common.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kprobes.h>
  12. #include <linux/kgdb.h>
  13. #include <linux/smp.h>
  14. #include <linux/io.h>
  15. #include <asm/stackprotector.h>
  16. #include <asm/perf_event.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/archrandom.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/processor.h>
  21. #include <asm/debugreg.h>
  22. #include <asm/sections.h>
  23. #include <asm/vsyscall.h>
  24. #include <linux/topology.h>
  25. #include <linux/cpumask.h>
  26. #include <asm/pgtable.h>
  27. #include <linux/atomic.h>
  28. #include <asm/proto.h>
  29. #include <asm/setup.h>
  30. #include <asm/apic.h>
  31. #include <asm/desc.h>
  32. #include <asm/i387.h>
  33. #include <asm/fpu-internal.h>
  34. #include <asm/mtrr.h>
  35. #include <linux/numa.h>
  36. #include <asm/asm.h>
  37. #include <asm/cpu.h>
  38. #include <asm/mce.h>
  39. #include <asm/msr.h>
  40. #include <asm/pat.h>
  41. #include <asm/microcode.h>
  42. #include <asm/microcode_intel.h>
  43. #ifdef CONFIG_X86_LOCAL_APIC
  44. #include <asm/uv/uv.h>
  45. #endif
  46. #include "cpu.h"
  47. /* all of these masks are initialized in setup_cpu_local_masks() */
  48. cpumask_var_t cpu_initialized_mask;
  49. cpumask_var_t cpu_callout_mask;
  50. cpumask_var_t cpu_callin_mask;
  51. /* representing cpus for which sibling maps can be computed */
  52. cpumask_var_t cpu_sibling_setup_mask;
  53. /* correctly size the local cpu masks */
  54. void __init setup_cpu_local_masks(void)
  55. {
  56. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  57. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  58. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  59. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  60. }
  61. static void default_init(struct cpuinfo_x86 *c)
  62. {
  63. #ifdef CONFIG_X86_64
  64. cpu_detect_cache_sizes(c);
  65. #else
  66. /* Not much we can do here... */
  67. /* Check if at least it has cpuid */
  68. if (c->cpuid_level == -1) {
  69. /* No cpuid. It must be an ancient CPU */
  70. if (c->x86 == 4)
  71. strcpy(c->x86_model_id, "486");
  72. else if (c->x86 == 3)
  73. strcpy(c->x86_model_id, "386");
  74. }
  75. #endif
  76. }
  77. static const struct cpu_dev default_cpu = {
  78. .c_init = default_init,
  79. .c_vendor = "Unknown",
  80. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  81. };
  82. static const struct cpu_dev *this_cpu = &default_cpu;
  83. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  84. #ifdef CONFIG_X86_64
  85. /*
  86. * We need valid kernel segments for data and code in long mode too
  87. * IRET will check the segment types kkeil 2000/10/28
  88. * Also sysret mandates a special GDT layout
  89. *
  90. * TLS descriptors are currently at a different place compared to i386.
  91. * Hopefully nobody expects them at a fixed place (Wine?)
  92. */
  93. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  94. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  95. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  96. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  97. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  98. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  99. #else
  100. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  101. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  102. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  103. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  104. /*
  105. * Segments used for calling PnP BIOS have byte granularity.
  106. * They code segments and data segments have fixed 64k limits,
  107. * the transfer segment sizes are set at run time.
  108. */
  109. /* 32-bit code */
  110. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  111. /* 16-bit code */
  112. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  113. /* 16-bit data */
  114. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  115. /* 16-bit data */
  116. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  117. /* 16-bit data */
  118. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  119. /*
  120. * The APM segments have byte granularity and their bases
  121. * are set at run time. All have 64k limits.
  122. */
  123. /* 32-bit code */
  124. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  125. /* 16-bit code */
  126. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  127. /* data */
  128. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  129. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  130. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  131. GDT_STACK_CANARY_INIT
  132. #endif
  133. } };
  134. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  135. static int __init x86_xsave_setup(char *s)
  136. {
  137. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  138. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  139. setup_clear_cpu_cap(X86_FEATURE_XSAVES);
  140. setup_clear_cpu_cap(X86_FEATURE_AVX);
  141. setup_clear_cpu_cap(X86_FEATURE_AVX2);
  142. return 1;
  143. }
  144. __setup("noxsave", x86_xsave_setup);
  145. static int __init x86_xsaveopt_setup(char *s)
  146. {
  147. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  148. return 1;
  149. }
  150. __setup("noxsaveopt", x86_xsaveopt_setup);
  151. static int __init x86_xsaves_setup(char *s)
  152. {
  153. setup_clear_cpu_cap(X86_FEATURE_XSAVES);
  154. return 1;
  155. }
  156. __setup("noxsaves", x86_xsaves_setup);
  157. #ifdef CONFIG_X86_32
  158. static int cachesize_override = -1;
  159. static int disable_x86_serial_nr = 1;
  160. static int __init cachesize_setup(char *str)
  161. {
  162. get_option(&str, &cachesize_override);
  163. return 1;
  164. }
  165. __setup("cachesize=", cachesize_setup);
  166. static int __init x86_fxsr_setup(char *s)
  167. {
  168. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  169. setup_clear_cpu_cap(X86_FEATURE_XMM);
  170. return 1;
  171. }
  172. __setup("nofxsr", x86_fxsr_setup);
  173. static int __init x86_sep_setup(char *s)
  174. {
  175. setup_clear_cpu_cap(X86_FEATURE_SEP);
  176. return 1;
  177. }
  178. __setup("nosep", x86_sep_setup);
  179. /* Standard macro to see if a specific flag is changeable */
  180. static inline int flag_is_changeable_p(u32 flag)
  181. {
  182. u32 f1, f2;
  183. /*
  184. * Cyrix and IDT cpus allow disabling of CPUID
  185. * so the code below may return different results
  186. * when it is executed before and after enabling
  187. * the CPUID. Add "volatile" to not allow gcc to
  188. * optimize the subsequent calls to this function.
  189. */
  190. asm volatile ("pushfl \n\t"
  191. "pushfl \n\t"
  192. "popl %0 \n\t"
  193. "movl %0, %1 \n\t"
  194. "xorl %2, %0 \n\t"
  195. "pushl %0 \n\t"
  196. "popfl \n\t"
  197. "pushfl \n\t"
  198. "popl %0 \n\t"
  199. "popfl \n\t"
  200. : "=&r" (f1), "=&r" (f2)
  201. : "ir" (flag));
  202. return ((f1^f2) & flag) != 0;
  203. }
  204. /* Probe for the CPUID instruction */
  205. int have_cpuid_p(void)
  206. {
  207. return flag_is_changeable_p(X86_EFLAGS_ID);
  208. }
  209. static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  210. {
  211. unsigned long lo, hi;
  212. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  213. return;
  214. /* Disable processor serial number: */
  215. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  216. lo |= 0x200000;
  217. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  218. printk(KERN_NOTICE "CPU serial number disabled.\n");
  219. clear_cpu_cap(c, X86_FEATURE_PN);
  220. /* Disabling the serial number may affect the cpuid level */
  221. c->cpuid_level = cpuid_eax(0);
  222. }
  223. static int __init x86_serial_nr_setup(char *s)
  224. {
  225. disable_x86_serial_nr = 0;
  226. return 1;
  227. }
  228. __setup("serialnumber", x86_serial_nr_setup);
  229. #else
  230. static inline int flag_is_changeable_p(u32 flag)
  231. {
  232. return 1;
  233. }
  234. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  235. {
  236. }
  237. #endif
  238. static __init int setup_disable_smep(char *arg)
  239. {
  240. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  241. return 1;
  242. }
  243. __setup("nosmep", setup_disable_smep);
  244. static __always_inline void setup_smep(struct cpuinfo_x86 *c)
  245. {
  246. if (cpu_has(c, X86_FEATURE_SMEP))
  247. set_in_cr4(X86_CR4_SMEP);
  248. }
  249. static __init int setup_disable_smap(char *arg)
  250. {
  251. setup_clear_cpu_cap(X86_FEATURE_SMAP);
  252. return 1;
  253. }
  254. __setup("nosmap", setup_disable_smap);
  255. static __always_inline void setup_smap(struct cpuinfo_x86 *c)
  256. {
  257. unsigned long eflags;
  258. /* This should have been cleared long ago */
  259. raw_local_save_flags(eflags);
  260. BUG_ON(eflags & X86_EFLAGS_AC);
  261. if (cpu_has(c, X86_FEATURE_SMAP)) {
  262. #ifdef CONFIG_X86_SMAP
  263. set_in_cr4(X86_CR4_SMAP);
  264. #else
  265. clear_in_cr4(X86_CR4_SMAP);
  266. #endif
  267. }
  268. }
  269. /*
  270. * Some CPU features depend on higher CPUID levels, which may not always
  271. * be available due to CPUID level capping or broken virtualization
  272. * software. Add those features to this table to auto-disable them.
  273. */
  274. struct cpuid_dependent_feature {
  275. u32 feature;
  276. u32 level;
  277. };
  278. static const struct cpuid_dependent_feature
  279. cpuid_dependent_features[] = {
  280. { X86_FEATURE_MWAIT, 0x00000005 },
  281. { X86_FEATURE_DCA, 0x00000009 },
  282. { X86_FEATURE_XSAVE, 0x0000000d },
  283. { 0, 0 }
  284. };
  285. static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  286. {
  287. const struct cpuid_dependent_feature *df;
  288. for (df = cpuid_dependent_features; df->feature; df++) {
  289. if (!cpu_has(c, df->feature))
  290. continue;
  291. /*
  292. * Note: cpuid_level is set to -1 if unavailable, but
  293. * extended_extended_level is set to 0 if unavailable
  294. * and the legitimate extended levels are all negative
  295. * when signed; hence the weird messing around with
  296. * signs here...
  297. */
  298. if (!((s32)df->level < 0 ?
  299. (u32)df->level > (u32)c->extended_cpuid_level :
  300. (s32)df->level > (s32)c->cpuid_level))
  301. continue;
  302. clear_cpu_cap(c, df->feature);
  303. if (!warn)
  304. continue;
  305. printk(KERN_WARNING
  306. "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
  307. x86_cap_flag(df->feature), df->level);
  308. }
  309. }
  310. /*
  311. * Naming convention should be: <Name> [(<Codename>)]
  312. * This table only is used unless init_<vendor>() below doesn't set it;
  313. * in particular, if CPUID levels 0x80000002..4 are supported, this
  314. * isn't used
  315. */
  316. /* Look up CPU names by table lookup. */
  317. static const char *table_lookup_model(struct cpuinfo_x86 *c)
  318. {
  319. #ifdef CONFIG_X86_32
  320. const struct legacy_cpu_model_info *info;
  321. if (c->x86_model >= 16)
  322. return NULL; /* Range check */
  323. if (!this_cpu)
  324. return NULL;
  325. info = this_cpu->legacy_models;
  326. while (info->family) {
  327. if (info->family == c->x86)
  328. return info->model_names[c->x86_model];
  329. info++;
  330. }
  331. #endif
  332. return NULL; /* Not found */
  333. }
  334. __u32 cpu_caps_cleared[NCAPINTS];
  335. __u32 cpu_caps_set[NCAPINTS];
  336. void load_percpu_segment(int cpu)
  337. {
  338. #ifdef CONFIG_X86_32
  339. loadsegment(fs, __KERNEL_PERCPU);
  340. #else
  341. loadsegment(gs, 0);
  342. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  343. #endif
  344. load_stack_canary_segment();
  345. }
  346. /*
  347. * Current gdt points %fs at the "master" per-cpu area: after this,
  348. * it's on the real one.
  349. */
  350. void switch_to_new_gdt(int cpu)
  351. {
  352. struct desc_ptr gdt_descr;
  353. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  354. gdt_descr.size = GDT_SIZE - 1;
  355. load_gdt(&gdt_descr);
  356. /* Reload the per-cpu base */
  357. load_percpu_segment(cpu);
  358. }
  359. static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  360. static void get_model_name(struct cpuinfo_x86 *c)
  361. {
  362. unsigned int *v;
  363. char *p, *q;
  364. if (c->extended_cpuid_level < 0x80000004)
  365. return;
  366. v = (unsigned int *)c->x86_model_id;
  367. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  368. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  369. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  370. c->x86_model_id[48] = 0;
  371. /*
  372. * Intel chips right-justify this string for some dumb reason;
  373. * undo that brain damage:
  374. */
  375. p = q = &c->x86_model_id[0];
  376. while (*p == ' ')
  377. p++;
  378. if (p != q) {
  379. while (*p)
  380. *q++ = *p++;
  381. while (q <= &c->x86_model_id[48])
  382. *q++ = '\0'; /* Zero-pad the rest */
  383. }
  384. }
  385. void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  386. {
  387. unsigned int n, dummy, ebx, ecx, edx, l2size;
  388. n = c->extended_cpuid_level;
  389. if (n >= 0x80000005) {
  390. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  391. c->x86_cache_size = (ecx>>24) + (edx>>24);
  392. #ifdef CONFIG_X86_64
  393. /* On K8 L1 TLB is inclusive, so don't count it */
  394. c->x86_tlbsize = 0;
  395. #endif
  396. }
  397. if (n < 0x80000006) /* Some chips just has a large L1. */
  398. return;
  399. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  400. l2size = ecx >> 16;
  401. #ifdef CONFIG_X86_64
  402. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  403. #else
  404. /* do processor-specific cache resizing */
  405. if (this_cpu->legacy_cache_size)
  406. l2size = this_cpu->legacy_cache_size(c, l2size);
  407. /* Allow user to override all this if necessary. */
  408. if (cachesize_override != -1)
  409. l2size = cachesize_override;
  410. if (l2size == 0)
  411. return; /* Again, no L2 cache is possible */
  412. #endif
  413. c->x86_cache_size = l2size;
  414. }
  415. u16 __read_mostly tlb_lli_4k[NR_INFO];
  416. u16 __read_mostly tlb_lli_2m[NR_INFO];
  417. u16 __read_mostly tlb_lli_4m[NR_INFO];
  418. u16 __read_mostly tlb_lld_4k[NR_INFO];
  419. u16 __read_mostly tlb_lld_2m[NR_INFO];
  420. u16 __read_mostly tlb_lld_4m[NR_INFO];
  421. u16 __read_mostly tlb_lld_1g[NR_INFO];
  422. void cpu_detect_tlb(struct cpuinfo_x86 *c)
  423. {
  424. if (this_cpu->c_detect_tlb)
  425. this_cpu->c_detect_tlb(c);
  426. printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
  427. "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
  428. tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
  429. tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
  430. tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
  431. tlb_lld_1g[ENTRIES]);
  432. }
  433. void detect_ht(struct cpuinfo_x86 *c)
  434. {
  435. #ifdef CONFIG_X86_HT
  436. u32 eax, ebx, ecx, edx;
  437. int index_msb, core_bits;
  438. static bool printed;
  439. if (!cpu_has(c, X86_FEATURE_HT))
  440. return;
  441. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  442. goto out;
  443. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  444. return;
  445. cpuid(1, &eax, &ebx, &ecx, &edx);
  446. smp_num_siblings = (ebx & 0xff0000) >> 16;
  447. if (smp_num_siblings == 1) {
  448. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  449. goto out;
  450. }
  451. if (smp_num_siblings <= 1)
  452. goto out;
  453. index_msb = get_count_order(smp_num_siblings);
  454. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  455. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  456. index_msb = get_count_order(smp_num_siblings);
  457. core_bits = get_count_order(c->x86_max_cores);
  458. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  459. ((1 << core_bits) - 1);
  460. out:
  461. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  462. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  463. c->phys_proc_id);
  464. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  465. c->cpu_core_id);
  466. printed = 1;
  467. }
  468. #endif
  469. }
  470. static void get_cpu_vendor(struct cpuinfo_x86 *c)
  471. {
  472. char *v = c->x86_vendor_id;
  473. int i;
  474. for (i = 0; i < X86_VENDOR_NUM; i++) {
  475. if (!cpu_devs[i])
  476. break;
  477. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  478. (cpu_devs[i]->c_ident[1] &&
  479. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  480. this_cpu = cpu_devs[i];
  481. c->x86_vendor = this_cpu->c_x86_vendor;
  482. return;
  483. }
  484. }
  485. printk_once(KERN_ERR
  486. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  487. "CPU: Your system may be unstable.\n", v);
  488. c->x86_vendor = X86_VENDOR_UNKNOWN;
  489. this_cpu = &default_cpu;
  490. }
  491. void cpu_detect(struct cpuinfo_x86 *c)
  492. {
  493. /* Get vendor name */
  494. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  495. (unsigned int *)&c->x86_vendor_id[0],
  496. (unsigned int *)&c->x86_vendor_id[8],
  497. (unsigned int *)&c->x86_vendor_id[4]);
  498. c->x86 = 4;
  499. /* Intel-defined flags: level 0x00000001 */
  500. if (c->cpuid_level >= 0x00000001) {
  501. u32 junk, tfms, cap0, misc;
  502. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  503. c->x86 = (tfms >> 8) & 0xf;
  504. c->x86_model = (tfms >> 4) & 0xf;
  505. c->x86_mask = tfms & 0xf;
  506. if (c->x86 == 0xf)
  507. c->x86 += (tfms >> 20) & 0xff;
  508. if (c->x86 >= 0x6)
  509. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  510. if (cap0 & (1<<19)) {
  511. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  512. c->x86_cache_alignment = c->x86_clflush_size;
  513. }
  514. }
  515. }
  516. void get_cpu_cap(struct cpuinfo_x86 *c)
  517. {
  518. u32 tfms, xlvl;
  519. u32 ebx;
  520. /* Intel-defined flags: level 0x00000001 */
  521. if (c->cpuid_level >= 0x00000001) {
  522. u32 capability, excap;
  523. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  524. c->x86_capability[0] = capability;
  525. c->x86_capability[4] = excap;
  526. }
  527. /* Additional Intel-defined flags: level 0x00000007 */
  528. if (c->cpuid_level >= 0x00000007) {
  529. u32 eax, ebx, ecx, edx;
  530. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  531. c->x86_capability[9] = ebx;
  532. }
  533. /* Extended state features: level 0x0000000d */
  534. if (c->cpuid_level >= 0x0000000d) {
  535. u32 eax, ebx, ecx, edx;
  536. cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
  537. c->x86_capability[10] = eax;
  538. }
  539. /* AMD-defined flags: level 0x80000001 */
  540. xlvl = cpuid_eax(0x80000000);
  541. c->extended_cpuid_level = xlvl;
  542. if ((xlvl & 0xffff0000) == 0x80000000) {
  543. if (xlvl >= 0x80000001) {
  544. c->x86_capability[1] = cpuid_edx(0x80000001);
  545. c->x86_capability[6] = cpuid_ecx(0x80000001);
  546. }
  547. }
  548. if (c->extended_cpuid_level >= 0x80000008) {
  549. u32 eax = cpuid_eax(0x80000008);
  550. c->x86_virt_bits = (eax >> 8) & 0xff;
  551. c->x86_phys_bits = eax & 0xff;
  552. }
  553. #ifdef CONFIG_X86_32
  554. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  555. c->x86_phys_bits = 36;
  556. #endif
  557. if (c->extended_cpuid_level >= 0x80000007)
  558. c->x86_power = cpuid_edx(0x80000007);
  559. init_scattered_cpuid_features(c);
  560. }
  561. static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  562. {
  563. #ifdef CONFIG_X86_32
  564. int i;
  565. /*
  566. * First of all, decide if this is a 486 or higher
  567. * It's a 486 if we can modify the AC flag
  568. */
  569. if (flag_is_changeable_p(X86_EFLAGS_AC))
  570. c->x86 = 4;
  571. else
  572. c->x86 = 3;
  573. for (i = 0; i < X86_VENDOR_NUM; i++)
  574. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  575. c->x86_vendor_id[0] = 0;
  576. cpu_devs[i]->c_identify(c);
  577. if (c->x86_vendor_id[0]) {
  578. get_cpu_vendor(c);
  579. break;
  580. }
  581. }
  582. #endif
  583. }
  584. /*
  585. * Do minimum CPU detection early.
  586. * Fields really needed: vendor, cpuid_level, family, model, mask,
  587. * cache alignment.
  588. * The others are not touched to avoid unwanted side effects.
  589. *
  590. * WARNING: this function is only called on the BP. Don't add code here
  591. * that is supposed to run on all CPUs.
  592. */
  593. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  594. {
  595. #ifdef CONFIG_X86_64
  596. c->x86_clflush_size = 64;
  597. c->x86_phys_bits = 36;
  598. c->x86_virt_bits = 48;
  599. #else
  600. c->x86_clflush_size = 32;
  601. c->x86_phys_bits = 32;
  602. c->x86_virt_bits = 32;
  603. #endif
  604. c->x86_cache_alignment = c->x86_clflush_size;
  605. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  606. c->extended_cpuid_level = 0;
  607. if (!have_cpuid_p())
  608. identify_cpu_without_cpuid(c);
  609. /* cyrix could have cpuid enabled via c_identify()*/
  610. if (!have_cpuid_p())
  611. return;
  612. cpu_detect(c);
  613. get_cpu_vendor(c);
  614. get_cpu_cap(c);
  615. fpu_detect(c);
  616. if (this_cpu->c_early_init)
  617. this_cpu->c_early_init(c);
  618. c->cpu_index = 0;
  619. filter_cpuid_features(c, false);
  620. if (this_cpu->c_bsp_init)
  621. this_cpu->c_bsp_init(c);
  622. setup_force_cpu_cap(X86_FEATURE_ALWAYS);
  623. }
  624. void __init early_cpu_init(void)
  625. {
  626. const struct cpu_dev *const *cdev;
  627. int count = 0;
  628. #ifdef CONFIG_PROCESSOR_SELECT
  629. printk(KERN_INFO "KERNEL supported cpus:\n");
  630. #endif
  631. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  632. const struct cpu_dev *cpudev = *cdev;
  633. if (count >= X86_VENDOR_NUM)
  634. break;
  635. cpu_devs[count] = cpudev;
  636. count++;
  637. #ifdef CONFIG_PROCESSOR_SELECT
  638. {
  639. unsigned int j;
  640. for (j = 0; j < 2; j++) {
  641. if (!cpudev->c_ident[j])
  642. continue;
  643. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  644. cpudev->c_ident[j]);
  645. }
  646. }
  647. #endif
  648. }
  649. early_identify_cpu(&boot_cpu_data);
  650. }
  651. /*
  652. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  653. * unfortunately, that's not true in practice because of early VIA
  654. * chips and (more importantly) broken virtualizers that are not easy
  655. * to detect. In the latter case it doesn't even *fail* reliably, so
  656. * probing for it doesn't even work. Disable it completely on 32-bit
  657. * unless we can find a reliable way to detect all the broken cases.
  658. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  659. */
  660. static void detect_nopl(struct cpuinfo_x86 *c)
  661. {
  662. #ifdef CONFIG_X86_32
  663. clear_cpu_cap(c, X86_FEATURE_NOPL);
  664. #else
  665. set_cpu_cap(c, X86_FEATURE_NOPL);
  666. #endif
  667. }
  668. static void generic_identify(struct cpuinfo_x86 *c)
  669. {
  670. c->extended_cpuid_level = 0;
  671. if (!have_cpuid_p())
  672. identify_cpu_without_cpuid(c);
  673. /* cyrix could have cpuid enabled via c_identify()*/
  674. if (!have_cpuid_p())
  675. return;
  676. cpu_detect(c);
  677. get_cpu_vendor(c);
  678. get_cpu_cap(c);
  679. if (c->cpuid_level >= 0x00000001) {
  680. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  681. #ifdef CONFIG_X86_32
  682. # ifdef CONFIG_X86_HT
  683. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  684. # else
  685. c->apicid = c->initial_apicid;
  686. # endif
  687. #endif
  688. c->phys_proc_id = c->initial_apicid;
  689. }
  690. get_model_name(c); /* Default name */
  691. detect_nopl(c);
  692. }
  693. /*
  694. * This does the hard work of actually picking apart the CPU stuff...
  695. */
  696. static void identify_cpu(struct cpuinfo_x86 *c)
  697. {
  698. int i;
  699. c->loops_per_jiffy = loops_per_jiffy;
  700. c->x86_cache_size = -1;
  701. c->x86_vendor = X86_VENDOR_UNKNOWN;
  702. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  703. c->x86_vendor_id[0] = '\0'; /* Unset */
  704. c->x86_model_id[0] = '\0'; /* Unset */
  705. c->x86_max_cores = 1;
  706. c->x86_coreid_bits = 0;
  707. #ifdef CONFIG_X86_64
  708. c->x86_clflush_size = 64;
  709. c->x86_phys_bits = 36;
  710. c->x86_virt_bits = 48;
  711. #else
  712. c->cpuid_level = -1; /* CPUID not detected */
  713. c->x86_clflush_size = 32;
  714. c->x86_phys_bits = 32;
  715. c->x86_virt_bits = 32;
  716. #endif
  717. c->x86_cache_alignment = c->x86_clflush_size;
  718. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  719. generic_identify(c);
  720. if (this_cpu->c_identify)
  721. this_cpu->c_identify(c);
  722. /* Clear/Set all flags overriden by options, after probe */
  723. for (i = 0; i < NCAPINTS; i++) {
  724. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  725. c->x86_capability[i] |= cpu_caps_set[i];
  726. }
  727. #ifdef CONFIG_X86_64
  728. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  729. #endif
  730. /*
  731. * Vendor-specific initialization. In this section we
  732. * canonicalize the feature flags, meaning if there are
  733. * features a certain CPU supports which CPUID doesn't
  734. * tell us, CPUID claiming incorrect flags, or other bugs,
  735. * we handle them here.
  736. *
  737. * At the end of this section, c->x86_capability better
  738. * indicate the features this CPU genuinely supports!
  739. */
  740. if (this_cpu->c_init)
  741. this_cpu->c_init(c);
  742. /* Disable the PN if appropriate */
  743. squash_the_stupid_serial_number(c);
  744. /* Set up SMEP/SMAP */
  745. setup_smep(c);
  746. setup_smap(c);
  747. /*
  748. * The vendor-specific functions might have changed features.
  749. * Now we do "generic changes."
  750. */
  751. /* Filter out anything that depends on CPUID levels we don't have */
  752. filter_cpuid_features(c, true);
  753. /* If the model name is still unset, do table lookup. */
  754. if (!c->x86_model_id[0]) {
  755. const char *p;
  756. p = table_lookup_model(c);
  757. if (p)
  758. strcpy(c->x86_model_id, p);
  759. else
  760. /* Last resort... */
  761. sprintf(c->x86_model_id, "%02x/%02x",
  762. c->x86, c->x86_model);
  763. }
  764. #ifdef CONFIG_X86_64
  765. detect_ht(c);
  766. #endif
  767. init_hypervisor(c);
  768. x86_init_rdrand(c);
  769. /*
  770. * Clear/Set all flags overriden by options, need do it
  771. * before following smp all cpus cap AND.
  772. */
  773. for (i = 0; i < NCAPINTS; i++) {
  774. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  775. c->x86_capability[i] |= cpu_caps_set[i];
  776. }
  777. /*
  778. * On SMP, boot_cpu_data holds the common feature set between
  779. * all CPUs; so make sure that we indicate which features are
  780. * common between the CPUs. The first time this routine gets
  781. * executed, c == &boot_cpu_data.
  782. */
  783. if (c != &boot_cpu_data) {
  784. /* AND the already accumulated flags with these */
  785. for (i = 0; i < NCAPINTS; i++)
  786. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  787. /* OR, i.e. replicate the bug flags */
  788. for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
  789. c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
  790. }
  791. /* Init Machine Check Exception if available. */
  792. mcheck_cpu_init(c);
  793. select_idle_routine(c);
  794. #ifdef CONFIG_NUMA
  795. numa_add_cpu(smp_processor_id());
  796. #endif
  797. }
  798. #ifdef CONFIG_X86_64
  799. static void vgetcpu_set_mode(void)
  800. {
  801. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  802. vgetcpu_mode = VGETCPU_RDTSCP;
  803. else
  804. vgetcpu_mode = VGETCPU_LSL;
  805. }
  806. #ifdef CONFIG_IA32_EMULATION
  807. /* May not be __init: called during resume */
  808. static void syscall32_cpu_init(void)
  809. {
  810. /* Load these always in case some future AMD CPU supports
  811. SYSENTER from compat mode too. */
  812. wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
  813. wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
  814. wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
  815. wrmsrl(MSR_CSTAR, ia32_cstar_target);
  816. }
  817. #endif /* CONFIG_IA32_EMULATION */
  818. #endif /* CONFIG_X86_64 */
  819. #ifdef CONFIG_X86_32
  820. void enable_sep_cpu(void)
  821. {
  822. int cpu = get_cpu();
  823. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  824. if (!boot_cpu_has(X86_FEATURE_SEP)) {
  825. put_cpu();
  826. return;
  827. }
  828. tss->x86_tss.ss1 = __KERNEL_CS;
  829. tss->x86_tss.sp1 = sizeof(struct tss_struct) + (unsigned long) tss;
  830. wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
  831. wrmsr(MSR_IA32_SYSENTER_ESP, tss->x86_tss.sp1, 0);
  832. wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long) ia32_sysenter_target, 0);
  833. put_cpu();
  834. }
  835. #endif
  836. void __init identify_boot_cpu(void)
  837. {
  838. identify_cpu(&boot_cpu_data);
  839. init_amd_e400_c1e_mask();
  840. #ifdef CONFIG_X86_32
  841. sysenter_setup();
  842. enable_sep_cpu();
  843. #else
  844. vgetcpu_set_mode();
  845. #endif
  846. cpu_detect_tlb(&boot_cpu_data);
  847. }
  848. void identify_secondary_cpu(struct cpuinfo_x86 *c)
  849. {
  850. BUG_ON(c == &boot_cpu_data);
  851. identify_cpu(c);
  852. #ifdef CONFIG_X86_32
  853. enable_sep_cpu();
  854. #endif
  855. mtrr_ap_init();
  856. }
  857. struct msr_range {
  858. unsigned min;
  859. unsigned max;
  860. };
  861. static const struct msr_range msr_range_array[] = {
  862. { 0x00000000, 0x00000418},
  863. { 0xc0000000, 0xc000040b},
  864. { 0xc0010000, 0xc0010142},
  865. { 0xc0011000, 0xc001103b},
  866. };
  867. static void __print_cpu_msr(void)
  868. {
  869. unsigned index_min, index_max;
  870. unsigned index;
  871. u64 val;
  872. int i;
  873. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  874. index_min = msr_range_array[i].min;
  875. index_max = msr_range_array[i].max;
  876. for (index = index_min; index < index_max; index++) {
  877. if (rdmsrl_safe(index, &val))
  878. continue;
  879. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  880. }
  881. }
  882. }
  883. static int show_msr;
  884. static __init int setup_show_msr(char *arg)
  885. {
  886. int num;
  887. get_option(&arg, &num);
  888. if (num > 0)
  889. show_msr = num;
  890. return 1;
  891. }
  892. __setup("show_msr=", setup_show_msr);
  893. static __init int setup_noclflush(char *arg)
  894. {
  895. setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
  896. setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
  897. return 1;
  898. }
  899. __setup("noclflush", setup_noclflush);
  900. void print_cpu_info(struct cpuinfo_x86 *c)
  901. {
  902. const char *vendor = NULL;
  903. if (c->x86_vendor < X86_VENDOR_NUM) {
  904. vendor = this_cpu->c_vendor;
  905. } else {
  906. if (c->cpuid_level >= 0)
  907. vendor = c->x86_vendor_id;
  908. }
  909. if (vendor && !strstr(c->x86_model_id, vendor))
  910. printk(KERN_CONT "%s ", vendor);
  911. if (c->x86_model_id[0])
  912. printk(KERN_CONT "%s", strim(c->x86_model_id));
  913. else
  914. printk(KERN_CONT "%d86", c->x86);
  915. printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
  916. if (c->x86_mask || c->cpuid_level >= 0)
  917. printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
  918. else
  919. printk(KERN_CONT ")\n");
  920. print_cpu_msr(c);
  921. }
  922. void print_cpu_msr(struct cpuinfo_x86 *c)
  923. {
  924. if (c->cpu_index < show_msr)
  925. __print_cpu_msr();
  926. }
  927. static __init int setup_disablecpuid(char *arg)
  928. {
  929. int bit;
  930. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  931. setup_clear_cpu_cap(bit);
  932. else
  933. return 0;
  934. return 1;
  935. }
  936. __setup("clearcpuid=", setup_disablecpuid);
  937. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  938. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  939. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  940. #ifdef CONFIG_X86_64
  941. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  942. struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
  943. (unsigned long) debug_idt_table };
  944. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  945. irq_stack_union) __aligned(PAGE_SIZE) __visible;
  946. /*
  947. * The following four percpu variables are hot. Align current_task to
  948. * cacheline size such that all four fall in the same cacheline.
  949. */
  950. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  951. &init_task;
  952. EXPORT_PER_CPU_SYMBOL(current_task);
  953. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  954. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  955. DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
  956. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  957. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  958. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  959. /*
  960. * Special IST stacks which the CPU switches to when it calls
  961. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  962. * limit), all of them are 4K, except the debug stack which
  963. * is 8K.
  964. */
  965. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  966. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  967. [DEBUG_STACK - 1] = DEBUG_STKSZ
  968. };
  969. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  970. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  971. /* May not be marked __init: used by software suspend */
  972. void syscall_init(void)
  973. {
  974. /*
  975. * LSTAR and STAR live in a bit strange symbiosis.
  976. * They both write to the same internal register. STAR allows to
  977. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  978. */
  979. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  980. wrmsrl(MSR_LSTAR, system_call);
  981. wrmsrl(MSR_CSTAR, ignore_sysret);
  982. #ifdef CONFIG_IA32_EMULATION
  983. syscall32_cpu_init();
  984. #endif
  985. /* Flags to clear on syscall */
  986. wrmsrl(MSR_SYSCALL_MASK,
  987. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
  988. X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
  989. }
  990. /*
  991. * Copies of the original ist values from the tss are only accessed during
  992. * debugging, no special alignment required.
  993. */
  994. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  995. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  996. DEFINE_PER_CPU(int, debug_stack_usage);
  997. int is_debug_stack(unsigned long addr)
  998. {
  999. return __this_cpu_read(debug_stack_usage) ||
  1000. (addr <= __this_cpu_read(debug_stack_addr) &&
  1001. addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
  1002. }
  1003. NOKPROBE_SYMBOL(is_debug_stack);
  1004. DEFINE_PER_CPU(u32, debug_idt_ctr);
  1005. void debug_stack_set_zero(void)
  1006. {
  1007. this_cpu_inc(debug_idt_ctr);
  1008. load_current_idt();
  1009. }
  1010. NOKPROBE_SYMBOL(debug_stack_set_zero);
  1011. void debug_stack_reset(void)
  1012. {
  1013. if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
  1014. return;
  1015. if (this_cpu_dec_return(debug_idt_ctr) == 0)
  1016. load_current_idt();
  1017. }
  1018. NOKPROBE_SYMBOL(debug_stack_reset);
  1019. #else /* CONFIG_X86_64 */
  1020. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  1021. EXPORT_PER_CPU_SYMBOL(current_task);
  1022. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  1023. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  1024. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  1025. #ifdef CONFIG_CC_STACKPROTECTOR
  1026. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  1027. #endif
  1028. #endif /* CONFIG_X86_64 */
  1029. /*
  1030. * Clear all 6 debug registers:
  1031. */
  1032. static void clear_all_debug_regs(void)
  1033. {
  1034. int i;
  1035. for (i = 0; i < 8; i++) {
  1036. /* Ignore db4, db5 */
  1037. if ((i == 4) || (i == 5))
  1038. continue;
  1039. set_debugreg(0, i);
  1040. }
  1041. }
  1042. #ifdef CONFIG_KGDB
  1043. /*
  1044. * Restore debug regs if using kgdbwait and you have a kernel debugger
  1045. * connection established.
  1046. */
  1047. static void dbg_restore_debug_regs(void)
  1048. {
  1049. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  1050. arch_kgdb_ops.correct_hw_break();
  1051. }
  1052. #else /* ! CONFIG_KGDB */
  1053. #define dbg_restore_debug_regs()
  1054. #endif /* ! CONFIG_KGDB */
  1055. static void wait_for_master_cpu(int cpu)
  1056. {
  1057. #ifdef CONFIG_SMP
  1058. /*
  1059. * wait for ACK from master CPU before continuing
  1060. * with AP initialization
  1061. */
  1062. WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
  1063. while (!cpumask_test_cpu(cpu, cpu_callout_mask))
  1064. cpu_relax();
  1065. #endif
  1066. }
  1067. /*
  1068. * cpu_init() initializes state that is per-CPU. Some data is already
  1069. * initialized (naturally) in the bootstrap process, such as the GDT
  1070. * and IDT. We reload them nevertheless, this function acts as a
  1071. * 'CPU state barrier', nothing should get across.
  1072. * A lot of state is already set up in PDA init for 64 bit
  1073. */
  1074. #ifdef CONFIG_X86_64
  1075. void cpu_init(void)
  1076. {
  1077. struct orig_ist *oist;
  1078. struct task_struct *me;
  1079. struct tss_struct *t;
  1080. unsigned long v;
  1081. int cpu = stack_smp_processor_id();
  1082. int i;
  1083. wait_for_master_cpu(cpu);
  1084. /*
  1085. * Load microcode on this cpu if a valid microcode is available.
  1086. * This is early microcode loading procedure.
  1087. */
  1088. load_ucode_ap();
  1089. t = &per_cpu(init_tss, cpu);
  1090. oist = &per_cpu(orig_ist, cpu);
  1091. #ifdef CONFIG_NUMA
  1092. if (this_cpu_read(numa_node) == 0 &&
  1093. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  1094. set_numa_node(early_cpu_to_node(cpu));
  1095. #endif
  1096. me = current;
  1097. pr_debug("Initializing CPU#%d\n", cpu);
  1098. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1099. /*
  1100. * Initialize the per-CPU GDT with the boot GDT,
  1101. * and set up the GDT descriptor:
  1102. */
  1103. switch_to_new_gdt(cpu);
  1104. loadsegment(fs, 0);
  1105. load_current_idt();
  1106. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1107. syscall_init();
  1108. wrmsrl(MSR_FS_BASE, 0);
  1109. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1110. barrier();
  1111. x86_configure_nx();
  1112. enable_x2apic();
  1113. /*
  1114. * set up and load the per-CPU TSS
  1115. */
  1116. if (!oist->ist[0]) {
  1117. char *estacks = per_cpu(exception_stacks, cpu);
  1118. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1119. estacks += exception_stack_sizes[v];
  1120. oist->ist[v] = t->x86_tss.ist[v] =
  1121. (unsigned long)estacks;
  1122. if (v == DEBUG_STACK-1)
  1123. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1124. }
  1125. }
  1126. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1127. /*
  1128. * <= is required because the CPU will access up to
  1129. * 8 bits beyond the end of the IO permission bitmap.
  1130. */
  1131. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1132. t->io_bitmap[i] = ~0UL;
  1133. atomic_inc(&init_mm.mm_count);
  1134. me->active_mm = &init_mm;
  1135. BUG_ON(me->mm);
  1136. enter_lazy_tlb(&init_mm, me);
  1137. load_sp0(t, &current->thread);
  1138. set_tss_desc(cpu, t);
  1139. load_TR_desc();
  1140. load_LDT(&init_mm.context);
  1141. clear_all_debug_regs();
  1142. dbg_restore_debug_regs();
  1143. fpu_init();
  1144. if (is_uv_system())
  1145. uv_cpu_init();
  1146. }
  1147. #else
  1148. void cpu_init(void)
  1149. {
  1150. int cpu = smp_processor_id();
  1151. struct task_struct *curr = current;
  1152. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1153. struct thread_struct *thread = &curr->thread;
  1154. wait_for_master_cpu(cpu);
  1155. show_ucode_info_early();
  1156. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1157. if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
  1158. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1159. load_current_idt();
  1160. switch_to_new_gdt(cpu);
  1161. /*
  1162. * Set up and load the per-CPU TSS and LDT
  1163. */
  1164. atomic_inc(&init_mm.mm_count);
  1165. curr->active_mm = &init_mm;
  1166. BUG_ON(curr->mm);
  1167. enter_lazy_tlb(&init_mm, curr);
  1168. load_sp0(t, thread);
  1169. set_tss_desc(cpu, t);
  1170. load_TR_desc();
  1171. load_LDT(&init_mm.context);
  1172. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1173. #ifdef CONFIG_DOUBLEFAULT
  1174. /* Set up doublefault TSS pointer in the GDT */
  1175. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1176. #endif
  1177. clear_all_debug_regs();
  1178. dbg_restore_debug_regs();
  1179. fpu_init();
  1180. }
  1181. #endif
  1182. #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
  1183. void warn_pre_alternatives(void)
  1184. {
  1185. WARN(1, "You're using static_cpu_has before alternatives have run!\n");
  1186. }
  1187. EXPORT_SYMBOL_GPL(warn_pre_alternatives);
  1188. #endif
  1189. inline bool __static_cpu_has_safe(u16 bit)
  1190. {
  1191. return boot_cpu_has(bit);
  1192. }
  1193. EXPORT_SYMBOL_GPL(__static_cpu_has_safe);