fault.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
  4. * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
  5. */
  6. #include <linux/sched.h> /* test_thread_flag(), ... */
  7. #include <linux/kdebug.h> /* oops_begin/end, ... */
  8. #include <linux/module.h> /* search_exception_table */
  9. #include <linux/bootmem.h> /* max_low_pfn */
  10. #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
  11. #include <linux/mmiotrace.h> /* kmmio_handler, ... */
  12. #include <linux/perf_event.h> /* perf_sw_event */
  13. #include <linux/hugetlb.h> /* hstate_index_to_shift */
  14. #include <linux/prefetch.h> /* prefetchw */
  15. #include <linux/context_tracking.h> /* exception_enter(), ... */
  16. #include <asm/traps.h> /* dotraplinkage, ... */
  17. #include <asm/pgalloc.h> /* pgd_*(), ... */
  18. #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
  19. #include <asm/fixmap.h> /* VSYSCALL_ADDR */
  20. #include <asm/vsyscall.h> /* emulate_vsyscall */
  21. #define CREATE_TRACE_POINTS
  22. #include <asm/trace/exceptions.h>
  23. /*
  24. * Page fault error code bits:
  25. *
  26. * bit 0 == 0: no page found 1: protection fault
  27. * bit 1 == 0: read access 1: write access
  28. * bit 2 == 0: kernel-mode access 1: user-mode access
  29. * bit 3 == 1: use of reserved bit detected
  30. * bit 4 == 1: fault was an instruction fetch
  31. */
  32. enum x86_pf_error_code {
  33. PF_PROT = 1 << 0,
  34. PF_WRITE = 1 << 1,
  35. PF_USER = 1 << 2,
  36. PF_RSVD = 1 << 3,
  37. PF_INSTR = 1 << 4,
  38. };
  39. /*
  40. * Returns 0 if mmiotrace is disabled, or if the fault is not
  41. * handled by mmiotrace:
  42. */
  43. static nokprobe_inline int
  44. kmmio_fault(struct pt_regs *regs, unsigned long addr)
  45. {
  46. if (unlikely(is_kmmio_active()))
  47. if (kmmio_handler(regs, addr) == 1)
  48. return -1;
  49. return 0;
  50. }
  51. static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
  52. {
  53. int ret = 0;
  54. /* kprobe_running() needs smp_processor_id() */
  55. if (kprobes_built_in() && !user_mode_vm(regs)) {
  56. preempt_disable();
  57. if (kprobe_running() && kprobe_fault_handler(regs, 14))
  58. ret = 1;
  59. preempt_enable();
  60. }
  61. return ret;
  62. }
  63. /*
  64. * Prefetch quirks:
  65. *
  66. * 32-bit mode:
  67. *
  68. * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  69. * Check that here and ignore it.
  70. *
  71. * 64-bit mode:
  72. *
  73. * Sometimes the CPU reports invalid exceptions on prefetch.
  74. * Check that here and ignore it.
  75. *
  76. * Opcode checker based on code by Richard Brunner.
  77. */
  78. static inline int
  79. check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  80. unsigned char opcode, int *prefetch)
  81. {
  82. unsigned char instr_hi = opcode & 0xf0;
  83. unsigned char instr_lo = opcode & 0x0f;
  84. switch (instr_hi) {
  85. case 0x20:
  86. case 0x30:
  87. /*
  88. * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  89. * In X86_64 long mode, the CPU will signal invalid
  90. * opcode if some of these prefixes are present so
  91. * X86_64 will never get here anyway
  92. */
  93. return ((instr_lo & 7) == 0x6);
  94. #ifdef CONFIG_X86_64
  95. case 0x40:
  96. /*
  97. * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  98. * Need to figure out under what instruction mode the
  99. * instruction was issued. Could check the LDT for lm,
  100. * but for now it's good enough to assume that long
  101. * mode only uses well known segments or kernel.
  102. */
  103. return (!user_mode(regs) || user_64bit_mode(regs));
  104. #endif
  105. case 0x60:
  106. /* 0x64 thru 0x67 are valid prefixes in all modes. */
  107. return (instr_lo & 0xC) == 0x4;
  108. case 0xF0:
  109. /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  110. return !instr_lo || (instr_lo>>1) == 1;
  111. case 0x00:
  112. /* Prefetch instruction is 0x0F0D or 0x0F18 */
  113. if (probe_kernel_address(instr, opcode))
  114. return 0;
  115. *prefetch = (instr_lo == 0xF) &&
  116. (opcode == 0x0D || opcode == 0x18);
  117. return 0;
  118. default:
  119. return 0;
  120. }
  121. }
  122. static int
  123. is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
  124. {
  125. unsigned char *max_instr;
  126. unsigned char *instr;
  127. int prefetch = 0;
  128. /*
  129. * If it was a exec (instruction fetch) fault on NX page, then
  130. * do not ignore the fault:
  131. */
  132. if (error_code & PF_INSTR)
  133. return 0;
  134. instr = (void *)convert_ip_to_linear(current, regs);
  135. max_instr = instr + 15;
  136. if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
  137. return 0;
  138. while (instr < max_instr) {
  139. unsigned char opcode;
  140. if (probe_kernel_address(instr, opcode))
  141. break;
  142. instr++;
  143. if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
  144. break;
  145. }
  146. return prefetch;
  147. }
  148. static void
  149. force_sig_info_fault(int si_signo, int si_code, unsigned long address,
  150. struct task_struct *tsk, int fault)
  151. {
  152. unsigned lsb = 0;
  153. siginfo_t info;
  154. info.si_signo = si_signo;
  155. info.si_errno = 0;
  156. info.si_code = si_code;
  157. info.si_addr = (void __user *)address;
  158. if (fault & VM_FAULT_HWPOISON_LARGE)
  159. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  160. if (fault & VM_FAULT_HWPOISON)
  161. lsb = PAGE_SHIFT;
  162. info.si_addr_lsb = lsb;
  163. force_sig_info(si_signo, &info, tsk);
  164. }
  165. DEFINE_SPINLOCK(pgd_lock);
  166. LIST_HEAD(pgd_list);
  167. #ifdef CONFIG_X86_32
  168. static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
  169. {
  170. unsigned index = pgd_index(address);
  171. pgd_t *pgd_k;
  172. pud_t *pud, *pud_k;
  173. pmd_t *pmd, *pmd_k;
  174. pgd += index;
  175. pgd_k = init_mm.pgd + index;
  176. if (!pgd_present(*pgd_k))
  177. return NULL;
  178. /*
  179. * set_pgd(pgd, *pgd_k); here would be useless on PAE
  180. * and redundant with the set_pmd() on non-PAE. As would
  181. * set_pud.
  182. */
  183. pud = pud_offset(pgd, address);
  184. pud_k = pud_offset(pgd_k, address);
  185. if (!pud_present(*pud_k))
  186. return NULL;
  187. pmd = pmd_offset(pud, address);
  188. pmd_k = pmd_offset(pud_k, address);
  189. if (!pmd_present(*pmd_k))
  190. return NULL;
  191. if (!pmd_present(*pmd))
  192. set_pmd(pmd, *pmd_k);
  193. else
  194. BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
  195. return pmd_k;
  196. }
  197. void vmalloc_sync_all(void)
  198. {
  199. unsigned long address;
  200. if (SHARED_KERNEL_PMD)
  201. return;
  202. for (address = VMALLOC_START & PMD_MASK;
  203. address >= TASK_SIZE && address < FIXADDR_TOP;
  204. address += PMD_SIZE) {
  205. struct page *page;
  206. spin_lock(&pgd_lock);
  207. list_for_each_entry(page, &pgd_list, lru) {
  208. spinlock_t *pgt_lock;
  209. pmd_t *ret;
  210. /* the pgt_lock only for Xen */
  211. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  212. spin_lock(pgt_lock);
  213. ret = vmalloc_sync_one(page_address(page), address);
  214. spin_unlock(pgt_lock);
  215. if (!ret)
  216. break;
  217. }
  218. spin_unlock(&pgd_lock);
  219. }
  220. }
  221. /*
  222. * 32-bit:
  223. *
  224. * Handle a fault on the vmalloc or module mapping area
  225. */
  226. static noinline int vmalloc_fault(unsigned long address)
  227. {
  228. unsigned long pgd_paddr;
  229. pmd_t *pmd_k;
  230. pte_t *pte_k;
  231. /* Make sure we are in vmalloc area: */
  232. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  233. return -1;
  234. WARN_ON_ONCE(in_nmi());
  235. /*
  236. * Synchronize this task's top level page-table
  237. * with the 'reference' page table.
  238. *
  239. * Do _not_ use "current" here. We might be inside
  240. * an interrupt in the middle of a task switch..
  241. */
  242. pgd_paddr = read_cr3();
  243. pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
  244. if (!pmd_k)
  245. return -1;
  246. pte_k = pte_offset_kernel(pmd_k, address);
  247. if (!pte_present(*pte_k))
  248. return -1;
  249. return 0;
  250. }
  251. NOKPROBE_SYMBOL(vmalloc_fault);
  252. /*
  253. * Did it hit the DOS screen memory VA from vm86 mode?
  254. */
  255. static inline void
  256. check_v8086_mode(struct pt_regs *regs, unsigned long address,
  257. struct task_struct *tsk)
  258. {
  259. unsigned long bit;
  260. if (!v8086_mode(regs))
  261. return;
  262. bit = (address - 0xA0000) >> PAGE_SHIFT;
  263. if (bit < 32)
  264. tsk->thread.screen_bitmap |= 1 << bit;
  265. }
  266. static bool low_pfn(unsigned long pfn)
  267. {
  268. return pfn < max_low_pfn;
  269. }
  270. static void dump_pagetable(unsigned long address)
  271. {
  272. pgd_t *base = __va(read_cr3());
  273. pgd_t *pgd = &base[pgd_index(address)];
  274. pmd_t *pmd;
  275. pte_t *pte;
  276. #ifdef CONFIG_X86_PAE
  277. printk("*pdpt = %016Lx ", pgd_val(*pgd));
  278. if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
  279. goto out;
  280. #endif
  281. pmd = pmd_offset(pud_offset(pgd, address), address);
  282. printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
  283. /*
  284. * We must not directly access the pte in the highpte
  285. * case if the page table is located in highmem.
  286. * And let's rather not kmap-atomic the pte, just in case
  287. * it's allocated already:
  288. */
  289. if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
  290. goto out;
  291. pte = pte_offset_kernel(pmd, address);
  292. printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
  293. out:
  294. printk("\n");
  295. }
  296. #else /* CONFIG_X86_64: */
  297. void vmalloc_sync_all(void)
  298. {
  299. sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
  300. }
  301. /*
  302. * 64-bit:
  303. *
  304. * Handle a fault on the vmalloc area
  305. *
  306. * This assumes no large pages in there.
  307. */
  308. static noinline int vmalloc_fault(unsigned long address)
  309. {
  310. pgd_t *pgd, *pgd_ref;
  311. pud_t *pud, *pud_ref;
  312. pmd_t *pmd, *pmd_ref;
  313. pte_t *pte, *pte_ref;
  314. /* Make sure we are in vmalloc area: */
  315. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  316. return -1;
  317. WARN_ON_ONCE(in_nmi());
  318. /*
  319. * Copy kernel mappings over when needed. This can also
  320. * happen within a race in page table update. In the later
  321. * case just flush:
  322. */
  323. pgd = pgd_offset(current->active_mm, address);
  324. pgd_ref = pgd_offset_k(address);
  325. if (pgd_none(*pgd_ref))
  326. return -1;
  327. if (pgd_none(*pgd)) {
  328. set_pgd(pgd, *pgd_ref);
  329. arch_flush_lazy_mmu_mode();
  330. } else {
  331. BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
  332. }
  333. /*
  334. * Below here mismatches are bugs because these lower tables
  335. * are shared:
  336. */
  337. pud = pud_offset(pgd, address);
  338. pud_ref = pud_offset(pgd_ref, address);
  339. if (pud_none(*pud_ref))
  340. return -1;
  341. if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
  342. BUG();
  343. pmd = pmd_offset(pud, address);
  344. pmd_ref = pmd_offset(pud_ref, address);
  345. if (pmd_none(*pmd_ref))
  346. return -1;
  347. if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
  348. BUG();
  349. pte_ref = pte_offset_kernel(pmd_ref, address);
  350. if (!pte_present(*pte_ref))
  351. return -1;
  352. pte = pte_offset_kernel(pmd, address);
  353. /*
  354. * Don't use pte_page here, because the mappings can point
  355. * outside mem_map, and the NUMA hash lookup cannot handle
  356. * that:
  357. */
  358. if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
  359. BUG();
  360. return 0;
  361. }
  362. NOKPROBE_SYMBOL(vmalloc_fault);
  363. #ifdef CONFIG_CPU_SUP_AMD
  364. static const char errata93_warning[] =
  365. KERN_ERR
  366. "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
  367. "******* Working around it, but it may cause SEGVs or burn power.\n"
  368. "******* Please consider a BIOS update.\n"
  369. "******* Disabling USB legacy in the BIOS may also help.\n";
  370. #endif
  371. /*
  372. * No vm86 mode in 64-bit mode:
  373. */
  374. static inline void
  375. check_v8086_mode(struct pt_regs *regs, unsigned long address,
  376. struct task_struct *tsk)
  377. {
  378. }
  379. static int bad_address(void *p)
  380. {
  381. unsigned long dummy;
  382. return probe_kernel_address((unsigned long *)p, dummy);
  383. }
  384. static void dump_pagetable(unsigned long address)
  385. {
  386. pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
  387. pgd_t *pgd = base + pgd_index(address);
  388. pud_t *pud;
  389. pmd_t *pmd;
  390. pte_t *pte;
  391. if (bad_address(pgd))
  392. goto bad;
  393. printk("PGD %lx ", pgd_val(*pgd));
  394. if (!pgd_present(*pgd))
  395. goto out;
  396. pud = pud_offset(pgd, address);
  397. if (bad_address(pud))
  398. goto bad;
  399. printk("PUD %lx ", pud_val(*pud));
  400. if (!pud_present(*pud) || pud_large(*pud))
  401. goto out;
  402. pmd = pmd_offset(pud, address);
  403. if (bad_address(pmd))
  404. goto bad;
  405. printk("PMD %lx ", pmd_val(*pmd));
  406. if (!pmd_present(*pmd) || pmd_large(*pmd))
  407. goto out;
  408. pte = pte_offset_kernel(pmd, address);
  409. if (bad_address(pte))
  410. goto bad;
  411. printk("PTE %lx", pte_val(*pte));
  412. out:
  413. printk("\n");
  414. return;
  415. bad:
  416. printk("BAD\n");
  417. }
  418. #endif /* CONFIG_X86_64 */
  419. /*
  420. * Workaround for K8 erratum #93 & buggy BIOS.
  421. *
  422. * BIOS SMM functions are required to use a specific workaround
  423. * to avoid corruption of the 64bit RIP register on C stepping K8.
  424. *
  425. * A lot of BIOS that didn't get tested properly miss this.
  426. *
  427. * The OS sees this as a page fault with the upper 32bits of RIP cleared.
  428. * Try to work around it here.
  429. *
  430. * Note we only handle faults in kernel here.
  431. * Does nothing on 32-bit.
  432. */
  433. static int is_errata93(struct pt_regs *regs, unsigned long address)
  434. {
  435. #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
  436. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
  437. || boot_cpu_data.x86 != 0xf)
  438. return 0;
  439. if (address != regs->ip)
  440. return 0;
  441. if ((address >> 32) != 0)
  442. return 0;
  443. address |= 0xffffffffUL << 32;
  444. if ((address >= (u64)_stext && address <= (u64)_etext) ||
  445. (address >= MODULES_VADDR && address <= MODULES_END)) {
  446. printk_once(errata93_warning);
  447. regs->ip = address;
  448. return 1;
  449. }
  450. #endif
  451. return 0;
  452. }
  453. /*
  454. * Work around K8 erratum #100 K8 in compat mode occasionally jumps
  455. * to illegal addresses >4GB.
  456. *
  457. * We catch this in the page fault handler because these addresses
  458. * are not reachable. Just detect this case and return. Any code
  459. * segment in LDT is compatibility mode.
  460. */
  461. static int is_errata100(struct pt_regs *regs, unsigned long address)
  462. {
  463. #ifdef CONFIG_X86_64
  464. if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
  465. return 1;
  466. #endif
  467. return 0;
  468. }
  469. static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
  470. {
  471. #ifdef CONFIG_X86_F00F_BUG
  472. unsigned long nr;
  473. /*
  474. * Pentium F0 0F C7 C8 bug workaround:
  475. */
  476. if (boot_cpu_has_bug(X86_BUG_F00F)) {
  477. nr = (address - idt_descr.address) >> 3;
  478. if (nr == 6) {
  479. do_invalid_op(regs, 0);
  480. return 1;
  481. }
  482. }
  483. #endif
  484. return 0;
  485. }
  486. static const char nx_warning[] = KERN_CRIT
  487. "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
  488. static const char smep_warning[] = KERN_CRIT
  489. "unable to execute userspace code (SMEP?) (uid: %d)\n";
  490. static void
  491. show_fault_oops(struct pt_regs *regs, unsigned long error_code,
  492. unsigned long address)
  493. {
  494. if (!oops_may_print())
  495. return;
  496. if (error_code & PF_INSTR) {
  497. unsigned int level;
  498. pgd_t *pgd;
  499. pte_t *pte;
  500. pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
  501. pgd += pgd_index(address);
  502. pte = lookup_address_in_pgd(pgd, address, &level);
  503. if (pte && pte_present(*pte) && !pte_exec(*pte))
  504. printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
  505. if (pte && pte_present(*pte) && pte_exec(*pte) &&
  506. (pgd_flags(*pgd) & _PAGE_USER) &&
  507. (read_cr4() & X86_CR4_SMEP))
  508. printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
  509. }
  510. printk(KERN_ALERT "BUG: unable to handle kernel ");
  511. if (address < PAGE_SIZE)
  512. printk(KERN_CONT "NULL pointer dereference");
  513. else
  514. printk(KERN_CONT "paging request");
  515. printk(KERN_CONT " at %p\n", (void *) address);
  516. printk(KERN_ALERT "IP:");
  517. printk_address(regs->ip);
  518. dump_pagetable(address);
  519. }
  520. static noinline void
  521. pgtable_bad(struct pt_regs *regs, unsigned long error_code,
  522. unsigned long address)
  523. {
  524. struct task_struct *tsk;
  525. unsigned long flags;
  526. int sig;
  527. flags = oops_begin();
  528. tsk = current;
  529. sig = SIGKILL;
  530. printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
  531. tsk->comm, address);
  532. dump_pagetable(address);
  533. tsk->thread.cr2 = address;
  534. tsk->thread.trap_nr = X86_TRAP_PF;
  535. tsk->thread.error_code = error_code;
  536. if (__die("Bad pagetable", regs, error_code))
  537. sig = 0;
  538. oops_end(flags, regs, sig);
  539. }
  540. static noinline void
  541. no_context(struct pt_regs *regs, unsigned long error_code,
  542. unsigned long address, int signal, int si_code)
  543. {
  544. struct task_struct *tsk = current;
  545. unsigned long flags;
  546. int sig;
  547. /* Are we prepared to handle this kernel fault? */
  548. if (fixup_exception(regs)) {
  549. /*
  550. * Any interrupt that takes a fault gets the fixup. This makes
  551. * the below recursive fault logic only apply to a faults from
  552. * task context.
  553. */
  554. if (in_interrupt())
  555. return;
  556. /*
  557. * Per the above we're !in_interrupt(), aka. task context.
  558. *
  559. * In this case we need to make sure we're not recursively
  560. * faulting through the emulate_vsyscall() logic.
  561. */
  562. if (current_thread_info()->sig_on_uaccess_error && signal) {
  563. tsk->thread.trap_nr = X86_TRAP_PF;
  564. tsk->thread.error_code = error_code | PF_USER;
  565. tsk->thread.cr2 = address;
  566. /* XXX: hwpoison faults will set the wrong code. */
  567. force_sig_info_fault(signal, si_code, address, tsk, 0);
  568. }
  569. /*
  570. * Barring that, we can do the fixup and be happy.
  571. */
  572. return;
  573. }
  574. /*
  575. * 32-bit:
  576. *
  577. * Valid to do another page fault here, because if this fault
  578. * had been triggered by is_prefetch fixup_exception would have
  579. * handled it.
  580. *
  581. * 64-bit:
  582. *
  583. * Hall of shame of CPU/BIOS bugs.
  584. */
  585. if (is_prefetch(regs, error_code, address))
  586. return;
  587. if (is_errata93(regs, address))
  588. return;
  589. /*
  590. * Oops. The kernel tried to access some bad page. We'll have to
  591. * terminate things with extreme prejudice:
  592. */
  593. flags = oops_begin();
  594. show_fault_oops(regs, error_code, address);
  595. if (task_stack_end_corrupted(tsk))
  596. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  597. tsk->thread.cr2 = address;
  598. tsk->thread.trap_nr = X86_TRAP_PF;
  599. tsk->thread.error_code = error_code;
  600. sig = SIGKILL;
  601. if (__die("Oops", regs, error_code))
  602. sig = 0;
  603. /* Executive summary in case the body of the oops scrolled away */
  604. printk(KERN_DEFAULT "CR2: %016lx\n", address);
  605. oops_end(flags, regs, sig);
  606. }
  607. /*
  608. * Print out info about fatal segfaults, if the show_unhandled_signals
  609. * sysctl is set:
  610. */
  611. static inline void
  612. show_signal_msg(struct pt_regs *regs, unsigned long error_code,
  613. unsigned long address, struct task_struct *tsk)
  614. {
  615. if (!unhandled_signal(tsk, SIGSEGV))
  616. return;
  617. if (!printk_ratelimit())
  618. return;
  619. printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
  620. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  621. tsk->comm, task_pid_nr(tsk), address,
  622. (void *)regs->ip, (void *)regs->sp, error_code);
  623. print_vma_addr(KERN_CONT " in ", regs->ip);
  624. printk(KERN_CONT "\n");
  625. }
  626. static void
  627. __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
  628. unsigned long address, int si_code)
  629. {
  630. struct task_struct *tsk = current;
  631. /* User mode accesses just cause a SIGSEGV */
  632. if (error_code & PF_USER) {
  633. /*
  634. * It's possible to have interrupts off here:
  635. */
  636. local_irq_enable();
  637. /*
  638. * Valid to do another page fault here because this one came
  639. * from user space:
  640. */
  641. if (is_prefetch(regs, error_code, address))
  642. return;
  643. if (is_errata100(regs, address))
  644. return;
  645. #ifdef CONFIG_X86_64
  646. /*
  647. * Instruction fetch faults in the vsyscall page might need
  648. * emulation.
  649. */
  650. if (unlikely((error_code & PF_INSTR) &&
  651. ((address & ~0xfff) == VSYSCALL_ADDR))) {
  652. if (emulate_vsyscall(regs, address))
  653. return;
  654. }
  655. #endif
  656. /* Kernel addresses are always protection faults: */
  657. if (address >= TASK_SIZE)
  658. error_code |= PF_PROT;
  659. if (likely(show_unhandled_signals))
  660. show_signal_msg(regs, error_code, address, tsk);
  661. tsk->thread.cr2 = address;
  662. tsk->thread.error_code = error_code;
  663. tsk->thread.trap_nr = X86_TRAP_PF;
  664. force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
  665. return;
  666. }
  667. if (is_f00f_bug(regs, address))
  668. return;
  669. no_context(regs, error_code, address, SIGSEGV, si_code);
  670. }
  671. static noinline void
  672. bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
  673. unsigned long address)
  674. {
  675. __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
  676. }
  677. static void
  678. __bad_area(struct pt_regs *regs, unsigned long error_code,
  679. unsigned long address, int si_code)
  680. {
  681. struct mm_struct *mm = current->mm;
  682. /*
  683. * Something tried to access memory that isn't in our memory map..
  684. * Fix it, but check if it's kernel or user first..
  685. */
  686. up_read(&mm->mmap_sem);
  687. __bad_area_nosemaphore(regs, error_code, address, si_code);
  688. }
  689. static noinline void
  690. bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
  691. {
  692. __bad_area(regs, error_code, address, SEGV_MAPERR);
  693. }
  694. static noinline void
  695. bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
  696. unsigned long address)
  697. {
  698. __bad_area(regs, error_code, address, SEGV_ACCERR);
  699. }
  700. static void
  701. do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
  702. unsigned int fault)
  703. {
  704. struct task_struct *tsk = current;
  705. struct mm_struct *mm = tsk->mm;
  706. int code = BUS_ADRERR;
  707. up_read(&mm->mmap_sem);
  708. /* Kernel mode? Handle exceptions or die: */
  709. if (!(error_code & PF_USER)) {
  710. no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
  711. return;
  712. }
  713. /* User-space => ok to do another page fault: */
  714. if (is_prefetch(regs, error_code, address))
  715. return;
  716. tsk->thread.cr2 = address;
  717. tsk->thread.error_code = error_code;
  718. tsk->thread.trap_nr = X86_TRAP_PF;
  719. #ifdef CONFIG_MEMORY_FAILURE
  720. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  721. printk(KERN_ERR
  722. "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  723. tsk->comm, tsk->pid, address);
  724. code = BUS_MCEERR_AR;
  725. }
  726. #endif
  727. force_sig_info_fault(SIGBUS, code, address, tsk, fault);
  728. }
  729. static noinline void
  730. mm_fault_error(struct pt_regs *regs, unsigned long error_code,
  731. unsigned long address, unsigned int fault)
  732. {
  733. if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
  734. up_read(&current->mm->mmap_sem);
  735. no_context(regs, error_code, address, 0, 0);
  736. return;
  737. }
  738. if (fault & VM_FAULT_OOM) {
  739. /* Kernel mode? Handle exceptions or die: */
  740. if (!(error_code & PF_USER)) {
  741. up_read(&current->mm->mmap_sem);
  742. no_context(regs, error_code, address,
  743. SIGSEGV, SEGV_MAPERR);
  744. return;
  745. }
  746. up_read(&current->mm->mmap_sem);
  747. /*
  748. * We ran out of memory, call the OOM killer, and return the
  749. * userspace (which will retry the fault, or kill us if we got
  750. * oom-killed):
  751. */
  752. pagefault_out_of_memory();
  753. } else {
  754. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
  755. VM_FAULT_HWPOISON_LARGE))
  756. do_sigbus(regs, error_code, address, fault);
  757. else
  758. BUG();
  759. }
  760. }
  761. static int spurious_fault_check(unsigned long error_code, pte_t *pte)
  762. {
  763. if ((error_code & PF_WRITE) && !pte_write(*pte))
  764. return 0;
  765. if ((error_code & PF_INSTR) && !pte_exec(*pte))
  766. return 0;
  767. return 1;
  768. }
  769. /*
  770. * Handle a spurious fault caused by a stale TLB entry.
  771. *
  772. * This allows us to lazily refresh the TLB when increasing the
  773. * permissions of a kernel page (RO -> RW or NX -> X). Doing it
  774. * eagerly is very expensive since that implies doing a full
  775. * cross-processor TLB flush, even if no stale TLB entries exist
  776. * on other processors.
  777. *
  778. * Spurious faults may only occur if the TLB contains an entry with
  779. * fewer permission than the page table entry. Non-present (P = 0)
  780. * and reserved bit (R = 1) faults are never spurious.
  781. *
  782. * There are no security implications to leaving a stale TLB when
  783. * increasing the permissions on a page.
  784. *
  785. * Returns non-zero if a spurious fault was handled, zero otherwise.
  786. *
  787. * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
  788. * (Optional Invalidation).
  789. */
  790. static noinline int
  791. spurious_fault(unsigned long error_code, unsigned long address)
  792. {
  793. pgd_t *pgd;
  794. pud_t *pud;
  795. pmd_t *pmd;
  796. pte_t *pte;
  797. int ret;
  798. /*
  799. * Only writes to RO or instruction fetches from NX may cause
  800. * spurious faults.
  801. *
  802. * These could be from user or supervisor accesses but the TLB
  803. * is only lazily flushed after a kernel mapping protection
  804. * change, so user accesses are not expected to cause spurious
  805. * faults.
  806. */
  807. if (error_code != (PF_WRITE | PF_PROT)
  808. && error_code != (PF_INSTR | PF_PROT))
  809. return 0;
  810. pgd = init_mm.pgd + pgd_index(address);
  811. if (!pgd_present(*pgd))
  812. return 0;
  813. pud = pud_offset(pgd, address);
  814. if (!pud_present(*pud))
  815. return 0;
  816. if (pud_large(*pud))
  817. return spurious_fault_check(error_code, (pte_t *) pud);
  818. pmd = pmd_offset(pud, address);
  819. if (!pmd_present(*pmd))
  820. return 0;
  821. if (pmd_large(*pmd))
  822. return spurious_fault_check(error_code, (pte_t *) pmd);
  823. pte = pte_offset_kernel(pmd, address);
  824. if (!pte_present(*pte))
  825. return 0;
  826. ret = spurious_fault_check(error_code, pte);
  827. if (!ret)
  828. return 0;
  829. /*
  830. * Make sure we have permissions in PMD.
  831. * If not, then there's a bug in the page tables:
  832. */
  833. ret = spurious_fault_check(error_code, (pte_t *) pmd);
  834. WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
  835. return ret;
  836. }
  837. NOKPROBE_SYMBOL(spurious_fault);
  838. int show_unhandled_signals = 1;
  839. static inline int
  840. access_error(unsigned long error_code, struct vm_area_struct *vma)
  841. {
  842. if (error_code & PF_WRITE) {
  843. /* write, present and write, not present: */
  844. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  845. return 1;
  846. return 0;
  847. }
  848. /* read, present: */
  849. if (unlikely(error_code & PF_PROT))
  850. return 1;
  851. /* read, not present: */
  852. if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
  853. return 1;
  854. return 0;
  855. }
  856. static int fault_in_kernel_space(unsigned long address)
  857. {
  858. return address >= TASK_SIZE_MAX;
  859. }
  860. static inline bool smap_violation(int error_code, struct pt_regs *regs)
  861. {
  862. if (!IS_ENABLED(CONFIG_X86_SMAP))
  863. return false;
  864. if (!static_cpu_has(X86_FEATURE_SMAP))
  865. return false;
  866. if (error_code & PF_USER)
  867. return false;
  868. if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
  869. return false;
  870. return true;
  871. }
  872. /*
  873. * This routine handles page faults. It determines the address,
  874. * and the problem, and then passes it off to one of the appropriate
  875. * routines.
  876. *
  877. * This function must have noinline because both callers
  878. * {,trace_}do_page_fault() have notrace on. Having this an actual function
  879. * guarantees there's a function trace entry.
  880. */
  881. static noinline void
  882. __do_page_fault(struct pt_regs *regs, unsigned long error_code,
  883. unsigned long address)
  884. {
  885. struct vm_area_struct *vma;
  886. struct task_struct *tsk;
  887. struct mm_struct *mm;
  888. int fault;
  889. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  890. tsk = current;
  891. mm = tsk->mm;
  892. /*
  893. * Detect and handle instructions that would cause a page fault for
  894. * both a tracked kernel page and a userspace page.
  895. */
  896. if (kmemcheck_active(regs))
  897. kmemcheck_hide(regs);
  898. prefetchw(&mm->mmap_sem);
  899. if (unlikely(kmmio_fault(regs, address)))
  900. return;
  901. /*
  902. * We fault-in kernel-space virtual memory on-demand. The
  903. * 'reference' page table is init_mm.pgd.
  904. *
  905. * NOTE! We MUST NOT take any locks for this case. We may
  906. * be in an interrupt or a critical region, and should
  907. * only copy the information from the master page table,
  908. * nothing more.
  909. *
  910. * This verifies that the fault happens in kernel space
  911. * (error_code & 4) == 0, and that the fault was not a
  912. * protection error (error_code & 9) == 0.
  913. */
  914. if (unlikely(fault_in_kernel_space(address))) {
  915. if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
  916. if (vmalloc_fault(address) >= 0)
  917. return;
  918. if (kmemcheck_fault(regs, address, error_code))
  919. return;
  920. }
  921. /* Can handle a stale RO->RW TLB: */
  922. if (spurious_fault(error_code, address))
  923. return;
  924. /* kprobes don't want to hook the spurious faults: */
  925. if (kprobes_fault(regs))
  926. return;
  927. /*
  928. * Don't take the mm semaphore here. If we fixup a prefetch
  929. * fault we could otherwise deadlock:
  930. */
  931. bad_area_nosemaphore(regs, error_code, address);
  932. return;
  933. }
  934. /* kprobes don't want to hook the spurious faults: */
  935. if (unlikely(kprobes_fault(regs)))
  936. return;
  937. if (unlikely(error_code & PF_RSVD))
  938. pgtable_bad(regs, error_code, address);
  939. if (unlikely(smap_violation(error_code, regs))) {
  940. bad_area_nosemaphore(regs, error_code, address);
  941. return;
  942. }
  943. /*
  944. * If we're in an interrupt, have no user context or are running
  945. * in an atomic region then we must not take the fault:
  946. */
  947. if (unlikely(in_atomic() || !mm)) {
  948. bad_area_nosemaphore(regs, error_code, address);
  949. return;
  950. }
  951. /*
  952. * It's safe to allow irq's after cr2 has been saved and the
  953. * vmalloc fault has been handled.
  954. *
  955. * User-mode registers count as a user access even for any
  956. * potential system fault or CPU buglet:
  957. */
  958. if (user_mode_vm(regs)) {
  959. local_irq_enable();
  960. error_code |= PF_USER;
  961. flags |= FAULT_FLAG_USER;
  962. } else {
  963. if (regs->flags & X86_EFLAGS_IF)
  964. local_irq_enable();
  965. }
  966. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  967. if (error_code & PF_WRITE)
  968. flags |= FAULT_FLAG_WRITE;
  969. /*
  970. * When running in the kernel we expect faults to occur only to
  971. * addresses in user space. All other faults represent errors in
  972. * the kernel and should generate an OOPS. Unfortunately, in the
  973. * case of an erroneous fault occurring in a code path which already
  974. * holds mmap_sem we will deadlock attempting to validate the fault
  975. * against the address space. Luckily the kernel only validly
  976. * references user space from well defined areas of code, which are
  977. * listed in the exceptions table.
  978. *
  979. * As the vast majority of faults will be valid we will only perform
  980. * the source reference check when there is a possibility of a
  981. * deadlock. Attempt to lock the address space, if we cannot we then
  982. * validate the source. If this is invalid we can skip the address
  983. * space check, thus avoiding the deadlock:
  984. */
  985. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  986. if ((error_code & PF_USER) == 0 &&
  987. !search_exception_tables(regs->ip)) {
  988. bad_area_nosemaphore(regs, error_code, address);
  989. return;
  990. }
  991. retry:
  992. down_read(&mm->mmap_sem);
  993. } else {
  994. /*
  995. * The above down_read_trylock() might have succeeded in
  996. * which case we'll have missed the might_sleep() from
  997. * down_read():
  998. */
  999. might_sleep();
  1000. }
  1001. vma = find_vma(mm, address);
  1002. if (unlikely(!vma)) {
  1003. bad_area(regs, error_code, address);
  1004. return;
  1005. }
  1006. if (likely(vma->vm_start <= address))
  1007. goto good_area;
  1008. if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
  1009. bad_area(regs, error_code, address);
  1010. return;
  1011. }
  1012. if (error_code & PF_USER) {
  1013. /*
  1014. * Accessing the stack below %sp is always a bug.
  1015. * The large cushion allows instructions like enter
  1016. * and pusha to work. ("enter $65535, $31" pushes
  1017. * 32 pointers and then decrements %sp by 65535.)
  1018. */
  1019. if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
  1020. bad_area(regs, error_code, address);
  1021. return;
  1022. }
  1023. }
  1024. if (unlikely(expand_stack(vma, address))) {
  1025. bad_area(regs, error_code, address);
  1026. return;
  1027. }
  1028. /*
  1029. * Ok, we have a good vm_area for this memory access, so
  1030. * we can handle it..
  1031. */
  1032. good_area:
  1033. if (unlikely(access_error(error_code, vma))) {
  1034. bad_area_access_error(regs, error_code, address);
  1035. return;
  1036. }
  1037. /*
  1038. * If for any reason at all we couldn't handle the fault,
  1039. * make sure we exit gracefully rather than endlessly redo
  1040. * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
  1041. * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
  1042. */
  1043. fault = handle_mm_fault(mm, vma, address, flags);
  1044. /*
  1045. * If we need to retry but a fatal signal is pending, handle the
  1046. * signal first. We do not need to release the mmap_sem because it
  1047. * would already be released in __lock_page_or_retry in mm/filemap.c.
  1048. */
  1049. if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
  1050. return;
  1051. if (unlikely(fault & VM_FAULT_ERROR)) {
  1052. mm_fault_error(regs, error_code, address, fault);
  1053. return;
  1054. }
  1055. /*
  1056. * Major/minor page fault accounting is only done on the
  1057. * initial attempt. If we go through a retry, it is extremely
  1058. * likely that the page will be found in page cache at that point.
  1059. */
  1060. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  1061. if (fault & VM_FAULT_MAJOR) {
  1062. tsk->maj_flt++;
  1063. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  1064. regs, address);
  1065. } else {
  1066. tsk->min_flt++;
  1067. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  1068. regs, address);
  1069. }
  1070. if (fault & VM_FAULT_RETRY) {
  1071. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  1072. * of starvation. */
  1073. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  1074. flags |= FAULT_FLAG_TRIED;
  1075. goto retry;
  1076. }
  1077. }
  1078. check_v8086_mode(regs, address, tsk);
  1079. up_read(&mm->mmap_sem);
  1080. }
  1081. NOKPROBE_SYMBOL(__do_page_fault);
  1082. dotraplinkage void notrace
  1083. do_page_fault(struct pt_regs *regs, unsigned long error_code)
  1084. {
  1085. unsigned long address = read_cr2(); /* Get the faulting address */
  1086. enum ctx_state prev_state;
  1087. /*
  1088. * We must have this function tagged with __kprobes, notrace and call
  1089. * read_cr2() before calling anything else. To avoid calling any kind
  1090. * of tracing machinery before we've observed the CR2 value.
  1091. *
  1092. * exception_{enter,exit}() contain all sorts of tracepoints.
  1093. */
  1094. prev_state = exception_enter();
  1095. __do_page_fault(regs, error_code, address);
  1096. exception_exit(prev_state);
  1097. }
  1098. NOKPROBE_SYMBOL(do_page_fault);
  1099. #ifdef CONFIG_TRACING
  1100. static nokprobe_inline void
  1101. trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
  1102. unsigned long error_code)
  1103. {
  1104. if (user_mode(regs))
  1105. trace_page_fault_user(address, regs, error_code);
  1106. else
  1107. trace_page_fault_kernel(address, regs, error_code);
  1108. }
  1109. dotraplinkage void notrace
  1110. trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
  1111. {
  1112. /*
  1113. * The exception_enter and tracepoint processing could
  1114. * trigger another page faults (user space callchain
  1115. * reading) and destroy the original cr2 value, so read
  1116. * the faulting address now.
  1117. */
  1118. unsigned long address = read_cr2();
  1119. enum ctx_state prev_state;
  1120. prev_state = exception_enter();
  1121. trace_page_fault_entries(address, regs, error_code);
  1122. __do_page_fault(regs, error_code, address);
  1123. exception_exit(prev_state);
  1124. }
  1125. NOKPROBE_SYMBOL(trace_do_page_fault);
  1126. #endif /* CONFIG_TRACING */