tlbex.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/cache.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu-type.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/war.h>
  33. #include <asm/uasm.h>
  34. #include <asm/setup.h>
  35. /*
  36. * TLB load/store/modify handlers.
  37. *
  38. * Only the fastpath gets synthesized at runtime, the slowpath for
  39. * do_page_fault remains normal asm.
  40. */
  41. extern void tlb_do_page_fault_0(void);
  42. extern void tlb_do_page_fault_1(void);
  43. struct work_registers {
  44. int r1;
  45. int r2;
  46. int r3;
  47. };
  48. struct tlb_reg_save {
  49. unsigned long a;
  50. unsigned long b;
  51. } ____cacheline_aligned_in_smp;
  52. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  53. static inline int r45k_bvahwbug(void)
  54. {
  55. /* XXX: We should probe for the presence of this bug, but we don't. */
  56. return 0;
  57. }
  58. static inline int r4k_250MHZhwbug(void)
  59. {
  60. /* XXX: We should probe for the presence of this bug, but we don't. */
  61. return 0;
  62. }
  63. static inline int __maybe_unused bcm1250_m3_war(void)
  64. {
  65. return BCM1250_M3_WAR;
  66. }
  67. static inline int __maybe_unused r10000_llsc_war(void)
  68. {
  69. return R10000_LLSC_WAR;
  70. }
  71. static int use_bbit_insns(void)
  72. {
  73. switch (current_cpu_type()) {
  74. case CPU_CAVIUM_OCTEON:
  75. case CPU_CAVIUM_OCTEON_PLUS:
  76. case CPU_CAVIUM_OCTEON2:
  77. case CPU_CAVIUM_OCTEON3:
  78. return 1;
  79. default:
  80. return 0;
  81. }
  82. }
  83. static int use_lwx_insns(void)
  84. {
  85. switch (current_cpu_type()) {
  86. case CPU_CAVIUM_OCTEON2:
  87. case CPU_CAVIUM_OCTEON3:
  88. return 1;
  89. default:
  90. return 0;
  91. }
  92. }
  93. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  94. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  95. static bool scratchpad_available(void)
  96. {
  97. return true;
  98. }
  99. static int scratchpad_offset(int i)
  100. {
  101. /*
  102. * CVMSEG starts at address -32768 and extends for
  103. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  104. */
  105. i += 1; /* Kernel use starts at the top and works down. */
  106. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  107. }
  108. #else
  109. static bool scratchpad_available(void)
  110. {
  111. return false;
  112. }
  113. static int scratchpad_offset(int i)
  114. {
  115. BUG();
  116. /* Really unreachable, but evidently some GCC want this. */
  117. return 0;
  118. }
  119. #endif
  120. /*
  121. * Found by experiment: At least some revisions of the 4kc throw under
  122. * some circumstances a machine check exception, triggered by invalid
  123. * values in the index register. Delaying the tlbp instruction until
  124. * after the next branch, plus adding an additional nop in front of
  125. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  126. * why; it's not an issue caused by the core RTL.
  127. *
  128. */
  129. static int m4kc_tlbp_war(void)
  130. {
  131. return (current_cpu_data.processor_id & 0xffff00) ==
  132. (PRID_COMP_MIPS | PRID_IMP_4KC);
  133. }
  134. /* Handle labels (which must be positive integers). */
  135. enum label_id {
  136. label_second_part = 1,
  137. label_leave,
  138. label_vmalloc,
  139. label_vmalloc_done,
  140. label_tlbw_hazard_0,
  141. label_split = label_tlbw_hazard_0 + 8,
  142. label_tlbl_goaround1,
  143. label_tlbl_goaround2,
  144. label_nopage_tlbl,
  145. label_nopage_tlbs,
  146. label_nopage_tlbm,
  147. label_smp_pgtable_change,
  148. label_r3000_write_probe_fail,
  149. label_large_segbits_fault,
  150. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  151. label_tlb_huge_update,
  152. #endif
  153. };
  154. UASM_L_LA(_second_part)
  155. UASM_L_LA(_leave)
  156. UASM_L_LA(_vmalloc)
  157. UASM_L_LA(_vmalloc_done)
  158. /* _tlbw_hazard_x is handled differently. */
  159. UASM_L_LA(_split)
  160. UASM_L_LA(_tlbl_goaround1)
  161. UASM_L_LA(_tlbl_goaround2)
  162. UASM_L_LA(_nopage_tlbl)
  163. UASM_L_LA(_nopage_tlbs)
  164. UASM_L_LA(_nopage_tlbm)
  165. UASM_L_LA(_smp_pgtable_change)
  166. UASM_L_LA(_r3000_write_probe_fail)
  167. UASM_L_LA(_large_segbits_fault)
  168. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  169. UASM_L_LA(_tlb_huge_update)
  170. #endif
  171. static int hazard_instance;
  172. static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
  173. {
  174. switch (instance) {
  175. case 0 ... 7:
  176. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  177. return;
  178. default:
  179. BUG();
  180. }
  181. }
  182. static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
  183. {
  184. switch (instance) {
  185. case 0 ... 7:
  186. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  187. break;
  188. default:
  189. BUG();
  190. }
  191. }
  192. /*
  193. * pgtable bits are assigned dynamically depending on processor feature
  194. * and statically based on kernel configuration. This spits out the actual
  195. * values the kernel is using. Required to make sense from disassembled
  196. * TLB exception handlers.
  197. */
  198. static void output_pgtable_bits_defines(void)
  199. {
  200. #define pr_define(fmt, ...) \
  201. pr_debug("#define " fmt, ##__VA_ARGS__)
  202. pr_debug("#include <asm/asm.h>\n");
  203. pr_debug("#include <asm/regdef.h>\n");
  204. pr_debug("\n");
  205. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  206. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  207. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  208. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  209. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  210. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  211. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  212. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  213. #endif
  214. if (cpu_has_rixi) {
  215. #ifdef _PAGE_NO_EXEC_SHIFT
  216. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  217. #endif
  218. #ifdef _PAGE_NO_READ_SHIFT
  219. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  220. #endif
  221. }
  222. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  223. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  224. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  225. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  226. pr_debug("\n");
  227. }
  228. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  229. {
  230. int i;
  231. pr_debug("LEAF(%s)\n", symbol);
  232. pr_debug("\t.set push\n");
  233. pr_debug("\t.set noreorder\n");
  234. for (i = 0; i < count; i++)
  235. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  236. pr_debug("\t.set\tpop\n");
  237. pr_debug("\tEND(%s)\n", symbol);
  238. }
  239. /* The only general purpose registers allowed in TLB handlers. */
  240. #define K0 26
  241. #define K1 27
  242. /* Some CP0 registers */
  243. #define C0_INDEX 0, 0
  244. #define C0_ENTRYLO0 2, 0
  245. #define C0_TCBIND 2, 2
  246. #define C0_ENTRYLO1 3, 0
  247. #define C0_CONTEXT 4, 0
  248. #define C0_PAGEMASK 5, 0
  249. #define C0_BADVADDR 8, 0
  250. #define C0_ENTRYHI 10, 0
  251. #define C0_EPC 14, 0
  252. #define C0_XCONTEXT 20, 0
  253. #ifdef CONFIG_64BIT
  254. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  255. #else
  256. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  257. #endif
  258. /* The worst case length of the handler is around 18 instructions for
  259. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  260. * Maximum space available is 32 instructions for R3000 and 64
  261. * instructions for R4000.
  262. *
  263. * We deliberately chose a buffer size of 128, so we won't scribble
  264. * over anything important on overflow before we panic.
  265. */
  266. static u32 tlb_handler[128];
  267. /* simply assume worst case size for labels and relocs */
  268. static struct uasm_label labels[128];
  269. static struct uasm_reloc relocs[128];
  270. static int check_for_high_segbits;
  271. static unsigned int kscratch_used_mask;
  272. static inline int __maybe_unused c0_kscratch(void)
  273. {
  274. switch (current_cpu_type()) {
  275. case CPU_XLP:
  276. case CPU_XLR:
  277. return 22;
  278. default:
  279. return 31;
  280. }
  281. }
  282. static int allocate_kscratch(void)
  283. {
  284. int r;
  285. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  286. r = ffs(a);
  287. if (r == 0)
  288. return -1;
  289. r--; /* make it zero based */
  290. kscratch_used_mask |= (1 << r);
  291. return r;
  292. }
  293. static int scratch_reg;
  294. static int pgd_reg;
  295. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  296. static struct work_registers build_get_work_registers(u32 **p)
  297. {
  298. struct work_registers r;
  299. if (scratch_reg >= 0) {
  300. /* Save in CPU local C0_KScratch? */
  301. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  302. r.r1 = K0;
  303. r.r2 = K1;
  304. r.r3 = 1;
  305. return r;
  306. }
  307. if (num_possible_cpus() > 1) {
  308. /* Get smp_processor_id */
  309. UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
  310. UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
  311. /* handler_reg_save index in K0 */
  312. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  313. UASM_i_LA(p, K1, (long)&handler_reg_save);
  314. UASM_i_ADDU(p, K0, K0, K1);
  315. } else {
  316. UASM_i_LA(p, K0, (long)&handler_reg_save);
  317. }
  318. /* K0 now points to save area, save $1 and $2 */
  319. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  320. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  321. r.r1 = K1;
  322. r.r2 = 1;
  323. r.r3 = 2;
  324. return r;
  325. }
  326. static void build_restore_work_registers(u32 **p)
  327. {
  328. if (scratch_reg >= 0) {
  329. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  330. return;
  331. }
  332. /* K0 already points to save area, restore $1 and $2 */
  333. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  334. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  335. }
  336. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  337. /*
  338. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  339. * we cannot do r3000 under these circumstances.
  340. *
  341. * Declare pgd_current here instead of including mmu_context.h to avoid type
  342. * conflicts for tlbmiss_handler_setup_pgd
  343. */
  344. extern unsigned long pgd_current[];
  345. /*
  346. * The R3000 TLB handler is simple.
  347. */
  348. static void build_r3000_tlb_refill_handler(void)
  349. {
  350. long pgdc = (long)pgd_current;
  351. u32 *p;
  352. memset(tlb_handler, 0, sizeof(tlb_handler));
  353. p = tlb_handler;
  354. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  355. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  356. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  357. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  358. uasm_i_sll(&p, K0, K0, 2);
  359. uasm_i_addu(&p, K1, K1, K0);
  360. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  361. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  362. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  363. uasm_i_addu(&p, K1, K1, K0);
  364. uasm_i_lw(&p, K0, 0, K1);
  365. uasm_i_nop(&p); /* load delay */
  366. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  367. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  368. uasm_i_tlbwr(&p); /* cp0 delay */
  369. uasm_i_jr(&p, K1);
  370. uasm_i_rfe(&p); /* branch delay */
  371. if (p > tlb_handler + 32)
  372. panic("TLB refill handler space exceeded");
  373. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  374. (unsigned int)(p - tlb_handler));
  375. memcpy((void *)ebase, tlb_handler, 0x80);
  376. local_flush_icache_range(ebase, ebase + 0x80);
  377. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  378. }
  379. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  380. /*
  381. * The R4000 TLB handler is much more complicated. We have two
  382. * consecutive handler areas with 32 instructions space each.
  383. * Since they aren't used at the same time, we can overflow in the
  384. * other one.To keep things simple, we first assume linear space,
  385. * then we relocate it to the final handler layout as needed.
  386. */
  387. static u32 final_handler[64];
  388. /*
  389. * Hazards
  390. *
  391. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  392. * 2. A timing hazard exists for the TLBP instruction.
  393. *
  394. * stalling_instruction
  395. * TLBP
  396. *
  397. * The JTLB is being read for the TLBP throughout the stall generated by the
  398. * previous instruction. This is not really correct as the stalling instruction
  399. * can modify the address used to access the JTLB. The failure symptom is that
  400. * the TLBP instruction will use an address created for the stalling instruction
  401. * and not the address held in C0_ENHI and thus report the wrong results.
  402. *
  403. * The software work-around is to not allow the instruction preceding the TLBP
  404. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  405. *
  406. * Errata 2 will not be fixed. This errata is also on the R5000.
  407. *
  408. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  409. */
  410. static void __maybe_unused build_tlb_probe_entry(u32 **p)
  411. {
  412. switch (current_cpu_type()) {
  413. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  414. case CPU_R4600:
  415. case CPU_R4700:
  416. case CPU_R5000:
  417. case CPU_NEVADA:
  418. uasm_i_nop(p);
  419. uasm_i_tlbp(p);
  420. break;
  421. default:
  422. uasm_i_tlbp(p);
  423. break;
  424. }
  425. }
  426. /*
  427. * Write random or indexed TLB entry, and care about the hazards from
  428. * the preceding mtc0 and for the following eret.
  429. */
  430. enum tlb_write_entry { tlb_random, tlb_indexed };
  431. static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
  432. struct uasm_reloc **r,
  433. enum tlb_write_entry wmode)
  434. {
  435. void(*tlbw)(u32 **) = NULL;
  436. switch (wmode) {
  437. case tlb_random: tlbw = uasm_i_tlbwr; break;
  438. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  439. }
  440. if (cpu_has_mips_r2) {
  441. /*
  442. * The architecture spec says an ehb is required here,
  443. * but a number of cores do not have the hazard and
  444. * using an ehb causes an expensive pipeline stall.
  445. */
  446. switch (current_cpu_type()) {
  447. case CPU_M14KC:
  448. case CPU_74K:
  449. case CPU_1074K:
  450. case CPU_PROAPTIV:
  451. case CPU_P5600:
  452. case CPU_M5150:
  453. break;
  454. default:
  455. uasm_i_ehb(p);
  456. break;
  457. }
  458. tlbw(p);
  459. return;
  460. }
  461. switch (current_cpu_type()) {
  462. case CPU_R4000PC:
  463. case CPU_R4000SC:
  464. case CPU_R4000MC:
  465. case CPU_R4400PC:
  466. case CPU_R4400SC:
  467. case CPU_R4400MC:
  468. /*
  469. * This branch uses up a mtc0 hazard nop slot and saves
  470. * two nops after the tlbw instruction.
  471. */
  472. uasm_bgezl_hazard(p, r, hazard_instance);
  473. tlbw(p);
  474. uasm_bgezl_label(l, p, hazard_instance);
  475. hazard_instance++;
  476. uasm_i_nop(p);
  477. break;
  478. case CPU_R4600:
  479. case CPU_R4700:
  480. uasm_i_nop(p);
  481. tlbw(p);
  482. uasm_i_nop(p);
  483. break;
  484. case CPU_R5000:
  485. case CPU_NEVADA:
  486. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  487. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  488. tlbw(p);
  489. break;
  490. case CPU_R4300:
  491. case CPU_5KC:
  492. case CPU_TX49XX:
  493. case CPU_PR4450:
  494. case CPU_XLR:
  495. uasm_i_nop(p);
  496. tlbw(p);
  497. break;
  498. case CPU_R10000:
  499. case CPU_R12000:
  500. case CPU_R14000:
  501. case CPU_4KC:
  502. case CPU_4KEC:
  503. case CPU_M14KC:
  504. case CPU_M14KEC:
  505. case CPU_SB1:
  506. case CPU_SB1A:
  507. case CPU_4KSC:
  508. case CPU_20KC:
  509. case CPU_25KF:
  510. case CPU_BMIPS32:
  511. case CPU_BMIPS3300:
  512. case CPU_BMIPS4350:
  513. case CPU_BMIPS4380:
  514. case CPU_BMIPS5000:
  515. case CPU_LOONGSON2:
  516. case CPU_LOONGSON3:
  517. case CPU_R5500:
  518. if (m4kc_tlbp_war())
  519. uasm_i_nop(p);
  520. case CPU_ALCHEMY:
  521. tlbw(p);
  522. break;
  523. case CPU_RM7000:
  524. uasm_i_nop(p);
  525. uasm_i_nop(p);
  526. uasm_i_nop(p);
  527. uasm_i_nop(p);
  528. tlbw(p);
  529. break;
  530. case CPU_VR4111:
  531. case CPU_VR4121:
  532. case CPU_VR4122:
  533. case CPU_VR4181:
  534. case CPU_VR4181A:
  535. uasm_i_nop(p);
  536. uasm_i_nop(p);
  537. tlbw(p);
  538. uasm_i_nop(p);
  539. uasm_i_nop(p);
  540. break;
  541. case CPU_VR4131:
  542. case CPU_VR4133:
  543. case CPU_R5432:
  544. uasm_i_nop(p);
  545. uasm_i_nop(p);
  546. tlbw(p);
  547. break;
  548. case CPU_JZRISC:
  549. tlbw(p);
  550. uasm_i_nop(p);
  551. break;
  552. default:
  553. panic("No TLB refill handler yet (CPU type: %d)",
  554. current_cpu_type());
  555. break;
  556. }
  557. }
  558. static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  559. unsigned int reg)
  560. {
  561. if (cpu_has_rixi) {
  562. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  563. } else {
  564. #ifdef CONFIG_64BIT_PHYS_ADDR
  565. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  566. #else
  567. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  568. #endif
  569. }
  570. }
  571. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  572. static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
  573. unsigned int tmp, enum label_id lid,
  574. int restore_scratch)
  575. {
  576. if (restore_scratch) {
  577. /* Reset default page size */
  578. if (PM_DEFAULT_MASK >> 16) {
  579. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  580. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  581. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  582. uasm_il_b(p, r, lid);
  583. } else if (PM_DEFAULT_MASK) {
  584. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  585. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  586. uasm_il_b(p, r, lid);
  587. } else {
  588. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  589. uasm_il_b(p, r, lid);
  590. }
  591. if (scratch_reg >= 0)
  592. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  593. else
  594. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  595. } else {
  596. /* Reset default page size */
  597. if (PM_DEFAULT_MASK >> 16) {
  598. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  599. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  600. uasm_il_b(p, r, lid);
  601. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  602. } else if (PM_DEFAULT_MASK) {
  603. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  604. uasm_il_b(p, r, lid);
  605. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  606. } else {
  607. uasm_il_b(p, r, lid);
  608. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  609. }
  610. }
  611. }
  612. static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
  613. struct uasm_reloc **r,
  614. unsigned int tmp,
  615. enum tlb_write_entry wmode,
  616. int restore_scratch)
  617. {
  618. /* Set huge page tlb entry size */
  619. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  620. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  621. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  622. build_tlb_write_entry(p, l, r, wmode);
  623. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  624. }
  625. /*
  626. * Check if Huge PTE is present, if so then jump to LABEL.
  627. */
  628. static void
  629. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  630. unsigned int pmd, int lid)
  631. {
  632. UASM_i_LW(p, tmp, 0, pmd);
  633. if (use_bbit_insns()) {
  634. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  635. } else {
  636. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  637. uasm_il_bnez(p, r, tmp, lid);
  638. }
  639. }
  640. static void build_huge_update_entries(u32 **p, unsigned int pte,
  641. unsigned int tmp)
  642. {
  643. int small_sequence;
  644. /*
  645. * A huge PTE describes an area the size of the
  646. * configured huge page size. This is twice the
  647. * of the large TLB entry size we intend to use.
  648. * A TLB entry half the size of the configured
  649. * huge page size is configured into entrylo0
  650. * and entrylo1 to cover the contiguous huge PTE
  651. * address space.
  652. */
  653. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  654. /* We can clobber tmp. It isn't used after this.*/
  655. if (!small_sequence)
  656. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  657. build_convert_pte_to_entrylo(p, pte);
  658. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  659. /* convert to entrylo1 */
  660. if (small_sequence)
  661. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  662. else
  663. UASM_i_ADDU(p, pte, pte, tmp);
  664. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  665. }
  666. static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
  667. struct uasm_label **l,
  668. unsigned int pte,
  669. unsigned int ptr)
  670. {
  671. #ifdef CONFIG_SMP
  672. UASM_i_SC(p, pte, 0, ptr);
  673. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  674. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  675. #else
  676. UASM_i_SW(p, pte, 0, ptr);
  677. #endif
  678. build_huge_update_entries(p, pte, ptr);
  679. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  680. }
  681. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  682. #ifdef CONFIG_64BIT
  683. /*
  684. * TMP and PTR are scratch.
  685. * TMP will be clobbered, PTR will hold the pmd entry.
  686. */
  687. static void
  688. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  689. unsigned int tmp, unsigned int ptr)
  690. {
  691. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  692. long pgdc = (long)pgd_current;
  693. #endif
  694. /*
  695. * The vmalloc handling is not in the hotpath.
  696. */
  697. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  698. if (check_for_high_segbits) {
  699. /*
  700. * The kernel currently implicitely assumes that the
  701. * MIPS SEGBITS parameter for the processor is
  702. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  703. * allocate virtual addresses outside the maximum
  704. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  705. * that doesn't prevent user code from accessing the
  706. * higher xuseg addresses. Here, we make sure that
  707. * everything but the lower xuseg addresses goes down
  708. * the module_alloc/vmalloc path.
  709. */
  710. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  711. uasm_il_bnez(p, r, ptr, label_vmalloc);
  712. } else {
  713. uasm_il_bltz(p, r, tmp, label_vmalloc);
  714. }
  715. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  716. if (pgd_reg != -1) {
  717. /* pgd is in pgd_reg */
  718. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  719. } else {
  720. #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
  721. /*
  722. * &pgd << 11 stored in CONTEXT [23..63].
  723. */
  724. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  725. /* Clear lower 23 bits of context. */
  726. uasm_i_dins(p, ptr, 0, 0, 23);
  727. /* 1 0 1 0 1 << 6 xkphys cached */
  728. uasm_i_ori(p, ptr, ptr, 0x540);
  729. uasm_i_drotr(p, ptr, ptr, 11);
  730. #elif defined(CONFIG_SMP)
  731. UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
  732. uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  733. UASM_i_LA_mostly(p, tmp, pgdc);
  734. uasm_i_daddu(p, ptr, ptr, tmp);
  735. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  736. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  737. #else
  738. UASM_i_LA_mostly(p, ptr, pgdc);
  739. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  740. #endif
  741. }
  742. uasm_l_vmalloc_done(l, *p);
  743. /* get pgd offset in bytes */
  744. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  745. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  746. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  747. #ifndef __PAGETABLE_PMD_FOLDED
  748. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  749. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  750. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  751. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  752. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  753. #endif
  754. }
  755. /*
  756. * BVADDR is the faulting address, PTR is scratch.
  757. * PTR will hold the pgd for vmalloc.
  758. */
  759. static void
  760. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  761. unsigned int bvaddr, unsigned int ptr,
  762. enum vmalloc64_mode mode)
  763. {
  764. long swpd = (long)swapper_pg_dir;
  765. int single_insn_swpd;
  766. int did_vmalloc_branch = 0;
  767. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  768. uasm_l_vmalloc(l, *p);
  769. if (mode != not_refill && check_for_high_segbits) {
  770. if (single_insn_swpd) {
  771. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  772. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  773. did_vmalloc_branch = 1;
  774. /* fall through */
  775. } else {
  776. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  777. }
  778. }
  779. if (!did_vmalloc_branch) {
  780. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  781. uasm_il_b(p, r, label_vmalloc_done);
  782. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  783. } else {
  784. UASM_i_LA_mostly(p, ptr, swpd);
  785. uasm_il_b(p, r, label_vmalloc_done);
  786. if (uasm_in_compat_space_p(swpd))
  787. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  788. else
  789. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  790. }
  791. }
  792. if (mode != not_refill && check_for_high_segbits) {
  793. uasm_l_large_segbits_fault(l, *p);
  794. /*
  795. * We get here if we are an xsseg address, or if we are
  796. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  797. *
  798. * Ignoring xsseg (assume disabled so would generate
  799. * (address errors?), the only remaining possibility
  800. * is the upper xuseg addresses. On processors with
  801. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  802. * addresses would have taken an address error. We try
  803. * to mimic that here by taking a load/istream page
  804. * fault.
  805. */
  806. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  807. uasm_i_jr(p, ptr);
  808. if (mode == refill_scratch) {
  809. if (scratch_reg >= 0)
  810. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  811. else
  812. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  813. } else {
  814. uasm_i_nop(p);
  815. }
  816. }
  817. }
  818. #else /* !CONFIG_64BIT */
  819. /*
  820. * TMP and PTR are scratch.
  821. * TMP will be clobbered, PTR will hold the pgd entry.
  822. */
  823. static void __maybe_unused
  824. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  825. {
  826. if (pgd_reg != -1) {
  827. /* pgd is in pgd_reg */
  828. uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
  829. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  830. } else {
  831. long pgdc = (long)pgd_current;
  832. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  833. #ifdef CONFIG_SMP
  834. uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
  835. UASM_i_LA_mostly(p, tmp, pgdc);
  836. uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  837. uasm_i_addu(p, ptr, tmp, ptr);
  838. #else
  839. UASM_i_LA_mostly(p, ptr, pgdc);
  840. #endif
  841. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  842. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  843. }
  844. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  845. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  846. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  847. }
  848. #endif /* !CONFIG_64BIT */
  849. static void build_adjust_context(u32 **p, unsigned int ctx)
  850. {
  851. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  852. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  853. switch (current_cpu_type()) {
  854. case CPU_VR41XX:
  855. case CPU_VR4111:
  856. case CPU_VR4121:
  857. case CPU_VR4122:
  858. case CPU_VR4131:
  859. case CPU_VR4181:
  860. case CPU_VR4181A:
  861. case CPU_VR4133:
  862. shift += 2;
  863. break;
  864. default:
  865. break;
  866. }
  867. if (shift)
  868. UASM_i_SRL(p, ctx, ctx, shift);
  869. uasm_i_andi(p, ctx, ctx, mask);
  870. }
  871. static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  872. {
  873. /*
  874. * Bug workaround for the Nevada. It seems as if under certain
  875. * circumstances the move from cp0_context might produce a
  876. * bogus result when the mfc0 instruction and its consumer are
  877. * in a different cacheline or a load instruction, probably any
  878. * memory reference, is between them.
  879. */
  880. switch (current_cpu_type()) {
  881. case CPU_NEVADA:
  882. UASM_i_LW(p, ptr, 0, ptr);
  883. GET_CONTEXT(p, tmp); /* get context reg */
  884. break;
  885. default:
  886. GET_CONTEXT(p, tmp); /* get context reg */
  887. UASM_i_LW(p, ptr, 0, ptr);
  888. break;
  889. }
  890. build_adjust_context(p, tmp);
  891. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  892. }
  893. static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
  894. {
  895. /*
  896. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  897. * Kernel is a special case. Only a few CPUs use it.
  898. */
  899. #ifdef CONFIG_64BIT_PHYS_ADDR
  900. if (cpu_has_64bits) {
  901. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  902. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  903. if (cpu_has_rixi) {
  904. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  905. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  906. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  907. } else {
  908. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  909. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  910. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  911. }
  912. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  913. } else {
  914. int pte_off_even = sizeof(pte_t) / 2;
  915. int pte_off_odd = pte_off_even + sizeof(pte_t);
  916. /* The pte entries are pre-shifted */
  917. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  918. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  919. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  920. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  921. }
  922. #else
  923. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  924. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  925. if (r45k_bvahwbug())
  926. build_tlb_probe_entry(p);
  927. if (cpu_has_rixi) {
  928. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  929. if (r4k_250MHZhwbug())
  930. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  931. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  932. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  933. } else {
  934. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  935. if (r4k_250MHZhwbug())
  936. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  937. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  938. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  939. if (r45k_bvahwbug())
  940. uasm_i_mfc0(p, tmp, C0_INDEX);
  941. }
  942. if (r4k_250MHZhwbug())
  943. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  944. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  945. #endif
  946. }
  947. struct mips_huge_tlb_info {
  948. int huge_pte;
  949. int restore_scratch;
  950. };
  951. static struct mips_huge_tlb_info
  952. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  953. struct uasm_reloc **r, unsigned int tmp,
  954. unsigned int ptr, int c0_scratch_reg)
  955. {
  956. struct mips_huge_tlb_info rv;
  957. unsigned int even, odd;
  958. int vmalloc_branch_delay_filled = 0;
  959. const int scratch = 1; /* Our extra working register */
  960. rv.huge_pte = scratch;
  961. rv.restore_scratch = 0;
  962. if (check_for_high_segbits) {
  963. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  964. if (pgd_reg != -1)
  965. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  966. else
  967. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  968. if (c0_scratch_reg >= 0)
  969. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  970. else
  971. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  972. uasm_i_dsrl_safe(p, scratch, tmp,
  973. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  974. uasm_il_bnez(p, r, scratch, label_vmalloc);
  975. if (pgd_reg == -1) {
  976. vmalloc_branch_delay_filled = 1;
  977. /* Clear lower 23 bits of context. */
  978. uasm_i_dins(p, ptr, 0, 0, 23);
  979. }
  980. } else {
  981. if (pgd_reg != -1)
  982. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  983. else
  984. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  985. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  986. if (c0_scratch_reg >= 0)
  987. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  988. else
  989. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  990. if (pgd_reg == -1)
  991. /* Clear lower 23 bits of context. */
  992. uasm_i_dins(p, ptr, 0, 0, 23);
  993. uasm_il_bltz(p, r, tmp, label_vmalloc);
  994. }
  995. if (pgd_reg == -1) {
  996. vmalloc_branch_delay_filled = 1;
  997. /* 1 0 1 0 1 << 6 xkphys cached */
  998. uasm_i_ori(p, ptr, ptr, 0x540);
  999. uasm_i_drotr(p, ptr, ptr, 11);
  1000. }
  1001. #ifdef __PAGETABLE_PMD_FOLDED
  1002. #define LOC_PTEP scratch
  1003. #else
  1004. #define LOC_PTEP ptr
  1005. #endif
  1006. if (!vmalloc_branch_delay_filled)
  1007. /* get pgd offset in bytes */
  1008. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1009. uasm_l_vmalloc_done(l, *p);
  1010. /*
  1011. * tmp ptr
  1012. * fall-through case = badvaddr *pgd_current
  1013. * vmalloc case = badvaddr swapper_pg_dir
  1014. */
  1015. if (vmalloc_branch_delay_filled)
  1016. /* get pgd offset in bytes */
  1017. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1018. #ifdef __PAGETABLE_PMD_FOLDED
  1019. GET_CONTEXT(p, tmp); /* get context reg */
  1020. #endif
  1021. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1022. if (use_lwx_insns()) {
  1023. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1024. } else {
  1025. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1026. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1027. }
  1028. #ifndef __PAGETABLE_PMD_FOLDED
  1029. /* get pmd offset in bytes */
  1030. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1031. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1032. GET_CONTEXT(p, tmp); /* get context reg */
  1033. if (use_lwx_insns()) {
  1034. UASM_i_LWX(p, scratch, scratch, ptr);
  1035. } else {
  1036. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1037. UASM_i_LW(p, scratch, 0, ptr);
  1038. }
  1039. #endif
  1040. /* Adjust the context during the load latency. */
  1041. build_adjust_context(p, tmp);
  1042. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1043. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1044. /*
  1045. * The in the LWX case we don't want to do the load in the
  1046. * delay slot. It cannot issue in the same cycle and may be
  1047. * speculative and unneeded.
  1048. */
  1049. if (use_lwx_insns())
  1050. uasm_i_nop(p);
  1051. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1052. /* build_update_entries */
  1053. if (use_lwx_insns()) {
  1054. even = ptr;
  1055. odd = tmp;
  1056. UASM_i_LWX(p, even, scratch, tmp);
  1057. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1058. UASM_i_LWX(p, odd, scratch, tmp);
  1059. } else {
  1060. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1061. even = tmp;
  1062. odd = ptr;
  1063. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1064. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1065. }
  1066. if (cpu_has_rixi) {
  1067. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1068. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1069. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1070. } else {
  1071. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1072. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1073. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1074. }
  1075. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1076. if (c0_scratch_reg >= 0) {
  1077. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1078. build_tlb_write_entry(p, l, r, tlb_random);
  1079. uasm_l_leave(l, *p);
  1080. rv.restore_scratch = 1;
  1081. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1082. build_tlb_write_entry(p, l, r, tlb_random);
  1083. uasm_l_leave(l, *p);
  1084. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1085. } else {
  1086. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1087. build_tlb_write_entry(p, l, r, tlb_random);
  1088. uasm_l_leave(l, *p);
  1089. rv.restore_scratch = 1;
  1090. }
  1091. uasm_i_eret(p); /* return from trap */
  1092. return rv;
  1093. }
  1094. /*
  1095. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1096. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1097. * slots before the XTLB refill exception handler which belong to the
  1098. * unused TLB refill exception.
  1099. */
  1100. #define MIPS64_REFILL_INSNS 32
  1101. static void build_r4000_tlb_refill_handler(void)
  1102. {
  1103. u32 *p = tlb_handler;
  1104. struct uasm_label *l = labels;
  1105. struct uasm_reloc *r = relocs;
  1106. u32 *f;
  1107. unsigned int final_len;
  1108. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1109. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1110. memset(tlb_handler, 0, sizeof(tlb_handler));
  1111. memset(labels, 0, sizeof(labels));
  1112. memset(relocs, 0, sizeof(relocs));
  1113. memset(final_handler, 0, sizeof(final_handler));
  1114. if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1115. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1116. scratch_reg);
  1117. vmalloc_mode = refill_scratch;
  1118. } else {
  1119. htlb_info.huge_pte = K0;
  1120. htlb_info.restore_scratch = 0;
  1121. vmalloc_mode = refill_noscratch;
  1122. /*
  1123. * create the plain linear handler
  1124. */
  1125. if (bcm1250_m3_war()) {
  1126. unsigned int segbits = 44;
  1127. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1128. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1129. uasm_i_xor(&p, K0, K0, K1);
  1130. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1131. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1132. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1133. uasm_i_or(&p, K0, K0, K1);
  1134. uasm_il_bnez(&p, &r, K0, label_leave);
  1135. /* No need for uasm_i_nop */
  1136. }
  1137. #ifdef CONFIG_64BIT
  1138. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1139. #else
  1140. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1141. #endif
  1142. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1143. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1144. #endif
  1145. build_get_ptep(&p, K0, K1);
  1146. build_update_entries(&p, K0, K1);
  1147. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1148. uasm_l_leave(&l, p);
  1149. uasm_i_eret(&p); /* return from trap */
  1150. }
  1151. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1152. uasm_l_tlb_huge_update(&l, p);
  1153. UASM_i_LW(&p, K0, 0, K1);
  1154. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1155. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1156. htlb_info.restore_scratch);
  1157. #endif
  1158. #ifdef CONFIG_64BIT
  1159. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1160. #endif
  1161. /*
  1162. * Overflow check: For the 64bit handler, we need at least one
  1163. * free instruction slot for the wrap-around branch. In worst
  1164. * case, if the intended insertion point is a delay slot, we
  1165. * need three, with the second nop'ed and the third being
  1166. * unused.
  1167. */
  1168. switch (boot_cpu_type()) {
  1169. default:
  1170. if (sizeof(long) == 4) {
  1171. case CPU_LOONGSON2:
  1172. /* Loongson2 ebase is different than r4k, we have more space */
  1173. if ((p - tlb_handler) > 64)
  1174. panic("TLB refill handler space exceeded");
  1175. /*
  1176. * Now fold the handler in the TLB refill handler space.
  1177. */
  1178. f = final_handler;
  1179. /* Simplest case, just copy the handler. */
  1180. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1181. final_len = p - tlb_handler;
  1182. break;
  1183. } else {
  1184. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1185. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1186. && uasm_insn_has_bdelay(relocs,
  1187. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1188. panic("TLB refill handler space exceeded");
  1189. /*
  1190. * Now fold the handler in the TLB refill handler space.
  1191. */
  1192. f = final_handler + MIPS64_REFILL_INSNS;
  1193. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1194. /* Just copy the handler. */
  1195. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1196. final_len = p - tlb_handler;
  1197. } else {
  1198. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1199. const enum label_id ls = label_tlb_huge_update;
  1200. #else
  1201. const enum label_id ls = label_vmalloc;
  1202. #endif
  1203. u32 *split;
  1204. int ov = 0;
  1205. int i;
  1206. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1207. ;
  1208. BUG_ON(i == ARRAY_SIZE(labels));
  1209. split = labels[i].addr;
  1210. /*
  1211. * See if we have overflown one way or the other.
  1212. */
  1213. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1214. split < p - MIPS64_REFILL_INSNS)
  1215. ov = 1;
  1216. if (ov) {
  1217. /*
  1218. * Split two instructions before the end. One
  1219. * for the branch and one for the instruction
  1220. * in the delay slot.
  1221. */
  1222. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1223. /*
  1224. * If the branch would fall in a delay slot,
  1225. * we must back up an additional instruction
  1226. * so that it is no longer in a delay slot.
  1227. */
  1228. if (uasm_insn_has_bdelay(relocs, split - 1))
  1229. split--;
  1230. }
  1231. /* Copy first part of the handler. */
  1232. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1233. f += split - tlb_handler;
  1234. if (ov) {
  1235. /* Insert branch. */
  1236. uasm_l_split(&l, final_handler);
  1237. uasm_il_b(&f, &r, label_split);
  1238. if (uasm_insn_has_bdelay(relocs, split))
  1239. uasm_i_nop(&f);
  1240. else {
  1241. uasm_copy_handler(relocs, labels,
  1242. split, split + 1, f);
  1243. uasm_move_labels(labels, f, f + 1, -1);
  1244. f++;
  1245. split++;
  1246. }
  1247. }
  1248. /* Copy the rest of the handler. */
  1249. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1250. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1251. (p - split);
  1252. }
  1253. }
  1254. break;
  1255. }
  1256. uasm_resolve_relocs(relocs, labels);
  1257. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1258. final_len);
  1259. memcpy((void *)ebase, final_handler, 0x100);
  1260. local_flush_icache_range(ebase, ebase + 0x100);
  1261. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1262. }
  1263. extern u32 handle_tlbl[], handle_tlbl_end[];
  1264. extern u32 handle_tlbs[], handle_tlbs_end[];
  1265. extern u32 handle_tlbm[], handle_tlbm_end[];
  1266. extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
  1267. extern u32 tlbmiss_handler_setup_pgd_end[];
  1268. static void build_setup_pgd(void)
  1269. {
  1270. const int a0 = 4;
  1271. const int __maybe_unused a1 = 5;
  1272. const int __maybe_unused a2 = 6;
  1273. u32 *p = tlbmiss_handler_setup_pgd_start;
  1274. const int tlbmiss_handler_setup_pgd_size =
  1275. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
  1276. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1277. long pgdc = (long)pgd_current;
  1278. #endif
  1279. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1280. sizeof(tlbmiss_handler_setup_pgd[0]));
  1281. memset(labels, 0, sizeof(labels));
  1282. memset(relocs, 0, sizeof(relocs));
  1283. pgd_reg = allocate_kscratch();
  1284. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1285. if (pgd_reg == -1) {
  1286. struct uasm_label *l = labels;
  1287. struct uasm_reloc *r = relocs;
  1288. /* PGD << 11 in c0_Context */
  1289. /*
  1290. * If it is a ckseg0 address, convert to a physical
  1291. * address. Shifting right by 29 and adding 4 will
  1292. * result in zero for these addresses.
  1293. *
  1294. */
  1295. UASM_i_SRA(&p, a1, a0, 29);
  1296. UASM_i_ADDIU(&p, a1, a1, 4);
  1297. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1298. uasm_i_nop(&p);
  1299. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1300. uasm_l_tlbl_goaround1(&l, p);
  1301. UASM_i_SLL(&p, a0, a0, 11);
  1302. uasm_i_jr(&p, 31);
  1303. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1304. } else {
  1305. /* PGD in c0_KScratch */
  1306. uasm_i_jr(&p, 31);
  1307. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1308. }
  1309. #else
  1310. #ifdef CONFIG_SMP
  1311. /* Save PGD to pgd_current[smp_processor_id()] */
  1312. UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
  1313. UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
  1314. UASM_i_LA_mostly(&p, a2, pgdc);
  1315. UASM_i_ADDU(&p, a2, a2, a1);
  1316. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1317. #else
  1318. UASM_i_LA_mostly(&p, a2, pgdc);
  1319. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1320. #endif /* SMP */
  1321. uasm_i_jr(&p, 31);
  1322. /* if pgd_reg is allocated, save PGD also to scratch register */
  1323. if (pgd_reg != -1)
  1324. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1325. else
  1326. uasm_i_nop(&p);
  1327. #endif
  1328. if (p >= tlbmiss_handler_setup_pgd_end)
  1329. panic("tlbmiss_handler_setup_pgd space exceeded");
  1330. uasm_resolve_relocs(relocs, labels);
  1331. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1332. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1333. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1334. tlbmiss_handler_setup_pgd_size);
  1335. }
  1336. static void
  1337. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1338. {
  1339. #ifdef CONFIG_SMP
  1340. # ifdef CONFIG_64BIT_PHYS_ADDR
  1341. if (cpu_has_64bits)
  1342. uasm_i_lld(p, pte, 0, ptr);
  1343. else
  1344. # endif
  1345. UASM_i_LL(p, pte, 0, ptr);
  1346. #else
  1347. # ifdef CONFIG_64BIT_PHYS_ADDR
  1348. if (cpu_has_64bits)
  1349. uasm_i_ld(p, pte, 0, ptr);
  1350. else
  1351. # endif
  1352. UASM_i_LW(p, pte, 0, ptr);
  1353. #endif
  1354. }
  1355. static void
  1356. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1357. unsigned int mode)
  1358. {
  1359. #ifdef CONFIG_64BIT_PHYS_ADDR
  1360. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1361. #endif
  1362. uasm_i_ori(p, pte, pte, mode);
  1363. #ifdef CONFIG_SMP
  1364. # ifdef CONFIG_64BIT_PHYS_ADDR
  1365. if (cpu_has_64bits)
  1366. uasm_i_scd(p, pte, 0, ptr);
  1367. else
  1368. # endif
  1369. UASM_i_SC(p, pte, 0, ptr);
  1370. if (r10000_llsc_war())
  1371. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1372. else
  1373. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1374. # ifdef CONFIG_64BIT_PHYS_ADDR
  1375. if (!cpu_has_64bits) {
  1376. /* no uasm_i_nop needed */
  1377. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1378. uasm_i_ori(p, pte, pte, hwmode);
  1379. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1380. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1381. /* no uasm_i_nop needed */
  1382. uasm_i_lw(p, pte, 0, ptr);
  1383. } else
  1384. uasm_i_nop(p);
  1385. # else
  1386. uasm_i_nop(p);
  1387. # endif
  1388. #else
  1389. # ifdef CONFIG_64BIT_PHYS_ADDR
  1390. if (cpu_has_64bits)
  1391. uasm_i_sd(p, pte, 0, ptr);
  1392. else
  1393. # endif
  1394. UASM_i_SW(p, pte, 0, ptr);
  1395. # ifdef CONFIG_64BIT_PHYS_ADDR
  1396. if (!cpu_has_64bits) {
  1397. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1398. uasm_i_ori(p, pte, pte, hwmode);
  1399. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1400. uasm_i_lw(p, pte, 0, ptr);
  1401. }
  1402. # endif
  1403. #endif
  1404. }
  1405. /*
  1406. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1407. * the page table where this PTE is located, PTE will be re-loaded
  1408. * with it's original value.
  1409. */
  1410. static void
  1411. build_pte_present(u32 **p, struct uasm_reloc **r,
  1412. int pte, int ptr, int scratch, enum label_id lid)
  1413. {
  1414. int t = scratch >= 0 ? scratch : pte;
  1415. if (cpu_has_rixi) {
  1416. if (use_bbit_insns()) {
  1417. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1418. uasm_i_nop(p);
  1419. } else {
  1420. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1421. uasm_il_beqz(p, r, t, lid);
  1422. if (pte == t)
  1423. /* You lose the SMP race :-(*/
  1424. iPTE_LW(p, pte, ptr);
  1425. }
  1426. } else {
  1427. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1428. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1429. uasm_il_bnez(p, r, t, lid);
  1430. if (pte == t)
  1431. /* You lose the SMP race :-(*/
  1432. iPTE_LW(p, pte, ptr);
  1433. }
  1434. }
  1435. /* Make PTE valid, store result in PTR. */
  1436. static void
  1437. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1438. unsigned int ptr)
  1439. {
  1440. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1441. iPTE_SW(p, r, pte, ptr, mode);
  1442. }
  1443. /*
  1444. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1445. * restore PTE with value from PTR when done.
  1446. */
  1447. static void
  1448. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1449. unsigned int pte, unsigned int ptr, int scratch,
  1450. enum label_id lid)
  1451. {
  1452. int t = scratch >= 0 ? scratch : pte;
  1453. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1454. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1455. uasm_il_bnez(p, r, t, lid);
  1456. if (pte == t)
  1457. /* You lose the SMP race :-(*/
  1458. iPTE_LW(p, pte, ptr);
  1459. else
  1460. uasm_i_nop(p);
  1461. }
  1462. /* Make PTE writable, update software status bits as well, then store
  1463. * at PTR.
  1464. */
  1465. static void
  1466. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1467. unsigned int ptr)
  1468. {
  1469. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1470. | _PAGE_DIRTY);
  1471. iPTE_SW(p, r, pte, ptr, mode);
  1472. }
  1473. /*
  1474. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1475. * restore PTE with value from PTR when done.
  1476. */
  1477. static void
  1478. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1479. unsigned int pte, unsigned int ptr, int scratch,
  1480. enum label_id lid)
  1481. {
  1482. if (use_bbit_insns()) {
  1483. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1484. uasm_i_nop(p);
  1485. } else {
  1486. int t = scratch >= 0 ? scratch : pte;
  1487. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1488. uasm_il_beqz(p, r, t, lid);
  1489. if (pte == t)
  1490. /* You lose the SMP race :-(*/
  1491. iPTE_LW(p, pte, ptr);
  1492. }
  1493. }
  1494. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1495. /*
  1496. * R3000 style TLB load/store/modify handlers.
  1497. */
  1498. /*
  1499. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1500. * Then it returns.
  1501. */
  1502. static void
  1503. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1504. {
  1505. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1506. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1507. uasm_i_tlbwi(p);
  1508. uasm_i_jr(p, tmp);
  1509. uasm_i_rfe(p); /* branch delay */
  1510. }
  1511. /*
  1512. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1513. * or tlbwr as appropriate. This is because the index register
  1514. * may have the probe fail bit set as a result of a trap on a
  1515. * kseg2 access, i.e. without refill. Then it returns.
  1516. */
  1517. static void
  1518. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1519. struct uasm_reloc **r, unsigned int pte,
  1520. unsigned int tmp)
  1521. {
  1522. uasm_i_mfc0(p, tmp, C0_INDEX);
  1523. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1524. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1525. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1526. uasm_i_tlbwi(p); /* cp0 delay */
  1527. uasm_i_jr(p, tmp);
  1528. uasm_i_rfe(p); /* branch delay */
  1529. uasm_l_r3000_write_probe_fail(l, *p);
  1530. uasm_i_tlbwr(p); /* cp0 delay */
  1531. uasm_i_jr(p, tmp);
  1532. uasm_i_rfe(p); /* branch delay */
  1533. }
  1534. static void
  1535. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1536. unsigned int ptr)
  1537. {
  1538. long pgdc = (long)pgd_current;
  1539. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1540. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1541. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1542. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1543. uasm_i_sll(p, pte, pte, 2);
  1544. uasm_i_addu(p, ptr, ptr, pte);
  1545. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1546. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1547. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1548. uasm_i_addu(p, ptr, ptr, pte);
  1549. uasm_i_lw(p, pte, 0, ptr);
  1550. uasm_i_tlbp(p); /* load delay */
  1551. }
  1552. static void build_r3000_tlb_load_handler(void)
  1553. {
  1554. u32 *p = handle_tlbl;
  1555. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1556. struct uasm_label *l = labels;
  1557. struct uasm_reloc *r = relocs;
  1558. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1559. memset(labels, 0, sizeof(labels));
  1560. memset(relocs, 0, sizeof(relocs));
  1561. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1562. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1563. uasm_i_nop(&p); /* load delay */
  1564. build_make_valid(&p, &r, K0, K1);
  1565. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1566. uasm_l_nopage_tlbl(&l, p);
  1567. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1568. uasm_i_nop(&p);
  1569. if (p >= handle_tlbl_end)
  1570. panic("TLB load handler fastpath space exceeded");
  1571. uasm_resolve_relocs(relocs, labels);
  1572. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1573. (unsigned int)(p - handle_tlbl));
  1574. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1575. }
  1576. static void build_r3000_tlb_store_handler(void)
  1577. {
  1578. u32 *p = handle_tlbs;
  1579. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1580. struct uasm_label *l = labels;
  1581. struct uasm_reloc *r = relocs;
  1582. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1583. memset(labels, 0, sizeof(labels));
  1584. memset(relocs, 0, sizeof(relocs));
  1585. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1586. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1587. uasm_i_nop(&p); /* load delay */
  1588. build_make_write(&p, &r, K0, K1);
  1589. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1590. uasm_l_nopage_tlbs(&l, p);
  1591. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1592. uasm_i_nop(&p);
  1593. if (p >= handle_tlbs_end)
  1594. panic("TLB store handler fastpath space exceeded");
  1595. uasm_resolve_relocs(relocs, labels);
  1596. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1597. (unsigned int)(p - handle_tlbs));
  1598. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1599. }
  1600. static void build_r3000_tlb_modify_handler(void)
  1601. {
  1602. u32 *p = handle_tlbm;
  1603. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1604. struct uasm_label *l = labels;
  1605. struct uasm_reloc *r = relocs;
  1606. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1607. memset(labels, 0, sizeof(labels));
  1608. memset(relocs, 0, sizeof(relocs));
  1609. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1610. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1611. uasm_i_nop(&p); /* load delay */
  1612. build_make_write(&p, &r, K0, K1);
  1613. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1614. uasm_l_nopage_tlbm(&l, p);
  1615. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1616. uasm_i_nop(&p);
  1617. if (p >= handle_tlbm_end)
  1618. panic("TLB modify handler fastpath space exceeded");
  1619. uasm_resolve_relocs(relocs, labels);
  1620. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1621. (unsigned int)(p - handle_tlbm));
  1622. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1623. }
  1624. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1625. /*
  1626. * R4000 style TLB load/store/modify handlers.
  1627. */
  1628. static struct work_registers
  1629. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1630. struct uasm_reloc **r)
  1631. {
  1632. struct work_registers wr = build_get_work_registers(p);
  1633. #ifdef CONFIG_64BIT
  1634. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1635. #else
  1636. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1637. #endif
  1638. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1639. /*
  1640. * For huge tlb entries, pmd doesn't contain an address but
  1641. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1642. * see if we need to jump to huge tlb processing.
  1643. */
  1644. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1645. #endif
  1646. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1647. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1648. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1649. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1650. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1651. #ifdef CONFIG_SMP
  1652. uasm_l_smp_pgtable_change(l, *p);
  1653. #endif
  1654. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1655. if (!m4kc_tlbp_war())
  1656. build_tlb_probe_entry(p);
  1657. return wr;
  1658. }
  1659. static void
  1660. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1661. struct uasm_reloc **r, unsigned int tmp,
  1662. unsigned int ptr)
  1663. {
  1664. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1665. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1666. build_update_entries(p, tmp, ptr);
  1667. build_tlb_write_entry(p, l, r, tlb_indexed);
  1668. uasm_l_leave(l, *p);
  1669. build_restore_work_registers(p);
  1670. uasm_i_eret(p); /* return from trap */
  1671. #ifdef CONFIG_64BIT
  1672. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1673. #endif
  1674. }
  1675. static void build_r4000_tlb_load_handler(void)
  1676. {
  1677. u32 *p = handle_tlbl;
  1678. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1679. struct uasm_label *l = labels;
  1680. struct uasm_reloc *r = relocs;
  1681. struct work_registers wr;
  1682. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1683. memset(labels, 0, sizeof(labels));
  1684. memset(relocs, 0, sizeof(relocs));
  1685. if (bcm1250_m3_war()) {
  1686. unsigned int segbits = 44;
  1687. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1688. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1689. uasm_i_xor(&p, K0, K0, K1);
  1690. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1691. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1692. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1693. uasm_i_or(&p, K0, K0, K1);
  1694. uasm_il_bnez(&p, &r, K0, label_leave);
  1695. /* No need for uasm_i_nop */
  1696. }
  1697. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1698. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1699. if (m4kc_tlbp_war())
  1700. build_tlb_probe_entry(&p);
  1701. if (cpu_has_rixi && !cpu_has_rixiex) {
  1702. /*
  1703. * If the page is not _PAGE_VALID, RI or XI could not
  1704. * have triggered it. Skip the expensive test..
  1705. */
  1706. if (use_bbit_insns()) {
  1707. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1708. label_tlbl_goaround1);
  1709. } else {
  1710. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1711. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1712. }
  1713. uasm_i_nop(&p);
  1714. uasm_i_tlbr(&p);
  1715. switch (current_cpu_type()) {
  1716. default:
  1717. if (cpu_has_mips_r2) {
  1718. uasm_i_ehb(&p);
  1719. case CPU_CAVIUM_OCTEON:
  1720. case CPU_CAVIUM_OCTEON_PLUS:
  1721. case CPU_CAVIUM_OCTEON2:
  1722. break;
  1723. }
  1724. }
  1725. /* Examine entrylo 0 or 1 based on ptr. */
  1726. if (use_bbit_insns()) {
  1727. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1728. } else {
  1729. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1730. uasm_i_beqz(&p, wr.r3, 8);
  1731. }
  1732. /* load it in the delay slot*/
  1733. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1734. /* load it if ptr is odd */
  1735. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1736. /*
  1737. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1738. * XI must have triggered it.
  1739. */
  1740. if (use_bbit_insns()) {
  1741. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1742. uasm_i_nop(&p);
  1743. uasm_l_tlbl_goaround1(&l, p);
  1744. } else {
  1745. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1746. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1747. uasm_i_nop(&p);
  1748. }
  1749. uasm_l_tlbl_goaround1(&l, p);
  1750. }
  1751. build_make_valid(&p, &r, wr.r1, wr.r2);
  1752. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1753. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1754. /*
  1755. * This is the entry point when build_r4000_tlbchange_handler_head
  1756. * spots a huge page.
  1757. */
  1758. uasm_l_tlb_huge_update(&l, p);
  1759. iPTE_LW(&p, wr.r1, wr.r2);
  1760. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1761. build_tlb_probe_entry(&p);
  1762. if (cpu_has_rixi && !cpu_has_rixiex) {
  1763. /*
  1764. * If the page is not _PAGE_VALID, RI or XI could not
  1765. * have triggered it. Skip the expensive test..
  1766. */
  1767. if (use_bbit_insns()) {
  1768. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1769. label_tlbl_goaround2);
  1770. } else {
  1771. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1772. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1773. }
  1774. uasm_i_nop(&p);
  1775. uasm_i_tlbr(&p);
  1776. switch (current_cpu_type()) {
  1777. default:
  1778. if (cpu_has_mips_r2) {
  1779. uasm_i_ehb(&p);
  1780. case CPU_CAVIUM_OCTEON:
  1781. case CPU_CAVIUM_OCTEON_PLUS:
  1782. case CPU_CAVIUM_OCTEON2:
  1783. break;
  1784. }
  1785. }
  1786. /* Examine entrylo 0 or 1 based on ptr. */
  1787. if (use_bbit_insns()) {
  1788. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1789. } else {
  1790. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1791. uasm_i_beqz(&p, wr.r3, 8);
  1792. }
  1793. /* load it in the delay slot*/
  1794. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1795. /* load it if ptr is odd */
  1796. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1797. /*
  1798. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1799. * XI must have triggered it.
  1800. */
  1801. if (use_bbit_insns()) {
  1802. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1803. } else {
  1804. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1805. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1806. }
  1807. if (PM_DEFAULT_MASK == 0)
  1808. uasm_i_nop(&p);
  1809. /*
  1810. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1811. * it is restored in build_huge_tlb_write_entry.
  1812. */
  1813. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1814. uasm_l_tlbl_goaround2(&l, p);
  1815. }
  1816. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1817. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1818. #endif
  1819. uasm_l_nopage_tlbl(&l, p);
  1820. build_restore_work_registers(&p);
  1821. #ifdef CONFIG_CPU_MICROMIPS
  1822. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1823. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1824. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1825. uasm_i_jr(&p, K0);
  1826. } else
  1827. #endif
  1828. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1829. uasm_i_nop(&p);
  1830. if (p >= handle_tlbl_end)
  1831. panic("TLB load handler fastpath space exceeded");
  1832. uasm_resolve_relocs(relocs, labels);
  1833. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1834. (unsigned int)(p - handle_tlbl));
  1835. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1836. }
  1837. static void build_r4000_tlb_store_handler(void)
  1838. {
  1839. u32 *p = handle_tlbs;
  1840. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1841. struct uasm_label *l = labels;
  1842. struct uasm_reloc *r = relocs;
  1843. struct work_registers wr;
  1844. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1845. memset(labels, 0, sizeof(labels));
  1846. memset(relocs, 0, sizeof(relocs));
  1847. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1848. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1849. if (m4kc_tlbp_war())
  1850. build_tlb_probe_entry(&p);
  1851. build_make_write(&p, &r, wr.r1, wr.r2);
  1852. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1853. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1854. /*
  1855. * This is the entry point when
  1856. * build_r4000_tlbchange_handler_head spots a huge page.
  1857. */
  1858. uasm_l_tlb_huge_update(&l, p);
  1859. iPTE_LW(&p, wr.r1, wr.r2);
  1860. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1861. build_tlb_probe_entry(&p);
  1862. uasm_i_ori(&p, wr.r1, wr.r1,
  1863. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1864. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1865. #endif
  1866. uasm_l_nopage_tlbs(&l, p);
  1867. build_restore_work_registers(&p);
  1868. #ifdef CONFIG_CPU_MICROMIPS
  1869. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1870. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1871. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1872. uasm_i_jr(&p, K0);
  1873. } else
  1874. #endif
  1875. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1876. uasm_i_nop(&p);
  1877. if (p >= handle_tlbs_end)
  1878. panic("TLB store handler fastpath space exceeded");
  1879. uasm_resolve_relocs(relocs, labels);
  1880. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1881. (unsigned int)(p - handle_tlbs));
  1882. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1883. }
  1884. static void build_r4000_tlb_modify_handler(void)
  1885. {
  1886. u32 *p = handle_tlbm;
  1887. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1888. struct uasm_label *l = labels;
  1889. struct uasm_reloc *r = relocs;
  1890. struct work_registers wr;
  1891. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1892. memset(labels, 0, sizeof(labels));
  1893. memset(relocs, 0, sizeof(relocs));
  1894. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1895. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1896. if (m4kc_tlbp_war())
  1897. build_tlb_probe_entry(&p);
  1898. /* Present and writable bits set, set accessed and dirty bits. */
  1899. build_make_write(&p, &r, wr.r1, wr.r2);
  1900. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1901. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1902. /*
  1903. * This is the entry point when
  1904. * build_r4000_tlbchange_handler_head spots a huge page.
  1905. */
  1906. uasm_l_tlb_huge_update(&l, p);
  1907. iPTE_LW(&p, wr.r1, wr.r2);
  1908. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1909. build_tlb_probe_entry(&p);
  1910. uasm_i_ori(&p, wr.r1, wr.r1,
  1911. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1912. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1913. #endif
  1914. uasm_l_nopage_tlbm(&l, p);
  1915. build_restore_work_registers(&p);
  1916. #ifdef CONFIG_CPU_MICROMIPS
  1917. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1918. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1919. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1920. uasm_i_jr(&p, K0);
  1921. } else
  1922. #endif
  1923. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1924. uasm_i_nop(&p);
  1925. if (p >= handle_tlbm_end)
  1926. panic("TLB modify handler fastpath space exceeded");
  1927. uasm_resolve_relocs(relocs, labels);
  1928. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1929. (unsigned int)(p - handle_tlbm));
  1930. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1931. }
  1932. static void flush_tlb_handlers(void)
  1933. {
  1934. local_flush_icache_range((unsigned long)handle_tlbl,
  1935. (unsigned long)handle_tlbl_end);
  1936. local_flush_icache_range((unsigned long)handle_tlbs,
  1937. (unsigned long)handle_tlbs_end);
  1938. local_flush_icache_range((unsigned long)handle_tlbm,
  1939. (unsigned long)handle_tlbm_end);
  1940. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1941. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1942. }
  1943. static void print_htw_config(void)
  1944. {
  1945. unsigned long config;
  1946. unsigned int pwctl;
  1947. const int field = 2 * sizeof(unsigned long);
  1948. config = read_c0_pwfield();
  1949. pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
  1950. field, config,
  1951. (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
  1952. (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
  1953. (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
  1954. (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
  1955. (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
  1956. config = read_c0_pwsize();
  1957. pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
  1958. field, config,
  1959. (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
  1960. (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
  1961. (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
  1962. (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
  1963. (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
  1964. pwctl = read_c0_pwctl();
  1965. pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
  1966. pwctl,
  1967. (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
  1968. (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
  1969. (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
  1970. (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
  1971. }
  1972. static void config_htw_params(void)
  1973. {
  1974. unsigned long pwfield, pwsize, ptei;
  1975. unsigned int config;
  1976. /*
  1977. * We are using 2-level page tables, so we only need to
  1978. * setup GDW and PTW appropriately. UDW and MDW will remain 0.
  1979. * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
  1980. * write values less than 0xc in these fields because the entire
  1981. * write will be dropped. As a result of which, we must preserve
  1982. * the original reset values and overwrite only what we really want.
  1983. */
  1984. pwfield = read_c0_pwfield();
  1985. /* re-initialize the GDI field */
  1986. pwfield &= ~MIPS_PWFIELD_GDI_MASK;
  1987. pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
  1988. /* re-initialize the PTI field including the even/odd bit */
  1989. pwfield &= ~MIPS_PWFIELD_PTI_MASK;
  1990. pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
  1991. /* Set the PTEI right shift */
  1992. ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
  1993. pwfield |= ptei;
  1994. write_c0_pwfield(pwfield);
  1995. /* Check whether the PTEI value is supported */
  1996. back_to_back_c0_hazard();
  1997. pwfield = read_c0_pwfield();
  1998. if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
  1999. != ptei) {
  2000. pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
  2001. ptei);
  2002. /*
  2003. * Drop option to avoid HTW being enabled via another path
  2004. * (eg htw_reset())
  2005. */
  2006. current_cpu_data.options &= ~MIPS_CPU_HTW;
  2007. return;
  2008. }
  2009. pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
  2010. pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
  2011. write_c0_pwsize(pwsize);
  2012. /* Make sure everything is set before we enable the HTW */
  2013. back_to_back_c0_hazard();
  2014. /* Enable HTW and disable the rest of the pwctl fields */
  2015. config = 1 << MIPS_PWCTL_PWEN_SHIFT;
  2016. write_c0_pwctl(config);
  2017. pr_info("Hardware Page Table Walker enabled\n");
  2018. print_htw_config();
  2019. }
  2020. void build_tlb_refill_handler(void)
  2021. {
  2022. /*
  2023. * The refill handler is generated per-CPU, multi-node systems
  2024. * may have local storage for it. The other handlers are only
  2025. * needed once.
  2026. */
  2027. static int run_once = 0;
  2028. output_pgtable_bits_defines();
  2029. #ifdef CONFIG_64BIT
  2030. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  2031. #endif
  2032. switch (current_cpu_type()) {
  2033. case CPU_R2000:
  2034. case CPU_R3000:
  2035. case CPU_R3000A:
  2036. case CPU_R3081E:
  2037. case CPU_TX3912:
  2038. case CPU_TX3922:
  2039. case CPU_TX3927:
  2040. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  2041. if (cpu_has_local_ebase)
  2042. build_r3000_tlb_refill_handler();
  2043. if (!run_once) {
  2044. if (!cpu_has_local_ebase)
  2045. build_r3000_tlb_refill_handler();
  2046. build_setup_pgd();
  2047. build_r3000_tlb_load_handler();
  2048. build_r3000_tlb_store_handler();
  2049. build_r3000_tlb_modify_handler();
  2050. flush_tlb_handlers();
  2051. run_once++;
  2052. }
  2053. #else
  2054. panic("No R3000 TLB refill handler");
  2055. #endif
  2056. break;
  2057. case CPU_R6000:
  2058. case CPU_R6000A:
  2059. panic("No R6000 TLB refill handler yet");
  2060. break;
  2061. case CPU_R8000:
  2062. panic("No R8000 TLB refill handler yet");
  2063. break;
  2064. default:
  2065. if (!run_once) {
  2066. scratch_reg = allocate_kscratch();
  2067. build_setup_pgd();
  2068. build_r4000_tlb_load_handler();
  2069. build_r4000_tlb_store_handler();
  2070. build_r4000_tlb_modify_handler();
  2071. if (!cpu_has_local_ebase)
  2072. build_r4000_tlb_refill_handler();
  2073. flush_tlb_handlers();
  2074. run_once++;
  2075. }
  2076. if (cpu_has_local_ebase)
  2077. build_r4000_tlb_refill_handler();
  2078. if (cpu_has_htw)
  2079. config_htw_params();
  2080. }
  2081. }