init.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <asm/cacheflush.h>
  8. #include <asm/e820.h>
  9. #include <asm/init.h>
  10. #include <asm/page.h>
  11. #include <asm/page_types.h>
  12. #include <asm/sections.h>
  13. #include <asm/setup.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/tlb.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h> /* for MAX_DMA_PFN */
  18. #include <asm/microcode.h>
  19. /*
  20. * We need to define the tracepoints somewhere, and tlb.c
  21. * is only compied when SMP=y.
  22. */
  23. #define CREATE_TRACE_POINTS
  24. #include <trace/events/tlb.h>
  25. #include "mm_internal.h"
  26. static unsigned long __initdata pgt_buf_start;
  27. static unsigned long __initdata pgt_buf_end;
  28. static unsigned long __initdata pgt_buf_top;
  29. static unsigned long min_pfn_mapped;
  30. static bool __initdata can_use_brk_pgt = true;
  31. /*
  32. * Pages returned are already directly mapped.
  33. *
  34. * Changing that is likely to break Xen, see commit:
  35. *
  36. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  37. *
  38. * for detailed information.
  39. */
  40. __ref void *alloc_low_pages(unsigned int num)
  41. {
  42. unsigned long pfn;
  43. int i;
  44. if (after_bootmem) {
  45. unsigned int order;
  46. order = get_order((unsigned long)num << PAGE_SHIFT);
  47. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  48. __GFP_ZERO, order);
  49. }
  50. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  51. unsigned long ret;
  52. if (min_pfn_mapped >= max_pfn_mapped)
  53. panic("alloc_low_pages: ran out of memory");
  54. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  55. max_pfn_mapped << PAGE_SHIFT,
  56. PAGE_SIZE * num , PAGE_SIZE);
  57. if (!ret)
  58. panic("alloc_low_pages: can not alloc memory");
  59. memblock_reserve(ret, PAGE_SIZE * num);
  60. pfn = ret >> PAGE_SHIFT;
  61. } else {
  62. pfn = pgt_buf_end;
  63. pgt_buf_end += num;
  64. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  65. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  66. }
  67. for (i = 0; i < num; i++) {
  68. void *adr;
  69. adr = __va((pfn + i) << PAGE_SHIFT);
  70. clear_page(adr);
  71. }
  72. return __va(pfn << PAGE_SHIFT);
  73. }
  74. /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
  75. #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
  76. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  77. void __init early_alloc_pgt_buf(void)
  78. {
  79. unsigned long tables = INIT_PGT_BUF_SIZE;
  80. phys_addr_t base;
  81. base = __pa(extend_brk(tables, PAGE_SIZE));
  82. pgt_buf_start = base >> PAGE_SHIFT;
  83. pgt_buf_end = pgt_buf_start;
  84. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  85. }
  86. int after_bootmem;
  87. int direct_gbpages
  88. #ifdef CONFIG_DIRECT_GBPAGES
  89. = 1
  90. #endif
  91. ;
  92. static void __init init_gbpages(void)
  93. {
  94. #ifdef CONFIG_X86_64
  95. if (direct_gbpages && cpu_has_gbpages)
  96. printk(KERN_INFO "Using GB pages for direct mapping\n");
  97. else
  98. direct_gbpages = 0;
  99. #endif
  100. }
  101. struct map_range {
  102. unsigned long start;
  103. unsigned long end;
  104. unsigned page_size_mask;
  105. };
  106. static int page_size_mask;
  107. static void __init probe_page_size_mask(void)
  108. {
  109. init_gbpages();
  110. #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
  111. /*
  112. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  113. * This will simplify cpa(), which otherwise needs to support splitting
  114. * large pages into small in interrupt context, etc.
  115. */
  116. if (direct_gbpages)
  117. page_size_mask |= 1 << PG_LEVEL_1G;
  118. if (cpu_has_pse)
  119. page_size_mask |= 1 << PG_LEVEL_2M;
  120. #endif
  121. /* Enable PSE if available */
  122. if (cpu_has_pse)
  123. set_in_cr4(X86_CR4_PSE);
  124. /* Enable PGE if available */
  125. if (cpu_has_pge) {
  126. set_in_cr4(X86_CR4_PGE);
  127. __supported_pte_mask |= _PAGE_GLOBAL;
  128. }
  129. }
  130. #ifdef CONFIG_X86_32
  131. #define NR_RANGE_MR 3
  132. #else /* CONFIG_X86_64 */
  133. #define NR_RANGE_MR 5
  134. #endif
  135. static int __meminit save_mr(struct map_range *mr, int nr_range,
  136. unsigned long start_pfn, unsigned long end_pfn,
  137. unsigned long page_size_mask)
  138. {
  139. if (start_pfn < end_pfn) {
  140. if (nr_range >= NR_RANGE_MR)
  141. panic("run out of range for init_memory_mapping\n");
  142. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  143. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  144. mr[nr_range].page_size_mask = page_size_mask;
  145. nr_range++;
  146. }
  147. return nr_range;
  148. }
  149. /*
  150. * adjust the page_size_mask for small range to go with
  151. * big page size instead small one if nearby are ram too.
  152. */
  153. static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
  154. int nr_range)
  155. {
  156. int i;
  157. for (i = 0; i < nr_range; i++) {
  158. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  159. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  160. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  161. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  162. #ifdef CONFIG_X86_32
  163. if ((end >> PAGE_SHIFT) > max_low_pfn)
  164. continue;
  165. #endif
  166. if (memblock_is_region_memory(start, end - start))
  167. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  168. }
  169. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  170. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  171. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  172. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  173. if (memblock_is_region_memory(start, end - start))
  174. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  175. }
  176. }
  177. }
  178. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  179. unsigned long start,
  180. unsigned long end)
  181. {
  182. unsigned long start_pfn, end_pfn, limit_pfn;
  183. unsigned long pfn;
  184. int i;
  185. limit_pfn = PFN_DOWN(end);
  186. /* head if not big page alignment ? */
  187. pfn = start_pfn = PFN_DOWN(start);
  188. #ifdef CONFIG_X86_32
  189. /*
  190. * Don't use a large page for the first 2/4MB of memory
  191. * because there are often fixed size MTRRs in there
  192. * and overlapping MTRRs into large pages can cause
  193. * slowdowns.
  194. */
  195. if (pfn == 0)
  196. end_pfn = PFN_DOWN(PMD_SIZE);
  197. else
  198. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  199. #else /* CONFIG_X86_64 */
  200. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  201. #endif
  202. if (end_pfn > limit_pfn)
  203. end_pfn = limit_pfn;
  204. if (start_pfn < end_pfn) {
  205. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  206. pfn = end_pfn;
  207. }
  208. /* big page (2M) range */
  209. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  210. #ifdef CONFIG_X86_32
  211. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  212. #else /* CONFIG_X86_64 */
  213. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  214. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  215. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  216. #endif
  217. if (start_pfn < end_pfn) {
  218. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  219. page_size_mask & (1<<PG_LEVEL_2M));
  220. pfn = end_pfn;
  221. }
  222. #ifdef CONFIG_X86_64
  223. /* big page (1G) range */
  224. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  225. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  226. if (start_pfn < end_pfn) {
  227. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  228. page_size_mask &
  229. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  230. pfn = end_pfn;
  231. }
  232. /* tail is not big page (1G) alignment */
  233. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  234. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  235. if (start_pfn < end_pfn) {
  236. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  237. page_size_mask & (1<<PG_LEVEL_2M));
  238. pfn = end_pfn;
  239. }
  240. #endif
  241. /* tail is not big page (2M) alignment */
  242. start_pfn = pfn;
  243. end_pfn = limit_pfn;
  244. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  245. if (!after_bootmem)
  246. adjust_range_page_size_mask(mr, nr_range);
  247. /* try to merge same page size and continuous */
  248. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  249. unsigned long old_start;
  250. if (mr[i].end != mr[i+1].start ||
  251. mr[i].page_size_mask != mr[i+1].page_size_mask)
  252. continue;
  253. /* move it */
  254. old_start = mr[i].start;
  255. memmove(&mr[i], &mr[i+1],
  256. (nr_range - 1 - i) * sizeof(struct map_range));
  257. mr[i--].start = old_start;
  258. nr_range--;
  259. }
  260. for (i = 0; i < nr_range; i++)
  261. printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
  262. mr[i].start, mr[i].end - 1,
  263. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  264. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  265. return nr_range;
  266. }
  267. struct range pfn_mapped[E820_X_MAX];
  268. int nr_pfn_mapped;
  269. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  270. {
  271. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
  272. nr_pfn_mapped, start_pfn, end_pfn);
  273. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
  274. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  275. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  276. max_low_pfn_mapped = max(max_low_pfn_mapped,
  277. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  278. }
  279. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  280. {
  281. int i;
  282. for (i = 0; i < nr_pfn_mapped; i++)
  283. if ((start_pfn >= pfn_mapped[i].start) &&
  284. (end_pfn <= pfn_mapped[i].end))
  285. return true;
  286. return false;
  287. }
  288. /*
  289. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  290. * This runs before bootmem is initialized and gets pages directly from
  291. * the physical memory. To access them they are temporarily mapped.
  292. */
  293. unsigned long __init_refok init_memory_mapping(unsigned long start,
  294. unsigned long end)
  295. {
  296. struct map_range mr[NR_RANGE_MR];
  297. unsigned long ret = 0;
  298. int nr_range, i;
  299. pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  300. start, end - 1);
  301. memset(mr, 0, sizeof(mr));
  302. nr_range = split_mem_range(mr, 0, start, end);
  303. for (i = 0; i < nr_range; i++)
  304. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  305. mr[i].page_size_mask);
  306. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  307. return ret >> PAGE_SHIFT;
  308. }
  309. /*
  310. * We need to iterate through the E820 memory map and create direct mappings
  311. * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
  312. * create direct mappings for all pfns from [0 to max_low_pfn) and
  313. * [4GB to max_pfn) because of possible memory holes in high addresses
  314. * that cannot be marked as UC by fixed/variable range MTRRs.
  315. * Depending on the alignment of E820 ranges, this may possibly result
  316. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  317. *
  318. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  319. * That range would have hole in the middle or ends, and only ram parts
  320. * will be mapped in init_range_memory_mapping().
  321. */
  322. static unsigned long __init init_range_memory_mapping(
  323. unsigned long r_start,
  324. unsigned long r_end)
  325. {
  326. unsigned long start_pfn, end_pfn;
  327. unsigned long mapped_ram_size = 0;
  328. int i;
  329. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  330. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  331. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  332. if (start >= end)
  333. continue;
  334. /*
  335. * if it is overlapping with brk pgt, we need to
  336. * alloc pgt buf from memblock instead.
  337. */
  338. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  339. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  340. init_memory_mapping(start, end);
  341. mapped_ram_size += end - start;
  342. can_use_brk_pgt = true;
  343. }
  344. return mapped_ram_size;
  345. }
  346. static unsigned long __init get_new_step_size(unsigned long step_size)
  347. {
  348. /*
  349. * Explain why we shift by 5 and why we don't have to worry about
  350. * 'step_size << 5' overflowing:
  351. *
  352. * initial mapped size is PMD_SIZE (2M).
  353. * We can not set step_size to be PUD_SIZE (1G) yet.
  354. * In worse case, when we cross the 1G boundary, and
  355. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  356. * to map 1G range with PTE. Use 5 as shift for now.
  357. *
  358. * Don't need to worry about overflow, on 32bit, when step_size
  359. * is 0, round_down() returns 0 for start, and that turns it
  360. * into 0x100000000ULL.
  361. */
  362. return step_size << 5;
  363. }
  364. /**
  365. * memory_map_top_down - Map [map_start, map_end) top down
  366. * @map_start: start address of the target memory range
  367. * @map_end: end address of the target memory range
  368. *
  369. * This function will setup direct mapping for memory range
  370. * [map_start, map_end) in top-down. That said, the page tables
  371. * will be allocated at the end of the memory, and we map the
  372. * memory in top-down.
  373. */
  374. static void __init memory_map_top_down(unsigned long map_start,
  375. unsigned long map_end)
  376. {
  377. unsigned long real_end, start, last_start;
  378. unsigned long step_size;
  379. unsigned long addr;
  380. unsigned long mapped_ram_size = 0;
  381. unsigned long new_mapped_ram_size;
  382. /* xen has big range in reserved near end of ram, skip it at first.*/
  383. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  384. real_end = addr + PMD_SIZE;
  385. /* step_size need to be small so pgt_buf from BRK could cover it */
  386. step_size = PMD_SIZE;
  387. max_pfn_mapped = 0; /* will get exact value next */
  388. min_pfn_mapped = real_end >> PAGE_SHIFT;
  389. last_start = start = real_end;
  390. /*
  391. * We start from the top (end of memory) and go to the bottom.
  392. * The memblock_find_in_range() gets us a block of RAM from the
  393. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  394. * for page table.
  395. */
  396. while (last_start > map_start) {
  397. if (last_start > step_size) {
  398. start = round_down(last_start - 1, step_size);
  399. if (start < map_start)
  400. start = map_start;
  401. } else
  402. start = map_start;
  403. new_mapped_ram_size = init_range_memory_mapping(start,
  404. last_start);
  405. last_start = start;
  406. min_pfn_mapped = last_start >> PAGE_SHIFT;
  407. /* only increase step_size after big range get mapped */
  408. if (new_mapped_ram_size > mapped_ram_size)
  409. step_size = get_new_step_size(step_size);
  410. mapped_ram_size += new_mapped_ram_size;
  411. }
  412. if (real_end < map_end)
  413. init_range_memory_mapping(real_end, map_end);
  414. }
  415. /**
  416. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  417. * @map_start: start address of the target memory range
  418. * @map_end: end address of the target memory range
  419. *
  420. * This function will setup direct mapping for memory range
  421. * [map_start, map_end) in bottom-up. Since we have limited the
  422. * bottom-up allocation above the kernel, the page tables will
  423. * be allocated just above the kernel and we map the memory
  424. * in [map_start, map_end) in bottom-up.
  425. */
  426. static void __init memory_map_bottom_up(unsigned long map_start,
  427. unsigned long map_end)
  428. {
  429. unsigned long next, new_mapped_ram_size, start;
  430. unsigned long mapped_ram_size = 0;
  431. /* step_size need to be small so pgt_buf from BRK could cover it */
  432. unsigned long step_size = PMD_SIZE;
  433. start = map_start;
  434. min_pfn_mapped = start >> PAGE_SHIFT;
  435. /*
  436. * We start from the bottom (@map_start) and go to the top (@map_end).
  437. * The memblock_find_in_range() gets us a block of RAM from the
  438. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  439. * for page table.
  440. */
  441. while (start < map_end) {
  442. if (map_end - start > step_size) {
  443. next = round_up(start + 1, step_size);
  444. if (next > map_end)
  445. next = map_end;
  446. } else
  447. next = map_end;
  448. new_mapped_ram_size = init_range_memory_mapping(start, next);
  449. start = next;
  450. if (new_mapped_ram_size > mapped_ram_size)
  451. step_size = get_new_step_size(step_size);
  452. mapped_ram_size += new_mapped_ram_size;
  453. }
  454. }
  455. void __init init_mem_mapping(void)
  456. {
  457. unsigned long end;
  458. probe_page_size_mask();
  459. #ifdef CONFIG_X86_64
  460. end = max_pfn << PAGE_SHIFT;
  461. #else
  462. end = max_low_pfn << PAGE_SHIFT;
  463. #endif
  464. /* the ISA range is always mapped regardless of memory holes */
  465. init_memory_mapping(0, ISA_END_ADDRESS);
  466. /*
  467. * If the allocation is in bottom-up direction, we setup direct mapping
  468. * in bottom-up, otherwise we setup direct mapping in top-down.
  469. */
  470. if (memblock_bottom_up()) {
  471. unsigned long kernel_end = __pa_symbol(_end);
  472. /*
  473. * we need two separate calls here. This is because we want to
  474. * allocate page tables above the kernel. So we first map
  475. * [kernel_end, end) to make memory above the kernel be mapped
  476. * as soon as possible. And then use page tables allocated above
  477. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  478. */
  479. memory_map_bottom_up(kernel_end, end);
  480. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  481. } else {
  482. memory_map_top_down(ISA_END_ADDRESS, end);
  483. }
  484. #ifdef CONFIG_X86_64
  485. if (max_pfn > max_low_pfn) {
  486. /* can we preseve max_low_pfn ?*/
  487. max_low_pfn = max_pfn;
  488. }
  489. #else
  490. early_ioremap_page_table_range_init();
  491. #endif
  492. load_cr3(swapper_pg_dir);
  493. __flush_tlb_all();
  494. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  495. }
  496. /*
  497. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  498. * is valid. The argument is a physical page number.
  499. *
  500. *
  501. * On x86, access has to be given to the first megabyte of ram because that area
  502. * contains bios code and data regions used by X and dosemu and similar apps.
  503. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  504. * mmio resources as well as potential bios/acpi data regions.
  505. */
  506. int devmem_is_allowed(unsigned long pagenr)
  507. {
  508. if (pagenr < 256)
  509. return 1;
  510. if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
  511. return 0;
  512. if (!page_is_ram(pagenr))
  513. return 1;
  514. return 0;
  515. }
  516. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  517. {
  518. unsigned long begin_aligned, end_aligned;
  519. /* Make sure boundaries are page aligned */
  520. begin_aligned = PAGE_ALIGN(begin);
  521. end_aligned = end & PAGE_MASK;
  522. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  523. begin = begin_aligned;
  524. end = end_aligned;
  525. }
  526. if (begin >= end)
  527. return;
  528. /*
  529. * If debugging page accesses then do not free this memory but
  530. * mark them not present - any buggy init-section access will
  531. * create a kernel page fault:
  532. */
  533. #ifdef CONFIG_DEBUG_PAGEALLOC
  534. printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
  535. begin, end - 1);
  536. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  537. #else
  538. /*
  539. * We just marked the kernel text read only above, now that
  540. * we are going to free part of that, we need to make that
  541. * writeable and non-executable first.
  542. */
  543. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  544. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  545. free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
  546. #endif
  547. }
  548. void free_initmem(void)
  549. {
  550. free_init_pages("unused kernel",
  551. (unsigned long)(&__init_begin),
  552. (unsigned long)(&__init_end));
  553. }
  554. #ifdef CONFIG_BLK_DEV_INITRD
  555. void __init free_initrd_mem(unsigned long start, unsigned long end)
  556. {
  557. #ifdef CONFIG_MICROCODE_EARLY
  558. /*
  559. * Remember, initrd memory may contain microcode or other useful things.
  560. * Before we lose initrd mem, we need to find a place to hold them
  561. * now that normal virtual memory is enabled.
  562. */
  563. save_microcode_in_initrd();
  564. #endif
  565. /*
  566. * end could be not aligned, and We can not align that,
  567. * decompresser could be confused by aligned initrd_end
  568. * We already reserve the end partial page before in
  569. * - i386_start_kernel()
  570. * - x86_64_start_kernel()
  571. * - relocate_initrd()
  572. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  573. */
  574. free_init_pages("initrd", start, PAGE_ALIGN(end));
  575. }
  576. #endif
  577. void __init zone_sizes_init(void)
  578. {
  579. unsigned long max_zone_pfns[MAX_NR_ZONES];
  580. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  581. #ifdef CONFIG_ZONE_DMA
  582. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  583. #endif
  584. #ifdef CONFIG_ZONE_DMA32
  585. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  586. #endif
  587. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  588. #ifdef CONFIG_HIGHMEM
  589. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  590. #endif
  591. free_area_init_nodes(max_zone_pfns);
  592. }