mips.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/fs.h>
  16. #include <linux/bootmem.h>
  17. #include <asm/page.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <linux/kvm_host.h>
  21. #include "interrupt.h"
  22. #include "commpage.h"
  23. #define CREATE_TRACE_POINTS
  24. #include "trace.h"
  25. #ifndef VECTORSPACING
  26. #define VECTORSPACING 0x100 /* for EI/VI mode */
  27. #endif
  28. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  29. struct kvm_stats_debugfs_item debugfs_entries[] = {
  30. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  31. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  32. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  33. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  34. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  35. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  36. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  37. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  38. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  39. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  40. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  41. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  42. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  43. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  44. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  45. {NULL}
  46. };
  47. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  48. {
  49. int i;
  50. for_each_possible_cpu(i) {
  51. vcpu->arch.guest_kernel_asid[i] = 0;
  52. vcpu->arch.guest_user_asid[i] = 0;
  53. }
  54. return 0;
  55. }
  56. /*
  57. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  58. * Config7, so we are "runnable" if interrupts are pending
  59. */
  60. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  61. {
  62. return !!(vcpu->arch.pending_exceptions);
  63. }
  64. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  65. {
  66. return 1;
  67. }
  68. int kvm_arch_hardware_enable(void)
  69. {
  70. return 0;
  71. }
  72. int kvm_arch_hardware_setup(void)
  73. {
  74. return 0;
  75. }
  76. void kvm_arch_check_processor_compat(void *rtn)
  77. {
  78. *(int *)rtn = 0;
  79. }
  80. static void kvm_mips_init_tlbs(struct kvm *kvm)
  81. {
  82. unsigned long wired;
  83. /*
  84. * Add a wired entry to the TLB, it is used to map the commpage to
  85. * the Guest kernel
  86. */
  87. wired = read_c0_wired();
  88. write_c0_wired(wired + 1);
  89. mtc0_tlbw_hazard();
  90. kvm->arch.commpage_tlb = wired;
  91. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  92. kvm->arch.commpage_tlb);
  93. }
  94. static void kvm_mips_init_vm_percpu(void *arg)
  95. {
  96. struct kvm *kvm = (struct kvm *)arg;
  97. kvm_mips_init_tlbs(kvm);
  98. kvm_mips_callbacks->vm_init(kvm);
  99. }
  100. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  101. {
  102. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  103. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  104. __func__);
  105. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  106. }
  107. return 0;
  108. }
  109. void kvm_mips_free_vcpus(struct kvm *kvm)
  110. {
  111. unsigned int i;
  112. struct kvm_vcpu *vcpu;
  113. /* Put the pages we reserved for the guest pmap */
  114. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  115. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  116. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  117. }
  118. kfree(kvm->arch.guest_pmap);
  119. kvm_for_each_vcpu(i, vcpu, kvm) {
  120. kvm_arch_vcpu_free(vcpu);
  121. }
  122. mutex_lock(&kvm->lock);
  123. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  124. kvm->vcpus[i] = NULL;
  125. atomic_set(&kvm->online_vcpus, 0);
  126. mutex_unlock(&kvm->lock);
  127. }
  128. static void kvm_mips_uninit_tlbs(void *arg)
  129. {
  130. /* Restore wired count */
  131. write_c0_wired(0);
  132. mtc0_tlbw_hazard();
  133. /* Clear out all the TLBs */
  134. kvm_local_flush_tlb_all();
  135. }
  136. void kvm_arch_destroy_vm(struct kvm *kvm)
  137. {
  138. kvm_mips_free_vcpus(kvm);
  139. /* If this is the last instance, restore wired count */
  140. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  141. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  142. __func__);
  143. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  144. }
  145. }
  146. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  147. unsigned long arg)
  148. {
  149. return -ENOIOCTLCMD;
  150. }
  151. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  152. unsigned long npages)
  153. {
  154. return 0;
  155. }
  156. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  157. struct kvm_memory_slot *memslot,
  158. struct kvm_userspace_memory_region *mem,
  159. enum kvm_mr_change change)
  160. {
  161. return 0;
  162. }
  163. void kvm_arch_commit_memory_region(struct kvm *kvm,
  164. struct kvm_userspace_memory_region *mem,
  165. const struct kvm_memory_slot *old,
  166. enum kvm_mr_change change)
  167. {
  168. unsigned long npages = 0;
  169. int i;
  170. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  171. __func__, kvm, mem->slot, mem->guest_phys_addr,
  172. mem->memory_size, mem->userspace_addr);
  173. /* Setup Guest PMAP table */
  174. if (!kvm->arch.guest_pmap) {
  175. if (mem->slot == 0)
  176. npages = mem->memory_size >> PAGE_SHIFT;
  177. if (npages) {
  178. kvm->arch.guest_pmap_npages = npages;
  179. kvm->arch.guest_pmap =
  180. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  181. if (!kvm->arch.guest_pmap) {
  182. kvm_err("Failed to allocate guest PMAP");
  183. return;
  184. }
  185. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  186. npages, kvm->arch.guest_pmap);
  187. /* Now setup the page table */
  188. for (i = 0; i < npages; i++)
  189. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  190. }
  191. }
  192. }
  193. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  194. {
  195. int err, size, offset;
  196. void *gebase;
  197. int i;
  198. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  199. if (!vcpu) {
  200. err = -ENOMEM;
  201. goto out;
  202. }
  203. err = kvm_vcpu_init(vcpu, kvm, id);
  204. if (err)
  205. goto out_free_cpu;
  206. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  207. /*
  208. * Allocate space for host mode exception handlers that handle
  209. * guest mode exits
  210. */
  211. if (cpu_has_veic || cpu_has_vint)
  212. size = 0x200 + VECTORSPACING * 64;
  213. else
  214. size = 0x4000;
  215. /* Save Linux EBASE */
  216. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  217. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  218. if (!gebase) {
  219. err = -ENOMEM;
  220. goto out_free_cpu;
  221. }
  222. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  223. ALIGN(size, PAGE_SIZE), gebase);
  224. /* Save new ebase */
  225. vcpu->arch.guest_ebase = gebase;
  226. /* Copy L1 Guest Exception handler to correct offset */
  227. /* TLB Refill, EXL = 0 */
  228. memcpy(gebase, mips32_exception,
  229. mips32_exceptionEnd - mips32_exception);
  230. /* General Exception Entry point */
  231. memcpy(gebase + 0x180, mips32_exception,
  232. mips32_exceptionEnd - mips32_exception);
  233. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  234. for (i = 0; i < 8; i++) {
  235. kvm_debug("L1 Vectored handler @ %p\n",
  236. gebase + 0x200 + (i * VECTORSPACING));
  237. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  238. mips32_exceptionEnd - mips32_exception);
  239. }
  240. /* General handler, relocate to unmapped space for sanity's sake */
  241. offset = 0x2000;
  242. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  243. gebase + offset,
  244. mips32_GuestExceptionEnd - mips32_GuestException);
  245. memcpy(gebase + offset, mips32_GuestException,
  246. mips32_GuestExceptionEnd - mips32_GuestException);
  247. /* Invalidate the icache for these ranges */
  248. local_flush_icache_range((unsigned long)gebase,
  249. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  250. /*
  251. * Allocate comm page for guest kernel, a TLB will be reserved for
  252. * mapping GVA @ 0xFFFF8000 to this page
  253. */
  254. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  255. if (!vcpu->arch.kseg0_commpage) {
  256. err = -ENOMEM;
  257. goto out_free_gebase;
  258. }
  259. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  260. kvm_mips_commpage_init(vcpu);
  261. /* Init */
  262. vcpu->arch.last_sched_cpu = -1;
  263. /* Start off the timer */
  264. kvm_mips_init_count(vcpu);
  265. return vcpu;
  266. out_free_gebase:
  267. kfree(gebase);
  268. out_free_cpu:
  269. kfree(vcpu);
  270. out:
  271. return ERR_PTR(err);
  272. }
  273. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  274. {
  275. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  276. kvm_vcpu_uninit(vcpu);
  277. kvm_mips_dump_stats(vcpu);
  278. kfree(vcpu->arch.guest_ebase);
  279. kfree(vcpu->arch.kseg0_commpage);
  280. kfree(vcpu);
  281. }
  282. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  283. {
  284. kvm_arch_vcpu_free(vcpu);
  285. }
  286. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  287. struct kvm_guest_debug *dbg)
  288. {
  289. return -ENOIOCTLCMD;
  290. }
  291. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  292. {
  293. int r = 0;
  294. sigset_t sigsaved;
  295. if (vcpu->sigset_active)
  296. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  297. if (vcpu->mmio_needed) {
  298. if (!vcpu->mmio_is_write)
  299. kvm_mips_complete_mmio_load(vcpu, run);
  300. vcpu->mmio_needed = 0;
  301. }
  302. local_irq_disable();
  303. /* Check if we have any exceptions/interrupts pending */
  304. kvm_mips_deliver_interrupts(vcpu,
  305. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  306. kvm_guest_enter();
  307. r = __kvm_mips_vcpu_run(run, vcpu);
  308. kvm_guest_exit();
  309. local_irq_enable();
  310. if (vcpu->sigset_active)
  311. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  312. return r;
  313. }
  314. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  315. struct kvm_mips_interrupt *irq)
  316. {
  317. int intr = (int)irq->irq;
  318. struct kvm_vcpu *dvcpu = NULL;
  319. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  320. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  321. (int)intr);
  322. if (irq->cpu == -1)
  323. dvcpu = vcpu;
  324. else
  325. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  326. if (intr == 2 || intr == 3 || intr == 4) {
  327. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  328. } else if (intr == -2 || intr == -3 || intr == -4) {
  329. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  330. } else {
  331. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  332. irq->cpu, irq->irq);
  333. return -EINVAL;
  334. }
  335. dvcpu->arch.wait = 0;
  336. if (waitqueue_active(&dvcpu->wq))
  337. wake_up_interruptible(&dvcpu->wq);
  338. return 0;
  339. }
  340. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  341. struct kvm_mp_state *mp_state)
  342. {
  343. return -ENOIOCTLCMD;
  344. }
  345. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  346. struct kvm_mp_state *mp_state)
  347. {
  348. return -ENOIOCTLCMD;
  349. }
  350. static u64 kvm_mips_get_one_regs[] = {
  351. KVM_REG_MIPS_R0,
  352. KVM_REG_MIPS_R1,
  353. KVM_REG_MIPS_R2,
  354. KVM_REG_MIPS_R3,
  355. KVM_REG_MIPS_R4,
  356. KVM_REG_MIPS_R5,
  357. KVM_REG_MIPS_R6,
  358. KVM_REG_MIPS_R7,
  359. KVM_REG_MIPS_R8,
  360. KVM_REG_MIPS_R9,
  361. KVM_REG_MIPS_R10,
  362. KVM_REG_MIPS_R11,
  363. KVM_REG_MIPS_R12,
  364. KVM_REG_MIPS_R13,
  365. KVM_REG_MIPS_R14,
  366. KVM_REG_MIPS_R15,
  367. KVM_REG_MIPS_R16,
  368. KVM_REG_MIPS_R17,
  369. KVM_REG_MIPS_R18,
  370. KVM_REG_MIPS_R19,
  371. KVM_REG_MIPS_R20,
  372. KVM_REG_MIPS_R21,
  373. KVM_REG_MIPS_R22,
  374. KVM_REG_MIPS_R23,
  375. KVM_REG_MIPS_R24,
  376. KVM_REG_MIPS_R25,
  377. KVM_REG_MIPS_R26,
  378. KVM_REG_MIPS_R27,
  379. KVM_REG_MIPS_R28,
  380. KVM_REG_MIPS_R29,
  381. KVM_REG_MIPS_R30,
  382. KVM_REG_MIPS_R31,
  383. KVM_REG_MIPS_HI,
  384. KVM_REG_MIPS_LO,
  385. KVM_REG_MIPS_PC,
  386. KVM_REG_MIPS_CP0_INDEX,
  387. KVM_REG_MIPS_CP0_CONTEXT,
  388. KVM_REG_MIPS_CP0_USERLOCAL,
  389. KVM_REG_MIPS_CP0_PAGEMASK,
  390. KVM_REG_MIPS_CP0_WIRED,
  391. KVM_REG_MIPS_CP0_HWRENA,
  392. KVM_REG_MIPS_CP0_BADVADDR,
  393. KVM_REG_MIPS_CP0_COUNT,
  394. KVM_REG_MIPS_CP0_ENTRYHI,
  395. KVM_REG_MIPS_CP0_COMPARE,
  396. KVM_REG_MIPS_CP0_STATUS,
  397. KVM_REG_MIPS_CP0_CAUSE,
  398. KVM_REG_MIPS_CP0_EPC,
  399. KVM_REG_MIPS_CP0_CONFIG,
  400. KVM_REG_MIPS_CP0_CONFIG1,
  401. KVM_REG_MIPS_CP0_CONFIG2,
  402. KVM_REG_MIPS_CP0_CONFIG3,
  403. KVM_REG_MIPS_CP0_CONFIG7,
  404. KVM_REG_MIPS_CP0_ERROREPC,
  405. KVM_REG_MIPS_COUNT_CTL,
  406. KVM_REG_MIPS_COUNT_RESUME,
  407. KVM_REG_MIPS_COUNT_HZ,
  408. };
  409. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  410. const struct kvm_one_reg *reg)
  411. {
  412. struct mips_coproc *cop0 = vcpu->arch.cop0;
  413. int ret;
  414. s64 v;
  415. switch (reg->id) {
  416. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  417. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  418. break;
  419. case KVM_REG_MIPS_HI:
  420. v = (long)vcpu->arch.hi;
  421. break;
  422. case KVM_REG_MIPS_LO:
  423. v = (long)vcpu->arch.lo;
  424. break;
  425. case KVM_REG_MIPS_PC:
  426. v = (long)vcpu->arch.pc;
  427. break;
  428. case KVM_REG_MIPS_CP0_INDEX:
  429. v = (long)kvm_read_c0_guest_index(cop0);
  430. break;
  431. case KVM_REG_MIPS_CP0_CONTEXT:
  432. v = (long)kvm_read_c0_guest_context(cop0);
  433. break;
  434. case KVM_REG_MIPS_CP0_USERLOCAL:
  435. v = (long)kvm_read_c0_guest_userlocal(cop0);
  436. break;
  437. case KVM_REG_MIPS_CP0_PAGEMASK:
  438. v = (long)kvm_read_c0_guest_pagemask(cop0);
  439. break;
  440. case KVM_REG_MIPS_CP0_WIRED:
  441. v = (long)kvm_read_c0_guest_wired(cop0);
  442. break;
  443. case KVM_REG_MIPS_CP0_HWRENA:
  444. v = (long)kvm_read_c0_guest_hwrena(cop0);
  445. break;
  446. case KVM_REG_MIPS_CP0_BADVADDR:
  447. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  448. break;
  449. case KVM_REG_MIPS_CP0_ENTRYHI:
  450. v = (long)kvm_read_c0_guest_entryhi(cop0);
  451. break;
  452. case KVM_REG_MIPS_CP0_COMPARE:
  453. v = (long)kvm_read_c0_guest_compare(cop0);
  454. break;
  455. case KVM_REG_MIPS_CP0_STATUS:
  456. v = (long)kvm_read_c0_guest_status(cop0);
  457. break;
  458. case KVM_REG_MIPS_CP0_CAUSE:
  459. v = (long)kvm_read_c0_guest_cause(cop0);
  460. break;
  461. case KVM_REG_MIPS_CP0_EPC:
  462. v = (long)kvm_read_c0_guest_epc(cop0);
  463. break;
  464. case KVM_REG_MIPS_CP0_ERROREPC:
  465. v = (long)kvm_read_c0_guest_errorepc(cop0);
  466. break;
  467. case KVM_REG_MIPS_CP0_CONFIG:
  468. v = (long)kvm_read_c0_guest_config(cop0);
  469. break;
  470. case KVM_REG_MIPS_CP0_CONFIG1:
  471. v = (long)kvm_read_c0_guest_config1(cop0);
  472. break;
  473. case KVM_REG_MIPS_CP0_CONFIG2:
  474. v = (long)kvm_read_c0_guest_config2(cop0);
  475. break;
  476. case KVM_REG_MIPS_CP0_CONFIG3:
  477. v = (long)kvm_read_c0_guest_config3(cop0);
  478. break;
  479. case KVM_REG_MIPS_CP0_CONFIG7:
  480. v = (long)kvm_read_c0_guest_config7(cop0);
  481. break;
  482. /* registers to be handled specially */
  483. case KVM_REG_MIPS_CP0_COUNT:
  484. case KVM_REG_MIPS_COUNT_CTL:
  485. case KVM_REG_MIPS_COUNT_RESUME:
  486. case KVM_REG_MIPS_COUNT_HZ:
  487. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  488. if (ret)
  489. return ret;
  490. break;
  491. default:
  492. return -EINVAL;
  493. }
  494. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  495. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  496. return put_user(v, uaddr64);
  497. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  498. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  499. u32 v32 = (u32)v;
  500. return put_user(v32, uaddr32);
  501. } else {
  502. return -EINVAL;
  503. }
  504. }
  505. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  506. const struct kvm_one_reg *reg)
  507. {
  508. struct mips_coproc *cop0 = vcpu->arch.cop0;
  509. u64 v;
  510. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  511. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  512. if (get_user(v, uaddr64) != 0)
  513. return -EFAULT;
  514. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  515. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  516. s32 v32;
  517. if (get_user(v32, uaddr32) != 0)
  518. return -EFAULT;
  519. v = (s64)v32;
  520. } else {
  521. return -EINVAL;
  522. }
  523. switch (reg->id) {
  524. case KVM_REG_MIPS_R0:
  525. /* Silently ignore requests to set $0 */
  526. break;
  527. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  528. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  529. break;
  530. case KVM_REG_MIPS_HI:
  531. vcpu->arch.hi = v;
  532. break;
  533. case KVM_REG_MIPS_LO:
  534. vcpu->arch.lo = v;
  535. break;
  536. case KVM_REG_MIPS_PC:
  537. vcpu->arch.pc = v;
  538. break;
  539. case KVM_REG_MIPS_CP0_INDEX:
  540. kvm_write_c0_guest_index(cop0, v);
  541. break;
  542. case KVM_REG_MIPS_CP0_CONTEXT:
  543. kvm_write_c0_guest_context(cop0, v);
  544. break;
  545. case KVM_REG_MIPS_CP0_USERLOCAL:
  546. kvm_write_c0_guest_userlocal(cop0, v);
  547. break;
  548. case KVM_REG_MIPS_CP0_PAGEMASK:
  549. kvm_write_c0_guest_pagemask(cop0, v);
  550. break;
  551. case KVM_REG_MIPS_CP0_WIRED:
  552. kvm_write_c0_guest_wired(cop0, v);
  553. break;
  554. case KVM_REG_MIPS_CP0_HWRENA:
  555. kvm_write_c0_guest_hwrena(cop0, v);
  556. break;
  557. case KVM_REG_MIPS_CP0_BADVADDR:
  558. kvm_write_c0_guest_badvaddr(cop0, v);
  559. break;
  560. case KVM_REG_MIPS_CP0_ENTRYHI:
  561. kvm_write_c0_guest_entryhi(cop0, v);
  562. break;
  563. case KVM_REG_MIPS_CP0_STATUS:
  564. kvm_write_c0_guest_status(cop0, v);
  565. break;
  566. case KVM_REG_MIPS_CP0_EPC:
  567. kvm_write_c0_guest_epc(cop0, v);
  568. break;
  569. case KVM_REG_MIPS_CP0_ERROREPC:
  570. kvm_write_c0_guest_errorepc(cop0, v);
  571. break;
  572. /* registers to be handled specially */
  573. case KVM_REG_MIPS_CP0_COUNT:
  574. case KVM_REG_MIPS_CP0_COMPARE:
  575. case KVM_REG_MIPS_CP0_CAUSE:
  576. case KVM_REG_MIPS_COUNT_CTL:
  577. case KVM_REG_MIPS_COUNT_RESUME:
  578. case KVM_REG_MIPS_COUNT_HZ:
  579. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  580. default:
  581. return -EINVAL;
  582. }
  583. return 0;
  584. }
  585. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  586. unsigned long arg)
  587. {
  588. struct kvm_vcpu *vcpu = filp->private_data;
  589. void __user *argp = (void __user *)arg;
  590. long r;
  591. switch (ioctl) {
  592. case KVM_SET_ONE_REG:
  593. case KVM_GET_ONE_REG: {
  594. struct kvm_one_reg reg;
  595. if (copy_from_user(&reg, argp, sizeof(reg)))
  596. return -EFAULT;
  597. if (ioctl == KVM_SET_ONE_REG)
  598. return kvm_mips_set_reg(vcpu, &reg);
  599. else
  600. return kvm_mips_get_reg(vcpu, &reg);
  601. }
  602. case KVM_GET_REG_LIST: {
  603. struct kvm_reg_list __user *user_list = argp;
  604. u64 __user *reg_dest;
  605. struct kvm_reg_list reg_list;
  606. unsigned n;
  607. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  608. return -EFAULT;
  609. n = reg_list.n;
  610. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  611. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  612. return -EFAULT;
  613. if (n < reg_list.n)
  614. return -E2BIG;
  615. reg_dest = user_list->reg;
  616. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  617. sizeof(kvm_mips_get_one_regs)))
  618. return -EFAULT;
  619. return 0;
  620. }
  621. case KVM_NMI:
  622. /* Treat the NMI as a CPU reset */
  623. r = kvm_mips_reset_vcpu(vcpu);
  624. break;
  625. case KVM_INTERRUPT:
  626. {
  627. struct kvm_mips_interrupt irq;
  628. r = -EFAULT;
  629. if (copy_from_user(&irq, argp, sizeof(irq)))
  630. goto out;
  631. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  632. irq.irq);
  633. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  634. break;
  635. }
  636. default:
  637. r = -ENOIOCTLCMD;
  638. }
  639. out:
  640. return r;
  641. }
  642. /* Get (and clear) the dirty memory log for a memory slot. */
  643. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  644. {
  645. struct kvm_memory_slot *memslot;
  646. unsigned long ga, ga_end;
  647. int is_dirty = 0;
  648. int r;
  649. unsigned long n;
  650. mutex_lock(&kvm->slots_lock);
  651. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  652. if (r)
  653. goto out;
  654. /* If nothing is dirty, don't bother messing with page tables. */
  655. if (is_dirty) {
  656. memslot = &kvm->memslots->memslots[log->slot];
  657. ga = memslot->base_gfn << PAGE_SHIFT;
  658. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  659. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  660. ga_end);
  661. n = kvm_dirty_bitmap_bytes(memslot);
  662. memset(memslot->dirty_bitmap, 0, n);
  663. }
  664. r = 0;
  665. out:
  666. mutex_unlock(&kvm->slots_lock);
  667. return r;
  668. }
  669. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  670. {
  671. long r;
  672. switch (ioctl) {
  673. default:
  674. r = -ENOIOCTLCMD;
  675. }
  676. return r;
  677. }
  678. int kvm_arch_init(void *opaque)
  679. {
  680. if (kvm_mips_callbacks) {
  681. kvm_err("kvm: module already exists\n");
  682. return -EEXIST;
  683. }
  684. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  685. }
  686. void kvm_arch_exit(void)
  687. {
  688. kvm_mips_callbacks = NULL;
  689. }
  690. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  691. struct kvm_sregs *sregs)
  692. {
  693. return -ENOIOCTLCMD;
  694. }
  695. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  696. struct kvm_sregs *sregs)
  697. {
  698. return -ENOIOCTLCMD;
  699. }
  700. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  701. {
  702. return 0;
  703. }
  704. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  705. {
  706. return -ENOIOCTLCMD;
  707. }
  708. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  709. {
  710. return -ENOIOCTLCMD;
  711. }
  712. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  713. {
  714. return VM_FAULT_SIGBUS;
  715. }
  716. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  717. {
  718. int r;
  719. switch (ext) {
  720. case KVM_CAP_ONE_REG:
  721. r = 1;
  722. break;
  723. case KVM_CAP_COALESCED_MMIO:
  724. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  725. break;
  726. default:
  727. r = 0;
  728. break;
  729. }
  730. return r;
  731. }
  732. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  733. {
  734. return kvm_mips_pending_timer(vcpu);
  735. }
  736. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  737. {
  738. int i;
  739. struct mips_coproc *cop0;
  740. if (!vcpu)
  741. return -1;
  742. kvm_debug("VCPU Register Dump:\n");
  743. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  744. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  745. for (i = 0; i < 32; i += 4) {
  746. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  747. vcpu->arch.gprs[i],
  748. vcpu->arch.gprs[i + 1],
  749. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  750. }
  751. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  752. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  753. cop0 = vcpu->arch.cop0;
  754. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  755. kvm_read_c0_guest_status(cop0),
  756. kvm_read_c0_guest_cause(cop0));
  757. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  758. return 0;
  759. }
  760. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  761. {
  762. int i;
  763. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  764. vcpu->arch.gprs[i] = regs->gpr[i];
  765. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  766. vcpu->arch.hi = regs->hi;
  767. vcpu->arch.lo = regs->lo;
  768. vcpu->arch.pc = regs->pc;
  769. return 0;
  770. }
  771. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  772. {
  773. int i;
  774. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  775. regs->gpr[i] = vcpu->arch.gprs[i];
  776. regs->hi = vcpu->arch.hi;
  777. regs->lo = vcpu->arch.lo;
  778. regs->pc = vcpu->arch.pc;
  779. return 0;
  780. }
  781. static void kvm_mips_comparecount_func(unsigned long data)
  782. {
  783. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  784. kvm_mips_callbacks->queue_timer_int(vcpu);
  785. vcpu->arch.wait = 0;
  786. if (waitqueue_active(&vcpu->wq))
  787. wake_up_interruptible(&vcpu->wq);
  788. }
  789. /* low level hrtimer wake routine */
  790. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  791. {
  792. struct kvm_vcpu *vcpu;
  793. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  794. kvm_mips_comparecount_func((unsigned long) vcpu);
  795. return kvm_mips_count_timeout(vcpu);
  796. }
  797. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  798. {
  799. kvm_mips_callbacks->vcpu_init(vcpu);
  800. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  801. HRTIMER_MODE_REL);
  802. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  803. return 0;
  804. }
  805. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  806. struct kvm_translation *tr)
  807. {
  808. return 0;
  809. }
  810. /* Initial guest state */
  811. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  812. {
  813. return kvm_mips_callbacks->vcpu_setup(vcpu);
  814. }
  815. static void kvm_mips_set_c0_status(void)
  816. {
  817. uint32_t status = read_c0_status();
  818. if (cpu_has_fpu)
  819. status |= (ST0_CU1);
  820. if (cpu_has_dsp)
  821. status |= (ST0_MX);
  822. write_c0_status(status);
  823. ehb();
  824. }
  825. /*
  826. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  827. */
  828. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  829. {
  830. uint32_t cause = vcpu->arch.host_cp0_cause;
  831. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  832. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  833. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  834. enum emulation_result er = EMULATE_DONE;
  835. int ret = RESUME_GUEST;
  836. /* Set a default exit reason */
  837. run->exit_reason = KVM_EXIT_UNKNOWN;
  838. run->ready_for_interrupt_injection = 1;
  839. /*
  840. * Set the appropriate status bits based on host CPU features,
  841. * before we hit the scheduler
  842. */
  843. kvm_mips_set_c0_status();
  844. local_irq_enable();
  845. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  846. cause, opc, run, vcpu);
  847. /*
  848. * Do a privilege check, if in UM most of these exit conditions end up
  849. * causing an exception to be delivered to the Guest Kernel
  850. */
  851. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  852. if (er == EMULATE_PRIV_FAIL) {
  853. goto skip_emul;
  854. } else if (er == EMULATE_FAIL) {
  855. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  856. ret = RESUME_HOST;
  857. goto skip_emul;
  858. }
  859. switch (exccode) {
  860. case T_INT:
  861. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  862. ++vcpu->stat.int_exits;
  863. trace_kvm_exit(vcpu, INT_EXITS);
  864. if (need_resched())
  865. cond_resched();
  866. ret = RESUME_GUEST;
  867. break;
  868. case T_COP_UNUSABLE:
  869. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  870. ++vcpu->stat.cop_unusable_exits;
  871. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  872. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  873. /* XXXKYMA: Might need to return to user space */
  874. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  875. ret = RESUME_HOST;
  876. break;
  877. case T_TLB_MOD:
  878. ++vcpu->stat.tlbmod_exits;
  879. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  880. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  881. break;
  882. case T_TLB_ST_MISS:
  883. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  884. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  885. badvaddr);
  886. ++vcpu->stat.tlbmiss_st_exits;
  887. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  888. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  889. break;
  890. case T_TLB_LD_MISS:
  891. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  892. cause, opc, badvaddr);
  893. ++vcpu->stat.tlbmiss_ld_exits;
  894. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  895. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  896. break;
  897. case T_ADDR_ERR_ST:
  898. ++vcpu->stat.addrerr_st_exits;
  899. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  900. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  901. break;
  902. case T_ADDR_ERR_LD:
  903. ++vcpu->stat.addrerr_ld_exits;
  904. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  905. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  906. break;
  907. case T_SYSCALL:
  908. ++vcpu->stat.syscall_exits;
  909. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  910. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  911. break;
  912. case T_RES_INST:
  913. ++vcpu->stat.resvd_inst_exits;
  914. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  915. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  916. break;
  917. case T_BREAK:
  918. ++vcpu->stat.break_inst_exits;
  919. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  920. ret = kvm_mips_callbacks->handle_break(vcpu);
  921. break;
  922. default:
  923. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  924. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  925. kvm_read_c0_guest_status(vcpu->arch.cop0));
  926. kvm_arch_vcpu_dump_regs(vcpu);
  927. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  928. ret = RESUME_HOST;
  929. break;
  930. }
  931. skip_emul:
  932. local_irq_disable();
  933. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  934. kvm_mips_deliver_interrupts(vcpu, cause);
  935. if (!(ret & RESUME_HOST)) {
  936. /* Only check for signals if not already exiting to userspace */
  937. if (signal_pending(current)) {
  938. run->exit_reason = KVM_EXIT_INTR;
  939. ret = (-EINTR << 2) | RESUME_HOST;
  940. ++vcpu->stat.signal_exits;
  941. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  942. }
  943. }
  944. return ret;
  945. }
  946. int __init kvm_mips_init(void)
  947. {
  948. int ret;
  949. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  950. if (ret)
  951. return ret;
  952. /*
  953. * On MIPS, kernel modules are executed from "mapped space", which
  954. * requires TLBs. The TLB handling code is statically linked with
  955. * the rest of the kernel (tlb.c) to avoid the possibility of
  956. * double faulting. The issue is that the TLB code references
  957. * routines that are part of the the KVM module, which are only
  958. * available once the module is loaded.
  959. */
  960. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  961. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  962. kvm_mips_is_error_pfn = is_error_pfn;
  963. pr_info("KVM/MIPS Initialized\n");
  964. return 0;
  965. }
  966. void __exit kvm_mips_exit(void)
  967. {
  968. kvm_exit();
  969. kvm_mips_gfn_to_pfn = NULL;
  970. kvm_mips_release_pfn_clean = NULL;
  971. kvm_mips_is_error_pfn = NULL;
  972. pr_info("KVM/MIPS unloaded\n");
  973. }
  974. module_init(kvm_mips_init);
  975. module_exit(kvm_mips_exit);
  976. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);