book3s_hv.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <linux/miscdevice.h>
  34. #include <asm/reg.h>
  35. #include <asm/cputable.h>
  36. #include <asm/cache.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/io.h>
  41. #include <asm/kvm_ppc.h>
  42. #include <asm/kvm_book3s.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/lppaca.h>
  45. #include <asm/processor.h>
  46. #include <asm/cputhreads.h>
  47. #include <asm/page.h>
  48. #include <asm/hvcall.h>
  49. #include <asm/switch_to.h>
  50. #include <asm/smp.h>
  51. #include <linux/gfp.h>
  52. #include <linux/vmalloc.h>
  53. #include <linux/highmem.h>
  54. #include <linux/hugetlb.h>
  55. #include <linux/module.h>
  56. #include "book3s.h"
  57. /* #define EXIT_DEBUG */
  58. /* #define EXIT_DEBUG_SIMPLE */
  59. /* #define EXIT_DEBUG_INT */
  60. /* Used to indicate that a guest page fault needs to be handled */
  61. #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
  62. /* Used as a "null" value for timebase values */
  63. #define TB_NIL (~(u64)0)
  64. static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  65. #if defined(CONFIG_PPC_64K_PAGES)
  66. #define MPP_BUFFER_ORDER 0
  67. #elif defined(CONFIG_PPC_4K_PAGES)
  68. #define MPP_BUFFER_ORDER 3
  69. #endif
  70. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  71. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  72. static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
  73. {
  74. int me;
  75. int cpu = vcpu->cpu;
  76. wait_queue_head_t *wqp;
  77. wqp = kvm_arch_vcpu_wq(vcpu);
  78. if (waitqueue_active(wqp)) {
  79. wake_up_interruptible(wqp);
  80. ++vcpu->stat.halt_wakeup;
  81. }
  82. me = get_cpu();
  83. /* CPU points to the first thread of the core */
  84. if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
  85. #ifdef CONFIG_PPC_ICP_NATIVE
  86. int real_cpu = cpu + vcpu->arch.ptid;
  87. if (paca[real_cpu].kvm_hstate.xics_phys)
  88. xics_wake_cpu(real_cpu);
  89. else
  90. #endif
  91. if (cpu_online(cpu))
  92. smp_send_reschedule(cpu);
  93. }
  94. put_cpu();
  95. }
  96. /*
  97. * We use the vcpu_load/put functions to measure stolen time.
  98. * Stolen time is counted as time when either the vcpu is able to
  99. * run as part of a virtual core, but the task running the vcore
  100. * is preempted or sleeping, or when the vcpu needs something done
  101. * in the kernel by the task running the vcpu, but that task is
  102. * preempted or sleeping. Those two things have to be counted
  103. * separately, since one of the vcpu tasks will take on the job
  104. * of running the core, and the other vcpu tasks in the vcore will
  105. * sleep waiting for it to do that, but that sleep shouldn't count
  106. * as stolen time.
  107. *
  108. * Hence we accumulate stolen time when the vcpu can run as part of
  109. * a vcore using vc->stolen_tb, and the stolen time when the vcpu
  110. * needs its task to do other things in the kernel (for example,
  111. * service a page fault) in busy_stolen. We don't accumulate
  112. * stolen time for a vcore when it is inactive, or for a vcpu
  113. * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
  114. * a misnomer; it means that the vcpu task is not executing in
  115. * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
  116. * the kernel. We don't have any way of dividing up that time
  117. * between time that the vcpu is genuinely stopped, time that
  118. * the task is actively working on behalf of the vcpu, and time
  119. * that the task is preempted, so we don't count any of it as
  120. * stolen.
  121. *
  122. * Updates to busy_stolen are protected by arch.tbacct_lock;
  123. * updates to vc->stolen_tb are protected by the arch.tbacct_lock
  124. * of the vcpu that has taken responsibility for running the vcore
  125. * (i.e. vc->runner). The stolen times are measured in units of
  126. * timebase ticks. (Note that the != TB_NIL checks below are
  127. * purely defensive; they should never fail.)
  128. */
  129. static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
  130. {
  131. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  132. unsigned long flags;
  133. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  134. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
  135. vc->preempt_tb != TB_NIL) {
  136. vc->stolen_tb += mftb() - vc->preempt_tb;
  137. vc->preempt_tb = TB_NIL;
  138. }
  139. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
  140. vcpu->arch.busy_preempt != TB_NIL) {
  141. vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
  142. vcpu->arch.busy_preempt = TB_NIL;
  143. }
  144. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  145. }
  146. static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
  147. {
  148. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  149. unsigned long flags;
  150. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  151. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  152. vc->preempt_tb = mftb();
  153. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
  154. vcpu->arch.busy_preempt = mftb();
  155. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  156. }
  157. static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
  158. {
  159. vcpu->arch.shregs.msr = msr;
  160. kvmppc_end_cede(vcpu);
  161. }
  162. void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
  163. {
  164. vcpu->arch.pvr = pvr;
  165. }
  166. int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
  167. {
  168. unsigned long pcr = 0;
  169. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  170. if (arch_compat) {
  171. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  172. return -EINVAL; /* 970 has no compat mode support */
  173. switch (arch_compat) {
  174. case PVR_ARCH_205:
  175. /*
  176. * If an arch bit is set in PCR, all the defined
  177. * higher-order arch bits also have to be set.
  178. */
  179. pcr = PCR_ARCH_206 | PCR_ARCH_205;
  180. break;
  181. case PVR_ARCH_206:
  182. case PVR_ARCH_206p:
  183. pcr = PCR_ARCH_206;
  184. break;
  185. case PVR_ARCH_207:
  186. break;
  187. default:
  188. return -EINVAL;
  189. }
  190. if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
  191. /* POWER7 can't emulate POWER8 */
  192. if (!(pcr & PCR_ARCH_206))
  193. return -EINVAL;
  194. pcr &= ~PCR_ARCH_206;
  195. }
  196. }
  197. spin_lock(&vc->lock);
  198. vc->arch_compat = arch_compat;
  199. vc->pcr = pcr;
  200. spin_unlock(&vc->lock);
  201. return 0;
  202. }
  203. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  204. {
  205. int r;
  206. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  207. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  208. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  209. for (r = 0; r < 16; ++r)
  210. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  211. r, kvmppc_get_gpr(vcpu, r),
  212. r+16, kvmppc_get_gpr(vcpu, r+16));
  213. pr_err("ctr = %.16lx lr = %.16lx\n",
  214. vcpu->arch.ctr, vcpu->arch.lr);
  215. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  216. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  217. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  218. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  219. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  220. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  221. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  222. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  223. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  224. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  225. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  226. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  227. for (r = 0; r < vcpu->arch.slb_max; ++r)
  228. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  229. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  230. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  231. vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
  232. vcpu->arch.last_inst);
  233. }
  234. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  235. {
  236. int r;
  237. struct kvm_vcpu *v, *ret = NULL;
  238. mutex_lock(&kvm->lock);
  239. kvm_for_each_vcpu(r, v, kvm) {
  240. if (v->vcpu_id == id) {
  241. ret = v;
  242. break;
  243. }
  244. }
  245. mutex_unlock(&kvm->lock);
  246. return ret;
  247. }
  248. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  249. {
  250. vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
  251. vpa->yield_count = cpu_to_be32(1);
  252. }
  253. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  254. unsigned long addr, unsigned long len)
  255. {
  256. /* check address is cacheline aligned */
  257. if (addr & (L1_CACHE_BYTES - 1))
  258. return -EINVAL;
  259. spin_lock(&vcpu->arch.vpa_update_lock);
  260. if (v->next_gpa != addr || v->len != len) {
  261. v->next_gpa = addr;
  262. v->len = addr ? len : 0;
  263. v->update_pending = 1;
  264. }
  265. spin_unlock(&vcpu->arch.vpa_update_lock);
  266. return 0;
  267. }
  268. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  269. struct reg_vpa {
  270. u32 dummy;
  271. union {
  272. __be16 hword;
  273. __be32 word;
  274. } length;
  275. };
  276. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  277. {
  278. if (vpap->update_pending)
  279. return vpap->next_gpa != 0;
  280. return vpap->pinned_addr != NULL;
  281. }
  282. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  283. unsigned long flags,
  284. unsigned long vcpuid, unsigned long vpa)
  285. {
  286. struct kvm *kvm = vcpu->kvm;
  287. unsigned long len, nb;
  288. void *va;
  289. struct kvm_vcpu *tvcpu;
  290. int err;
  291. int subfunc;
  292. struct kvmppc_vpa *vpap;
  293. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  294. if (!tvcpu)
  295. return H_PARAMETER;
  296. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  297. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  298. subfunc == H_VPA_REG_SLB) {
  299. /* Registering new area - address must be cache-line aligned */
  300. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  301. return H_PARAMETER;
  302. /* convert logical addr to kernel addr and read length */
  303. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  304. if (va == NULL)
  305. return H_PARAMETER;
  306. if (subfunc == H_VPA_REG_VPA)
  307. len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
  308. else
  309. len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
  310. kvmppc_unpin_guest_page(kvm, va, vpa, false);
  311. /* Check length */
  312. if (len > nb || len < sizeof(struct reg_vpa))
  313. return H_PARAMETER;
  314. } else {
  315. vpa = 0;
  316. len = 0;
  317. }
  318. err = H_PARAMETER;
  319. vpap = NULL;
  320. spin_lock(&tvcpu->arch.vpa_update_lock);
  321. switch (subfunc) {
  322. case H_VPA_REG_VPA: /* register VPA */
  323. if (len < sizeof(struct lppaca))
  324. break;
  325. vpap = &tvcpu->arch.vpa;
  326. err = 0;
  327. break;
  328. case H_VPA_REG_DTL: /* register DTL */
  329. if (len < sizeof(struct dtl_entry))
  330. break;
  331. len -= len % sizeof(struct dtl_entry);
  332. /* Check that they have previously registered a VPA */
  333. err = H_RESOURCE;
  334. if (!vpa_is_registered(&tvcpu->arch.vpa))
  335. break;
  336. vpap = &tvcpu->arch.dtl;
  337. err = 0;
  338. break;
  339. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  340. /* Check that they have previously registered a VPA */
  341. err = H_RESOURCE;
  342. if (!vpa_is_registered(&tvcpu->arch.vpa))
  343. break;
  344. vpap = &tvcpu->arch.slb_shadow;
  345. err = 0;
  346. break;
  347. case H_VPA_DEREG_VPA: /* deregister VPA */
  348. /* Check they don't still have a DTL or SLB buf registered */
  349. err = H_RESOURCE;
  350. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  351. vpa_is_registered(&tvcpu->arch.slb_shadow))
  352. break;
  353. vpap = &tvcpu->arch.vpa;
  354. err = 0;
  355. break;
  356. case H_VPA_DEREG_DTL: /* deregister DTL */
  357. vpap = &tvcpu->arch.dtl;
  358. err = 0;
  359. break;
  360. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  361. vpap = &tvcpu->arch.slb_shadow;
  362. err = 0;
  363. break;
  364. }
  365. if (vpap) {
  366. vpap->next_gpa = vpa;
  367. vpap->len = len;
  368. vpap->update_pending = 1;
  369. }
  370. spin_unlock(&tvcpu->arch.vpa_update_lock);
  371. return err;
  372. }
  373. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  374. {
  375. struct kvm *kvm = vcpu->kvm;
  376. void *va;
  377. unsigned long nb;
  378. unsigned long gpa;
  379. /*
  380. * We need to pin the page pointed to by vpap->next_gpa,
  381. * but we can't call kvmppc_pin_guest_page under the lock
  382. * as it does get_user_pages() and down_read(). So we
  383. * have to drop the lock, pin the page, then get the lock
  384. * again and check that a new area didn't get registered
  385. * in the meantime.
  386. */
  387. for (;;) {
  388. gpa = vpap->next_gpa;
  389. spin_unlock(&vcpu->arch.vpa_update_lock);
  390. va = NULL;
  391. nb = 0;
  392. if (gpa)
  393. va = kvmppc_pin_guest_page(kvm, gpa, &nb);
  394. spin_lock(&vcpu->arch.vpa_update_lock);
  395. if (gpa == vpap->next_gpa)
  396. break;
  397. /* sigh... unpin that one and try again */
  398. if (va)
  399. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  400. }
  401. vpap->update_pending = 0;
  402. if (va && nb < vpap->len) {
  403. /*
  404. * If it's now too short, it must be that userspace
  405. * has changed the mappings underlying guest memory,
  406. * so unregister the region.
  407. */
  408. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  409. va = NULL;
  410. }
  411. if (vpap->pinned_addr)
  412. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
  413. vpap->dirty);
  414. vpap->gpa = gpa;
  415. vpap->pinned_addr = va;
  416. vpap->dirty = false;
  417. if (va)
  418. vpap->pinned_end = va + vpap->len;
  419. }
  420. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  421. {
  422. if (!(vcpu->arch.vpa.update_pending ||
  423. vcpu->arch.slb_shadow.update_pending ||
  424. vcpu->arch.dtl.update_pending))
  425. return;
  426. spin_lock(&vcpu->arch.vpa_update_lock);
  427. if (vcpu->arch.vpa.update_pending) {
  428. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  429. if (vcpu->arch.vpa.pinned_addr)
  430. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  431. }
  432. if (vcpu->arch.dtl.update_pending) {
  433. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  434. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  435. vcpu->arch.dtl_index = 0;
  436. }
  437. if (vcpu->arch.slb_shadow.update_pending)
  438. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  439. spin_unlock(&vcpu->arch.vpa_update_lock);
  440. }
  441. /*
  442. * Return the accumulated stolen time for the vcore up until `now'.
  443. * The caller should hold the vcore lock.
  444. */
  445. static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
  446. {
  447. u64 p;
  448. /*
  449. * If we are the task running the vcore, then since we hold
  450. * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
  451. * can't be updated, so we don't need the tbacct_lock.
  452. * If the vcore is inactive, it can't become active (since we
  453. * hold the vcore lock), so the vcpu load/put functions won't
  454. * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
  455. */
  456. if (vc->vcore_state != VCORE_INACTIVE &&
  457. vc->runner->arch.run_task != current) {
  458. spin_lock_irq(&vc->runner->arch.tbacct_lock);
  459. p = vc->stolen_tb;
  460. if (vc->preempt_tb != TB_NIL)
  461. p += now - vc->preempt_tb;
  462. spin_unlock_irq(&vc->runner->arch.tbacct_lock);
  463. } else {
  464. p = vc->stolen_tb;
  465. }
  466. return p;
  467. }
  468. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  469. struct kvmppc_vcore *vc)
  470. {
  471. struct dtl_entry *dt;
  472. struct lppaca *vpa;
  473. unsigned long stolen;
  474. unsigned long core_stolen;
  475. u64 now;
  476. dt = vcpu->arch.dtl_ptr;
  477. vpa = vcpu->arch.vpa.pinned_addr;
  478. now = mftb();
  479. core_stolen = vcore_stolen_time(vc, now);
  480. stolen = core_stolen - vcpu->arch.stolen_logged;
  481. vcpu->arch.stolen_logged = core_stolen;
  482. spin_lock_irq(&vcpu->arch.tbacct_lock);
  483. stolen += vcpu->arch.busy_stolen;
  484. vcpu->arch.busy_stolen = 0;
  485. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  486. if (!dt || !vpa)
  487. return;
  488. memset(dt, 0, sizeof(struct dtl_entry));
  489. dt->dispatch_reason = 7;
  490. dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
  491. dt->timebase = cpu_to_be64(now + vc->tb_offset);
  492. dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
  493. dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
  494. dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
  495. ++dt;
  496. if (dt == vcpu->arch.dtl.pinned_end)
  497. dt = vcpu->arch.dtl.pinned_addr;
  498. vcpu->arch.dtl_ptr = dt;
  499. /* order writing *dt vs. writing vpa->dtl_idx */
  500. smp_wmb();
  501. vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
  502. vcpu->arch.dtl.dirty = true;
  503. }
  504. static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
  505. {
  506. if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
  507. return true;
  508. if ((!vcpu->arch.vcore->arch_compat) &&
  509. cpu_has_feature(CPU_FTR_ARCH_207S))
  510. return true;
  511. return false;
  512. }
  513. static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
  514. unsigned long resource, unsigned long value1,
  515. unsigned long value2)
  516. {
  517. switch (resource) {
  518. case H_SET_MODE_RESOURCE_SET_CIABR:
  519. if (!kvmppc_power8_compatible(vcpu))
  520. return H_P2;
  521. if (value2)
  522. return H_P4;
  523. if (mflags)
  524. return H_UNSUPPORTED_FLAG_START;
  525. /* Guests can't breakpoint the hypervisor */
  526. if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
  527. return H_P3;
  528. vcpu->arch.ciabr = value1;
  529. return H_SUCCESS;
  530. case H_SET_MODE_RESOURCE_SET_DAWR:
  531. if (!kvmppc_power8_compatible(vcpu))
  532. return H_P2;
  533. if (mflags)
  534. return H_UNSUPPORTED_FLAG_START;
  535. if (value2 & DABRX_HYP)
  536. return H_P4;
  537. vcpu->arch.dawr = value1;
  538. vcpu->arch.dawrx = value2;
  539. return H_SUCCESS;
  540. default:
  541. return H_TOO_HARD;
  542. }
  543. }
  544. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  545. {
  546. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  547. unsigned long target, ret = H_SUCCESS;
  548. struct kvm_vcpu *tvcpu;
  549. int idx, rc;
  550. if (req <= MAX_HCALL_OPCODE &&
  551. !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
  552. return RESUME_HOST;
  553. switch (req) {
  554. case H_ENTER:
  555. idx = srcu_read_lock(&vcpu->kvm->srcu);
  556. ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
  557. kvmppc_get_gpr(vcpu, 5),
  558. kvmppc_get_gpr(vcpu, 6),
  559. kvmppc_get_gpr(vcpu, 7));
  560. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  561. break;
  562. case H_CEDE:
  563. break;
  564. case H_PROD:
  565. target = kvmppc_get_gpr(vcpu, 4);
  566. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  567. if (!tvcpu) {
  568. ret = H_PARAMETER;
  569. break;
  570. }
  571. tvcpu->arch.prodded = 1;
  572. smp_mb();
  573. if (vcpu->arch.ceded) {
  574. if (waitqueue_active(&vcpu->wq)) {
  575. wake_up_interruptible(&vcpu->wq);
  576. vcpu->stat.halt_wakeup++;
  577. }
  578. }
  579. break;
  580. case H_CONFER:
  581. target = kvmppc_get_gpr(vcpu, 4);
  582. if (target == -1)
  583. break;
  584. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  585. if (!tvcpu) {
  586. ret = H_PARAMETER;
  587. break;
  588. }
  589. kvm_vcpu_yield_to(tvcpu);
  590. break;
  591. case H_REGISTER_VPA:
  592. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  593. kvmppc_get_gpr(vcpu, 5),
  594. kvmppc_get_gpr(vcpu, 6));
  595. break;
  596. case H_RTAS:
  597. if (list_empty(&vcpu->kvm->arch.rtas_tokens))
  598. return RESUME_HOST;
  599. idx = srcu_read_lock(&vcpu->kvm->srcu);
  600. rc = kvmppc_rtas_hcall(vcpu);
  601. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  602. if (rc == -ENOENT)
  603. return RESUME_HOST;
  604. else if (rc == 0)
  605. break;
  606. /* Send the error out to userspace via KVM_RUN */
  607. return rc;
  608. case H_SET_MODE:
  609. ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
  610. kvmppc_get_gpr(vcpu, 5),
  611. kvmppc_get_gpr(vcpu, 6),
  612. kvmppc_get_gpr(vcpu, 7));
  613. if (ret == H_TOO_HARD)
  614. return RESUME_HOST;
  615. break;
  616. case H_XIRR:
  617. case H_CPPR:
  618. case H_EOI:
  619. case H_IPI:
  620. case H_IPOLL:
  621. case H_XIRR_X:
  622. if (kvmppc_xics_enabled(vcpu)) {
  623. ret = kvmppc_xics_hcall(vcpu, req);
  624. break;
  625. } /* fallthrough */
  626. default:
  627. return RESUME_HOST;
  628. }
  629. kvmppc_set_gpr(vcpu, 3, ret);
  630. vcpu->arch.hcall_needed = 0;
  631. return RESUME_GUEST;
  632. }
  633. static int kvmppc_hcall_impl_hv(unsigned long cmd)
  634. {
  635. switch (cmd) {
  636. case H_CEDE:
  637. case H_PROD:
  638. case H_CONFER:
  639. case H_REGISTER_VPA:
  640. case H_SET_MODE:
  641. #ifdef CONFIG_KVM_XICS
  642. case H_XIRR:
  643. case H_CPPR:
  644. case H_EOI:
  645. case H_IPI:
  646. case H_IPOLL:
  647. case H_XIRR_X:
  648. #endif
  649. return 1;
  650. }
  651. /* See if it's in the real-mode table */
  652. return kvmppc_hcall_impl_hv_realmode(cmd);
  653. }
  654. static int kvmppc_emulate_debug_inst(struct kvm_run *run,
  655. struct kvm_vcpu *vcpu)
  656. {
  657. u32 last_inst;
  658. if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
  659. EMULATE_DONE) {
  660. /*
  661. * Fetch failed, so return to guest and
  662. * try executing it again.
  663. */
  664. return RESUME_GUEST;
  665. }
  666. if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
  667. run->exit_reason = KVM_EXIT_DEBUG;
  668. run->debug.arch.address = kvmppc_get_pc(vcpu);
  669. return RESUME_HOST;
  670. } else {
  671. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  672. return RESUME_GUEST;
  673. }
  674. }
  675. static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  676. struct task_struct *tsk)
  677. {
  678. int r = RESUME_HOST;
  679. vcpu->stat.sum_exits++;
  680. run->exit_reason = KVM_EXIT_UNKNOWN;
  681. run->ready_for_interrupt_injection = 1;
  682. switch (vcpu->arch.trap) {
  683. /* We're good on these - the host merely wanted to get our attention */
  684. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  685. vcpu->stat.dec_exits++;
  686. r = RESUME_GUEST;
  687. break;
  688. case BOOK3S_INTERRUPT_EXTERNAL:
  689. case BOOK3S_INTERRUPT_H_DOORBELL:
  690. vcpu->stat.ext_intr_exits++;
  691. r = RESUME_GUEST;
  692. break;
  693. case BOOK3S_INTERRUPT_PERFMON:
  694. r = RESUME_GUEST;
  695. break;
  696. case BOOK3S_INTERRUPT_MACHINE_CHECK:
  697. /*
  698. * Deliver a machine check interrupt to the guest.
  699. * We have to do this, even if the host has handled the
  700. * machine check, because machine checks use SRR0/1 and
  701. * the interrupt might have trashed guest state in them.
  702. */
  703. kvmppc_book3s_queue_irqprio(vcpu,
  704. BOOK3S_INTERRUPT_MACHINE_CHECK);
  705. r = RESUME_GUEST;
  706. break;
  707. case BOOK3S_INTERRUPT_PROGRAM:
  708. {
  709. ulong flags;
  710. /*
  711. * Normally program interrupts are delivered directly
  712. * to the guest by the hardware, but we can get here
  713. * as a result of a hypervisor emulation interrupt
  714. * (e40) getting turned into a 700 by BML RTAS.
  715. */
  716. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  717. kvmppc_core_queue_program(vcpu, flags);
  718. r = RESUME_GUEST;
  719. break;
  720. }
  721. case BOOK3S_INTERRUPT_SYSCALL:
  722. {
  723. /* hcall - punt to userspace */
  724. int i;
  725. /* hypercall with MSR_PR has already been handled in rmode,
  726. * and never reaches here.
  727. */
  728. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  729. for (i = 0; i < 9; ++i)
  730. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  731. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  732. vcpu->arch.hcall_needed = 1;
  733. r = RESUME_HOST;
  734. break;
  735. }
  736. /*
  737. * We get these next two if the guest accesses a page which it thinks
  738. * it has mapped but which is not actually present, either because
  739. * it is for an emulated I/O device or because the corresonding
  740. * host page has been paged out. Any other HDSI/HISI interrupts
  741. * have been handled already.
  742. */
  743. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  744. r = RESUME_PAGE_FAULT;
  745. break;
  746. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  747. vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
  748. vcpu->arch.fault_dsisr = 0;
  749. r = RESUME_PAGE_FAULT;
  750. break;
  751. /*
  752. * This occurs if the guest executes an illegal instruction.
  753. * If the guest debug is disabled, generate a program interrupt
  754. * to the guest. If guest debug is enabled, we need to check
  755. * whether the instruction is a software breakpoint instruction.
  756. * Accordingly return to Guest or Host.
  757. */
  758. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  759. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
  760. r = kvmppc_emulate_debug_inst(run, vcpu);
  761. } else {
  762. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  763. r = RESUME_GUEST;
  764. }
  765. break;
  766. /*
  767. * This occurs if the guest (kernel or userspace), does something that
  768. * is prohibited by HFSCR. We just generate a program interrupt to
  769. * the guest.
  770. */
  771. case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
  772. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  773. r = RESUME_GUEST;
  774. break;
  775. default:
  776. kvmppc_dump_regs(vcpu);
  777. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  778. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  779. vcpu->arch.shregs.msr);
  780. run->hw.hardware_exit_reason = vcpu->arch.trap;
  781. r = RESUME_HOST;
  782. break;
  783. }
  784. return r;
  785. }
  786. static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
  787. struct kvm_sregs *sregs)
  788. {
  789. int i;
  790. memset(sregs, 0, sizeof(struct kvm_sregs));
  791. sregs->pvr = vcpu->arch.pvr;
  792. for (i = 0; i < vcpu->arch.slb_max; i++) {
  793. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  794. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  795. }
  796. return 0;
  797. }
  798. static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
  799. struct kvm_sregs *sregs)
  800. {
  801. int i, j;
  802. /* Only accept the same PVR as the host's, since we can't spoof it */
  803. if (sregs->pvr != vcpu->arch.pvr)
  804. return -EINVAL;
  805. j = 0;
  806. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  807. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  808. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  809. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  810. ++j;
  811. }
  812. }
  813. vcpu->arch.slb_max = j;
  814. return 0;
  815. }
  816. static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
  817. bool preserve_top32)
  818. {
  819. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  820. u64 mask;
  821. spin_lock(&vc->lock);
  822. /*
  823. * If ILE (interrupt little-endian) has changed, update the
  824. * MSR_LE bit in the intr_msr for each vcpu in this vcore.
  825. */
  826. if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
  827. struct kvm *kvm = vcpu->kvm;
  828. struct kvm_vcpu *vcpu;
  829. int i;
  830. mutex_lock(&kvm->lock);
  831. kvm_for_each_vcpu(i, vcpu, kvm) {
  832. if (vcpu->arch.vcore != vc)
  833. continue;
  834. if (new_lpcr & LPCR_ILE)
  835. vcpu->arch.intr_msr |= MSR_LE;
  836. else
  837. vcpu->arch.intr_msr &= ~MSR_LE;
  838. }
  839. mutex_unlock(&kvm->lock);
  840. }
  841. /*
  842. * Userspace can only modify DPFD (default prefetch depth),
  843. * ILE (interrupt little-endian) and TC (translation control).
  844. * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
  845. */
  846. mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
  847. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  848. mask |= LPCR_AIL;
  849. /* Broken 32-bit version of LPCR must not clear top bits */
  850. if (preserve_top32)
  851. mask &= 0xFFFFFFFF;
  852. vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
  853. spin_unlock(&vc->lock);
  854. }
  855. static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  856. union kvmppc_one_reg *val)
  857. {
  858. int r = 0;
  859. long int i;
  860. switch (id) {
  861. case KVM_REG_PPC_DEBUG_INST:
  862. *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
  863. break;
  864. case KVM_REG_PPC_HIOR:
  865. *val = get_reg_val(id, 0);
  866. break;
  867. case KVM_REG_PPC_DABR:
  868. *val = get_reg_val(id, vcpu->arch.dabr);
  869. break;
  870. case KVM_REG_PPC_DABRX:
  871. *val = get_reg_val(id, vcpu->arch.dabrx);
  872. break;
  873. case KVM_REG_PPC_DSCR:
  874. *val = get_reg_val(id, vcpu->arch.dscr);
  875. break;
  876. case KVM_REG_PPC_PURR:
  877. *val = get_reg_val(id, vcpu->arch.purr);
  878. break;
  879. case KVM_REG_PPC_SPURR:
  880. *val = get_reg_val(id, vcpu->arch.spurr);
  881. break;
  882. case KVM_REG_PPC_AMR:
  883. *val = get_reg_val(id, vcpu->arch.amr);
  884. break;
  885. case KVM_REG_PPC_UAMOR:
  886. *val = get_reg_val(id, vcpu->arch.uamor);
  887. break;
  888. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  889. i = id - KVM_REG_PPC_MMCR0;
  890. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  891. break;
  892. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  893. i = id - KVM_REG_PPC_PMC1;
  894. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  895. break;
  896. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  897. i = id - KVM_REG_PPC_SPMC1;
  898. *val = get_reg_val(id, vcpu->arch.spmc[i]);
  899. break;
  900. case KVM_REG_PPC_SIAR:
  901. *val = get_reg_val(id, vcpu->arch.siar);
  902. break;
  903. case KVM_REG_PPC_SDAR:
  904. *val = get_reg_val(id, vcpu->arch.sdar);
  905. break;
  906. case KVM_REG_PPC_SIER:
  907. *val = get_reg_val(id, vcpu->arch.sier);
  908. break;
  909. case KVM_REG_PPC_IAMR:
  910. *val = get_reg_val(id, vcpu->arch.iamr);
  911. break;
  912. case KVM_REG_PPC_PSPB:
  913. *val = get_reg_val(id, vcpu->arch.pspb);
  914. break;
  915. case KVM_REG_PPC_DPDES:
  916. *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
  917. break;
  918. case KVM_REG_PPC_DAWR:
  919. *val = get_reg_val(id, vcpu->arch.dawr);
  920. break;
  921. case KVM_REG_PPC_DAWRX:
  922. *val = get_reg_val(id, vcpu->arch.dawrx);
  923. break;
  924. case KVM_REG_PPC_CIABR:
  925. *val = get_reg_val(id, vcpu->arch.ciabr);
  926. break;
  927. case KVM_REG_PPC_CSIGR:
  928. *val = get_reg_val(id, vcpu->arch.csigr);
  929. break;
  930. case KVM_REG_PPC_TACR:
  931. *val = get_reg_val(id, vcpu->arch.tacr);
  932. break;
  933. case KVM_REG_PPC_TCSCR:
  934. *val = get_reg_val(id, vcpu->arch.tcscr);
  935. break;
  936. case KVM_REG_PPC_PID:
  937. *val = get_reg_val(id, vcpu->arch.pid);
  938. break;
  939. case KVM_REG_PPC_ACOP:
  940. *val = get_reg_val(id, vcpu->arch.acop);
  941. break;
  942. case KVM_REG_PPC_WORT:
  943. *val = get_reg_val(id, vcpu->arch.wort);
  944. break;
  945. case KVM_REG_PPC_VPA_ADDR:
  946. spin_lock(&vcpu->arch.vpa_update_lock);
  947. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  948. spin_unlock(&vcpu->arch.vpa_update_lock);
  949. break;
  950. case KVM_REG_PPC_VPA_SLB:
  951. spin_lock(&vcpu->arch.vpa_update_lock);
  952. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  953. val->vpaval.length = vcpu->arch.slb_shadow.len;
  954. spin_unlock(&vcpu->arch.vpa_update_lock);
  955. break;
  956. case KVM_REG_PPC_VPA_DTL:
  957. spin_lock(&vcpu->arch.vpa_update_lock);
  958. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  959. val->vpaval.length = vcpu->arch.dtl.len;
  960. spin_unlock(&vcpu->arch.vpa_update_lock);
  961. break;
  962. case KVM_REG_PPC_TB_OFFSET:
  963. *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
  964. break;
  965. case KVM_REG_PPC_LPCR:
  966. case KVM_REG_PPC_LPCR_64:
  967. *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
  968. break;
  969. case KVM_REG_PPC_PPR:
  970. *val = get_reg_val(id, vcpu->arch.ppr);
  971. break;
  972. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  973. case KVM_REG_PPC_TFHAR:
  974. *val = get_reg_val(id, vcpu->arch.tfhar);
  975. break;
  976. case KVM_REG_PPC_TFIAR:
  977. *val = get_reg_val(id, vcpu->arch.tfiar);
  978. break;
  979. case KVM_REG_PPC_TEXASR:
  980. *val = get_reg_val(id, vcpu->arch.texasr);
  981. break;
  982. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  983. i = id - KVM_REG_PPC_TM_GPR0;
  984. *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
  985. break;
  986. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  987. {
  988. int j;
  989. i = id - KVM_REG_PPC_TM_VSR0;
  990. if (i < 32)
  991. for (j = 0; j < TS_FPRWIDTH; j++)
  992. val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
  993. else {
  994. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  995. val->vval = vcpu->arch.vr_tm.vr[i-32];
  996. else
  997. r = -ENXIO;
  998. }
  999. break;
  1000. }
  1001. case KVM_REG_PPC_TM_CR:
  1002. *val = get_reg_val(id, vcpu->arch.cr_tm);
  1003. break;
  1004. case KVM_REG_PPC_TM_LR:
  1005. *val = get_reg_val(id, vcpu->arch.lr_tm);
  1006. break;
  1007. case KVM_REG_PPC_TM_CTR:
  1008. *val = get_reg_val(id, vcpu->arch.ctr_tm);
  1009. break;
  1010. case KVM_REG_PPC_TM_FPSCR:
  1011. *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
  1012. break;
  1013. case KVM_REG_PPC_TM_AMR:
  1014. *val = get_reg_val(id, vcpu->arch.amr_tm);
  1015. break;
  1016. case KVM_REG_PPC_TM_PPR:
  1017. *val = get_reg_val(id, vcpu->arch.ppr_tm);
  1018. break;
  1019. case KVM_REG_PPC_TM_VRSAVE:
  1020. *val = get_reg_val(id, vcpu->arch.vrsave_tm);
  1021. break;
  1022. case KVM_REG_PPC_TM_VSCR:
  1023. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1024. *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
  1025. else
  1026. r = -ENXIO;
  1027. break;
  1028. case KVM_REG_PPC_TM_DSCR:
  1029. *val = get_reg_val(id, vcpu->arch.dscr_tm);
  1030. break;
  1031. case KVM_REG_PPC_TM_TAR:
  1032. *val = get_reg_val(id, vcpu->arch.tar_tm);
  1033. break;
  1034. #endif
  1035. case KVM_REG_PPC_ARCH_COMPAT:
  1036. *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
  1037. break;
  1038. default:
  1039. r = -EINVAL;
  1040. break;
  1041. }
  1042. return r;
  1043. }
  1044. static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  1045. union kvmppc_one_reg *val)
  1046. {
  1047. int r = 0;
  1048. long int i;
  1049. unsigned long addr, len;
  1050. switch (id) {
  1051. case KVM_REG_PPC_HIOR:
  1052. /* Only allow this to be set to zero */
  1053. if (set_reg_val(id, *val))
  1054. r = -EINVAL;
  1055. break;
  1056. case KVM_REG_PPC_DABR:
  1057. vcpu->arch.dabr = set_reg_val(id, *val);
  1058. break;
  1059. case KVM_REG_PPC_DABRX:
  1060. vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
  1061. break;
  1062. case KVM_REG_PPC_DSCR:
  1063. vcpu->arch.dscr = set_reg_val(id, *val);
  1064. break;
  1065. case KVM_REG_PPC_PURR:
  1066. vcpu->arch.purr = set_reg_val(id, *val);
  1067. break;
  1068. case KVM_REG_PPC_SPURR:
  1069. vcpu->arch.spurr = set_reg_val(id, *val);
  1070. break;
  1071. case KVM_REG_PPC_AMR:
  1072. vcpu->arch.amr = set_reg_val(id, *val);
  1073. break;
  1074. case KVM_REG_PPC_UAMOR:
  1075. vcpu->arch.uamor = set_reg_val(id, *val);
  1076. break;
  1077. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  1078. i = id - KVM_REG_PPC_MMCR0;
  1079. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  1080. break;
  1081. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  1082. i = id - KVM_REG_PPC_PMC1;
  1083. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  1084. break;
  1085. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  1086. i = id - KVM_REG_PPC_SPMC1;
  1087. vcpu->arch.spmc[i] = set_reg_val(id, *val);
  1088. break;
  1089. case KVM_REG_PPC_SIAR:
  1090. vcpu->arch.siar = set_reg_val(id, *val);
  1091. break;
  1092. case KVM_REG_PPC_SDAR:
  1093. vcpu->arch.sdar = set_reg_val(id, *val);
  1094. break;
  1095. case KVM_REG_PPC_SIER:
  1096. vcpu->arch.sier = set_reg_val(id, *val);
  1097. break;
  1098. case KVM_REG_PPC_IAMR:
  1099. vcpu->arch.iamr = set_reg_val(id, *val);
  1100. break;
  1101. case KVM_REG_PPC_PSPB:
  1102. vcpu->arch.pspb = set_reg_val(id, *val);
  1103. break;
  1104. case KVM_REG_PPC_DPDES:
  1105. vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
  1106. break;
  1107. case KVM_REG_PPC_DAWR:
  1108. vcpu->arch.dawr = set_reg_val(id, *val);
  1109. break;
  1110. case KVM_REG_PPC_DAWRX:
  1111. vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
  1112. break;
  1113. case KVM_REG_PPC_CIABR:
  1114. vcpu->arch.ciabr = set_reg_val(id, *val);
  1115. /* Don't allow setting breakpoints in hypervisor code */
  1116. if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
  1117. vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
  1118. break;
  1119. case KVM_REG_PPC_CSIGR:
  1120. vcpu->arch.csigr = set_reg_val(id, *val);
  1121. break;
  1122. case KVM_REG_PPC_TACR:
  1123. vcpu->arch.tacr = set_reg_val(id, *val);
  1124. break;
  1125. case KVM_REG_PPC_TCSCR:
  1126. vcpu->arch.tcscr = set_reg_val(id, *val);
  1127. break;
  1128. case KVM_REG_PPC_PID:
  1129. vcpu->arch.pid = set_reg_val(id, *val);
  1130. break;
  1131. case KVM_REG_PPC_ACOP:
  1132. vcpu->arch.acop = set_reg_val(id, *val);
  1133. break;
  1134. case KVM_REG_PPC_WORT:
  1135. vcpu->arch.wort = set_reg_val(id, *val);
  1136. break;
  1137. case KVM_REG_PPC_VPA_ADDR:
  1138. addr = set_reg_val(id, *val);
  1139. r = -EINVAL;
  1140. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  1141. vcpu->arch.dtl.next_gpa))
  1142. break;
  1143. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  1144. break;
  1145. case KVM_REG_PPC_VPA_SLB:
  1146. addr = val->vpaval.addr;
  1147. len = val->vpaval.length;
  1148. r = -EINVAL;
  1149. if (addr && !vcpu->arch.vpa.next_gpa)
  1150. break;
  1151. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  1152. break;
  1153. case KVM_REG_PPC_VPA_DTL:
  1154. addr = val->vpaval.addr;
  1155. len = val->vpaval.length;
  1156. r = -EINVAL;
  1157. if (addr && (len < sizeof(struct dtl_entry) ||
  1158. !vcpu->arch.vpa.next_gpa))
  1159. break;
  1160. len -= len % sizeof(struct dtl_entry);
  1161. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  1162. break;
  1163. case KVM_REG_PPC_TB_OFFSET:
  1164. /* round up to multiple of 2^24 */
  1165. vcpu->arch.vcore->tb_offset =
  1166. ALIGN(set_reg_val(id, *val), 1UL << 24);
  1167. break;
  1168. case KVM_REG_PPC_LPCR:
  1169. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
  1170. break;
  1171. case KVM_REG_PPC_LPCR_64:
  1172. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
  1173. break;
  1174. case KVM_REG_PPC_PPR:
  1175. vcpu->arch.ppr = set_reg_val(id, *val);
  1176. break;
  1177. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1178. case KVM_REG_PPC_TFHAR:
  1179. vcpu->arch.tfhar = set_reg_val(id, *val);
  1180. break;
  1181. case KVM_REG_PPC_TFIAR:
  1182. vcpu->arch.tfiar = set_reg_val(id, *val);
  1183. break;
  1184. case KVM_REG_PPC_TEXASR:
  1185. vcpu->arch.texasr = set_reg_val(id, *val);
  1186. break;
  1187. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  1188. i = id - KVM_REG_PPC_TM_GPR0;
  1189. vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
  1190. break;
  1191. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  1192. {
  1193. int j;
  1194. i = id - KVM_REG_PPC_TM_VSR0;
  1195. if (i < 32)
  1196. for (j = 0; j < TS_FPRWIDTH; j++)
  1197. vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
  1198. else
  1199. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1200. vcpu->arch.vr_tm.vr[i-32] = val->vval;
  1201. else
  1202. r = -ENXIO;
  1203. break;
  1204. }
  1205. case KVM_REG_PPC_TM_CR:
  1206. vcpu->arch.cr_tm = set_reg_val(id, *val);
  1207. break;
  1208. case KVM_REG_PPC_TM_LR:
  1209. vcpu->arch.lr_tm = set_reg_val(id, *val);
  1210. break;
  1211. case KVM_REG_PPC_TM_CTR:
  1212. vcpu->arch.ctr_tm = set_reg_val(id, *val);
  1213. break;
  1214. case KVM_REG_PPC_TM_FPSCR:
  1215. vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
  1216. break;
  1217. case KVM_REG_PPC_TM_AMR:
  1218. vcpu->arch.amr_tm = set_reg_val(id, *val);
  1219. break;
  1220. case KVM_REG_PPC_TM_PPR:
  1221. vcpu->arch.ppr_tm = set_reg_val(id, *val);
  1222. break;
  1223. case KVM_REG_PPC_TM_VRSAVE:
  1224. vcpu->arch.vrsave_tm = set_reg_val(id, *val);
  1225. break;
  1226. case KVM_REG_PPC_TM_VSCR:
  1227. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1228. vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
  1229. else
  1230. r = - ENXIO;
  1231. break;
  1232. case KVM_REG_PPC_TM_DSCR:
  1233. vcpu->arch.dscr_tm = set_reg_val(id, *val);
  1234. break;
  1235. case KVM_REG_PPC_TM_TAR:
  1236. vcpu->arch.tar_tm = set_reg_val(id, *val);
  1237. break;
  1238. #endif
  1239. case KVM_REG_PPC_ARCH_COMPAT:
  1240. r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
  1241. break;
  1242. default:
  1243. r = -EINVAL;
  1244. break;
  1245. }
  1246. return r;
  1247. }
  1248. static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
  1249. {
  1250. struct kvmppc_vcore *vcore;
  1251. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  1252. if (vcore == NULL)
  1253. return NULL;
  1254. INIT_LIST_HEAD(&vcore->runnable_threads);
  1255. spin_lock_init(&vcore->lock);
  1256. init_waitqueue_head(&vcore->wq);
  1257. vcore->preempt_tb = TB_NIL;
  1258. vcore->lpcr = kvm->arch.lpcr;
  1259. vcore->first_vcpuid = core * threads_per_subcore;
  1260. vcore->kvm = kvm;
  1261. vcore->mpp_buffer_is_valid = false;
  1262. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  1263. vcore->mpp_buffer = (void *)__get_free_pages(
  1264. GFP_KERNEL|__GFP_ZERO,
  1265. MPP_BUFFER_ORDER);
  1266. return vcore;
  1267. }
  1268. static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
  1269. unsigned int id)
  1270. {
  1271. struct kvm_vcpu *vcpu;
  1272. int err = -EINVAL;
  1273. int core;
  1274. struct kvmppc_vcore *vcore;
  1275. core = id / threads_per_subcore;
  1276. if (core >= KVM_MAX_VCORES)
  1277. goto out;
  1278. err = -ENOMEM;
  1279. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  1280. if (!vcpu)
  1281. goto out;
  1282. err = kvm_vcpu_init(vcpu, kvm, id);
  1283. if (err)
  1284. goto free_vcpu;
  1285. vcpu->arch.shared = &vcpu->arch.shregs;
  1286. #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
  1287. /*
  1288. * The shared struct is never shared on HV,
  1289. * so we can always use host endianness
  1290. */
  1291. #ifdef __BIG_ENDIAN__
  1292. vcpu->arch.shared_big_endian = true;
  1293. #else
  1294. vcpu->arch.shared_big_endian = false;
  1295. #endif
  1296. #endif
  1297. vcpu->arch.mmcr[0] = MMCR0_FC;
  1298. vcpu->arch.ctrl = CTRL_RUNLATCH;
  1299. /* default to host PVR, since we can't spoof it */
  1300. kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
  1301. spin_lock_init(&vcpu->arch.vpa_update_lock);
  1302. spin_lock_init(&vcpu->arch.tbacct_lock);
  1303. vcpu->arch.busy_preempt = TB_NIL;
  1304. vcpu->arch.intr_msr = MSR_SF | MSR_ME;
  1305. kvmppc_mmu_book3s_hv_init(vcpu);
  1306. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1307. init_waitqueue_head(&vcpu->arch.cpu_run);
  1308. mutex_lock(&kvm->lock);
  1309. vcore = kvm->arch.vcores[core];
  1310. if (!vcore) {
  1311. vcore = kvmppc_vcore_create(kvm, core);
  1312. kvm->arch.vcores[core] = vcore;
  1313. kvm->arch.online_vcores++;
  1314. }
  1315. mutex_unlock(&kvm->lock);
  1316. if (!vcore)
  1317. goto free_vcpu;
  1318. spin_lock(&vcore->lock);
  1319. ++vcore->num_threads;
  1320. spin_unlock(&vcore->lock);
  1321. vcpu->arch.vcore = vcore;
  1322. vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
  1323. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  1324. kvmppc_sanity_check(vcpu);
  1325. return vcpu;
  1326. free_vcpu:
  1327. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1328. out:
  1329. return ERR_PTR(err);
  1330. }
  1331. static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
  1332. {
  1333. if (vpa->pinned_addr)
  1334. kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
  1335. vpa->dirty);
  1336. }
  1337. static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
  1338. {
  1339. spin_lock(&vcpu->arch.vpa_update_lock);
  1340. unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
  1341. unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
  1342. unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
  1343. spin_unlock(&vcpu->arch.vpa_update_lock);
  1344. kvm_vcpu_uninit(vcpu);
  1345. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1346. }
  1347. static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
  1348. {
  1349. /* Indicate we want to get back into the guest */
  1350. return 1;
  1351. }
  1352. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  1353. {
  1354. unsigned long dec_nsec, now;
  1355. now = get_tb();
  1356. if (now > vcpu->arch.dec_expires) {
  1357. /* decrementer has already gone negative */
  1358. kvmppc_core_queue_dec(vcpu);
  1359. kvmppc_core_prepare_to_enter(vcpu);
  1360. return;
  1361. }
  1362. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  1363. / tb_ticks_per_sec;
  1364. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  1365. HRTIMER_MODE_REL);
  1366. vcpu->arch.timer_running = 1;
  1367. }
  1368. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  1369. {
  1370. vcpu->arch.ceded = 0;
  1371. if (vcpu->arch.timer_running) {
  1372. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1373. vcpu->arch.timer_running = 0;
  1374. }
  1375. }
  1376. extern void __kvmppc_vcore_entry(void);
  1377. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  1378. struct kvm_vcpu *vcpu)
  1379. {
  1380. u64 now;
  1381. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1382. return;
  1383. spin_lock_irq(&vcpu->arch.tbacct_lock);
  1384. now = mftb();
  1385. vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
  1386. vcpu->arch.stolen_logged;
  1387. vcpu->arch.busy_preempt = now;
  1388. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1389. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  1390. --vc->n_runnable;
  1391. list_del(&vcpu->arch.run_list);
  1392. }
  1393. static int kvmppc_grab_hwthread(int cpu)
  1394. {
  1395. struct paca_struct *tpaca;
  1396. long timeout = 10000;
  1397. tpaca = &paca[cpu];
  1398. /* Ensure the thread won't go into the kernel if it wakes */
  1399. tpaca->kvm_hstate.hwthread_req = 1;
  1400. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1401. /*
  1402. * If the thread is already executing in the kernel (e.g. handling
  1403. * a stray interrupt), wait for it to get back to nap mode.
  1404. * The smp_mb() is to ensure that our setting of hwthread_req
  1405. * is visible before we look at hwthread_state, so if this
  1406. * races with the code at system_reset_pSeries and the thread
  1407. * misses our setting of hwthread_req, we are sure to see its
  1408. * setting of hwthread_state, and vice versa.
  1409. */
  1410. smp_mb();
  1411. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  1412. if (--timeout <= 0) {
  1413. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  1414. return -EBUSY;
  1415. }
  1416. udelay(1);
  1417. }
  1418. return 0;
  1419. }
  1420. static void kvmppc_release_hwthread(int cpu)
  1421. {
  1422. struct paca_struct *tpaca;
  1423. tpaca = &paca[cpu];
  1424. tpaca->kvm_hstate.hwthread_req = 0;
  1425. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1426. }
  1427. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  1428. {
  1429. int cpu;
  1430. struct paca_struct *tpaca;
  1431. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  1432. if (vcpu->arch.timer_running) {
  1433. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1434. vcpu->arch.timer_running = 0;
  1435. }
  1436. cpu = vc->pcpu + vcpu->arch.ptid;
  1437. tpaca = &paca[cpu];
  1438. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  1439. tpaca->kvm_hstate.kvm_vcore = vc;
  1440. tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
  1441. vcpu->cpu = vc->pcpu;
  1442. smp_wmb();
  1443. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  1444. if (cpu != smp_processor_id()) {
  1445. xics_wake_cpu(cpu);
  1446. if (vcpu->arch.ptid)
  1447. ++vc->n_woken;
  1448. }
  1449. #endif
  1450. }
  1451. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  1452. {
  1453. int i;
  1454. HMT_low();
  1455. i = 0;
  1456. while (vc->nap_count < vc->n_woken) {
  1457. if (++i >= 1000000) {
  1458. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  1459. vc->nap_count, vc->n_woken);
  1460. break;
  1461. }
  1462. cpu_relax();
  1463. }
  1464. HMT_medium();
  1465. }
  1466. /*
  1467. * Check that we are on thread 0 and that any other threads in
  1468. * this core are off-line. Then grab the threads so they can't
  1469. * enter the kernel.
  1470. */
  1471. static int on_primary_thread(void)
  1472. {
  1473. int cpu = smp_processor_id();
  1474. int thr;
  1475. /* Are we on a primary subcore? */
  1476. if (cpu_thread_in_subcore(cpu))
  1477. return 0;
  1478. thr = 0;
  1479. while (++thr < threads_per_subcore)
  1480. if (cpu_online(cpu + thr))
  1481. return 0;
  1482. /* Grab all hw threads so they can't go into the kernel */
  1483. for (thr = 1; thr < threads_per_subcore; ++thr) {
  1484. if (kvmppc_grab_hwthread(cpu + thr)) {
  1485. /* Couldn't grab one; let the others go */
  1486. do {
  1487. kvmppc_release_hwthread(cpu + thr);
  1488. } while (--thr > 0);
  1489. return 0;
  1490. }
  1491. }
  1492. return 1;
  1493. }
  1494. static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
  1495. {
  1496. phys_addr_t phy_addr, mpp_addr;
  1497. phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
  1498. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1499. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
  1500. logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
  1501. vc->mpp_buffer_is_valid = true;
  1502. }
  1503. static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
  1504. {
  1505. phys_addr_t phy_addr, mpp_addr;
  1506. phy_addr = virt_to_phys(vc->mpp_buffer);
  1507. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1508. /* We must abort any in-progress save operations to ensure
  1509. * the table is valid so that prefetch engine knows when to
  1510. * stop prefetching. */
  1511. logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
  1512. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
  1513. }
  1514. /*
  1515. * Run a set of guest threads on a physical core.
  1516. * Called with vc->lock held.
  1517. */
  1518. static void kvmppc_run_core(struct kvmppc_vcore *vc)
  1519. {
  1520. struct kvm_vcpu *vcpu, *vnext;
  1521. long ret;
  1522. u64 now;
  1523. int i, need_vpa_update;
  1524. int srcu_idx;
  1525. struct kvm_vcpu *vcpus_to_update[threads_per_core];
  1526. /* don't start if any threads have a signal pending */
  1527. need_vpa_update = 0;
  1528. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1529. if (signal_pending(vcpu->arch.run_task))
  1530. return;
  1531. if (vcpu->arch.vpa.update_pending ||
  1532. vcpu->arch.slb_shadow.update_pending ||
  1533. vcpu->arch.dtl.update_pending)
  1534. vcpus_to_update[need_vpa_update++] = vcpu;
  1535. }
  1536. /*
  1537. * Initialize *vc, in particular vc->vcore_state, so we can
  1538. * drop the vcore lock if necessary.
  1539. */
  1540. vc->n_woken = 0;
  1541. vc->nap_count = 0;
  1542. vc->entry_exit_count = 0;
  1543. vc->vcore_state = VCORE_STARTING;
  1544. vc->in_guest = 0;
  1545. vc->napping_threads = 0;
  1546. /*
  1547. * Updating any of the vpas requires calling kvmppc_pin_guest_page,
  1548. * which can't be called with any spinlocks held.
  1549. */
  1550. if (need_vpa_update) {
  1551. spin_unlock(&vc->lock);
  1552. for (i = 0; i < need_vpa_update; ++i)
  1553. kvmppc_update_vpas(vcpus_to_update[i]);
  1554. spin_lock(&vc->lock);
  1555. }
  1556. /*
  1557. * Make sure we are running on primary threads, and that secondary
  1558. * threads are offline. Also check if the number of threads in this
  1559. * guest are greater than the current system threads per guest.
  1560. */
  1561. if ((threads_per_core > 1) &&
  1562. ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
  1563. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1564. vcpu->arch.ret = -EBUSY;
  1565. goto out;
  1566. }
  1567. vc->pcpu = smp_processor_id();
  1568. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1569. kvmppc_start_thread(vcpu);
  1570. kvmppc_create_dtl_entry(vcpu, vc);
  1571. }
  1572. /* Set this explicitly in case thread 0 doesn't have a vcpu */
  1573. get_paca()->kvm_hstate.kvm_vcore = vc;
  1574. get_paca()->kvm_hstate.ptid = 0;
  1575. vc->vcore_state = VCORE_RUNNING;
  1576. preempt_disable();
  1577. spin_unlock(&vc->lock);
  1578. kvm_guest_enter();
  1579. srcu_idx = srcu_read_lock(&vc->kvm->srcu);
  1580. if (vc->mpp_buffer_is_valid)
  1581. kvmppc_start_restoring_l2_cache(vc);
  1582. __kvmppc_vcore_entry();
  1583. spin_lock(&vc->lock);
  1584. if (vc->mpp_buffer)
  1585. kvmppc_start_saving_l2_cache(vc);
  1586. /* disable sending of IPIs on virtual external irqs */
  1587. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1588. vcpu->cpu = -1;
  1589. /* wait for secondary threads to finish writing their state to memory */
  1590. if (vc->nap_count < vc->n_woken)
  1591. kvmppc_wait_for_nap(vc);
  1592. for (i = 0; i < threads_per_subcore; ++i)
  1593. kvmppc_release_hwthread(vc->pcpu + i);
  1594. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  1595. vc->vcore_state = VCORE_EXITING;
  1596. spin_unlock(&vc->lock);
  1597. srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
  1598. /* make sure updates to secondary vcpu structs are visible now */
  1599. smp_mb();
  1600. kvm_guest_exit();
  1601. preempt_enable();
  1602. cond_resched();
  1603. spin_lock(&vc->lock);
  1604. now = get_tb();
  1605. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1606. /* cancel pending dec exception if dec is positive */
  1607. if (now < vcpu->arch.dec_expires &&
  1608. kvmppc_core_pending_dec(vcpu))
  1609. kvmppc_core_dequeue_dec(vcpu);
  1610. ret = RESUME_GUEST;
  1611. if (vcpu->arch.trap)
  1612. ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
  1613. vcpu->arch.run_task);
  1614. vcpu->arch.ret = ret;
  1615. vcpu->arch.trap = 0;
  1616. if (vcpu->arch.ceded) {
  1617. if (!is_kvmppc_resume_guest(ret))
  1618. kvmppc_end_cede(vcpu);
  1619. else
  1620. kvmppc_set_timer(vcpu);
  1621. }
  1622. }
  1623. out:
  1624. vc->vcore_state = VCORE_INACTIVE;
  1625. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  1626. arch.run_list) {
  1627. if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
  1628. kvmppc_remove_runnable(vc, vcpu);
  1629. wake_up(&vcpu->arch.cpu_run);
  1630. }
  1631. }
  1632. }
  1633. /*
  1634. * Wait for some other vcpu thread to execute us, and
  1635. * wake us up when we need to handle something in the host.
  1636. */
  1637. static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
  1638. {
  1639. DEFINE_WAIT(wait);
  1640. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  1641. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  1642. schedule();
  1643. finish_wait(&vcpu->arch.cpu_run, &wait);
  1644. }
  1645. /*
  1646. * All the vcpus in this vcore are idle, so wait for a decrementer
  1647. * or external interrupt to one of the vcpus. vc->lock is held.
  1648. */
  1649. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  1650. {
  1651. DEFINE_WAIT(wait);
  1652. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  1653. vc->vcore_state = VCORE_SLEEPING;
  1654. spin_unlock(&vc->lock);
  1655. schedule();
  1656. finish_wait(&vc->wq, &wait);
  1657. spin_lock(&vc->lock);
  1658. vc->vcore_state = VCORE_INACTIVE;
  1659. }
  1660. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1661. {
  1662. int n_ceded;
  1663. struct kvmppc_vcore *vc;
  1664. struct kvm_vcpu *v, *vn;
  1665. kvm_run->exit_reason = 0;
  1666. vcpu->arch.ret = RESUME_GUEST;
  1667. vcpu->arch.trap = 0;
  1668. kvmppc_update_vpas(vcpu);
  1669. /*
  1670. * Synchronize with other threads in this virtual core
  1671. */
  1672. vc = vcpu->arch.vcore;
  1673. spin_lock(&vc->lock);
  1674. vcpu->arch.ceded = 0;
  1675. vcpu->arch.run_task = current;
  1676. vcpu->arch.kvm_run = kvm_run;
  1677. vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
  1678. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  1679. vcpu->arch.busy_preempt = TB_NIL;
  1680. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  1681. ++vc->n_runnable;
  1682. /*
  1683. * This happens the first time this is called for a vcpu.
  1684. * If the vcore is already running, we may be able to start
  1685. * this thread straight away and have it join in.
  1686. */
  1687. if (!signal_pending(current)) {
  1688. if (vc->vcore_state == VCORE_RUNNING &&
  1689. VCORE_EXIT_COUNT(vc) == 0) {
  1690. kvmppc_create_dtl_entry(vcpu, vc);
  1691. kvmppc_start_thread(vcpu);
  1692. } else if (vc->vcore_state == VCORE_SLEEPING) {
  1693. wake_up(&vc->wq);
  1694. }
  1695. }
  1696. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1697. !signal_pending(current)) {
  1698. if (vc->vcore_state != VCORE_INACTIVE) {
  1699. spin_unlock(&vc->lock);
  1700. kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
  1701. spin_lock(&vc->lock);
  1702. continue;
  1703. }
  1704. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  1705. arch.run_list) {
  1706. kvmppc_core_prepare_to_enter(v);
  1707. if (signal_pending(v->arch.run_task)) {
  1708. kvmppc_remove_runnable(vc, v);
  1709. v->stat.signal_exits++;
  1710. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  1711. v->arch.ret = -EINTR;
  1712. wake_up(&v->arch.cpu_run);
  1713. }
  1714. }
  1715. if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1716. break;
  1717. vc->runner = vcpu;
  1718. n_ceded = 0;
  1719. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  1720. if (!v->arch.pending_exceptions)
  1721. n_ceded += v->arch.ceded;
  1722. else
  1723. v->arch.ceded = 0;
  1724. }
  1725. if (n_ceded == vc->n_runnable)
  1726. kvmppc_vcore_blocked(vc);
  1727. else
  1728. kvmppc_run_core(vc);
  1729. vc->runner = NULL;
  1730. }
  1731. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1732. (vc->vcore_state == VCORE_RUNNING ||
  1733. vc->vcore_state == VCORE_EXITING)) {
  1734. spin_unlock(&vc->lock);
  1735. kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
  1736. spin_lock(&vc->lock);
  1737. }
  1738. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  1739. kvmppc_remove_runnable(vc, vcpu);
  1740. vcpu->stat.signal_exits++;
  1741. kvm_run->exit_reason = KVM_EXIT_INTR;
  1742. vcpu->arch.ret = -EINTR;
  1743. }
  1744. if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
  1745. /* Wake up some vcpu to run the core */
  1746. v = list_first_entry(&vc->runnable_threads,
  1747. struct kvm_vcpu, arch.run_list);
  1748. wake_up(&v->arch.cpu_run);
  1749. }
  1750. spin_unlock(&vc->lock);
  1751. return vcpu->arch.ret;
  1752. }
  1753. static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1754. {
  1755. int r;
  1756. int srcu_idx;
  1757. if (!vcpu->arch.sane) {
  1758. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1759. return -EINVAL;
  1760. }
  1761. kvmppc_core_prepare_to_enter(vcpu);
  1762. /* No need to go into the guest when all we'll do is come back out */
  1763. if (signal_pending(current)) {
  1764. run->exit_reason = KVM_EXIT_INTR;
  1765. return -EINTR;
  1766. }
  1767. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  1768. /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
  1769. smp_mb();
  1770. /* On the first time here, set up HTAB and VRMA or RMA */
  1771. if (!vcpu->kvm->arch.rma_setup_done) {
  1772. r = kvmppc_hv_setup_htab_rma(vcpu);
  1773. if (r)
  1774. goto out;
  1775. }
  1776. flush_fp_to_thread(current);
  1777. flush_altivec_to_thread(current);
  1778. flush_vsx_to_thread(current);
  1779. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  1780. vcpu->arch.pgdir = current->mm->pgd;
  1781. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1782. do {
  1783. r = kvmppc_run_vcpu(run, vcpu);
  1784. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  1785. !(vcpu->arch.shregs.msr & MSR_PR)) {
  1786. r = kvmppc_pseries_do_hcall(vcpu);
  1787. kvmppc_core_prepare_to_enter(vcpu);
  1788. } else if (r == RESUME_PAGE_FAULT) {
  1789. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1790. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  1791. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  1792. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  1793. }
  1794. } while (is_kvmppc_resume_guest(r));
  1795. out:
  1796. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1797. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  1798. return r;
  1799. }
  1800. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  1801. Assumes POWER7 or PPC970. */
  1802. static inline int lpcr_rmls(unsigned long rma_size)
  1803. {
  1804. switch (rma_size) {
  1805. case 32ul << 20: /* 32 MB */
  1806. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1807. return 8; /* only supported on POWER7 */
  1808. return -1;
  1809. case 64ul << 20: /* 64 MB */
  1810. return 3;
  1811. case 128ul << 20: /* 128 MB */
  1812. return 7;
  1813. case 256ul << 20: /* 256 MB */
  1814. return 4;
  1815. case 1ul << 30: /* 1 GB */
  1816. return 2;
  1817. case 16ul << 30: /* 16 GB */
  1818. return 1;
  1819. case 256ul << 30: /* 256 GB */
  1820. return 0;
  1821. default:
  1822. return -1;
  1823. }
  1824. }
  1825. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1826. {
  1827. struct page *page;
  1828. struct kvm_rma_info *ri = vma->vm_file->private_data;
  1829. if (vmf->pgoff >= kvm_rma_pages)
  1830. return VM_FAULT_SIGBUS;
  1831. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  1832. get_page(page);
  1833. vmf->page = page;
  1834. return 0;
  1835. }
  1836. static const struct vm_operations_struct kvm_rma_vm_ops = {
  1837. .fault = kvm_rma_fault,
  1838. };
  1839. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  1840. {
  1841. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1842. vma->vm_ops = &kvm_rma_vm_ops;
  1843. return 0;
  1844. }
  1845. static int kvm_rma_release(struct inode *inode, struct file *filp)
  1846. {
  1847. struct kvm_rma_info *ri = filp->private_data;
  1848. kvm_release_rma(ri);
  1849. return 0;
  1850. }
  1851. static const struct file_operations kvm_rma_fops = {
  1852. .mmap = kvm_rma_mmap,
  1853. .release = kvm_rma_release,
  1854. };
  1855. static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
  1856. struct kvm_allocate_rma *ret)
  1857. {
  1858. long fd;
  1859. struct kvm_rma_info *ri;
  1860. /*
  1861. * Only do this on PPC970 in HV mode
  1862. */
  1863. if (!cpu_has_feature(CPU_FTR_HVMODE) ||
  1864. !cpu_has_feature(CPU_FTR_ARCH_201))
  1865. return -EINVAL;
  1866. if (!kvm_rma_pages)
  1867. return -EINVAL;
  1868. ri = kvm_alloc_rma();
  1869. if (!ri)
  1870. return -ENOMEM;
  1871. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
  1872. if (fd < 0)
  1873. kvm_release_rma(ri);
  1874. ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
  1875. return fd;
  1876. }
  1877. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  1878. int linux_psize)
  1879. {
  1880. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  1881. if (!def->shift)
  1882. return;
  1883. (*sps)->page_shift = def->shift;
  1884. (*sps)->slb_enc = def->sllp;
  1885. (*sps)->enc[0].page_shift = def->shift;
  1886. (*sps)->enc[0].pte_enc = def->penc[linux_psize];
  1887. /*
  1888. * Add 16MB MPSS support if host supports it
  1889. */
  1890. if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
  1891. (*sps)->enc[1].page_shift = 24;
  1892. (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
  1893. }
  1894. (*sps)++;
  1895. }
  1896. static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
  1897. struct kvm_ppc_smmu_info *info)
  1898. {
  1899. struct kvm_ppc_one_seg_page_size *sps;
  1900. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  1901. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1902. info->flags |= KVM_PPC_1T_SEGMENTS;
  1903. info->slb_size = mmu_slb_size;
  1904. /* We only support these sizes for now, and no muti-size segments */
  1905. sps = &info->sps[0];
  1906. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  1907. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  1908. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  1909. return 0;
  1910. }
  1911. /*
  1912. * Get (and clear) the dirty memory log for a memory slot.
  1913. */
  1914. static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
  1915. struct kvm_dirty_log *log)
  1916. {
  1917. struct kvm_memory_slot *memslot;
  1918. int r;
  1919. unsigned long n;
  1920. mutex_lock(&kvm->slots_lock);
  1921. r = -EINVAL;
  1922. if (log->slot >= KVM_USER_MEM_SLOTS)
  1923. goto out;
  1924. memslot = id_to_memslot(kvm->memslots, log->slot);
  1925. r = -ENOENT;
  1926. if (!memslot->dirty_bitmap)
  1927. goto out;
  1928. n = kvm_dirty_bitmap_bytes(memslot);
  1929. memset(memslot->dirty_bitmap, 0, n);
  1930. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  1931. if (r)
  1932. goto out;
  1933. r = -EFAULT;
  1934. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1935. goto out;
  1936. r = 0;
  1937. out:
  1938. mutex_unlock(&kvm->slots_lock);
  1939. return r;
  1940. }
  1941. static void unpin_slot(struct kvm_memory_slot *memslot)
  1942. {
  1943. unsigned long *physp;
  1944. unsigned long j, npages, pfn;
  1945. struct page *page;
  1946. physp = memslot->arch.slot_phys;
  1947. npages = memslot->npages;
  1948. if (!physp)
  1949. return;
  1950. for (j = 0; j < npages; j++) {
  1951. if (!(physp[j] & KVMPPC_GOT_PAGE))
  1952. continue;
  1953. pfn = physp[j] >> PAGE_SHIFT;
  1954. page = pfn_to_page(pfn);
  1955. SetPageDirty(page);
  1956. put_page(page);
  1957. }
  1958. }
  1959. static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
  1960. struct kvm_memory_slot *dont)
  1961. {
  1962. if (!dont || free->arch.rmap != dont->arch.rmap) {
  1963. vfree(free->arch.rmap);
  1964. free->arch.rmap = NULL;
  1965. }
  1966. if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
  1967. unpin_slot(free);
  1968. vfree(free->arch.slot_phys);
  1969. free->arch.slot_phys = NULL;
  1970. }
  1971. }
  1972. static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
  1973. unsigned long npages)
  1974. {
  1975. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  1976. if (!slot->arch.rmap)
  1977. return -ENOMEM;
  1978. slot->arch.slot_phys = NULL;
  1979. return 0;
  1980. }
  1981. static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
  1982. struct kvm_memory_slot *memslot,
  1983. struct kvm_userspace_memory_region *mem)
  1984. {
  1985. unsigned long *phys;
  1986. /* Allocate a slot_phys array if needed */
  1987. phys = memslot->arch.slot_phys;
  1988. if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
  1989. phys = vzalloc(memslot->npages * sizeof(unsigned long));
  1990. if (!phys)
  1991. return -ENOMEM;
  1992. memslot->arch.slot_phys = phys;
  1993. }
  1994. return 0;
  1995. }
  1996. static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
  1997. struct kvm_userspace_memory_region *mem,
  1998. const struct kvm_memory_slot *old)
  1999. {
  2000. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  2001. struct kvm_memory_slot *memslot;
  2002. if (npages && old->npages) {
  2003. /*
  2004. * If modifying a memslot, reset all the rmap dirty bits.
  2005. * If this is a new memslot, we don't need to do anything
  2006. * since the rmap array starts out as all zeroes,
  2007. * i.e. no pages are dirty.
  2008. */
  2009. memslot = id_to_memslot(kvm->memslots, mem->slot);
  2010. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  2011. }
  2012. }
  2013. /*
  2014. * Update LPCR values in kvm->arch and in vcores.
  2015. * Caller must hold kvm->lock.
  2016. */
  2017. void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
  2018. {
  2019. long int i;
  2020. u32 cores_done = 0;
  2021. if ((kvm->arch.lpcr & mask) == lpcr)
  2022. return;
  2023. kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
  2024. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  2025. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  2026. if (!vc)
  2027. continue;
  2028. spin_lock(&vc->lock);
  2029. vc->lpcr = (vc->lpcr & ~mask) | lpcr;
  2030. spin_unlock(&vc->lock);
  2031. if (++cores_done >= kvm->arch.online_vcores)
  2032. break;
  2033. }
  2034. }
  2035. static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
  2036. {
  2037. return;
  2038. }
  2039. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  2040. {
  2041. int err = 0;
  2042. struct kvm *kvm = vcpu->kvm;
  2043. struct kvm_rma_info *ri = NULL;
  2044. unsigned long hva;
  2045. struct kvm_memory_slot *memslot;
  2046. struct vm_area_struct *vma;
  2047. unsigned long lpcr = 0, senc;
  2048. unsigned long lpcr_mask = 0;
  2049. unsigned long psize, porder;
  2050. unsigned long rma_size;
  2051. unsigned long rmls;
  2052. unsigned long *physp;
  2053. unsigned long i, npages;
  2054. int srcu_idx;
  2055. mutex_lock(&kvm->lock);
  2056. if (kvm->arch.rma_setup_done)
  2057. goto out; /* another vcpu beat us to it */
  2058. /* Allocate hashed page table (if not done already) and reset it */
  2059. if (!kvm->arch.hpt_virt) {
  2060. err = kvmppc_alloc_hpt(kvm, NULL);
  2061. if (err) {
  2062. pr_err("KVM: Couldn't alloc HPT\n");
  2063. goto out;
  2064. }
  2065. }
  2066. /* Look up the memslot for guest physical address 0 */
  2067. srcu_idx = srcu_read_lock(&kvm->srcu);
  2068. memslot = gfn_to_memslot(kvm, 0);
  2069. /* We must have some memory at 0 by now */
  2070. err = -EINVAL;
  2071. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  2072. goto out_srcu;
  2073. /* Look up the VMA for the start of this memory slot */
  2074. hva = memslot->userspace_addr;
  2075. down_read(&current->mm->mmap_sem);
  2076. vma = find_vma(current->mm, hva);
  2077. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  2078. goto up_out;
  2079. psize = vma_kernel_pagesize(vma);
  2080. porder = __ilog2(psize);
  2081. /* Is this one of our preallocated RMAs? */
  2082. if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
  2083. hva == vma->vm_start)
  2084. ri = vma->vm_file->private_data;
  2085. up_read(&current->mm->mmap_sem);
  2086. if (!ri) {
  2087. /* On POWER7, use VRMA; on PPC970, give up */
  2088. err = -EPERM;
  2089. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  2090. pr_err("KVM: CPU requires an RMO\n");
  2091. goto out_srcu;
  2092. }
  2093. /* We can handle 4k, 64k or 16M pages in the VRMA */
  2094. err = -EINVAL;
  2095. if (!(psize == 0x1000 || psize == 0x10000 ||
  2096. psize == 0x1000000))
  2097. goto out_srcu;
  2098. /* Update VRMASD field in the LPCR */
  2099. senc = slb_pgsize_encoding(psize);
  2100. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  2101. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2102. lpcr_mask = LPCR_VRMASD;
  2103. /* the -4 is to account for senc values starting at 0x10 */
  2104. lpcr = senc << (LPCR_VRMASD_SH - 4);
  2105. /* Create HPTEs in the hash page table for the VRMA */
  2106. kvmppc_map_vrma(vcpu, memslot, porder);
  2107. } else {
  2108. /* Set up to use an RMO region */
  2109. rma_size = kvm_rma_pages;
  2110. if (rma_size > memslot->npages)
  2111. rma_size = memslot->npages;
  2112. rma_size <<= PAGE_SHIFT;
  2113. rmls = lpcr_rmls(rma_size);
  2114. err = -EINVAL;
  2115. if ((long)rmls < 0) {
  2116. pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
  2117. goto out_srcu;
  2118. }
  2119. atomic_inc(&ri->use_count);
  2120. kvm->arch.rma = ri;
  2121. /* Update LPCR and RMOR */
  2122. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  2123. /* PPC970; insert RMLS value (split field) in HID4 */
  2124. lpcr_mask = (1ul << HID4_RMLS0_SH) |
  2125. (3ul << HID4_RMLS2_SH) | HID4_RMOR;
  2126. lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
  2127. ((rmls & 3) << HID4_RMLS2_SH);
  2128. /* RMOR is also in HID4 */
  2129. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  2130. << HID4_RMOR_SH;
  2131. } else {
  2132. /* POWER7 */
  2133. lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
  2134. lpcr = rmls << LPCR_RMLS_SH;
  2135. kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
  2136. }
  2137. pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
  2138. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  2139. /* Initialize phys addrs of pages in RMO */
  2140. npages = kvm_rma_pages;
  2141. porder = __ilog2(npages);
  2142. physp = memslot->arch.slot_phys;
  2143. if (physp) {
  2144. if (npages > memslot->npages)
  2145. npages = memslot->npages;
  2146. spin_lock(&kvm->arch.slot_phys_lock);
  2147. for (i = 0; i < npages; ++i)
  2148. physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
  2149. porder;
  2150. spin_unlock(&kvm->arch.slot_phys_lock);
  2151. }
  2152. }
  2153. kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
  2154. /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
  2155. smp_wmb();
  2156. kvm->arch.rma_setup_done = 1;
  2157. err = 0;
  2158. out_srcu:
  2159. srcu_read_unlock(&kvm->srcu, srcu_idx);
  2160. out:
  2161. mutex_unlock(&kvm->lock);
  2162. return err;
  2163. up_out:
  2164. up_read(&current->mm->mmap_sem);
  2165. goto out_srcu;
  2166. }
  2167. static int kvmppc_core_init_vm_hv(struct kvm *kvm)
  2168. {
  2169. unsigned long lpcr, lpid;
  2170. /* Allocate the guest's logical partition ID */
  2171. lpid = kvmppc_alloc_lpid();
  2172. if ((long)lpid < 0)
  2173. return -ENOMEM;
  2174. kvm->arch.lpid = lpid;
  2175. /*
  2176. * Since we don't flush the TLB when tearing down a VM,
  2177. * and this lpid might have previously been used,
  2178. * make sure we flush on each core before running the new VM.
  2179. */
  2180. cpumask_setall(&kvm->arch.need_tlb_flush);
  2181. /* Start out with the default set of hcalls enabled */
  2182. memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
  2183. sizeof(kvm->arch.enabled_hcalls));
  2184. kvm->arch.rma = NULL;
  2185. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  2186. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  2187. /* PPC970; HID4 is effectively the LPCR */
  2188. kvm->arch.host_lpid = 0;
  2189. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  2190. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  2191. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  2192. ((lpid & 0xf) << HID4_LPID5_SH);
  2193. } else {
  2194. /* POWER7; init LPCR for virtual RMA mode */
  2195. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  2196. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  2197. lpcr &= LPCR_PECE | LPCR_LPES;
  2198. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  2199. LPCR_VPM0 | LPCR_VPM1;
  2200. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  2201. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2202. /* On POWER8 turn on online bit to enable PURR/SPURR */
  2203. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  2204. lpcr |= LPCR_ONL;
  2205. }
  2206. kvm->arch.lpcr = lpcr;
  2207. kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
  2208. spin_lock_init(&kvm->arch.slot_phys_lock);
  2209. /*
  2210. * Track that we now have a HV mode VM active. This blocks secondary
  2211. * CPU threads from coming online.
  2212. */
  2213. kvm_hv_vm_activated();
  2214. return 0;
  2215. }
  2216. static void kvmppc_free_vcores(struct kvm *kvm)
  2217. {
  2218. long int i;
  2219. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  2220. if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
  2221. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  2222. free_pages((unsigned long)vc->mpp_buffer,
  2223. MPP_BUFFER_ORDER);
  2224. }
  2225. kfree(kvm->arch.vcores[i]);
  2226. }
  2227. kvm->arch.online_vcores = 0;
  2228. }
  2229. static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
  2230. {
  2231. kvm_hv_vm_deactivated();
  2232. kvmppc_free_vcores(kvm);
  2233. if (kvm->arch.rma) {
  2234. kvm_release_rma(kvm->arch.rma);
  2235. kvm->arch.rma = NULL;
  2236. }
  2237. kvmppc_free_hpt(kvm);
  2238. }
  2239. /* We don't need to emulate any privileged instructions or dcbz */
  2240. static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  2241. unsigned int inst, int *advance)
  2242. {
  2243. return EMULATE_FAIL;
  2244. }
  2245. static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2246. ulong spr_val)
  2247. {
  2248. return EMULATE_FAIL;
  2249. }
  2250. static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2251. ulong *spr_val)
  2252. {
  2253. return EMULATE_FAIL;
  2254. }
  2255. static int kvmppc_core_check_processor_compat_hv(void)
  2256. {
  2257. if (!cpu_has_feature(CPU_FTR_HVMODE))
  2258. return -EIO;
  2259. return 0;
  2260. }
  2261. static long kvm_arch_vm_ioctl_hv(struct file *filp,
  2262. unsigned int ioctl, unsigned long arg)
  2263. {
  2264. struct kvm *kvm __maybe_unused = filp->private_data;
  2265. void __user *argp = (void __user *)arg;
  2266. long r;
  2267. switch (ioctl) {
  2268. case KVM_ALLOCATE_RMA: {
  2269. struct kvm_allocate_rma rma;
  2270. struct kvm *kvm = filp->private_data;
  2271. r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
  2272. if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
  2273. r = -EFAULT;
  2274. break;
  2275. }
  2276. case KVM_PPC_ALLOCATE_HTAB: {
  2277. u32 htab_order;
  2278. r = -EFAULT;
  2279. if (get_user(htab_order, (u32 __user *)argp))
  2280. break;
  2281. r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
  2282. if (r)
  2283. break;
  2284. r = -EFAULT;
  2285. if (put_user(htab_order, (u32 __user *)argp))
  2286. break;
  2287. r = 0;
  2288. break;
  2289. }
  2290. case KVM_PPC_GET_HTAB_FD: {
  2291. struct kvm_get_htab_fd ghf;
  2292. r = -EFAULT;
  2293. if (copy_from_user(&ghf, argp, sizeof(ghf)))
  2294. break;
  2295. r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
  2296. break;
  2297. }
  2298. default:
  2299. r = -ENOTTY;
  2300. }
  2301. return r;
  2302. }
  2303. /*
  2304. * List of hcall numbers to enable by default.
  2305. * For compatibility with old userspace, we enable by default
  2306. * all hcalls that were implemented before the hcall-enabling
  2307. * facility was added. Note this list should not include H_RTAS.
  2308. */
  2309. static unsigned int default_hcall_list[] = {
  2310. H_REMOVE,
  2311. H_ENTER,
  2312. H_READ,
  2313. H_PROTECT,
  2314. H_BULK_REMOVE,
  2315. H_GET_TCE,
  2316. H_PUT_TCE,
  2317. H_SET_DABR,
  2318. H_SET_XDABR,
  2319. H_CEDE,
  2320. H_PROD,
  2321. H_CONFER,
  2322. H_REGISTER_VPA,
  2323. #ifdef CONFIG_KVM_XICS
  2324. H_EOI,
  2325. H_CPPR,
  2326. H_IPI,
  2327. H_IPOLL,
  2328. H_XIRR,
  2329. H_XIRR_X,
  2330. #endif
  2331. 0
  2332. };
  2333. static void init_default_hcalls(void)
  2334. {
  2335. int i;
  2336. unsigned int hcall;
  2337. for (i = 0; default_hcall_list[i]; ++i) {
  2338. hcall = default_hcall_list[i];
  2339. WARN_ON(!kvmppc_hcall_impl_hv(hcall));
  2340. __set_bit(hcall / 4, default_enabled_hcalls);
  2341. }
  2342. }
  2343. static struct kvmppc_ops kvm_ops_hv = {
  2344. .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
  2345. .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
  2346. .get_one_reg = kvmppc_get_one_reg_hv,
  2347. .set_one_reg = kvmppc_set_one_reg_hv,
  2348. .vcpu_load = kvmppc_core_vcpu_load_hv,
  2349. .vcpu_put = kvmppc_core_vcpu_put_hv,
  2350. .set_msr = kvmppc_set_msr_hv,
  2351. .vcpu_run = kvmppc_vcpu_run_hv,
  2352. .vcpu_create = kvmppc_core_vcpu_create_hv,
  2353. .vcpu_free = kvmppc_core_vcpu_free_hv,
  2354. .check_requests = kvmppc_core_check_requests_hv,
  2355. .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
  2356. .flush_memslot = kvmppc_core_flush_memslot_hv,
  2357. .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
  2358. .commit_memory_region = kvmppc_core_commit_memory_region_hv,
  2359. .unmap_hva = kvm_unmap_hva_hv,
  2360. .unmap_hva_range = kvm_unmap_hva_range_hv,
  2361. .age_hva = kvm_age_hva_hv,
  2362. .test_age_hva = kvm_test_age_hva_hv,
  2363. .set_spte_hva = kvm_set_spte_hva_hv,
  2364. .mmu_destroy = kvmppc_mmu_destroy_hv,
  2365. .free_memslot = kvmppc_core_free_memslot_hv,
  2366. .create_memslot = kvmppc_core_create_memslot_hv,
  2367. .init_vm = kvmppc_core_init_vm_hv,
  2368. .destroy_vm = kvmppc_core_destroy_vm_hv,
  2369. .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
  2370. .emulate_op = kvmppc_core_emulate_op_hv,
  2371. .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
  2372. .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
  2373. .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
  2374. .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
  2375. .hcall_implemented = kvmppc_hcall_impl_hv,
  2376. };
  2377. static int kvmppc_book3s_init_hv(void)
  2378. {
  2379. int r;
  2380. /*
  2381. * FIXME!! Do we need to check on all cpus ?
  2382. */
  2383. r = kvmppc_core_check_processor_compat_hv();
  2384. if (r < 0)
  2385. return -ENODEV;
  2386. kvm_ops_hv.owner = THIS_MODULE;
  2387. kvmppc_hv_ops = &kvm_ops_hv;
  2388. init_default_hcalls();
  2389. r = kvmppc_mmu_hv_init();
  2390. return r;
  2391. }
  2392. static void kvmppc_book3s_exit_hv(void)
  2393. {
  2394. kvmppc_hv_ops = NULL;
  2395. }
  2396. module_init(kvmppc_book3s_init_hv);
  2397. module_exit(kvmppc_book3s_exit_hv);
  2398. MODULE_LICENSE("GPL");
  2399. MODULE_ALIAS_MISCDEV(KVM_MINOR);
  2400. MODULE_ALIAS("devname:kvm");