mmu.c 114 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  60. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  61. #else
  62. #define pgprintk(x...) do { } while (0)
  63. #define rmap_printk(x...) do { } while (0)
  64. #endif
  65. #ifdef MMU_DEBUG
  66. static bool dbg = 0;
  67. module_param(dbg, bool, 0644);
  68. #endif
  69. #ifndef MMU_DEBUG
  70. #define ASSERT(x) do { } while (0)
  71. #else
  72. #define ASSERT(x) \
  73. if (!(x)) { \
  74. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  75. __FILE__, __LINE__, #x); \
  76. }
  77. #endif
  78. #define PTE_PREFETCH_NUM 8
  79. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  80. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  81. #define PT64_LEVEL_BITS 9
  82. #define PT64_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  84. #define PT64_INDEX(address, level)\
  85. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  86. #define PT32_LEVEL_BITS 10
  87. #define PT32_LEVEL_SHIFT(level) \
  88. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  89. #define PT32_LVL_OFFSET_MASK(level) \
  90. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT32_LEVEL_BITS))) - 1))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT64_LVL_ADDR_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT64_LVL_OFFSET_MASK(level) \
  101. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  102. * PT64_LEVEL_BITS))) - 1))
  103. #define PT32_BASE_ADDR_MASK PAGE_MASK
  104. #define PT32_DIR_BASE_ADDR_MASK \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  106. #define PT32_LVL_ADDR_MASK(level) \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT32_LEVEL_BITS))) - 1))
  109. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  110. | shadow_x_mask | shadow_nx_mask)
  111. #define ACC_EXEC_MASK 1
  112. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  113. #define ACC_USER_MASK PT_USER_MASK
  114. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  115. #include <trace/events/kvm.h>
  116. #define CREATE_TRACE_POINTS
  117. #include "mmutrace.h"
  118. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  119. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  120. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  121. /* make pte_list_desc fit well in cache line */
  122. #define PTE_LIST_EXT 3
  123. struct pte_list_desc {
  124. u64 *sptes[PTE_LIST_EXT];
  125. struct pte_list_desc *more;
  126. };
  127. struct kvm_shadow_walk_iterator {
  128. u64 addr;
  129. hpa_t shadow_addr;
  130. u64 *sptep;
  131. int level;
  132. unsigned index;
  133. };
  134. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  135. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  136. shadow_walk_okay(&(_walker)); \
  137. shadow_walk_next(&(_walker)))
  138. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  139. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  140. shadow_walk_okay(&(_walker)) && \
  141. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  142. __shadow_walk_next(&(_walker), spte))
  143. static struct kmem_cache *pte_list_desc_cache;
  144. static struct kmem_cache *mmu_page_header_cache;
  145. static struct percpu_counter kvm_total_used_mmu_pages;
  146. static u64 __read_mostly shadow_nx_mask;
  147. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  148. static u64 __read_mostly shadow_user_mask;
  149. static u64 __read_mostly shadow_accessed_mask;
  150. static u64 __read_mostly shadow_dirty_mask;
  151. static u64 __read_mostly shadow_mmio_mask;
  152. static void mmu_spte_set(u64 *sptep, u64 spte);
  153. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  154. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  155. {
  156. shadow_mmio_mask = mmio_mask;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  159. /*
  160. * the low bit of the generation number is always presumed to be zero.
  161. * This disables mmio caching during memslot updates. The concept is
  162. * similar to a seqcount but instead of retrying the access we just punt
  163. * and ignore the cache.
  164. *
  165. * spte bits 3-11 are used as bits 1-9 of the generation number,
  166. * the bits 52-61 are used as bits 10-19 of the generation number.
  167. */
  168. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  169. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  170. #define MMIO_GEN_SHIFT 20
  171. #define MMIO_GEN_LOW_SHIFT 10
  172. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  173. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  174. #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
  175. static u64 generation_mmio_spte_mask(unsigned int gen)
  176. {
  177. u64 mask;
  178. WARN_ON(gen > MMIO_MAX_GEN);
  179. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  180. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  181. return mask;
  182. }
  183. static unsigned int get_mmio_spte_generation(u64 spte)
  184. {
  185. unsigned int gen;
  186. spte &= ~shadow_mmio_mask;
  187. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  188. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  189. return gen;
  190. }
  191. static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
  192. {
  193. return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
  194. }
  195. static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
  196. unsigned access)
  197. {
  198. unsigned int gen = kvm_current_mmio_generation(kvm);
  199. u64 mask = generation_mmio_spte_mask(gen);
  200. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  201. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  202. trace_mark_mmio_spte(sptep, gfn, access, gen);
  203. mmu_spte_set(sptep, mask);
  204. }
  205. static bool is_mmio_spte(u64 spte)
  206. {
  207. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  208. }
  209. static gfn_t get_mmio_spte_gfn(u64 spte)
  210. {
  211. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  212. return (spte & ~mask) >> PAGE_SHIFT;
  213. }
  214. static unsigned get_mmio_spte_access(u64 spte)
  215. {
  216. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  217. return (spte & ~mask) & ~PAGE_MASK;
  218. }
  219. static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  220. pfn_t pfn, unsigned access)
  221. {
  222. if (unlikely(is_noslot_pfn(pfn))) {
  223. mark_mmio_spte(kvm, sptep, gfn, access);
  224. return true;
  225. }
  226. return false;
  227. }
  228. static bool check_mmio_spte(struct kvm *kvm, u64 spte)
  229. {
  230. unsigned int kvm_gen, spte_gen;
  231. kvm_gen = kvm_current_mmio_generation(kvm);
  232. spte_gen = get_mmio_spte_generation(spte);
  233. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  234. return likely(kvm_gen == spte_gen);
  235. }
  236. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  237. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  238. {
  239. shadow_user_mask = user_mask;
  240. shadow_accessed_mask = accessed_mask;
  241. shadow_dirty_mask = dirty_mask;
  242. shadow_nx_mask = nx_mask;
  243. shadow_x_mask = x_mask;
  244. }
  245. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  246. static int is_cpuid_PSE36(void)
  247. {
  248. return 1;
  249. }
  250. static int is_nx(struct kvm_vcpu *vcpu)
  251. {
  252. return vcpu->arch.efer & EFER_NX;
  253. }
  254. static int is_shadow_present_pte(u64 pte)
  255. {
  256. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  257. }
  258. static int is_large_pte(u64 pte)
  259. {
  260. return pte & PT_PAGE_SIZE_MASK;
  261. }
  262. static int is_rmap_spte(u64 pte)
  263. {
  264. return is_shadow_present_pte(pte);
  265. }
  266. static int is_last_spte(u64 pte, int level)
  267. {
  268. if (level == PT_PAGE_TABLE_LEVEL)
  269. return 1;
  270. if (is_large_pte(pte))
  271. return 1;
  272. return 0;
  273. }
  274. static pfn_t spte_to_pfn(u64 pte)
  275. {
  276. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  277. }
  278. static gfn_t pse36_gfn_delta(u32 gpte)
  279. {
  280. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  281. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  282. }
  283. #ifdef CONFIG_X86_64
  284. static void __set_spte(u64 *sptep, u64 spte)
  285. {
  286. *sptep = spte;
  287. }
  288. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  289. {
  290. *sptep = spte;
  291. }
  292. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  293. {
  294. return xchg(sptep, spte);
  295. }
  296. static u64 __get_spte_lockless(u64 *sptep)
  297. {
  298. return ACCESS_ONCE(*sptep);
  299. }
  300. static bool __check_direct_spte_mmio_pf(u64 spte)
  301. {
  302. /* It is valid if the spte is zapped. */
  303. return spte == 0ull;
  304. }
  305. #else
  306. union split_spte {
  307. struct {
  308. u32 spte_low;
  309. u32 spte_high;
  310. };
  311. u64 spte;
  312. };
  313. static void count_spte_clear(u64 *sptep, u64 spte)
  314. {
  315. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  316. if (is_shadow_present_pte(spte))
  317. return;
  318. /* Ensure the spte is completely set before we increase the count */
  319. smp_wmb();
  320. sp->clear_spte_count++;
  321. }
  322. static void __set_spte(u64 *sptep, u64 spte)
  323. {
  324. union split_spte *ssptep, sspte;
  325. ssptep = (union split_spte *)sptep;
  326. sspte = (union split_spte)spte;
  327. ssptep->spte_high = sspte.spte_high;
  328. /*
  329. * If we map the spte from nonpresent to present, We should store
  330. * the high bits firstly, then set present bit, so cpu can not
  331. * fetch this spte while we are setting the spte.
  332. */
  333. smp_wmb();
  334. ssptep->spte_low = sspte.spte_low;
  335. }
  336. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  337. {
  338. union split_spte *ssptep, sspte;
  339. ssptep = (union split_spte *)sptep;
  340. sspte = (union split_spte)spte;
  341. ssptep->spte_low = sspte.spte_low;
  342. /*
  343. * If we map the spte from present to nonpresent, we should clear
  344. * present bit firstly to avoid vcpu fetch the old high bits.
  345. */
  346. smp_wmb();
  347. ssptep->spte_high = sspte.spte_high;
  348. count_spte_clear(sptep, spte);
  349. }
  350. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  351. {
  352. union split_spte *ssptep, sspte, orig;
  353. ssptep = (union split_spte *)sptep;
  354. sspte = (union split_spte)spte;
  355. /* xchg acts as a barrier before the setting of the high bits */
  356. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  357. orig.spte_high = ssptep->spte_high;
  358. ssptep->spte_high = sspte.spte_high;
  359. count_spte_clear(sptep, spte);
  360. return orig.spte;
  361. }
  362. /*
  363. * The idea using the light way get the spte on x86_32 guest is from
  364. * gup_get_pte(arch/x86/mm/gup.c).
  365. *
  366. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  367. * coalesces them and we are running out of the MMU lock. Therefore
  368. * we need to protect against in-progress updates of the spte.
  369. *
  370. * Reading the spte while an update is in progress may get the old value
  371. * for the high part of the spte. The race is fine for a present->non-present
  372. * change (because the high part of the spte is ignored for non-present spte),
  373. * but for a present->present change we must reread the spte.
  374. *
  375. * All such changes are done in two steps (present->non-present and
  376. * non-present->present), hence it is enough to count the number of
  377. * present->non-present updates: if it changed while reading the spte,
  378. * we might have hit the race. This is done using clear_spte_count.
  379. */
  380. static u64 __get_spte_lockless(u64 *sptep)
  381. {
  382. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  383. union split_spte spte, *orig = (union split_spte *)sptep;
  384. int count;
  385. retry:
  386. count = sp->clear_spte_count;
  387. smp_rmb();
  388. spte.spte_low = orig->spte_low;
  389. smp_rmb();
  390. spte.spte_high = orig->spte_high;
  391. smp_rmb();
  392. if (unlikely(spte.spte_low != orig->spte_low ||
  393. count != sp->clear_spte_count))
  394. goto retry;
  395. return spte.spte;
  396. }
  397. static bool __check_direct_spte_mmio_pf(u64 spte)
  398. {
  399. union split_spte sspte = (union split_spte)spte;
  400. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  401. /* It is valid if the spte is zapped. */
  402. if (spte == 0ull)
  403. return true;
  404. /* It is valid if the spte is being zapped. */
  405. if (sspte.spte_low == 0ull &&
  406. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  407. return true;
  408. return false;
  409. }
  410. #endif
  411. static bool spte_is_locklessly_modifiable(u64 spte)
  412. {
  413. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  414. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  415. }
  416. static bool spte_has_volatile_bits(u64 spte)
  417. {
  418. /*
  419. * Always atomicly update spte if it can be updated
  420. * out of mmu-lock, it can ensure dirty bit is not lost,
  421. * also, it can help us to get a stable is_writable_pte()
  422. * to ensure tlb flush is not missed.
  423. */
  424. if (spte_is_locklessly_modifiable(spte))
  425. return true;
  426. if (!shadow_accessed_mask)
  427. return false;
  428. if (!is_shadow_present_pte(spte))
  429. return false;
  430. if ((spte & shadow_accessed_mask) &&
  431. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  432. return false;
  433. return true;
  434. }
  435. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  436. {
  437. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  438. }
  439. /* Rules for using mmu_spte_set:
  440. * Set the sptep from nonpresent to present.
  441. * Note: the sptep being assigned *must* be either not present
  442. * or in a state where the hardware will not attempt to update
  443. * the spte.
  444. */
  445. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  446. {
  447. WARN_ON(is_shadow_present_pte(*sptep));
  448. __set_spte(sptep, new_spte);
  449. }
  450. /* Rules for using mmu_spte_update:
  451. * Update the state bits, it means the mapped pfn is not changged.
  452. *
  453. * Whenever we overwrite a writable spte with a read-only one we
  454. * should flush remote TLBs. Otherwise rmap_write_protect
  455. * will find a read-only spte, even though the writable spte
  456. * might be cached on a CPU's TLB, the return value indicates this
  457. * case.
  458. */
  459. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  460. {
  461. u64 old_spte = *sptep;
  462. bool ret = false;
  463. WARN_ON(!is_rmap_spte(new_spte));
  464. if (!is_shadow_present_pte(old_spte)) {
  465. mmu_spte_set(sptep, new_spte);
  466. return ret;
  467. }
  468. if (!spte_has_volatile_bits(old_spte))
  469. __update_clear_spte_fast(sptep, new_spte);
  470. else
  471. old_spte = __update_clear_spte_slow(sptep, new_spte);
  472. /*
  473. * For the spte updated out of mmu-lock is safe, since
  474. * we always atomicly update it, see the comments in
  475. * spte_has_volatile_bits().
  476. */
  477. if (spte_is_locklessly_modifiable(old_spte) &&
  478. !is_writable_pte(new_spte))
  479. ret = true;
  480. if (!shadow_accessed_mask)
  481. return ret;
  482. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  483. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  484. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  485. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  486. return ret;
  487. }
  488. /*
  489. * Rules for using mmu_spte_clear_track_bits:
  490. * It sets the sptep from present to nonpresent, and track the
  491. * state bits, it is used to clear the last level sptep.
  492. */
  493. static int mmu_spte_clear_track_bits(u64 *sptep)
  494. {
  495. pfn_t pfn;
  496. u64 old_spte = *sptep;
  497. if (!spte_has_volatile_bits(old_spte))
  498. __update_clear_spte_fast(sptep, 0ull);
  499. else
  500. old_spte = __update_clear_spte_slow(sptep, 0ull);
  501. if (!is_rmap_spte(old_spte))
  502. return 0;
  503. pfn = spte_to_pfn(old_spte);
  504. /*
  505. * KVM does not hold the refcount of the page used by
  506. * kvm mmu, before reclaiming the page, we should
  507. * unmap it from mmu first.
  508. */
  509. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  510. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  511. kvm_set_pfn_accessed(pfn);
  512. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  513. kvm_set_pfn_dirty(pfn);
  514. return 1;
  515. }
  516. /*
  517. * Rules for using mmu_spte_clear_no_track:
  518. * Directly clear spte without caring the state bits of sptep,
  519. * it is used to set the upper level spte.
  520. */
  521. static void mmu_spte_clear_no_track(u64 *sptep)
  522. {
  523. __update_clear_spte_fast(sptep, 0ull);
  524. }
  525. static u64 mmu_spte_get_lockless(u64 *sptep)
  526. {
  527. return __get_spte_lockless(sptep);
  528. }
  529. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  530. {
  531. /*
  532. * Prevent page table teardown by making any free-er wait during
  533. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  534. */
  535. local_irq_disable();
  536. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  537. /*
  538. * Make sure a following spte read is not reordered ahead of the write
  539. * to vcpu->mode.
  540. */
  541. smp_mb();
  542. }
  543. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  544. {
  545. /*
  546. * Make sure the write to vcpu->mode is not reordered in front of
  547. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  548. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  549. */
  550. smp_mb();
  551. vcpu->mode = OUTSIDE_GUEST_MODE;
  552. local_irq_enable();
  553. }
  554. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  555. struct kmem_cache *base_cache, int min)
  556. {
  557. void *obj;
  558. if (cache->nobjs >= min)
  559. return 0;
  560. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  561. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  562. if (!obj)
  563. return -ENOMEM;
  564. cache->objects[cache->nobjs++] = obj;
  565. }
  566. return 0;
  567. }
  568. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  569. {
  570. return cache->nobjs;
  571. }
  572. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  573. struct kmem_cache *cache)
  574. {
  575. while (mc->nobjs)
  576. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  577. }
  578. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  579. int min)
  580. {
  581. void *page;
  582. if (cache->nobjs >= min)
  583. return 0;
  584. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  585. page = (void *)__get_free_page(GFP_KERNEL);
  586. if (!page)
  587. return -ENOMEM;
  588. cache->objects[cache->nobjs++] = page;
  589. }
  590. return 0;
  591. }
  592. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  593. {
  594. while (mc->nobjs)
  595. free_page((unsigned long)mc->objects[--mc->nobjs]);
  596. }
  597. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  598. {
  599. int r;
  600. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  601. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  602. if (r)
  603. goto out;
  604. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  605. if (r)
  606. goto out;
  607. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  608. mmu_page_header_cache, 4);
  609. out:
  610. return r;
  611. }
  612. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  613. {
  614. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  615. pte_list_desc_cache);
  616. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  617. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  618. mmu_page_header_cache);
  619. }
  620. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  621. {
  622. void *p;
  623. BUG_ON(!mc->nobjs);
  624. p = mc->objects[--mc->nobjs];
  625. return p;
  626. }
  627. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  628. {
  629. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  630. }
  631. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  632. {
  633. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  634. }
  635. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  636. {
  637. if (!sp->role.direct)
  638. return sp->gfns[index];
  639. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  640. }
  641. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  642. {
  643. if (sp->role.direct)
  644. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  645. else
  646. sp->gfns[index] = gfn;
  647. }
  648. /*
  649. * Return the pointer to the large page information for a given gfn,
  650. * handling slots that are not large page aligned.
  651. */
  652. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  653. struct kvm_memory_slot *slot,
  654. int level)
  655. {
  656. unsigned long idx;
  657. idx = gfn_to_index(gfn, slot->base_gfn, level);
  658. return &slot->arch.lpage_info[level - 2][idx];
  659. }
  660. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  661. {
  662. struct kvm_memory_slot *slot;
  663. struct kvm_lpage_info *linfo;
  664. int i;
  665. slot = gfn_to_memslot(kvm, gfn);
  666. for (i = PT_DIRECTORY_LEVEL;
  667. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  668. linfo = lpage_info_slot(gfn, slot, i);
  669. linfo->write_count += 1;
  670. }
  671. kvm->arch.indirect_shadow_pages++;
  672. }
  673. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  674. {
  675. struct kvm_memory_slot *slot;
  676. struct kvm_lpage_info *linfo;
  677. int i;
  678. slot = gfn_to_memslot(kvm, gfn);
  679. for (i = PT_DIRECTORY_LEVEL;
  680. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  681. linfo = lpage_info_slot(gfn, slot, i);
  682. linfo->write_count -= 1;
  683. WARN_ON(linfo->write_count < 0);
  684. }
  685. kvm->arch.indirect_shadow_pages--;
  686. }
  687. static int has_wrprotected_page(struct kvm *kvm,
  688. gfn_t gfn,
  689. int level)
  690. {
  691. struct kvm_memory_slot *slot;
  692. struct kvm_lpage_info *linfo;
  693. slot = gfn_to_memslot(kvm, gfn);
  694. if (slot) {
  695. linfo = lpage_info_slot(gfn, slot, level);
  696. return linfo->write_count;
  697. }
  698. return 1;
  699. }
  700. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  701. {
  702. unsigned long page_size;
  703. int i, ret = 0;
  704. page_size = kvm_host_page_size(kvm, gfn);
  705. for (i = PT_PAGE_TABLE_LEVEL;
  706. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  707. if (page_size >= KVM_HPAGE_SIZE(i))
  708. ret = i;
  709. else
  710. break;
  711. }
  712. return ret;
  713. }
  714. static struct kvm_memory_slot *
  715. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  716. bool no_dirty_log)
  717. {
  718. struct kvm_memory_slot *slot;
  719. slot = gfn_to_memslot(vcpu->kvm, gfn);
  720. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  721. (no_dirty_log && slot->dirty_bitmap))
  722. slot = NULL;
  723. return slot;
  724. }
  725. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  726. {
  727. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  728. }
  729. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  730. {
  731. int host_level, level, max_level;
  732. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  733. if (host_level == PT_PAGE_TABLE_LEVEL)
  734. return host_level;
  735. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  736. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  737. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  738. break;
  739. return level - 1;
  740. }
  741. /*
  742. * Pte mapping structures:
  743. *
  744. * If pte_list bit zero is zero, then pte_list point to the spte.
  745. *
  746. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  747. * pte_list_desc containing more mappings.
  748. *
  749. * Returns the number of pte entries before the spte was added or zero if
  750. * the spte was not added.
  751. *
  752. */
  753. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  754. unsigned long *pte_list)
  755. {
  756. struct pte_list_desc *desc;
  757. int i, count = 0;
  758. if (!*pte_list) {
  759. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  760. *pte_list = (unsigned long)spte;
  761. } else if (!(*pte_list & 1)) {
  762. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  763. desc = mmu_alloc_pte_list_desc(vcpu);
  764. desc->sptes[0] = (u64 *)*pte_list;
  765. desc->sptes[1] = spte;
  766. *pte_list = (unsigned long)desc | 1;
  767. ++count;
  768. } else {
  769. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  770. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  771. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  772. desc = desc->more;
  773. count += PTE_LIST_EXT;
  774. }
  775. if (desc->sptes[PTE_LIST_EXT-1]) {
  776. desc->more = mmu_alloc_pte_list_desc(vcpu);
  777. desc = desc->more;
  778. }
  779. for (i = 0; desc->sptes[i]; ++i)
  780. ++count;
  781. desc->sptes[i] = spte;
  782. }
  783. return count;
  784. }
  785. static void
  786. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  787. int i, struct pte_list_desc *prev_desc)
  788. {
  789. int j;
  790. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  791. ;
  792. desc->sptes[i] = desc->sptes[j];
  793. desc->sptes[j] = NULL;
  794. if (j != 0)
  795. return;
  796. if (!prev_desc && !desc->more)
  797. *pte_list = (unsigned long)desc->sptes[0];
  798. else
  799. if (prev_desc)
  800. prev_desc->more = desc->more;
  801. else
  802. *pte_list = (unsigned long)desc->more | 1;
  803. mmu_free_pte_list_desc(desc);
  804. }
  805. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  806. {
  807. struct pte_list_desc *desc;
  808. struct pte_list_desc *prev_desc;
  809. int i;
  810. if (!*pte_list) {
  811. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  812. BUG();
  813. } else if (!(*pte_list & 1)) {
  814. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  815. if ((u64 *)*pte_list != spte) {
  816. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  817. BUG();
  818. }
  819. *pte_list = 0;
  820. } else {
  821. rmap_printk("pte_list_remove: %p many->many\n", spte);
  822. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  823. prev_desc = NULL;
  824. while (desc) {
  825. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  826. if (desc->sptes[i] == spte) {
  827. pte_list_desc_remove_entry(pte_list,
  828. desc, i,
  829. prev_desc);
  830. return;
  831. }
  832. prev_desc = desc;
  833. desc = desc->more;
  834. }
  835. pr_err("pte_list_remove: %p many->many\n", spte);
  836. BUG();
  837. }
  838. }
  839. typedef void (*pte_list_walk_fn) (u64 *spte);
  840. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  841. {
  842. struct pte_list_desc *desc;
  843. int i;
  844. if (!*pte_list)
  845. return;
  846. if (!(*pte_list & 1))
  847. return fn((u64 *)*pte_list);
  848. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  849. while (desc) {
  850. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  851. fn(desc->sptes[i]);
  852. desc = desc->more;
  853. }
  854. }
  855. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  856. struct kvm_memory_slot *slot)
  857. {
  858. unsigned long idx;
  859. idx = gfn_to_index(gfn, slot->base_gfn, level);
  860. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  861. }
  862. /*
  863. * Take gfn and return the reverse mapping to it.
  864. */
  865. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  866. {
  867. struct kvm_memory_slot *slot;
  868. slot = gfn_to_memslot(kvm, gfn);
  869. return __gfn_to_rmap(gfn, level, slot);
  870. }
  871. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  872. {
  873. struct kvm_mmu_memory_cache *cache;
  874. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  875. return mmu_memory_cache_free_objects(cache);
  876. }
  877. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  878. {
  879. struct kvm_mmu_page *sp;
  880. unsigned long *rmapp;
  881. sp = page_header(__pa(spte));
  882. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  883. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  884. return pte_list_add(vcpu, spte, rmapp);
  885. }
  886. static void rmap_remove(struct kvm *kvm, u64 *spte)
  887. {
  888. struct kvm_mmu_page *sp;
  889. gfn_t gfn;
  890. unsigned long *rmapp;
  891. sp = page_header(__pa(spte));
  892. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  893. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  894. pte_list_remove(spte, rmapp);
  895. }
  896. /*
  897. * Used by the following functions to iterate through the sptes linked by a
  898. * rmap. All fields are private and not assumed to be used outside.
  899. */
  900. struct rmap_iterator {
  901. /* private fields */
  902. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  903. int pos; /* index of the sptep */
  904. };
  905. /*
  906. * Iteration must be started by this function. This should also be used after
  907. * removing/dropping sptes from the rmap link because in such cases the
  908. * information in the itererator may not be valid.
  909. *
  910. * Returns sptep if found, NULL otherwise.
  911. */
  912. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  913. {
  914. if (!rmap)
  915. return NULL;
  916. if (!(rmap & 1)) {
  917. iter->desc = NULL;
  918. return (u64 *)rmap;
  919. }
  920. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  921. iter->pos = 0;
  922. return iter->desc->sptes[iter->pos];
  923. }
  924. /*
  925. * Must be used with a valid iterator: e.g. after rmap_get_first().
  926. *
  927. * Returns sptep if found, NULL otherwise.
  928. */
  929. static u64 *rmap_get_next(struct rmap_iterator *iter)
  930. {
  931. if (iter->desc) {
  932. if (iter->pos < PTE_LIST_EXT - 1) {
  933. u64 *sptep;
  934. ++iter->pos;
  935. sptep = iter->desc->sptes[iter->pos];
  936. if (sptep)
  937. return sptep;
  938. }
  939. iter->desc = iter->desc->more;
  940. if (iter->desc) {
  941. iter->pos = 0;
  942. /* desc->sptes[0] cannot be NULL */
  943. return iter->desc->sptes[iter->pos];
  944. }
  945. }
  946. return NULL;
  947. }
  948. static void drop_spte(struct kvm *kvm, u64 *sptep)
  949. {
  950. if (mmu_spte_clear_track_bits(sptep))
  951. rmap_remove(kvm, sptep);
  952. }
  953. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  954. {
  955. if (is_large_pte(*sptep)) {
  956. WARN_ON(page_header(__pa(sptep))->role.level ==
  957. PT_PAGE_TABLE_LEVEL);
  958. drop_spte(kvm, sptep);
  959. --kvm->stat.lpages;
  960. return true;
  961. }
  962. return false;
  963. }
  964. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  965. {
  966. if (__drop_large_spte(vcpu->kvm, sptep))
  967. kvm_flush_remote_tlbs(vcpu->kvm);
  968. }
  969. /*
  970. * Write-protect on the specified @sptep, @pt_protect indicates whether
  971. * spte write-protection is caused by protecting shadow page table.
  972. *
  973. * Note: write protection is difference between dirty logging and spte
  974. * protection:
  975. * - for dirty logging, the spte can be set to writable at anytime if
  976. * its dirty bitmap is properly set.
  977. * - for spte protection, the spte can be writable only after unsync-ing
  978. * shadow page.
  979. *
  980. * Return true if tlb need be flushed.
  981. */
  982. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  983. {
  984. u64 spte = *sptep;
  985. if (!is_writable_pte(spte) &&
  986. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  987. return false;
  988. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  989. if (pt_protect)
  990. spte &= ~SPTE_MMU_WRITEABLE;
  991. spte = spte & ~PT_WRITABLE_MASK;
  992. return mmu_spte_update(sptep, spte);
  993. }
  994. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  995. bool pt_protect)
  996. {
  997. u64 *sptep;
  998. struct rmap_iterator iter;
  999. bool flush = false;
  1000. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1001. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1002. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1003. sptep = rmap_get_next(&iter);
  1004. }
  1005. return flush;
  1006. }
  1007. /**
  1008. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1009. * @kvm: kvm instance
  1010. * @slot: slot to protect
  1011. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1012. * @mask: indicates which pages we should protect
  1013. *
  1014. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1015. * logging we do not have any such mappings.
  1016. */
  1017. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1018. struct kvm_memory_slot *slot,
  1019. gfn_t gfn_offset, unsigned long mask)
  1020. {
  1021. unsigned long *rmapp;
  1022. while (mask) {
  1023. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1024. PT_PAGE_TABLE_LEVEL, slot);
  1025. __rmap_write_protect(kvm, rmapp, false);
  1026. /* clear the first set bit */
  1027. mask &= mask - 1;
  1028. }
  1029. }
  1030. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  1031. {
  1032. struct kvm_memory_slot *slot;
  1033. unsigned long *rmapp;
  1034. int i;
  1035. bool write_protected = false;
  1036. slot = gfn_to_memslot(kvm, gfn);
  1037. for (i = PT_PAGE_TABLE_LEVEL;
  1038. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  1039. rmapp = __gfn_to_rmap(gfn, i, slot);
  1040. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  1041. }
  1042. return write_protected;
  1043. }
  1044. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1045. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1046. unsigned long data)
  1047. {
  1048. u64 *sptep;
  1049. struct rmap_iterator iter;
  1050. int need_tlb_flush = 0;
  1051. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1052. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1053. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
  1054. sptep, *sptep, gfn, level);
  1055. drop_spte(kvm, sptep);
  1056. need_tlb_flush = 1;
  1057. }
  1058. return need_tlb_flush;
  1059. }
  1060. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1061. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1062. unsigned long data)
  1063. {
  1064. u64 *sptep;
  1065. struct rmap_iterator iter;
  1066. int need_flush = 0;
  1067. u64 new_spte;
  1068. pte_t *ptep = (pte_t *)data;
  1069. pfn_t new_pfn;
  1070. WARN_ON(pte_huge(*ptep));
  1071. new_pfn = pte_pfn(*ptep);
  1072. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1073. BUG_ON(!is_shadow_present_pte(*sptep));
  1074. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1075. sptep, *sptep, gfn, level);
  1076. need_flush = 1;
  1077. if (pte_write(*ptep)) {
  1078. drop_spte(kvm, sptep);
  1079. sptep = rmap_get_first(*rmapp, &iter);
  1080. } else {
  1081. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1082. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1083. new_spte &= ~PT_WRITABLE_MASK;
  1084. new_spte &= ~SPTE_HOST_WRITEABLE;
  1085. new_spte &= ~shadow_accessed_mask;
  1086. mmu_spte_clear_track_bits(sptep);
  1087. mmu_spte_set(sptep, new_spte);
  1088. sptep = rmap_get_next(&iter);
  1089. }
  1090. }
  1091. if (need_flush)
  1092. kvm_flush_remote_tlbs(kvm);
  1093. return 0;
  1094. }
  1095. static int kvm_handle_hva_range(struct kvm *kvm,
  1096. unsigned long start,
  1097. unsigned long end,
  1098. unsigned long data,
  1099. int (*handler)(struct kvm *kvm,
  1100. unsigned long *rmapp,
  1101. struct kvm_memory_slot *slot,
  1102. gfn_t gfn,
  1103. int level,
  1104. unsigned long data))
  1105. {
  1106. int j;
  1107. int ret = 0;
  1108. struct kvm_memslots *slots;
  1109. struct kvm_memory_slot *memslot;
  1110. slots = kvm_memslots(kvm);
  1111. kvm_for_each_memslot(memslot, slots) {
  1112. unsigned long hva_start, hva_end;
  1113. gfn_t gfn_start, gfn_end;
  1114. hva_start = max(start, memslot->userspace_addr);
  1115. hva_end = min(end, memslot->userspace_addr +
  1116. (memslot->npages << PAGE_SHIFT));
  1117. if (hva_start >= hva_end)
  1118. continue;
  1119. /*
  1120. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1121. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1122. */
  1123. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1124. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1125. for (j = PT_PAGE_TABLE_LEVEL;
  1126. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1127. unsigned long idx, idx_end;
  1128. unsigned long *rmapp;
  1129. gfn_t gfn = gfn_start;
  1130. /*
  1131. * {idx(page_j) | page_j intersects with
  1132. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1133. */
  1134. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1135. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1136. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1137. for (; idx <= idx_end;
  1138. ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
  1139. ret |= handler(kvm, rmapp++, memslot,
  1140. gfn, j, data);
  1141. }
  1142. }
  1143. return ret;
  1144. }
  1145. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1146. unsigned long data,
  1147. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1148. struct kvm_memory_slot *slot,
  1149. gfn_t gfn, int level,
  1150. unsigned long data))
  1151. {
  1152. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1153. }
  1154. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1155. {
  1156. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1157. }
  1158. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1159. {
  1160. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1161. }
  1162. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1163. {
  1164. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1165. }
  1166. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1167. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1168. unsigned long data)
  1169. {
  1170. u64 *sptep;
  1171. struct rmap_iterator uninitialized_var(iter);
  1172. int young = 0;
  1173. BUG_ON(!shadow_accessed_mask);
  1174. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1175. sptep = rmap_get_next(&iter)) {
  1176. BUG_ON(!is_shadow_present_pte(*sptep));
  1177. if (*sptep & shadow_accessed_mask) {
  1178. young = 1;
  1179. clear_bit((ffs(shadow_accessed_mask) - 1),
  1180. (unsigned long *)sptep);
  1181. }
  1182. }
  1183. trace_kvm_age_page(gfn, level, slot, young);
  1184. return young;
  1185. }
  1186. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1187. struct kvm_memory_slot *slot, gfn_t gfn,
  1188. int level, unsigned long data)
  1189. {
  1190. u64 *sptep;
  1191. struct rmap_iterator iter;
  1192. int young = 0;
  1193. /*
  1194. * If there's no access bit in the secondary pte set by the
  1195. * hardware it's up to gup-fast/gup to set the access bit in
  1196. * the primary pte or in the page structure.
  1197. */
  1198. if (!shadow_accessed_mask)
  1199. goto out;
  1200. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1201. sptep = rmap_get_next(&iter)) {
  1202. BUG_ON(!is_shadow_present_pte(*sptep));
  1203. if (*sptep & shadow_accessed_mask) {
  1204. young = 1;
  1205. break;
  1206. }
  1207. }
  1208. out:
  1209. return young;
  1210. }
  1211. #define RMAP_RECYCLE_THRESHOLD 1000
  1212. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1213. {
  1214. unsigned long *rmapp;
  1215. struct kvm_mmu_page *sp;
  1216. sp = page_header(__pa(spte));
  1217. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1218. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
  1219. kvm_flush_remote_tlbs(vcpu->kvm);
  1220. }
  1221. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1222. {
  1223. /*
  1224. * In case of absence of EPT Access and Dirty Bits supports,
  1225. * emulate the accessed bit for EPT, by checking if this page has
  1226. * an EPT mapping, and clearing it if it does. On the next access,
  1227. * a new EPT mapping will be established.
  1228. * This has some overhead, but not as much as the cost of swapping
  1229. * out actively used pages or breaking up actively used hugepages.
  1230. */
  1231. if (!shadow_accessed_mask) {
  1232. /*
  1233. * We are holding the kvm->mmu_lock, and we are blowing up
  1234. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1235. * This is correct as long as we don't decouple the mmu_lock
  1236. * protected regions (like invalidate_range_start|end does).
  1237. */
  1238. kvm->mmu_notifier_seq++;
  1239. return kvm_handle_hva_range(kvm, start, end, 0,
  1240. kvm_unmap_rmapp);
  1241. }
  1242. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1243. }
  1244. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1245. {
  1246. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1247. }
  1248. #ifdef MMU_DEBUG
  1249. static int is_empty_shadow_page(u64 *spt)
  1250. {
  1251. u64 *pos;
  1252. u64 *end;
  1253. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1254. if (is_shadow_present_pte(*pos)) {
  1255. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1256. pos, *pos);
  1257. return 0;
  1258. }
  1259. return 1;
  1260. }
  1261. #endif
  1262. /*
  1263. * This value is the sum of all of the kvm instances's
  1264. * kvm->arch.n_used_mmu_pages values. We need a global,
  1265. * aggregate version in order to make the slab shrinker
  1266. * faster
  1267. */
  1268. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1269. {
  1270. kvm->arch.n_used_mmu_pages += nr;
  1271. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1272. }
  1273. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1274. {
  1275. ASSERT(is_empty_shadow_page(sp->spt));
  1276. hlist_del(&sp->hash_link);
  1277. list_del(&sp->link);
  1278. free_page((unsigned long)sp->spt);
  1279. if (!sp->role.direct)
  1280. free_page((unsigned long)sp->gfns);
  1281. kmem_cache_free(mmu_page_header_cache, sp);
  1282. }
  1283. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1284. {
  1285. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1286. }
  1287. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1288. struct kvm_mmu_page *sp, u64 *parent_pte)
  1289. {
  1290. if (!parent_pte)
  1291. return;
  1292. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1293. }
  1294. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1295. u64 *parent_pte)
  1296. {
  1297. pte_list_remove(parent_pte, &sp->parent_ptes);
  1298. }
  1299. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1300. u64 *parent_pte)
  1301. {
  1302. mmu_page_remove_parent_pte(sp, parent_pte);
  1303. mmu_spte_clear_no_track(parent_pte);
  1304. }
  1305. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1306. u64 *parent_pte, int direct)
  1307. {
  1308. struct kvm_mmu_page *sp;
  1309. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1310. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1311. if (!direct)
  1312. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1313. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1314. /*
  1315. * The active_mmu_pages list is the FIFO list, do not move the
  1316. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1317. * this feature. See the comments in kvm_zap_obsolete_pages().
  1318. */
  1319. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1320. sp->parent_ptes = 0;
  1321. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1322. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1323. return sp;
  1324. }
  1325. static void mark_unsync(u64 *spte);
  1326. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1327. {
  1328. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1329. }
  1330. static void mark_unsync(u64 *spte)
  1331. {
  1332. struct kvm_mmu_page *sp;
  1333. unsigned int index;
  1334. sp = page_header(__pa(spte));
  1335. index = spte - sp->spt;
  1336. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1337. return;
  1338. if (sp->unsync_children++)
  1339. return;
  1340. kvm_mmu_mark_parents_unsync(sp);
  1341. }
  1342. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1343. struct kvm_mmu_page *sp)
  1344. {
  1345. return 1;
  1346. }
  1347. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1348. {
  1349. }
  1350. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1351. struct kvm_mmu_page *sp, u64 *spte,
  1352. const void *pte)
  1353. {
  1354. WARN_ON(1);
  1355. }
  1356. #define KVM_PAGE_ARRAY_NR 16
  1357. struct kvm_mmu_pages {
  1358. struct mmu_page_and_offset {
  1359. struct kvm_mmu_page *sp;
  1360. unsigned int idx;
  1361. } page[KVM_PAGE_ARRAY_NR];
  1362. unsigned int nr;
  1363. };
  1364. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1365. int idx)
  1366. {
  1367. int i;
  1368. if (sp->unsync)
  1369. for (i=0; i < pvec->nr; i++)
  1370. if (pvec->page[i].sp == sp)
  1371. return 0;
  1372. pvec->page[pvec->nr].sp = sp;
  1373. pvec->page[pvec->nr].idx = idx;
  1374. pvec->nr++;
  1375. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1376. }
  1377. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1378. struct kvm_mmu_pages *pvec)
  1379. {
  1380. int i, ret, nr_unsync_leaf = 0;
  1381. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1382. struct kvm_mmu_page *child;
  1383. u64 ent = sp->spt[i];
  1384. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1385. goto clear_child_bitmap;
  1386. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1387. if (child->unsync_children) {
  1388. if (mmu_pages_add(pvec, child, i))
  1389. return -ENOSPC;
  1390. ret = __mmu_unsync_walk(child, pvec);
  1391. if (!ret)
  1392. goto clear_child_bitmap;
  1393. else if (ret > 0)
  1394. nr_unsync_leaf += ret;
  1395. else
  1396. return ret;
  1397. } else if (child->unsync) {
  1398. nr_unsync_leaf++;
  1399. if (mmu_pages_add(pvec, child, i))
  1400. return -ENOSPC;
  1401. } else
  1402. goto clear_child_bitmap;
  1403. continue;
  1404. clear_child_bitmap:
  1405. __clear_bit(i, sp->unsync_child_bitmap);
  1406. sp->unsync_children--;
  1407. WARN_ON((int)sp->unsync_children < 0);
  1408. }
  1409. return nr_unsync_leaf;
  1410. }
  1411. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1412. struct kvm_mmu_pages *pvec)
  1413. {
  1414. if (!sp->unsync_children)
  1415. return 0;
  1416. mmu_pages_add(pvec, sp, 0);
  1417. return __mmu_unsync_walk(sp, pvec);
  1418. }
  1419. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1420. {
  1421. WARN_ON(!sp->unsync);
  1422. trace_kvm_mmu_sync_page(sp);
  1423. sp->unsync = 0;
  1424. --kvm->stat.mmu_unsync;
  1425. }
  1426. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1427. struct list_head *invalid_list);
  1428. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1429. struct list_head *invalid_list);
  1430. /*
  1431. * NOTE: we should pay more attention on the zapped-obsolete page
  1432. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1433. * since it has been deleted from active_mmu_pages but still can be found
  1434. * at hast list.
  1435. *
  1436. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1437. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1438. * all the obsolete pages.
  1439. */
  1440. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1441. hlist_for_each_entry(_sp, \
  1442. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1443. if ((_sp)->gfn != (_gfn)) {} else
  1444. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1445. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1446. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1447. /* @sp->gfn should be write-protected at the call site */
  1448. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1449. struct list_head *invalid_list, bool clear_unsync)
  1450. {
  1451. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1452. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1453. return 1;
  1454. }
  1455. if (clear_unsync)
  1456. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1457. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1458. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1459. return 1;
  1460. }
  1461. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1462. return 0;
  1463. }
  1464. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1465. struct kvm_mmu_page *sp)
  1466. {
  1467. LIST_HEAD(invalid_list);
  1468. int ret;
  1469. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1470. if (ret)
  1471. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1472. return ret;
  1473. }
  1474. #ifdef CONFIG_KVM_MMU_AUDIT
  1475. #include "mmu_audit.c"
  1476. #else
  1477. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1478. static void mmu_audit_disable(void) { }
  1479. #endif
  1480. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1481. struct list_head *invalid_list)
  1482. {
  1483. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1484. }
  1485. /* @gfn should be write-protected at the call site */
  1486. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1487. {
  1488. struct kvm_mmu_page *s;
  1489. LIST_HEAD(invalid_list);
  1490. bool flush = false;
  1491. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1492. if (!s->unsync)
  1493. continue;
  1494. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1495. kvm_unlink_unsync_page(vcpu->kvm, s);
  1496. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1497. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1498. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1499. continue;
  1500. }
  1501. flush = true;
  1502. }
  1503. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1504. if (flush)
  1505. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1506. }
  1507. struct mmu_page_path {
  1508. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1509. unsigned int idx[PT64_ROOT_LEVEL-1];
  1510. };
  1511. #define for_each_sp(pvec, sp, parents, i) \
  1512. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1513. sp = pvec.page[i].sp; \
  1514. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1515. i = mmu_pages_next(&pvec, &parents, i))
  1516. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1517. struct mmu_page_path *parents,
  1518. int i)
  1519. {
  1520. int n;
  1521. for (n = i+1; n < pvec->nr; n++) {
  1522. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1523. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1524. parents->idx[0] = pvec->page[n].idx;
  1525. return n;
  1526. }
  1527. parents->parent[sp->role.level-2] = sp;
  1528. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1529. }
  1530. return n;
  1531. }
  1532. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1533. {
  1534. struct kvm_mmu_page *sp;
  1535. unsigned int level = 0;
  1536. do {
  1537. unsigned int idx = parents->idx[level];
  1538. sp = parents->parent[level];
  1539. if (!sp)
  1540. return;
  1541. --sp->unsync_children;
  1542. WARN_ON((int)sp->unsync_children < 0);
  1543. __clear_bit(idx, sp->unsync_child_bitmap);
  1544. level++;
  1545. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1546. }
  1547. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1548. struct mmu_page_path *parents,
  1549. struct kvm_mmu_pages *pvec)
  1550. {
  1551. parents->parent[parent->role.level-1] = NULL;
  1552. pvec->nr = 0;
  1553. }
  1554. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1555. struct kvm_mmu_page *parent)
  1556. {
  1557. int i;
  1558. struct kvm_mmu_page *sp;
  1559. struct mmu_page_path parents;
  1560. struct kvm_mmu_pages pages;
  1561. LIST_HEAD(invalid_list);
  1562. kvm_mmu_pages_init(parent, &parents, &pages);
  1563. while (mmu_unsync_walk(parent, &pages)) {
  1564. bool protected = false;
  1565. for_each_sp(pages, sp, parents, i)
  1566. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1567. if (protected)
  1568. kvm_flush_remote_tlbs(vcpu->kvm);
  1569. for_each_sp(pages, sp, parents, i) {
  1570. kvm_sync_page(vcpu, sp, &invalid_list);
  1571. mmu_pages_clear_parents(&parents);
  1572. }
  1573. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1574. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1575. kvm_mmu_pages_init(parent, &parents, &pages);
  1576. }
  1577. }
  1578. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1579. {
  1580. int i;
  1581. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1582. sp->spt[i] = 0ull;
  1583. }
  1584. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1585. {
  1586. sp->write_flooding_count = 0;
  1587. }
  1588. static void clear_sp_write_flooding_count(u64 *spte)
  1589. {
  1590. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1591. __clear_sp_write_flooding_count(sp);
  1592. }
  1593. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1594. {
  1595. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1596. }
  1597. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1598. gfn_t gfn,
  1599. gva_t gaddr,
  1600. unsigned level,
  1601. int direct,
  1602. unsigned access,
  1603. u64 *parent_pte)
  1604. {
  1605. union kvm_mmu_page_role role;
  1606. unsigned quadrant;
  1607. struct kvm_mmu_page *sp;
  1608. bool need_sync = false;
  1609. role = vcpu->arch.mmu.base_role;
  1610. role.level = level;
  1611. role.direct = direct;
  1612. if (role.direct)
  1613. role.cr4_pae = 0;
  1614. role.access = access;
  1615. if (!vcpu->arch.mmu.direct_map
  1616. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1617. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1618. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1619. role.quadrant = quadrant;
  1620. }
  1621. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1622. if (is_obsolete_sp(vcpu->kvm, sp))
  1623. continue;
  1624. if (!need_sync && sp->unsync)
  1625. need_sync = true;
  1626. if (sp->role.word != role.word)
  1627. continue;
  1628. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1629. break;
  1630. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1631. if (sp->unsync_children) {
  1632. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1633. kvm_mmu_mark_parents_unsync(sp);
  1634. } else if (sp->unsync)
  1635. kvm_mmu_mark_parents_unsync(sp);
  1636. __clear_sp_write_flooding_count(sp);
  1637. trace_kvm_mmu_get_page(sp, false);
  1638. return sp;
  1639. }
  1640. ++vcpu->kvm->stat.mmu_cache_miss;
  1641. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1642. if (!sp)
  1643. return sp;
  1644. sp->gfn = gfn;
  1645. sp->role = role;
  1646. hlist_add_head(&sp->hash_link,
  1647. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1648. if (!direct) {
  1649. if (rmap_write_protect(vcpu->kvm, gfn))
  1650. kvm_flush_remote_tlbs(vcpu->kvm);
  1651. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1652. kvm_sync_pages(vcpu, gfn);
  1653. account_shadowed(vcpu->kvm, gfn);
  1654. }
  1655. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1656. init_shadow_page_table(sp);
  1657. trace_kvm_mmu_get_page(sp, true);
  1658. return sp;
  1659. }
  1660. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1661. struct kvm_vcpu *vcpu, u64 addr)
  1662. {
  1663. iterator->addr = addr;
  1664. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1665. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1666. if (iterator->level == PT64_ROOT_LEVEL &&
  1667. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1668. !vcpu->arch.mmu.direct_map)
  1669. --iterator->level;
  1670. if (iterator->level == PT32E_ROOT_LEVEL) {
  1671. iterator->shadow_addr
  1672. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1673. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1674. --iterator->level;
  1675. if (!iterator->shadow_addr)
  1676. iterator->level = 0;
  1677. }
  1678. }
  1679. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1680. {
  1681. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1682. return false;
  1683. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1684. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1685. return true;
  1686. }
  1687. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1688. u64 spte)
  1689. {
  1690. if (is_last_spte(spte, iterator->level)) {
  1691. iterator->level = 0;
  1692. return;
  1693. }
  1694. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1695. --iterator->level;
  1696. }
  1697. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1698. {
  1699. return __shadow_walk_next(iterator, *iterator->sptep);
  1700. }
  1701. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1702. {
  1703. u64 spte;
  1704. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1705. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1706. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1707. shadow_user_mask | shadow_x_mask;
  1708. if (accessed)
  1709. spte |= shadow_accessed_mask;
  1710. mmu_spte_set(sptep, spte);
  1711. }
  1712. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1713. unsigned direct_access)
  1714. {
  1715. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1716. struct kvm_mmu_page *child;
  1717. /*
  1718. * For the direct sp, if the guest pte's dirty bit
  1719. * changed form clean to dirty, it will corrupt the
  1720. * sp's access: allow writable in the read-only sp,
  1721. * so we should update the spte at this point to get
  1722. * a new sp with the correct access.
  1723. */
  1724. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1725. if (child->role.access == direct_access)
  1726. return;
  1727. drop_parent_pte(child, sptep);
  1728. kvm_flush_remote_tlbs(vcpu->kvm);
  1729. }
  1730. }
  1731. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1732. u64 *spte)
  1733. {
  1734. u64 pte;
  1735. struct kvm_mmu_page *child;
  1736. pte = *spte;
  1737. if (is_shadow_present_pte(pte)) {
  1738. if (is_last_spte(pte, sp->role.level)) {
  1739. drop_spte(kvm, spte);
  1740. if (is_large_pte(pte))
  1741. --kvm->stat.lpages;
  1742. } else {
  1743. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1744. drop_parent_pte(child, spte);
  1745. }
  1746. return true;
  1747. }
  1748. if (is_mmio_spte(pte))
  1749. mmu_spte_clear_no_track(spte);
  1750. return false;
  1751. }
  1752. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1753. struct kvm_mmu_page *sp)
  1754. {
  1755. unsigned i;
  1756. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1757. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1758. }
  1759. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1760. {
  1761. mmu_page_remove_parent_pte(sp, parent_pte);
  1762. }
  1763. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1764. {
  1765. u64 *sptep;
  1766. struct rmap_iterator iter;
  1767. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1768. drop_parent_pte(sp, sptep);
  1769. }
  1770. static int mmu_zap_unsync_children(struct kvm *kvm,
  1771. struct kvm_mmu_page *parent,
  1772. struct list_head *invalid_list)
  1773. {
  1774. int i, zapped = 0;
  1775. struct mmu_page_path parents;
  1776. struct kvm_mmu_pages pages;
  1777. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1778. return 0;
  1779. kvm_mmu_pages_init(parent, &parents, &pages);
  1780. while (mmu_unsync_walk(parent, &pages)) {
  1781. struct kvm_mmu_page *sp;
  1782. for_each_sp(pages, sp, parents, i) {
  1783. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1784. mmu_pages_clear_parents(&parents);
  1785. zapped++;
  1786. }
  1787. kvm_mmu_pages_init(parent, &parents, &pages);
  1788. }
  1789. return zapped;
  1790. }
  1791. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1792. struct list_head *invalid_list)
  1793. {
  1794. int ret;
  1795. trace_kvm_mmu_prepare_zap_page(sp);
  1796. ++kvm->stat.mmu_shadow_zapped;
  1797. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1798. kvm_mmu_page_unlink_children(kvm, sp);
  1799. kvm_mmu_unlink_parents(kvm, sp);
  1800. if (!sp->role.invalid && !sp->role.direct)
  1801. unaccount_shadowed(kvm, sp->gfn);
  1802. if (sp->unsync)
  1803. kvm_unlink_unsync_page(kvm, sp);
  1804. if (!sp->root_count) {
  1805. /* Count self */
  1806. ret++;
  1807. list_move(&sp->link, invalid_list);
  1808. kvm_mod_used_mmu_pages(kvm, -1);
  1809. } else {
  1810. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1811. /*
  1812. * The obsolete pages can not be used on any vcpus.
  1813. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1814. */
  1815. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1816. kvm_reload_remote_mmus(kvm);
  1817. }
  1818. sp->role.invalid = 1;
  1819. return ret;
  1820. }
  1821. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1822. struct list_head *invalid_list)
  1823. {
  1824. struct kvm_mmu_page *sp, *nsp;
  1825. if (list_empty(invalid_list))
  1826. return;
  1827. /*
  1828. * wmb: make sure everyone sees our modifications to the page tables
  1829. * rmb: make sure we see changes to vcpu->mode
  1830. */
  1831. smp_mb();
  1832. /*
  1833. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1834. * page table walks.
  1835. */
  1836. kvm_flush_remote_tlbs(kvm);
  1837. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1838. WARN_ON(!sp->role.invalid || sp->root_count);
  1839. kvm_mmu_free_page(sp);
  1840. }
  1841. }
  1842. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1843. struct list_head *invalid_list)
  1844. {
  1845. struct kvm_mmu_page *sp;
  1846. if (list_empty(&kvm->arch.active_mmu_pages))
  1847. return false;
  1848. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1849. struct kvm_mmu_page, link);
  1850. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1851. return true;
  1852. }
  1853. /*
  1854. * Changing the number of mmu pages allocated to the vm
  1855. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1856. */
  1857. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1858. {
  1859. LIST_HEAD(invalid_list);
  1860. spin_lock(&kvm->mmu_lock);
  1861. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1862. /* Need to free some mmu pages to achieve the goal. */
  1863. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1864. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1865. break;
  1866. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1867. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1868. }
  1869. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1870. spin_unlock(&kvm->mmu_lock);
  1871. }
  1872. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1873. {
  1874. struct kvm_mmu_page *sp;
  1875. LIST_HEAD(invalid_list);
  1876. int r;
  1877. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1878. r = 0;
  1879. spin_lock(&kvm->mmu_lock);
  1880. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1881. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1882. sp->role.word);
  1883. r = 1;
  1884. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1885. }
  1886. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1887. spin_unlock(&kvm->mmu_lock);
  1888. return r;
  1889. }
  1890. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1891. /*
  1892. * The function is based on mtrr_type_lookup() in
  1893. * arch/x86/kernel/cpu/mtrr/generic.c
  1894. */
  1895. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1896. u64 start, u64 end)
  1897. {
  1898. int i;
  1899. u64 base, mask;
  1900. u8 prev_match, curr_match;
  1901. int num_var_ranges = KVM_NR_VAR_MTRR;
  1902. if (!mtrr_state->enabled)
  1903. return 0xFF;
  1904. /* Make end inclusive end, instead of exclusive */
  1905. end--;
  1906. /* Look in fixed ranges. Just return the type as per start */
  1907. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1908. int idx;
  1909. if (start < 0x80000) {
  1910. idx = 0;
  1911. idx += (start >> 16);
  1912. return mtrr_state->fixed_ranges[idx];
  1913. } else if (start < 0xC0000) {
  1914. idx = 1 * 8;
  1915. idx += ((start - 0x80000) >> 14);
  1916. return mtrr_state->fixed_ranges[idx];
  1917. } else if (start < 0x1000000) {
  1918. idx = 3 * 8;
  1919. idx += ((start - 0xC0000) >> 12);
  1920. return mtrr_state->fixed_ranges[idx];
  1921. }
  1922. }
  1923. /*
  1924. * Look in variable ranges
  1925. * Look of multiple ranges matching this address and pick type
  1926. * as per MTRR precedence
  1927. */
  1928. if (!(mtrr_state->enabled & 2))
  1929. return mtrr_state->def_type;
  1930. prev_match = 0xFF;
  1931. for (i = 0; i < num_var_ranges; ++i) {
  1932. unsigned short start_state, end_state;
  1933. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1934. continue;
  1935. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1936. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1937. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1938. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1939. start_state = ((start & mask) == (base & mask));
  1940. end_state = ((end & mask) == (base & mask));
  1941. if (start_state != end_state)
  1942. return 0xFE;
  1943. if ((start & mask) != (base & mask))
  1944. continue;
  1945. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1946. if (prev_match == 0xFF) {
  1947. prev_match = curr_match;
  1948. continue;
  1949. }
  1950. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1951. curr_match == MTRR_TYPE_UNCACHABLE)
  1952. return MTRR_TYPE_UNCACHABLE;
  1953. if ((prev_match == MTRR_TYPE_WRBACK &&
  1954. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1955. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1956. curr_match == MTRR_TYPE_WRBACK)) {
  1957. prev_match = MTRR_TYPE_WRTHROUGH;
  1958. curr_match = MTRR_TYPE_WRTHROUGH;
  1959. }
  1960. if (prev_match != curr_match)
  1961. return MTRR_TYPE_UNCACHABLE;
  1962. }
  1963. if (prev_match != 0xFF)
  1964. return prev_match;
  1965. return mtrr_state->def_type;
  1966. }
  1967. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1968. {
  1969. u8 mtrr;
  1970. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1971. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1972. if (mtrr == 0xfe || mtrr == 0xff)
  1973. mtrr = MTRR_TYPE_WRBACK;
  1974. return mtrr;
  1975. }
  1976. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1977. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1978. {
  1979. trace_kvm_mmu_unsync_page(sp);
  1980. ++vcpu->kvm->stat.mmu_unsync;
  1981. sp->unsync = 1;
  1982. kvm_mmu_mark_parents_unsync(sp);
  1983. }
  1984. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1985. {
  1986. struct kvm_mmu_page *s;
  1987. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1988. if (s->unsync)
  1989. continue;
  1990. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1991. __kvm_unsync_page(vcpu, s);
  1992. }
  1993. }
  1994. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1995. bool can_unsync)
  1996. {
  1997. struct kvm_mmu_page *s;
  1998. bool need_unsync = false;
  1999. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2000. if (!can_unsync)
  2001. return 1;
  2002. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  2003. return 1;
  2004. if (!s->unsync)
  2005. need_unsync = true;
  2006. }
  2007. if (need_unsync)
  2008. kvm_unsync_pages(vcpu, gfn);
  2009. return 0;
  2010. }
  2011. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2012. unsigned pte_access, int level,
  2013. gfn_t gfn, pfn_t pfn, bool speculative,
  2014. bool can_unsync, bool host_writable)
  2015. {
  2016. u64 spte;
  2017. int ret = 0;
  2018. if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
  2019. return 0;
  2020. spte = PT_PRESENT_MASK;
  2021. if (!speculative)
  2022. spte |= shadow_accessed_mask;
  2023. if (pte_access & ACC_EXEC_MASK)
  2024. spte |= shadow_x_mask;
  2025. else
  2026. spte |= shadow_nx_mask;
  2027. if (pte_access & ACC_USER_MASK)
  2028. spte |= shadow_user_mask;
  2029. if (level > PT_PAGE_TABLE_LEVEL)
  2030. spte |= PT_PAGE_SIZE_MASK;
  2031. if (tdp_enabled)
  2032. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2033. kvm_is_mmio_pfn(pfn));
  2034. if (host_writable)
  2035. spte |= SPTE_HOST_WRITEABLE;
  2036. else
  2037. pte_access &= ~ACC_WRITE_MASK;
  2038. spte |= (u64)pfn << PAGE_SHIFT;
  2039. if (pte_access & ACC_WRITE_MASK) {
  2040. /*
  2041. * Other vcpu creates new sp in the window between
  2042. * mapping_level() and acquiring mmu-lock. We can
  2043. * allow guest to retry the access, the mapping can
  2044. * be fixed if guest refault.
  2045. */
  2046. if (level > PT_PAGE_TABLE_LEVEL &&
  2047. has_wrprotected_page(vcpu->kvm, gfn, level))
  2048. goto done;
  2049. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2050. /*
  2051. * Optimization: for pte sync, if spte was writable the hash
  2052. * lookup is unnecessary (and expensive). Write protection
  2053. * is responsibility of mmu_get_page / kvm_sync_page.
  2054. * Same reasoning can be applied to dirty page accounting.
  2055. */
  2056. if (!can_unsync && is_writable_pte(*sptep))
  2057. goto set_pte;
  2058. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2059. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2060. __func__, gfn);
  2061. ret = 1;
  2062. pte_access &= ~ACC_WRITE_MASK;
  2063. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2064. }
  2065. }
  2066. if (pte_access & ACC_WRITE_MASK)
  2067. mark_page_dirty(vcpu->kvm, gfn);
  2068. set_pte:
  2069. if (mmu_spte_update(sptep, spte))
  2070. kvm_flush_remote_tlbs(vcpu->kvm);
  2071. done:
  2072. return ret;
  2073. }
  2074. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2075. unsigned pte_access, int write_fault, int *emulate,
  2076. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2077. bool host_writable)
  2078. {
  2079. int was_rmapped = 0;
  2080. int rmap_count;
  2081. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2082. *sptep, write_fault, gfn);
  2083. if (is_rmap_spte(*sptep)) {
  2084. /*
  2085. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2086. * the parent of the now unreachable PTE.
  2087. */
  2088. if (level > PT_PAGE_TABLE_LEVEL &&
  2089. !is_large_pte(*sptep)) {
  2090. struct kvm_mmu_page *child;
  2091. u64 pte = *sptep;
  2092. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2093. drop_parent_pte(child, sptep);
  2094. kvm_flush_remote_tlbs(vcpu->kvm);
  2095. } else if (pfn != spte_to_pfn(*sptep)) {
  2096. pgprintk("hfn old %llx new %llx\n",
  2097. spte_to_pfn(*sptep), pfn);
  2098. drop_spte(vcpu->kvm, sptep);
  2099. kvm_flush_remote_tlbs(vcpu->kvm);
  2100. } else
  2101. was_rmapped = 1;
  2102. }
  2103. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2104. true, host_writable)) {
  2105. if (write_fault)
  2106. *emulate = 1;
  2107. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2108. }
  2109. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2110. *emulate = 1;
  2111. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2112. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2113. is_large_pte(*sptep)? "2MB" : "4kB",
  2114. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2115. *sptep, sptep);
  2116. if (!was_rmapped && is_large_pte(*sptep))
  2117. ++vcpu->kvm->stat.lpages;
  2118. if (is_shadow_present_pte(*sptep)) {
  2119. if (!was_rmapped) {
  2120. rmap_count = rmap_add(vcpu, sptep, gfn);
  2121. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2122. rmap_recycle(vcpu, sptep, gfn);
  2123. }
  2124. }
  2125. kvm_release_pfn_clean(pfn);
  2126. }
  2127. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2128. bool no_dirty_log)
  2129. {
  2130. struct kvm_memory_slot *slot;
  2131. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2132. if (!slot)
  2133. return KVM_PFN_ERR_FAULT;
  2134. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2135. }
  2136. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2137. struct kvm_mmu_page *sp,
  2138. u64 *start, u64 *end)
  2139. {
  2140. struct page *pages[PTE_PREFETCH_NUM];
  2141. unsigned access = sp->role.access;
  2142. int i, ret;
  2143. gfn_t gfn;
  2144. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2145. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2146. return -1;
  2147. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2148. if (ret <= 0)
  2149. return -1;
  2150. for (i = 0; i < ret; i++, gfn++, start++)
  2151. mmu_set_spte(vcpu, start, access, 0, NULL,
  2152. sp->role.level, gfn, page_to_pfn(pages[i]),
  2153. true, true);
  2154. return 0;
  2155. }
  2156. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2157. struct kvm_mmu_page *sp, u64 *sptep)
  2158. {
  2159. u64 *spte, *start = NULL;
  2160. int i;
  2161. WARN_ON(!sp->role.direct);
  2162. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2163. spte = sp->spt + i;
  2164. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2165. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2166. if (!start)
  2167. continue;
  2168. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2169. break;
  2170. start = NULL;
  2171. } else if (!start)
  2172. start = spte;
  2173. }
  2174. }
  2175. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2176. {
  2177. struct kvm_mmu_page *sp;
  2178. /*
  2179. * Since it's no accessed bit on EPT, it's no way to
  2180. * distinguish between actually accessed translations
  2181. * and prefetched, so disable pte prefetch if EPT is
  2182. * enabled.
  2183. */
  2184. if (!shadow_accessed_mask)
  2185. return;
  2186. sp = page_header(__pa(sptep));
  2187. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2188. return;
  2189. __direct_pte_prefetch(vcpu, sp, sptep);
  2190. }
  2191. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2192. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2193. bool prefault)
  2194. {
  2195. struct kvm_shadow_walk_iterator iterator;
  2196. struct kvm_mmu_page *sp;
  2197. int emulate = 0;
  2198. gfn_t pseudo_gfn;
  2199. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2200. return 0;
  2201. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2202. if (iterator.level == level) {
  2203. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2204. write, &emulate, level, gfn, pfn,
  2205. prefault, map_writable);
  2206. direct_pte_prefetch(vcpu, iterator.sptep);
  2207. ++vcpu->stat.pf_fixed;
  2208. break;
  2209. }
  2210. drop_large_spte(vcpu, iterator.sptep);
  2211. if (!is_shadow_present_pte(*iterator.sptep)) {
  2212. u64 base_addr = iterator.addr;
  2213. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2214. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2215. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2216. iterator.level - 1,
  2217. 1, ACC_ALL, iterator.sptep);
  2218. link_shadow_page(iterator.sptep, sp, true);
  2219. }
  2220. }
  2221. return emulate;
  2222. }
  2223. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2224. {
  2225. siginfo_t info;
  2226. info.si_signo = SIGBUS;
  2227. info.si_errno = 0;
  2228. info.si_code = BUS_MCEERR_AR;
  2229. info.si_addr = (void __user *)address;
  2230. info.si_addr_lsb = PAGE_SHIFT;
  2231. send_sig_info(SIGBUS, &info, tsk);
  2232. }
  2233. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2234. {
  2235. /*
  2236. * Do not cache the mmio info caused by writing the readonly gfn
  2237. * into the spte otherwise read access on readonly gfn also can
  2238. * caused mmio page fault and treat it as mmio access.
  2239. * Return 1 to tell kvm to emulate it.
  2240. */
  2241. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2242. return 1;
  2243. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2244. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2245. return 0;
  2246. }
  2247. return -EFAULT;
  2248. }
  2249. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2250. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2251. {
  2252. pfn_t pfn = *pfnp;
  2253. gfn_t gfn = *gfnp;
  2254. int level = *levelp;
  2255. /*
  2256. * Check if it's a transparent hugepage. If this would be an
  2257. * hugetlbfs page, level wouldn't be set to
  2258. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2259. * here.
  2260. */
  2261. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2262. level == PT_PAGE_TABLE_LEVEL &&
  2263. PageTransCompound(pfn_to_page(pfn)) &&
  2264. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2265. unsigned long mask;
  2266. /*
  2267. * mmu_notifier_retry was successful and we hold the
  2268. * mmu_lock here, so the pmd can't become splitting
  2269. * from under us, and in turn
  2270. * __split_huge_page_refcount() can't run from under
  2271. * us and we can safely transfer the refcount from
  2272. * PG_tail to PG_head as we switch the pfn to tail to
  2273. * head.
  2274. */
  2275. *levelp = level = PT_DIRECTORY_LEVEL;
  2276. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2277. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2278. if (pfn & mask) {
  2279. gfn &= ~mask;
  2280. *gfnp = gfn;
  2281. kvm_release_pfn_clean(pfn);
  2282. pfn &= ~mask;
  2283. kvm_get_pfn(pfn);
  2284. *pfnp = pfn;
  2285. }
  2286. }
  2287. }
  2288. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2289. pfn_t pfn, unsigned access, int *ret_val)
  2290. {
  2291. bool ret = true;
  2292. /* The pfn is invalid, report the error! */
  2293. if (unlikely(is_error_pfn(pfn))) {
  2294. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2295. goto exit;
  2296. }
  2297. if (unlikely(is_noslot_pfn(pfn)))
  2298. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2299. ret = false;
  2300. exit:
  2301. return ret;
  2302. }
  2303. static bool page_fault_can_be_fast(u32 error_code)
  2304. {
  2305. /*
  2306. * Do not fix the mmio spte with invalid generation number which
  2307. * need to be updated by slow page fault path.
  2308. */
  2309. if (unlikely(error_code & PFERR_RSVD_MASK))
  2310. return false;
  2311. /*
  2312. * #PF can be fast only if the shadow page table is present and it
  2313. * is caused by write-protect, that means we just need change the
  2314. * W bit of the spte which can be done out of mmu-lock.
  2315. */
  2316. if (!(error_code & PFERR_PRESENT_MASK) ||
  2317. !(error_code & PFERR_WRITE_MASK))
  2318. return false;
  2319. return true;
  2320. }
  2321. static bool
  2322. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2323. u64 *sptep, u64 spte)
  2324. {
  2325. gfn_t gfn;
  2326. WARN_ON(!sp->role.direct);
  2327. /*
  2328. * The gfn of direct spte is stable since it is calculated
  2329. * by sp->gfn.
  2330. */
  2331. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2332. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2333. mark_page_dirty(vcpu->kvm, gfn);
  2334. return true;
  2335. }
  2336. /*
  2337. * Return value:
  2338. * - true: let the vcpu to access on the same address again.
  2339. * - false: let the real page fault path to fix it.
  2340. */
  2341. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2342. u32 error_code)
  2343. {
  2344. struct kvm_shadow_walk_iterator iterator;
  2345. struct kvm_mmu_page *sp;
  2346. bool ret = false;
  2347. u64 spte = 0ull;
  2348. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2349. return false;
  2350. if (!page_fault_can_be_fast(error_code))
  2351. return false;
  2352. walk_shadow_page_lockless_begin(vcpu);
  2353. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2354. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2355. break;
  2356. /*
  2357. * If the mapping has been changed, let the vcpu fault on the
  2358. * same address again.
  2359. */
  2360. if (!is_rmap_spte(spte)) {
  2361. ret = true;
  2362. goto exit;
  2363. }
  2364. sp = page_header(__pa(iterator.sptep));
  2365. if (!is_last_spte(spte, sp->role.level))
  2366. goto exit;
  2367. /*
  2368. * Check if it is a spurious fault caused by TLB lazily flushed.
  2369. *
  2370. * Need not check the access of upper level table entries since
  2371. * they are always ACC_ALL.
  2372. */
  2373. if (is_writable_pte(spte)) {
  2374. ret = true;
  2375. goto exit;
  2376. }
  2377. /*
  2378. * Currently, to simplify the code, only the spte write-protected
  2379. * by dirty-log can be fast fixed.
  2380. */
  2381. if (!spte_is_locklessly_modifiable(spte))
  2382. goto exit;
  2383. /*
  2384. * Do not fix write-permission on the large spte since we only dirty
  2385. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2386. * that means other pages are missed if its slot is dirty-logged.
  2387. *
  2388. * Instead, we let the slow page fault path create a normal spte to
  2389. * fix the access.
  2390. *
  2391. * See the comments in kvm_arch_commit_memory_region().
  2392. */
  2393. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2394. goto exit;
  2395. /*
  2396. * Currently, fast page fault only works for direct mapping since
  2397. * the gfn is not stable for indirect shadow page.
  2398. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2399. */
  2400. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2401. exit:
  2402. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2403. spte, ret);
  2404. walk_shadow_page_lockless_end(vcpu);
  2405. return ret;
  2406. }
  2407. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2408. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2409. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2410. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2411. gfn_t gfn, bool prefault)
  2412. {
  2413. int r;
  2414. int level;
  2415. int force_pt_level;
  2416. pfn_t pfn;
  2417. unsigned long mmu_seq;
  2418. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2419. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2420. if (likely(!force_pt_level)) {
  2421. level = mapping_level(vcpu, gfn);
  2422. /*
  2423. * This path builds a PAE pagetable - so we can map
  2424. * 2mb pages at maximum. Therefore check if the level
  2425. * is larger than that.
  2426. */
  2427. if (level > PT_DIRECTORY_LEVEL)
  2428. level = PT_DIRECTORY_LEVEL;
  2429. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2430. } else
  2431. level = PT_PAGE_TABLE_LEVEL;
  2432. if (fast_page_fault(vcpu, v, level, error_code))
  2433. return 0;
  2434. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2435. smp_rmb();
  2436. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2437. return 0;
  2438. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2439. return r;
  2440. spin_lock(&vcpu->kvm->mmu_lock);
  2441. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2442. goto out_unlock;
  2443. make_mmu_pages_available(vcpu);
  2444. if (likely(!force_pt_level))
  2445. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2446. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2447. prefault);
  2448. spin_unlock(&vcpu->kvm->mmu_lock);
  2449. return r;
  2450. out_unlock:
  2451. spin_unlock(&vcpu->kvm->mmu_lock);
  2452. kvm_release_pfn_clean(pfn);
  2453. return 0;
  2454. }
  2455. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2456. {
  2457. int i;
  2458. struct kvm_mmu_page *sp;
  2459. LIST_HEAD(invalid_list);
  2460. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2461. return;
  2462. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2463. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2464. vcpu->arch.mmu.direct_map)) {
  2465. hpa_t root = vcpu->arch.mmu.root_hpa;
  2466. spin_lock(&vcpu->kvm->mmu_lock);
  2467. sp = page_header(root);
  2468. --sp->root_count;
  2469. if (!sp->root_count && sp->role.invalid) {
  2470. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2471. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2472. }
  2473. spin_unlock(&vcpu->kvm->mmu_lock);
  2474. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2475. return;
  2476. }
  2477. spin_lock(&vcpu->kvm->mmu_lock);
  2478. for (i = 0; i < 4; ++i) {
  2479. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2480. if (root) {
  2481. root &= PT64_BASE_ADDR_MASK;
  2482. sp = page_header(root);
  2483. --sp->root_count;
  2484. if (!sp->root_count && sp->role.invalid)
  2485. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2486. &invalid_list);
  2487. }
  2488. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2489. }
  2490. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2491. spin_unlock(&vcpu->kvm->mmu_lock);
  2492. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2493. }
  2494. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2495. {
  2496. int ret = 0;
  2497. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2498. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2499. ret = 1;
  2500. }
  2501. return ret;
  2502. }
  2503. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2504. {
  2505. struct kvm_mmu_page *sp;
  2506. unsigned i;
  2507. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2508. spin_lock(&vcpu->kvm->mmu_lock);
  2509. make_mmu_pages_available(vcpu);
  2510. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2511. 1, ACC_ALL, NULL);
  2512. ++sp->root_count;
  2513. spin_unlock(&vcpu->kvm->mmu_lock);
  2514. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2515. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2516. for (i = 0; i < 4; ++i) {
  2517. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2518. ASSERT(!VALID_PAGE(root));
  2519. spin_lock(&vcpu->kvm->mmu_lock);
  2520. make_mmu_pages_available(vcpu);
  2521. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2522. i << 30,
  2523. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2524. NULL);
  2525. root = __pa(sp->spt);
  2526. ++sp->root_count;
  2527. spin_unlock(&vcpu->kvm->mmu_lock);
  2528. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2529. }
  2530. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2531. } else
  2532. BUG();
  2533. return 0;
  2534. }
  2535. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2536. {
  2537. struct kvm_mmu_page *sp;
  2538. u64 pdptr, pm_mask;
  2539. gfn_t root_gfn;
  2540. int i;
  2541. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2542. if (mmu_check_root(vcpu, root_gfn))
  2543. return 1;
  2544. /*
  2545. * Do we shadow a long mode page table? If so we need to
  2546. * write-protect the guests page table root.
  2547. */
  2548. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2549. hpa_t root = vcpu->arch.mmu.root_hpa;
  2550. ASSERT(!VALID_PAGE(root));
  2551. spin_lock(&vcpu->kvm->mmu_lock);
  2552. make_mmu_pages_available(vcpu);
  2553. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2554. 0, ACC_ALL, NULL);
  2555. root = __pa(sp->spt);
  2556. ++sp->root_count;
  2557. spin_unlock(&vcpu->kvm->mmu_lock);
  2558. vcpu->arch.mmu.root_hpa = root;
  2559. return 0;
  2560. }
  2561. /*
  2562. * We shadow a 32 bit page table. This may be a legacy 2-level
  2563. * or a PAE 3-level page table. In either case we need to be aware that
  2564. * the shadow page table may be a PAE or a long mode page table.
  2565. */
  2566. pm_mask = PT_PRESENT_MASK;
  2567. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2568. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2569. for (i = 0; i < 4; ++i) {
  2570. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2571. ASSERT(!VALID_PAGE(root));
  2572. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2573. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2574. if (!is_present_gpte(pdptr)) {
  2575. vcpu->arch.mmu.pae_root[i] = 0;
  2576. continue;
  2577. }
  2578. root_gfn = pdptr >> PAGE_SHIFT;
  2579. if (mmu_check_root(vcpu, root_gfn))
  2580. return 1;
  2581. }
  2582. spin_lock(&vcpu->kvm->mmu_lock);
  2583. make_mmu_pages_available(vcpu);
  2584. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2585. PT32_ROOT_LEVEL, 0,
  2586. ACC_ALL, NULL);
  2587. root = __pa(sp->spt);
  2588. ++sp->root_count;
  2589. spin_unlock(&vcpu->kvm->mmu_lock);
  2590. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2591. }
  2592. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2593. /*
  2594. * If we shadow a 32 bit page table with a long mode page
  2595. * table we enter this path.
  2596. */
  2597. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2598. if (vcpu->arch.mmu.lm_root == NULL) {
  2599. /*
  2600. * The additional page necessary for this is only
  2601. * allocated on demand.
  2602. */
  2603. u64 *lm_root;
  2604. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2605. if (lm_root == NULL)
  2606. return 1;
  2607. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2608. vcpu->arch.mmu.lm_root = lm_root;
  2609. }
  2610. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2611. }
  2612. return 0;
  2613. }
  2614. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2615. {
  2616. if (vcpu->arch.mmu.direct_map)
  2617. return mmu_alloc_direct_roots(vcpu);
  2618. else
  2619. return mmu_alloc_shadow_roots(vcpu);
  2620. }
  2621. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2622. {
  2623. int i;
  2624. struct kvm_mmu_page *sp;
  2625. if (vcpu->arch.mmu.direct_map)
  2626. return;
  2627. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2628. return;
  2629. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2630. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2631. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2632. hpa_t root = vcpu->arch.mmu.root_hpa;
  2633. sp = page_header(root);
  2634. mmu_sync_children(vcpu, sp);
  2635. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2636. return;
  2637. }
  2638. for (i = 0; i < 4; ++i) {
  2639. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2640. if (root && VALID_PAGE(root)) {
  2641. root &= PT64_BASE_ADDR_MASK;
  2642. sp = page_header(root);
  2643. mmu_sync_children(vcpu, sp);
  2644. }
  2645. }
  2646. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2647. }
  2648. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2649. {
  2650. spin_lock(&vcpu->kvm->mmu_lock);
  2651. mmu_sync_roots(vcpu);
  2652. spin_unlock(&vcpu->kvm->mmu_lock);
  2653. }
  2654. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2655. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2656. u32 access, struct x86_exception *exception)
  2657. {
  2658. if (exception)
  2659. exception->error_code = 0;
  2660. return vaddr;
  2661. }
  2662. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2663. u32 access,
  2664. struct x86_exception *exception)
  2665. {
  2666. if (exception)
  2667. exception->error_code = 0;
  2668. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2669. }
  2670. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2671. {
  2672. if (direct)
  2673. return vcpu_match_mmio_gpa(vcpu, addr);
  2674. return vcpu_match_mmio_gva(vcpu, addr);
  2675. }
  2676. /*
  2677. * On direct hosts, the last spte is only allows two states
  2678. * for mmio page fault:
  2679. * - It is the mmio spte
  2680. * - It is zapped or it is being zapped.
  2681. *
  2682. * This function completely checks the spte when the last spte
  2683. * is not the mmio spte.
  2684. */
  2685. static bool check_direct_spte_mmio_pf(u64 spte)
  2686. {
  2687. return __check_direct_spte_mmio_pf(spte);
  2688. }
  2689. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2690. {
  2691. struct kvm_shadow_walk_iterator iterator;
  2692. u64 spte = 0ull;
  2693. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2694. return spte;
  2695. walk_shadow_page_lockless_begin(vcpu);
  2696. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2697. if (!is_shadow_present_pte(spte))
  2698. break;
  2699. walk_shadow_page_lockless_end(vcpu);
  2700. return spte;
  2701. }
  2702. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2703. {
  2704. u64 spte;
  2705. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2706. return RET_MMIO_PF_EMULATE;
  2707. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2708. if (is_mmio_spte(spte)) {
  2709. gfn_t gfn = get_mmio_spte_gfn(spte);
  2710. unsigned access = get_mmio_spte_access(spte);
  2711. if (!check_mmio_spte(vcpu->kvm, spte))
  2712. return RET_MMIO_PF_INVALID;
  2713. if (direct)
  2714. addr = 0;
  2715. trace_handle_mmio_page_fault(addr, gfn, access);
  2716. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2717. return RET_MMIO_PF_EMULATE;
  2718. }
  2719. /*
  2720. * It's ok if the gva is remapped by other cpus on shadow guest,
  2721. * it's a BUG if the gfn is not a mmio page.
  2722. */
  2723. if (direct && !check_direct_spte_mmio_pf(spte))
  2724. return RET_MMIO_PF_BUG;
  2725. /*
  2726. * If the page table is zapped by other cpus, let CPU fault again on
  2727. * the address.
  2728. */
  2729. return RET_MMIO_PF_RETRY;
  2730. }
  2731. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2732. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2733. u32 error_code, bool direct)
  2734. {
  2735. int ret;
  2736. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2737. WARN_ON(ret == RET_MMIO_PF_BUG);
  2738. return ret;
  2739. }
  2740. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2741. u32 error_code, bool prefault)
  2742. {
  2743. gfn_t gfn;
  2744. int r;
  2745. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2746. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2747. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2748. if (likely(r != RET_MMIO_PF_INVALID))
  2749. return r;
  2750. }
  2751. r = mmu_topup_memory_caches(vcpu);
  2752. if (r)
  2753. return r;
  2754. ASSERT(vcpu);
  2755. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2756. gfn = gva >> PAGE_SHIFT;
  2757. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2758. error_code, gfn, prefault);
  2759. }
  2760. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2761. {
  2762. struct kvm_arch_async_pf arch;
  2763. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2764. arch.gfn = gfn;
  2765. arch.direct_map = vcpu->arch.mmu.direct_map;
  2766. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2767. return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
  2768. }
  2769. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2770. {
  2771. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2772. kvm_event_needs_reinjection(vcpu)))
  2773. return false;
  2774. return kvm_x86_ops->interrupt_allowed(vcpu);
  2775. }
  2776. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2777. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2778. {
  2779. bool async;
  2780. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2781. if (!async)
  2782. return false; /* *pfn has correct page already */
  2783. if (!prefault && can_do_async_pf(vcpu)) {
  2784. trace_kvm_try_async_get_page(gva, gfn);
  2785. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2786. trace_kvm_async_pf_doublefault(gva, gfn);
  2787. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2788. return true;
  2789. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2790. return true;
  2791. }
  2792. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2793. return false;
  2794. }
  2795. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2796. bool prefault)
  2797. {
  2798. pfn_t pfn;
  2799. int r;
  2800. int level;
  2801. int force_pt_level;
  2802. gfn_t gfn = gpa >> PAGE_SHIFT;
  2803. unsigned long mmu_seq;
  2804. int write = error_code & PFERR_WRITE_MASK;
  2805. bool map_writable;
  2806. ASSERT(vcpu);
  2807. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2808. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2809. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2810. if (likely(r != RET_MMIO_PF_INVALID))
  2811. return r;
  2812. }
  2813. r = mmu_topup_memory_caches(vcpu);
  2814. if (r)
  2815. return r;
  2816. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2817. if (likely(!force_pt_level)) {
  2818. level = mapping_level(vcpu, gfn);
  2819. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2820. } else
  2821. level = PT_PAGE_TABLE_LEVEL;
  2822. if (fast_page_fault(vcpu, gpa, level, error_code))
  2823. return 0;
  2824. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2825. smp_rmb();
  2826. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2827. return 0;
  2828. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2829. return r;
  2830. spin_lock(&vcpu->kvm->mmu_lock);
  2831. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2832. goto out_unlock;
  2833. make_mmu_pages_available(vcpu);
  2834. if (likely(!force_pt_level))
  2835. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2836. r = __direct_map(vcpu, gpa, write, map_writable,
  2837. level, gfn, pfn, prefault);
  2838. spin_unlock(&vcpu->kvm->mmu_lock);
  2839. return r;
  2840. out_unlock:
  2841. spin_unlock(&vcpu->kvm->mmu_lock);
  2842. kvm_release_pfn_clean(pfn);
  2843. return 0;
  2844. }
  2845. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2846. struct kvm_mmu *context)
  2847. {
  2848. context->page_fault = nonpaging_page_fault;
  2849. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2850. context->sync_page = nonpaging_sync_page;
  2851. context->invlpg = nonpaging_invlpg;
  2852. context->update_pte = nonpaging_update_pte;
  2853. context->root_level = 0;
  2854. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2855. context->root_hpa = INVALID_PAGE;
  2856. context->direct_map = true;
  2857. context->nx = false;
  2858. }
  2859. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2860. {
  2861. mmu_free_roots(vcpu);
  2862. }
  2863. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2864. {
  2865. return kvm_read_cr3(vcpu);
  2866. }
  2867. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2868. struct x86_exception *fault)
  2869. {
  2870. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2871. }
  2872. static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  2873. unsigned access, int *nr_present)
  2874. {
  2875. if (unlikely(is_mmio_spte(*sptep))) {
  2876. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2877. mmu_spte_clear_no_track(sptep);
  2878. return true;
  2879. }
  2880. (*nr_present)++;
  2881. mark_mmio_spte(kvm, sptep, gfn, access);
  2882. return true;
  2883. }
  2884. return false;
  2885. }
  2886. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2887. {
  2888. unsigned index;
  2889. index = level - 1;
  2890. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2891. return mmu->last_pte_bitmap & (1 << index);
  2892. }
  2893. #define PTTYPE_EPT 18 /* arbitrary */
  2894. #define PTTYPE PTTYPE_EPT
  2895. #include "paging_tmpl.h"
  2896. #undef PTTYPE
  2897. #define PTTYPE 64
  2898. #include "paging_tmpl.h"
  2899. #undef PTTYPE
  2900. #define PTTYPE 32
  2901. #include "paging_tmpl.h"
  2902. #undef PTTYPE
  2903. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2904. struct kvm_mmu *context)
  2905. {
  2906. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2907. u64 exb_bit_rsvd = 0;
  2908. u64 gbpages_bit_rsvd = 0;
  2909. u64 nonleaf_bit8_rsvd = 0;
  2910. context->bad_mt_xwr = 0;
  2911. if (!context->nx)
  2912. exb_bit_rsvd = rsvd_bits(63, 63);
  2913. if (!guest_cpuid_has_gbpages(vcpu))
  2914. gbpages_bit_rsvd = rsvd_bits(7, 7);
  2915. /*
  2916. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  2917. * leaf entries) on AMD CPUs only.
  2918. */
  2919. if (guest_cpuid_is_amd(vcpu))
  2920. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  2921. switch (context->root_level) {
  2922. case PT32_ROOT_LEVEL:
  2923. /* no rsvd bits for 2 level 4K page table entries */
  2924. context->rsvd_bits_mask[0][1] = 0;
  2925. context->rsvd_bits_mask[0][0] = 0;
  2926. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2927. if (!is_pse(vcpu)) {
  2928. context->rsvd_bits_mask[1][1] = 0;
  2929. break;
  2930. }
  2931. if (is_cpuid_PSE36())
  2932. /* 36bits PSE 4MB page */
  2933. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2934. else
  2935. /* 32 bits PSE 4MB page */
  2936. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2937. break;
  2938. case PT32E_ROOT_LEVEL:
  2939. context->rsvd_bits_mask[0][2] =
  2940. rsvd_bits(maxphyaddr, 63) |
  2941. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  2942. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2943. rsvd_bits(maxphyaddr, 62); /* PDE */
  2944. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2945. rsvd_bits(maxphyaddr, 62); /* PTE */
  2946. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2947. rsvd_bits(maxphyaddr, 62) |
  2948. rsvd_bits(13, 20); /* large page */
  2949. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2950. break;
  2951. case PT64_ROOT_LEVEL:
  2952. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2953. nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
  2954. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2955. nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
  2956. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2957. rsvd_bits(maxphyaddr, 51);
  2958. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2959. rsvd_bits(maxphyaddr, 51);
  2960. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2961. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2962. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  2963. rsvd_bits(13, 29);
  2964. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2965. rsvd_bits(maxphyaddr, 51) |
  2966. rsvd_bits(13, 20); /* large page */
  2967. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2968. break;
  2969. }
  2970. }
  2971. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  2972. struct kvm_mmu *context, bool execonly)
  2973. {
  2974. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2975. int pte;
  2976. context->rsvd_bits_mask[0][3] =
  2977. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  2978. context->rsvd_bits_mask[0][2] =
  2979. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  2980. context->rsvd_bits_mask[0][1] =
  2981. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  2982. context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  2983. /* large page */
  2984. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2985. context->rsvd_bits_mask[1][2] =
  2986. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  2987. context->rsvd_bits_mask[1][1] =
  2988. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  2989. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2990. for (pte = 0; pte < 64; pte++) {
  2991. int rwx_bits = pte & 7;
  2992. int mt = pte >> 3;
  2993. if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
  2994. rwx_bits == 0x2 || rwx_bits == 0x6 ||
  2995. (rwx_bits == 0x4 && !execonly))
  2996. context->bad_mt_xwr |= (1ull << pte);
  2997. }
  2998. }
  2999. void update_permission_bitmask(struct kvm_vcpu *vcpu,
  3000. struct kvm_mmu *mmu, bool ept)
  3001. {
  3002. unsigned bit, byte, pfec;
  3003. u8 map;
  3004. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3005. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3006. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3007. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3008. pfec = byte << 1;
  3009. map = 0;
  3010. wf = pfec & PFERR_WRITE_MASK;
  3011. uf = pfec & PFERR_USER_MASK;
  3012. ff = pfec & PFERR_FETCH_MASK;
  3013. /*
  3014. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3015. * subject to SMAP restrictions, and cleared otherwise. The
  3016. * bit is only meaningful if the SMAP bit is set in CR4.
  3017. */
  3018. smapf = !(pfec & PFERR_RSVD_MASK);
  3019. for (bit = 0; bit < 8; ++bit) {
  3020. x = bit & ACC_EXEC_MASK;
  3021. w = bit & ACC_WRITE_MASK;
  3022. u = bit & ACC_USER_MASK;
  3023. if (!ept) {
  3024. /* Not really needed: !nx will cause pte.nx to fault */
  3025. x |= !mmu->nx;
  3026. /* Allow supervisor writes if !cr0.wp */
  3027. w |= !is_write_protection(vcpu) && !uf;
  3028. /* Disallow supervisor fetches of user code if cr4.smep */
  3029. x &= !(cr4_smep && u && !uf);
  3030. /*
  3031. * SMAP:kernel-mode data accesses from user-mode
  3032. * mappings should fault. A fault is considered
  3033. * as a SMAP violation if all of the following
  3034. * conditions are ture:
  3035. * - X86_CR4_SMAP is set in CR4
  3036. * - An user page is accessed
  3037. * - Page fault in kernel mode
  3038. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3039. *
  3040. * Here, we cover the first three conditions.
  3041. * The fourth is computed dynamically in
  3042. * permission_fault() and is in smapf.
  3043. *
  3044. * Also, SMAP does not affect instruction
  3045. * fetches, add the !ff check here to make it
  3046. * clearer.
  3047. */
  3048. smap = cr4_smap && u && !uf && !ff;
  3049. } else
  3050. /* Not really needed: no U/S accesses on ept */
  3051. u = 1;
  3052. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3053. (smapf && smap);
  3054. map |= fault << bit;
  3055. }
  3056. mmu->permissions[byte] = map;
  3057. }
  3058. }
  3059. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3060. {
  3061. u8 map;
  3062. unsigned level, root_level = mmu->root_level;
  3063. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3064. if (root_level == PT32E_ROOT_LEVEL)
  3065. --root_level;
  3066. /* PT_PAGE_TABLE_LEVEL always terminates */
  3067. map = 1 | (1 << ps_set_index);
  3068. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3069. if (level <= PT_PDPE_LEVEL
  3070. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3071. map |= 1 << (ps_set_index | (level - 1));
  3072. }
  3073. mmu->last_pte_bitmap = map;
  3074. }
  3075. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3076. struct kvm_mmu *context,
  3077. int level)
  3078. {
  3079. context->nx = is_nx(vcpu);
  3080. context->root_level = level;
  3081. reset_rsvds_bits_mask(vcpu, context);
  3082. update_permission_bitmask(vcpu, context, false);
  3083. update_last_pte_bitmap(vcpu, context);
  3084. ASSERT(is_pae(vcpu));
  3085. context->page_fault = paging64_page_fault;
  3086. context->gva_to_gpa = paging64_gva_to_gpa;
  3087. context->sync_page = paging64_sync_page;
  3088. context->invlpg = paging64_invlpg;
  3089. context->update_pte = paging64_update_pte;
  3090. context->shadow_root_level = level;
  3091. context->root_hpa = INVALID_PAGE;
  3092. context->direct_map = false;
  3093. }
  3094. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3095. struct kvm_mmu *context)
  3096. {
  3097. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3098. }
  3099. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3100. struct kvm_mmu *context)
  3101. {
  3102. context->nx = false;
  3103. context->root_level = PT32_ROOT_LEVEL;
  3104. reset_rsvds_bits_mask(vcpu, context);
  3105. update_permission_bitmask(vcpu, context, false);
  3106. update_last_pte_bitmap(vcpu, context);
  3107. context->page_fault = paging32_page_fault;
  3108. context->gva_to_gpa = paging32_gva_to_gpa;
  3109. context->sync_page = paging32_sync_page;
  3110. context->invlpg = paging32_invlpg;
  3111. context->update_pte = paging32_update_pte;
  3112. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3113. context->root_hpa = INVALID_PAGE;
  3114. context->direct_map = false;
  3115. }
  3116. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3117. struct kvm_mmu *context)
  3118. {
  3119. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3120. }
  3121. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3122. {
  3123. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  3124. context->base_role.word = 0;
  3125. context->page_fault = tdp_page_fault;
  3126. context->sync_page = nonpaging_sync_page;
  3127. context->invlpg = nonpaging_invlpg;
  3128. context->update_pte = nonpaging_update_pte;
  3129. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3130. context->root_hpa = INVALID_PAGE;
  3131. context->direct_map = true;
  3132. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3133. context->get_cr3 = get_cr3;
  3134. context->get_pdptr = kvm_pdptr_read;
  3135. context->inject_page_fault = kvm_inject_page_fault;
  3136. if (!is_paging(vcpu)) {
  3137. context->nx = false;
  3138. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3139. context->root_level = 0;
  3140. } else if (is_long_mode(vcpu)) {
  3141. context->nx = is_nx(vcpu);
  3142. context->root_level = PT64_ROOT_LEVEL;
  3143. reset_rsvds_bits_mask(vcpu, context);
  3144. context->gva_to_gpa = paging64_gva_to_gpa;
  3145. } else if (is_pae(vcpu)) {
  3146. context->nx = is_nx(vcpu);
  3147. context->root_level = PT32E_ROOT_LEVEL;
  3148. reset_rsvds_bits_mask(vcpu, context);
  3149. context->gva_to_gpa = paging64_gva_to_gpa;
  3150. } else {
  3151. context->nx = false;
  3152. context->root_level = PT32_ROOT_LEVEL;
  3153. reset_rsvds_bits_mask(vcpu, context);
  3154. context->gva_to_gpa = paging32_gva_to_gpa;
  3155. }
  3156. update_permission_bitmask(vcpu, context, false);
  3157. update_last_pte_bitmap(vcpu, context);
  3158. }
  3159. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3160. {
  3161. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3162. ASSERT(vcpu);
  3163. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3164. if (!is_paging(vcpu))
  3165. nonpaging_init_context(vcpu, context);
  3166. else if (is_long_mode(vcpu))
  3167. paging64_init_context(vcpu, context);
  3168. else if (is_pae(vcpu))
  3169. paging32E_init_context(vcpu, context);
  3170. else
  3171. paging32_init_context(vcpu, context);
  3172. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3173. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3174. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3175. vcpu->arch.mmu.base_role.smep_andnot_wp
  3176. = smep && !is_write_protection(vcpu);
  3177. }
  3178. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3179. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
  3180. bool execonly)
  3181. {
  3182. ASSERT(vcpu);
  3183. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3184. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3185. context->nx = true;
  3186. context->page_fault = ept_page_fault;
  3187. context->gva_to_gpa = ept_gva_to_gpa;
  3188. context->sync_page = ept_sync_page;
  3189. context->invlpg = ept_invlpg;
  3190. context->update_pte = ept_update_pte;
  3191. context->root_level = context->shadow_root_level;
  3192. context->root_hpa = INVALID_PAGE;
  3193. context->direct_map = false;
  3194. update_permission_bitmask(vcpu, context, true);
  3195. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3196. }
  3197. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3198. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3199. {
  3200. kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3201. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3202. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3203. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3204. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3205. }
  3206. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3207. {
  3208. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3209. g_context->get_cr3 = get_cr3;
  3210. g_context->get_pdptr = kvm_pdptr_read;
  3211. g_context->inject_page_fault = kvm_inject_page_fault;
  3212. /*
  3213. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3214. * translation of l2_gpa to l1_gpa addresses is done using the
  3215. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3216. * functions between mmu and nested_mmu are swapped.
  3217. */
  3218. if (!is_paging(vcpu)) {
  3219. g_context->nx = false;
  3220. g_context->root_level = 0;
  3221. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3222. } else if (is_long_mode(vcpu)) {
  3223. g_context->nx = is_nx(vcpu);
  3224. g_context->root_level = PT64_ROOT_LEVEL;
  3225. reset_rsvds_bits_mask(vcpu, g_context);
  3226. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3227. } else if (is_pae(vcpu)) {
  3228. g_context->nx = is_nx(vcpu);
  3229. g_context->root_level = PT32E_ROOT_LEVEL;
  3230. reset_rsvds_bits_mask(vcpu, g_context);
  3231. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3232. } else {
  3233. g_context->nx = false;
  3234. g_context->root_level = PT32_ROOT_LEVEL;
  3235. reset_rsvds_bits_mask(vcpu, g_context);
  3236. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3237. }
  3238. update_permission_bitmask(vcpu, g_context, false);
  3239. update_last_pte_bitmap(vcpu, g_context);
  3240. }
  3241. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3242. {
  3243. if (mmu_is_nested(vcpu))
  3244. return init_kvm_nested_mmu(vcpu);
  3245. else if (tdp_enabled)
  3246. return init_kvm_tdp_mmu(vcpu);
  3247. else
  3248. return init_kvm_softmmu(vcpu);
  3249. }
  3250. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3251. {
  3252. ASSERT(vcpu);
  3253. kvm_mmu_unload(vcpu);
  3254. init_kvm_mmu(vcpu);
  3255. }
  3256. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3257. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3258. {
  3259. int r;
  3260. r = mmu_topup_memory_caches(vcpu);
  3261. if (r)
  3262. goto out;
  3263. r = mmu_alloc_roots(vcpu);
  3264. kvm_mmu_sync_roots(vcpu);
  3265. if (r)
  3266. goto out;
  3267. /* set_cr3() should ensure TLB has been flushed */
  3268. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3269. out:
  3270. return r;
  3271. }
  3272. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3273. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3274. {
  3275. mmu_free_roots(vcpu);
  3276. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3277. }
  3278. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3279. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3280. struct kvm_mmu_page *sp, u64 *spte,
  3281. const void *new)
  3282. {
  3283. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3284. ++vcpu->kvm->stat.mmu_pde_zapped;
  3285. return;
  3286. }
  3287. ++vcpu->kvm->stat.mmu_pte_updated;
  3288. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3289. }
  3290. static bool need_remote_flush(u64 old, u64 new)
  3291. {
  3292. if (!is_shadow_present_pte(old))
  3293. return false;
  3294. if (!is_shadow_present_pte(new))
  3295. return true;
  3296. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3297. return true;
  3298. old ^= shadow_nx_mask;
  3299. new ^= shadow_nx_mask;
  3300. return (old & ~new & PT64_PERM_MASK) != 0;
  3301. }
  3302. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3303. bool remote_flush, bool local_flush)
  3304. {
  3305. if (zap_page)
  3306. return;
  3307. if (remote_flush)
  3308. kvm_flush_remote_tlbs(vcpu->kvm);
  3309. else if (local_flush)
  3310. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3311. }
  3312. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3313. const u8 *new, int *bytes)
  3314. {
  3315. u64 gentry;
  3316. int r;
  3317. /*
  3318. * Assume that the pte write on a page table of the same type
  3319. * as the current vcpu paging mode since we update the sptes only
  3320. * when they have the same mode.
  3321. */
  3322. if (is_pae(vcpu) && *bytes == 4) {
  3323. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3324. *gpa &= ~(gpa_t)7;
  3325. *bytes = 8;
  3326. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3327. if (r)
  3328. gentry = 0;
  3329. new = (const u8 *)&gentry;
  3330. }
  3331. switch (*bytes) {
  3332. case 4:
  3333. gentry = *(const u32 *)new;
  3334. break;
  3335. case 8:
  3336. gentry = *(const u64 *)new;
  3337. break;
  3338. default:
  3339. gentry = 0;
  3340. break;
  3341. }
  3342. return gentry;
  3343. }
  3344. /*
  3345. * If we're seeing too many writes to a page, it may no longer be a page table,
  3346. * or we may be forking, in which case it is better to unmap the page.
  3347. */
  3348. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3349. {
  3350. /*
  3351. * Skip write-flooding detected for the sp whose level is 1, because
  3352. * it can become unsync, then the guest page is not write-protected.
  3353. */
  3354. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3355. return false;
  3356. return ++sp->write_flooding_count >= 3;
  3357. }
  3358. /*
  3359. * Misaligned accesses are too much trouble to fix up; also, they usually
  3360. * indicate a page is not used as a page table.
  3361. */
  3362. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3363. int bytes)
  3364. {
  3365. unsigned offset, pte_size, misaligned;
  3366. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3367. gpa, bytes, sp->role.word);
  3368. offset = offset_in_page(gpa);
  3369. pte_size = sp->role.cr4_pae ? 8 : 4;
  3370. /*
  3371. * Sometimes, the OS only writes the last one bytes to update status
  3372. * bits, for example, in linux, andb instruction is used in clear_bit().
  3373. */
  3374. if (!(offset & (pte_size - 1)) && bytes == 1)
  3375. return false;
  3376. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3377. misaligned |= bytes < 4;
  3378. return misaligned;
  3379. }
  3380. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3381. {
  3382. unsigned page_offset, quadrant;
  3383. u64 *spte;
  3384. int level;
  3385. page_offset = offset_in_page(gpa);
  3386. level = sp->role.level;
  3387. *nspte = 1;
  3388. if (!sp->role.cr4_pae) {
  3389. page_offset <<= 1; /* 32->64 */
  3390. /*
  3391. * A 32-bit pde maps 4MB while the shadow pdes map
  3392. * only 2MB. So we need to double the offset again
  3393. * and zap two pdes instead of one.
  3394. */
  3395. if (level == PT32_ROOT_LEVEL) {
  3396. page_offset &= ~7; /* kill rounding error */
  3397. page_offset <<= 1;
  3398. *nspte = 2;
  3399. }
  3400. quadrant = page_offset >> PAGE_SHIFT;
  3401. page_offset &= ~PAGE_MASK;
  3402. if (quadrant != sp->role.quadrant)
  3403. return NULL;
  3404. }
  3405. spte = &sp->spt[page_offset / sizeof(*spte)];
  3406. return spte;
  3407. }
  3408. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3409. const u8 *new, int bytes)
  3410. {
  3411. gfn_t gfn = gpa >> PAGE_SHIFT;
  3412. union kvm_mmu_page_role mask = { .word = 0 };
  3413. struct kvm_mmu_page *sp;
  3414. LIST_HEAD(invalid_list);
  3415. u64 entry, gentry, *spte;
  3416. int npte;
  3417. bool remote_flush, local_flush, zap_page;
  3418. /*
  3419. * If we don't have indirect shadow pages, it means no page is
  3420. * write-protected, so we can exit simply.
  3421. */
  3422. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3423. return;
  3424. zap_page = remote_flush = local_flush = false;
  3425. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3426. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3427. /*
  3428. * No need to care whether allocation memory is successful
  3429. * or not since pte prefetch is skiped if it does not have
  3430. * enough objects in the cache.
  3431. */
  3432. mmu_topup_memory_caches(vcpu);
  3433. spin_lock(&vcpu->kvm->mmu_lock);
  3434. ++vcpu->kvm->stat.mmu_pte_write;
  3435. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3436. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3437. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3438. if (detect_write_misaligned(sp, gpa, bytes) ||
  3439. detect_write_flooding(sp)) {
  3440. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3441. &invalid_list);
  3442. ++vcpu->kvm->stat.mmu_flooded;
  3443. continue;
  3444. }
  3445. spte = get_written_sptes(sp, gpa, &npte);
  3446. if (!spte)
  3447. continue;
  3448. local_flush = true;
  3449. while (npte--) {
  3450. entry = *spte;
  3451. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3452. if (gentry &&
  3453. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3454. & mask.word) && rmap_can_add(vcpu))
  3455. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3456. if (need_remote_flush(entry, *spte))
  3457. remote_flush = true;
  3458. ++spte;
  3459. }
  3460. }
  3461. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3462. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3463. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3464. spin_unlock(&vcpu->kvm->mmu_lock);
  3465. }
  3466. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3467. {
  3468. gpa_t gpa;
  3469. int r;
  3470. if (vcpu->arch.mmu.direct_map)
  3471. return 0;
  3472. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3473. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3474. return r;
  3475. }
  3476. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3477. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3478. {
  3479. LIST_HEAD(invalid_list);
  3480. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3481. return;
  3482. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3483. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3484. break;
  3485. ++vcpu->kvm->stat.mmu_recycled;
  3486. }
  3487. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3488. }
  3489. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3490. {
  3491. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3492. return vcpu_match_mmio_gpa(vcpu, addr);
  3493. return vcpu_match_mmio_gva(vcpu, addr);
  3494. }
  3495. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3496. void *insn, int insn_len)
  3497. {
  3498. int r, emulation_type = EMULTYPE_RETRY;
  3499. enum emulation_result er;
  3500. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3501. if (r < 0)
  3502. goto out;
  3503. if (!r) {
  3504. r = 1;
  3505. goto out;
  3506. }
  3507. if (is_mmio_page_fault(vcpu, cr2))
  3508. emulation_type = 0;
  3509. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3510. switch (er) {
  3511. case EMULATE_DONE:
  3512. return 1;
  3513. case EMULATE_USER_EXIT:
  3514. ++vcpu->stat.mmio_exits;
  3515. /* fall through */
  3516. case EMULATE_FAIL:
  3517. return 0;
  3518. default:
  3519. BUG();
  3520. }
  3521. out:
  3522. return r;
  3523. }
  3524. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3525. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3526. {
  3527. vcpu->arch.mmu.invlpg(vcpu, gva);
  3528. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3529. ++vcpu->stat.invlpg;
  3530. }
  3531. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3532. void kvm_enable_tdp(void)
  3533. {
  3534. tdp_enabled = true;
  3535. }
  3536. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3537. void kvm_disable_tdp(void)
  3538. {
  3539. tdp_enabled = false;
  3540. }
  3541. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3542. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3543. {
  3544. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3545. if (vcpu->arch.mmu.lm_root != NULL)
  3546. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3547. }
  3548. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3549. {
  3550. struct page *page;
  3551. int i;
  3552. ASSERT(vcpu);
  3553. /*
  3554. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3555. * Therefore we need to allocate shadow page tables in the first
  3556. * 4GB of memory, which happens to fit the DMA32 zone.
  3557. */
  3558. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3559. if (!page)
  3560. return -ENOMEM;
  3561. vcpu->arch.mmu.pae_root = page_address(page);
  3562. for (i = 0; i < 4; ++i)
  3563. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3564. return 0;
  3565. }
  3566. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3567. {
  3568. ASSERT(vcpu);
  3569. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3570. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3571. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3572. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3573. return alloc_mmu_pages(vcpu);
  3574. }
  3575. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3576. {
  3577. ASSERT(vcpu);
  3578. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3579. init_kvm_mmu(vcpu);
  3580. }
  3581. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3582. {
  3583. struct kvm_memory_slot *memslot;
  3584. gfn_t last_gfn;
  3585. int i;
  3586. memslot = id_to_memslot(kvm->memslots, slot);
  3587. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3588. spin_lock(&kvm->mmu_lock);
  3589. for (i = PT_PAGE_TABLE_LEVEL;
  3590. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3591. unsigned long *rmapp;
  3592. unsigned long last_index, index;
  3593. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3594. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3595. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3596. if (*rmapp)
  3597. __rmap_write_protect(kvm, rmapp, false);
  3598. if (need_resched() || spin_needbreak(&kvm->mmu_lock))
  3599. cond_resched_lock(&kvm->mmu_lock);
  3600. }
  3601. }
  3602. spin_unlock(&kvm->mmu_lock);
  3603. /*
  3604. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3605. * which do tlb flush out of mmu-lock should be serialized by
  3606. * kvm->slots_lock otherwise tlb flush would be missed.
  3607. */
  3608. lockdep_assert_held(&kvm->slots_lock);
  3609. /*
  3610. * We can flush all the TLBs out of the mmu lock without TLB
  3611. * corruption since we just change the spte from writable to
  3612. * readonly so that we only need to care the case of changing
  3613. * spte from present to present (changing the spte from present
  3614. * to nonpresent will flush all the TLBs immediately), in other
  3615. * words, the only case we care is mmu_spte_update() where we
  3616. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3617. * instead of PT_WRITABLE_MASK, that means it does not depend
  3618. * on PT_WRITABLE_MASK anymore.
  3619. */
  3620. kvm_flush_remote_tlbs(kvm);
  3621. }
  3622. #define BATCH_ZAP_PAGES 10
  3623. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3624. {
  3625. struct kvm_mmu_page *sp, *node;
  3626. int batch = 0;
  3627. restart:
  3628. list_for_each_entry_safe_reverse(sp, node,
  3629. &kvm->arch.active_mmu_pages, link) {
  3630. int ret;
  3631. /*
  3632. * No obsolete page exists before new created page since
  3633. * active_mmu_pages is the FIFO list.
  3634. */
  3635. if (!is_obsolete_sp(kvm, sp))
  3636. break;
  3637. /*
  3638. * Since we are reversely walking the list and the invalid
  3639. * list will be moved to the head, skip the invalid page
  3640. * can help us to avoid the infinity list walking.
  3641. */
  3642. if (sp->role.invalid)
  3643. continue;
  3644. /*
  3645. * Need not flush tlb since we only zap the sp with invalid
  3646. * generation number.
  3647. */
  3648. if (batch >= BATCH_ZAP_PAGES &&
  3649. cond_resched_lock(&kvm->mmu_lock)) {
  3650. batch = 0;
  3651. goto restart;
  3652. }
  3653. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3654. &kvm->arch.zapped_obsolete_pages);
  3655. batch += ret;
  3656. if (ret)
  3657. goto restart;
  3658. }
  3659. /*
  3660. * Should flush tlb before free page tables since lockless-walking
  3661. * may use the pages.
  3662. */
  3663. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3664. }
  3665. /*
  3666. * Fast invalidate all shadow pages and use lock-break technique
  3667. * to zap obsolete pages.
  3668. *
  3669. * It's required when memslot is being deleted or VM is being
  3670. * destroyed, in these cases, we should ensure that KVM MMU does
  3671. * not use any resource of the being-deleted slot or all slots
  3672. * after calling the function.
  3673. */
  3674. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3675. {
  3676. spin_lock(&kvm->mmu_lock);
  3677. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3678. kvm->arch.mmu_valid_gen++;
  3679. /*
  3680. * Notify all vcpus to reload its shadow page table
  3681. * and flush TLB. Then all vcpus will switch to new
  3682. * shadow page table with the new mmu_valid_gen.
  3683. *
  3684. * Note: we should do this under the protection of
  3685. * mmu-lock, otherwise, vcpu would purge shadow page
  3686. * but miss tlb flush.
  3687. */
  3688. kvm_reload_remote_mmus(kvm);
  3689. kvm_zap_obsolete_pages(kvm);
  3690. spin_unlock(&kvm->mmu_lock);
  3691. }
  3692. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3693. {
  3694. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3695. }
  3696. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
  3697. {
  3698. /*
  3699. * The very rare case: if the generation-number is round,
  3700. * zap all shadow pages.
  3701. */
  3702. if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
  3703. printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
  3704. kvm_mmu_invalidate_zap_all_pages(kvm);
  3705. }
  3706. }
  3707. static unsigned long
  3708. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  3709. {
  3710. struct kvm *kvm;
  3711. int nr_to_scan = sc->nr_to_scan;
  3712. unsigned long freed = 0;
  3713. spin_lock(&kvm_lock);
  3714. list_for_each_entry(kvm, &vm_list, vm_list) {
  3715. int idx;
  3716. LIST_HEAD(invalid_list);
  3717. /*
  3718. * Never scan more than sc->nr_to_scan VM instances.
  3719. * Will not hit this condition practically since we do not try
  3720. * to shrink more than one VM and it is very unlikely to see
  3721. * !n_used_mmu_pages so many times.
  3722. */
  3723. if (!nr_to_scan--)
  3724. break;
  3725. /*
  3726. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3727. * here. We may skip a VM instance errorneosly, but we do not
  3728. * want to shrink a VM that only started to populate its MMU
  3729. * anyway.
  3730. */
  3731. if (!kvm->arch.n_used_mmu_pages &&
  3732. !kvm_has_zapped_obsolete_pages(kvm))
  3733. continue;
  3734. idx = srcu_read_lock(&kvm->srcu);
  3735. spin_lock(&kvm->mmu_lock);
  3736. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3737. kvm_mmu_commit_zap_page(kvm,
  3738. &kvm->arch.zapped_obsolete_pages);
  3739. goto unlock;
  3740. }
  3741. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  3742. freed++;
  3743. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3744. unlock:
  3745. spin_unlock(&kvm->mmu_lock);
  3746. srcu_read_unlock(&kvm->srcu, idx);
  3747. /*
  3748. * unfair on small ones
  3749. * per-vm shrinkers cry out
  3750. * sadness comes quickly
  3751. */
  3752. list_move_tail(&kvm->vm_list, &vm_list);
  3753. break;
  3754. }
  3755. spin_unlock(&kvm_lock);
  3756. return freed;
  3757. }
  3758. static unsigned long
  3759. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  3760. {
  3761. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3762. }
  3763. static struct shrinker mmu_shrinker = {
  3764. .count_objects = mmu_shrink_count,
  3765. .scan_objects = mmu_shrink_scan,
  3766. .seeks = DEFAULT_SEEKS * 10,
  3767. };
  3768. static void mmu_destroy_caches(void)
  3769. {
  3770. if (pte_list_desc_cache)
  3771. kmem_cache_destroy(pte_list_desc_cache);
  3772. if (mmu_page_header_cache)
  3773. kmem_cache_destroy(mmu_page_header_cache);
  3774. }
  3775. int kvm_mmu_module_init(void)
  3776. {
  3777. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3778. sizeof(struct pte_list_desc),
  3779. 0, 0, NULL);
  3780. if (!pte_list_desc_cache)
  3781. goto nomem;
  3782. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3783. sizeof(struct kvm_mmu_page),
  3784. 0, 0, NULL);
  3785. if (!mmu_page_header_cache)
  3786. goto nomem;
  3787. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  3788. goto nomem;
  3789. register_shrinker(&mmu_shrinker);
  3790. return 0;
  3791. nomem:
  3792. mmu_destroy_caches();
  3793. return -ENOMEM;
  3794. }
  3795. /*
  3796. * Caculate mmu pages needed for kvm.
  3797. */
  3798. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3799. {
  3800. unsigned int nr_mmu_pages;
  3801. unsigned int nr_pages = 0;
  3802. struct kvm_memslots *slots;
  3803. struct kvm_memory_slot *memslot;
  3804. slots = kvm_memslots(kvm);
  3805. kvm_for_each_memslot(memslot, slots)
  3806. nr_pages += memslot->npages;
  3807. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3808. nr_mmu_pages = max(nr_mmu_pages,
  3809. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3810. return nr_mmu_pages;
  3811. }
  3812. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3813. {
  3814. struct kvm_shadow_walk_iterator iterator;
  3815. u64 spte;
  3816. int nr_sptes = 0;
  3817. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3818. return nr_sptes;
  3819. walk_shadow_page_lockless_begin(vcpu);
  3820. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3821. sptes[iterator.level-1] = spte;
  3822. nr_sptes++;
  3823. if (!is_shadow_present_pte(spte))
  3824. break;
  3825. }
  3826. walk_shadow_page_lockless_end(vcpu);
  3827. return nr_sptes;
  3828. }
  3829. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3830. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3831. {
  3832. ASSERT(vcpu);
  3833. kvm_mmu_unload(vcpu);
  3834. free_mmu_pages(vcpu);
  3835. mmu_free_memory_caches(vcpu);
  3836. }
  3837. void kvm_mmu_module_exit(void)
  3838. {
  3839. mmu_destroy_caches();
  3840. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3841. unregister_shrinker(&mmu_shrinker);
  3842. mmu_audit_disable();
  3843. }