MODULE_LICENSE("GPL");