process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/clockchips.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/i387.h>
  27. #include <asm/fpu-internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. /*
  31. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  32. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  33. * so they are allowed to end up in the .data..cacheline_aligned
  34. * section. Since TSS's are completely CPU-local, we want them
  35. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  36. */
  37. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
  38. #ifdef CONFIG_X86_64
  39. static DEFINE_PER_CPU(unsigned char, is_idle);
  40. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  41. void idle_notifier_register(struct notifier_block *n)
  42. {
  43. atomic_notifier_chain_register(&idle_notifier, n);
  44. }
  45. EXPORT_SYMBOL_GPL(idle_notifier_register);
  46. void idle_notifier_unregister(struct notifier_block *n)
  47. {
  48. atomic_notifier_chain_unregister(&idle_notifier, n);
  49. }
  50. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  51. #endif
  52. struct kmem_cache *task_xstate_cachep;
  53. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  54. /*
  55. * this gets called so that we can store lazy state into memory and copy the
  56. * current task into the new thread.
  57. */
  58. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  59. {
  60. *dst = *src;
  61. dst->thread.fpu_counter = 0;
  62. dst->thread.fpu.has_fpu = 0;
  63. dst->thread.fpu.last_cpu = ~0;
  64. dst->thread.fpu.state = NULL;
  65. if (tsk_used_math(src)) {
  66. int err = fpu_alloc(&dst->thread.fpu);
  67. if (err)
  68. return err;
  69. fpu_copy(dst, src);
  70. }
  71. return 0;
  72. }
  73. void free_thread_xstate(struct task_struct *tsk)
  74. {
  75. fpu_free(&tsk->thread.fpu);
  76. }
  77. void arch_release_task_struct(struct task_struct *tsk)
  78. {
  79. free_thread_xstate(tsk);
  80. }
  81. void arch_task_cache_init(void)
  82. {
  83. task_xstate_cachep =
  84. kmem_cache_create("task_xstate", xstate_size,
  85. __alignof__(union thread_xstate),
  86. SLAB_PANIC | SLAB_NOTRACK, NULL);
  87. setup_xstate_comp();
  88. }
  89. /*
  90. * Free current thread data structures etc..
  91. */
  92. void exit_thread(void)
  93. {
  94. struct task_struct *me = current;
  95. struct thread_struct *t = &me->thread;
  96. unsigned long *bp = t->io_bitmap_ptr;
  97. if (bp) {
  98. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  99. t->io_bitmap_ptr = NULL;
  100. clear_thread_flag(TIF_IO_BITMAP);
  101. /*
  102. * Careful, clear this in the TSS too:
  103. */
  104. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  105. t->io_bitmap_max = 0;
  106. put_cpu();
  107. kfree(bp);
  108. }
  109. drop_fpu(me);
  110. }
  111. void flush_thread(void)
  112. {
  113. struct task_struct *tsk = current;
  114. flush_ptrace_hw_breakpoint(tsk);
  115. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  116. drop_init_fpu(tsk);
  117. /*
  118. * Free the FPU state for non xsave platforms. They get reallocated
  119. * lazily at the first use.
  120. */
  121. if (!use_eager_fpu())
  122. free_thread_xstate(tsk);
  123. }
  124. static void hard_disable_TSC(void)
  125. {
  126. write_cr4(read_cr4() | X86_CR4_TSD);
  127. }
  128. void disable_TSC(void)
  129. {
  130. preempt_disable();
  131. if (!test_and_set_thread_flag(TIF_NOTSC))
  132. /*
  133. * Must flip the CPU state synchronously with
  134. * TIF_NOTSC in the current running context.
  135. */
  136. hard_disable_TSC();
  137. preempt_enable();
  138. }
  139. static void hard_enable_TSC(void)
  140. {
  141. write_cr4(read_cr4() & ~X86_CR4_TSD);
  142. }
  143. static void enable_TSC(void)
  144. {
  145. preempt_disable();
  146. if (test_and_clear_thread_flag(TIF_NOTSC))
  147. /*
  148. * Must flip the CPU state synchronously with
  149. * TIF_NOTSC in the current running context.
  150. */
  151. hard_enable_TSC();
  152. preempt_enable();
  153. }
  154. int get_tsc_mode(unsigned long adr)
  155. {
  156. unsigned int val;
  157. if (test_thread_flag(TIF_NOTSC))
  158. val = PR_TSC_SIGSEGV;
  159. else
  160. val = PR_TSC_ENABLE;
  161. return put_user(val, (unsigned int __user *)adr);
  162. }
  163. int set_tsc_mode(unsigned int val)
  164. {
  165. if (val == PR_TSC_SIGSEGV)
  166. disable_TSC();
  167. else if (val == PR_TSC_ENABLE)
  168. enable_TSC();
  169. else
  170. return -EINVAL;
  171. return 0;
  172. }
  173. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  174. struct tss_struct *tss)
  175. {
  176. struct thread_struct *prev, *next;
  177. prev = &prev_p->thread;
  178. next = &next_p->thread;
  179. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  180. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  181. unsigned long debugctl = get_debugctlmsr();
  182. debugctl &= ~DEBUGCTLMSR_BTF;
  183. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  184. debugctl |= DEBUGCTLMSR_BTF;
  185. update_debugctlmsr(debugctl);
  186. }
  187. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  188. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  189. /* prev and next are different */
  190. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  191. hard_disable_TSC();
  192. else
  193. hard_enable_TSC();
  194. }
  195. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  196. /*
  197. * Copy the relevant range of the IO bitmap.
  198. * Normally this is 128 bytes or less:
  199. */
  200. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  201. max(prev->io_bitmap_max, next->io_bitmap_max));
  202. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  203. /*
  204. * Clear any possible leftover bits:
  205. */
  206. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  207. }
  208. propagate_user_return_notify(prev_p, next_p);
  209. }
  210. /*
  211. * Idle related variables and functions
  212. */
  213. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  214. EXPORT_SYMBOL(boot_option_idle_override);
  215. static void (*x86_idle)(void);
  216. #ifndef CONFIG_SMP
  217. static inline void play_dead(void)
  218. {
  219. BUG();
  220. }
  221. #endif
  222. #ifdef CONFIG_X86_64
  223. void enter_idle(void)
  224. {
  225. this_cpu_write(is_idle, 1);
  226. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  227. }
  228. static void __exit_idle(void)
  229. {
  230. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  231. return;
  232. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  233. }
  234. /* Called from interrupts to signify idle end */
  235. void exit_idle(void)
  236. {
  237. /* idle loop has pid 0 */
  238. if (current->pid)
  239. return;
  240. __exit_idle();
  241. }
  242. #endif
  243. void arch_cpu_idle_enter(void)
  244. {
  245. local_touch_nmi();
  246. enter_idle();
  247. }
  248. void arch_cpu_idle_exit(void)
  249. {
  250. __exit_idle();
  251. }
  252. void arch_cpu_idle_dead(void)
  253. {
  254. play_dead();
  255. }
  256. /*
  257. * Called from the generic idle code.
  258. */
  259. void arch_cpu_idle(void)
  260. {
  261. x86_idle();
  262. }
  263. /*
  264. * We use this if we don't have any better idle routine..
  265. */
  266. void default_idle(void)
  267. {
  268. trace_cpu_idle_rcuidle(1, smp_processor_id());
  269. safe_halt();
  270. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  271. }
  272. #ifdef CONFIG_APM_MODULE
  273. EXPORT_SYMBOL(default_idle);
  274. #endif
  275. #ifdef CONFIG_XEN
  276. bool xen_set_default_idle(void)
  277. {
  278. bool ret = !!x86_idle;
  279. x86_idle = default_idle;
  280. return ret;
  281. }
  282. #endif
  283. void stop_this_cpu(void *dummy)
  284. {
  285. local_irq_disable();
  286. /*
  287. * Remove this CPU:
  288. */
  289. set_cpu_online(smp_processor_id(), false);
  290. disable_local_APIC();
  291. for (;;)
  292. halt();
  293. }
  294. bool amd_e400_c1e_detected;
  295. EXPORT_SYMBOL(amd_e400_c1e_detected);
  296. static cpumask_var_t amd_e400_c1e_mask;
  297. void amd_e400_remove_cpu(int cpu)
  298. {
  299. if (amd_e400_c1e_mask != NULL)
  300. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  301. }
  302. /*
  303. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  304. * pending message MSR. If we detect C1E, then we handle it the same
  305. * way as C3 power states (local apic timer and TSC stop)
  306. */
  307. static void amd_e400_idle(void)
  308. {
  309. if (!amd_e400_c1e_detected) {
  310. u32 lo, hi;
  311. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  312. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  313. amd_e400_c1e_detected = true;
  314. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  315. mark_tsc_unstable("TSC halt in AMD C1E");
  316. pr_info("System has AMD C1E enabled\n");
  317. }
  318. }
  319. if (amd_e400_c1e_detected) {
  320. int cpu = smp_processor_id();
  321. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  322. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  323. /*
  324. * Force broadcast so ACPI can not interfere.
  325. */
  326. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  327. &cpu);
  328. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  329. }
  330. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  331. default_idle();
  332. /*
  333. * The switch back from broadcast mode needs to be
  334. * called with interrupts disabled.
  335. */
  336. local_irq_disable();
  337. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  338. local_irq_enable();
  339. } else
  340. default_idle();
  341. }
  342. void select_idle_routine(const struct cpuinfo_x86 *c)
  343. {
  344. #ifdef CONFIG_SMP
  345. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  346. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  347. #endif
  348. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  349. return;
  350. if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
  351. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  352. pr_info("using AMD E400 aware idle routine\n");
  353. x86_idle = amd_e400_idle;
  354. } else
  355. x86_idle = default_idle;
  356. }
  357. void __init init_amd_e400_c1e_mask(void)
  358. {
  359. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  360. if (x86_idle == amd_e400_idle)
  361. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  362. }
  363. static int __init idle_setup(char *str)
  364. {
  365. if (!str)
  366. return -EINVAL;
  367. if (!strcmp(str, "poll")) {
  368. pr_info("using polling idle threads\n");
  369. boot_option_idle_override = IDLE_POLL;
  370. cpu_idle_poll_ctrl(true);
  371. } else if (!strcmp(str, "halt")) {
  372. /*
  373. * When the boot option of idle=halt is added, halt is
  374. * forced to be used for CPU idle. In such case CPU C2/C3
  375. * won't be used again.
  376. * To continue to load the CPU idle driver, don't touch
  377. * the boot_option_idle_override.
  378. */
  379. x86_idle = default_idle;
  380. boot_option_idle_override = IDLE_HALT;
  381. } else if (!strcmp(str, "nomwait")) {
  382. /*
  383. * If the boot option of "idle=nomwait" is added,
  384. * it means that mwait will be disabled for CPU C2/C3
  385. * states. In such case it won't touch the variable
  386. * of boot_option_idle_override.
  387. */
  388. boot_option_idle_override = IDLE_NOMWAIT;
  389. } else
  390. return -1;
  391. return 0;
  392. }
  393. early_param("idle", idle_setup);
  394. unsigned long arch_align_stack(unsigned long sp)
  395. {
  396. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  397. sp -= get_random_int() % 8192;
  398. return sp & ~0xf;
  399. }
  400. unsigned long arch_randomize_brk(struct mm_struct *mm)
  401. {
  402. unsigned long range_end = mm->brk + 0x02000000;
  403. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  404. }