coproc.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/kvm_mmu.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/cputype.h>
  29. #include <trace/events/kvm.h>
  30. #include <asm/vfp.h>
  31. #include "../vfp/vfpinstr.h"
  32. #include "trace.h"
  33. #include "coproc.h"
  34. /******************************************************************************
  35. * Co-processor emulation
  36. *****************************************************************************/
  37. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  38. static u32 cache_levels;
  39. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  40. #define CSSELR_MAX 12
  41. /*
  42. * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  43. * of cp15 registers can be viewed either as couple of two u32 registers
  44. * or one u64 register. Current u64 register encoding is that least
  45. * significant u32 word is followed by most significant u32 word.
  46. */
  47. static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  48. const struct coproc_reg *r,
  49. u64 val)
  50. {
  51. vcpu->arch.cp15[r->reg] = val & 0xffffffff;
  52. vcpu->arch.cp15[r->reg + 1] = val >> 32;
  53. }
  54. static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  55. const struct coproc_reg *r)
  56. {
  57. u64 val;
  58. val = vcpu->arch.cp15[r->reg + 1];
  59. val = val << 32;
  60. val = val | vcpu->arch.cp15[r->reg];
  61. return val;
  62. }
  63. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  64. {
  65. kvm_inject_undefined(vcpu);
  66. return 1;
  67. }
  68. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  69. {
  70. /*
  71. * We can get here, if the host has been built without VFPv3 support,
  72. * but the guest attempted a floating point operation.
  73. */
  74. kvm_inject_undefined(vcpu);
  75. return 1;
  76. }
  77. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  78. {
  79. kvm_inject_undefined(vcpu);
  80. return 1;
  81. }
  82. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  83. {
  84. kvm_inject_undefined(vcpu);
  85. return 1;
  86. }
  87. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  88. {
  89. /*
  90. * Compute guest MPIDR. We build a virtual cluster out of the
  91. * vcpu_id, but we read the 'U' bit from the underlying
  92. * hardware directly.
  93. */
  94. vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  95. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  96. (vcpu->vcpu_id & 3));
  97. }
  98. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  99. static bool access_actlr(struct kvm_vcpu *vcpu,
  100. const struct coproc_params *p,
  101. const struct coproc_reg *r)
  102. {
  103. if (p->is_write)
  104. return ignore_write(vcpu, p);
  105. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
  106. return true;
  107. }
  108. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  109. static bool access_cbar(struct kvm_vcpu *vcpu,
  110. const struct coproc_params *p,
  111. const struct coproc_reg *r)
  112. {
  113. if (p->is_write)
  114. return write_to_read_only(vcpu, p);
  115. return read_zero(vcpu, p);
  116. }
  117. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  118. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  119. const struct coproc_params *p,
  120. const struct coproc_reg *r)
  121. {
  122. if (p->is_write)
  123. return ignore_write(vcpu, p);
  124. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
  125. return true;
  126. }
  127. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  128. {
  129. u32 l2ctlr, ncores;
  130. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  131. l2ctlr &= ~(3 << 24);
  132. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  133. /* How many cores in the current cluster and the next ones */
  134. ncores -= (vcpu->vcpu_id & ~3);
  135. /* Cap it to the maximum number of cores in a single cluster */
  136. ncores = min(ncores, 3U);
  137. l2ctlr |= (ncores & 3) << 24;
  138. vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
  139. }
  140. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  141. {
  142. u32 actlr;
  143. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  144. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  145. /* Make the SMP bit consistent with the guest configuration */
  146. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  147. actlr |= 1U << 6;
  148. else
  149. actlr &= ~(1U << 6);
  150. vcpu->arch.cp15[c1_ACTLR] = actlr;
  151. }
  152. /*
  153. * TRM entries: A7:4.3.50, A15:4.3.49
  154. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  155. */
  156. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  157. const struct coproc_params *p,
  158. const struct coproc_reg *r)
  159. {
  160. if (p->is_write)
  161. return ignore_write(vcpu, p);
  162. *vcpu_reg(vcpu, p->Rt1) = 0;
  163. return true;
  164. }
  165. /* See note at ARM ARM B1.14.4 */
  166. static bool access_dcsw(struct kvm_vcpu *vcpu,
  167. const struct coproc_params *p,
  168. const struct coproc_reg *r)
  169. {
  170. unsigned long val;
  171. int cpu;
  172. if (!p->is_write)
  173. return read_from_write_only(vcpu, p);
  174. cpu = get_cpu();
  175. cpumask_setall(&vcpu->arch.require_dcache_flush);
  176. cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
  177. /* If we were already preempted, take the long way around */
  178. if (cpu != vcpu->arch.last_pcpu) {
  179. flush_cache_all();
  180. goto done;
  181. }
  182. val = *vcpu_reg(vcpu, p->Rt1);
  183. switch (p->CRm) {
  184. case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
  185. case 14: /* DCCISW */
  186. asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
  187. break;
  188. case 10: /* DCCSW */
  189. asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
  190. break;
  191. }
  192. done:
  193. put_cpu();
  194. return true;
  195. }
  196. /*
  197. * Generic accessor for VM registers. Only called as long as HCR_TVM
  198. * is set.
  199. */
  200. static bool access_vm_reg(struct kvm_vcpu *vcpu,
  201. const struct coproc_params *p,
  202. const struct coproc_reg *r)
  203. {
  204. BUG_ON(!p->is_write);
  205. vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
  206. if (p->is_64bit)
  207. vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
  208. return true;
  209. }
  210. /*
  211. * SCTLR accessor. Only called as long as HCR_TVM is set. If the
  212. * guest enables the MMU, we stop trapping the VM sys_regs and leave
  213. * it in complete control of the caches.
  214. *
  215. * Used by the cpu-specific code.
  216. */
  217. bool access_sctlr(struct kvm_vcpu *vcpu,
  218. const struct coproc_params *p,
  219. const struct coproc_reg *r)
  220. {
  221. access_vm_reg(vcpu, p, r);
  222. if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
  223. vcpu->arch.hcr &= ~HCR_TVM;
  224. stage2_flush_vm(vcpu->kvm);
  225. }
  226. return true;
  227. }
  228. /*
  229. * We could trap ID_DFR0 and tell the guest we don't support performance
  230. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  231. * NAKed, so it will read the PMCR anyway.
  232. *
  233. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  234. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  235. * all PM registers, which doesn't crash the guest kernel at least.
  236. */
  237. static bool pm_fake(struct kvm_vcpu *vcpu,
  238. const struct coproc_params *p,
  239. const struct coproc_reg *r)
  240. {
  241. if (p->is_write)
  242. return ignore_write(vcpu, p);
  243. else
  244. return read_zero(vcpu, p);
  245. }
  246. #define access_pmcr pm_fake
  247. #define access_pmcntenset pm_fake
  248. #define access_pmcntenclr pm_fake
  249. #define access_pmovsr pm_fake
  250. #define access_pmselr pm_fake
  251. #define access_pmceid0 pm_fake
  252. #define access_pmceid1 pm_fake
  253. #define access_pmccntr pm_fake
  254. #define access_pmxevtyper pm_fake
  255. #define access_pmxevcntr pm_fake
  256. #define access_pmuserenr pm_fake
  257. #define access_pmintenset pm_fake
  258. #define access_pmintenclr pm_fake
  259. /* Architected CP15 registers.
  260. * CRn denotes the primary register number, but is copied to the CRm in the
  261. * user space API for 64-bit register access in line with the terminology used
  262. * in the ARM ARM.
  263. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  264. * registers preceding 32-bit ones.
  265. */
  266. static const struct coproc_reg cp15_regs[] = {
  267. /* MPIDR: we use VMPIDR for guest access. */
  268. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  269. NULL, reset_mpidr, c0_MPIDR },
  270. /* CSSELR: swapped by interrupt.S. */
  271. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  272. NULL, reset_unknown, c0_CSSELR },
  273. /* ACTLR: trapped by HCR.TAC bit. */
  274. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  275. access_actlr, reset_actlr, c1_ACTLR },
  276. /* CPACR: swapped by interrupt.S. */
  277. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  278. NULL, reset_val, c1_CPACR, 0x00000000 },
  279. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  280. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  281. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  282. access_vm_reg, reset_unknown, c2_TTBR0 },
  283. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  284. access_vm_reg, reset_unknown, c2_TTBR1 },
  285. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  286. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  287. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  288. /* DACR: swapped by interrupt.S. */
  289. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  290. access_vm_reg, reset_unknown, c3_DACR },
  291. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  292. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  293. access_vm_reg, reset_unknown, c5_DFSR },
  294. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  295. access_vm_reg, reset_unknown, c5_IFSR },
  296. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  297. access_vm_reg, reset_unknown, c5_ADFSR },
  298. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  299. access_vm_reg, reset_unknown, c5_AIFSR },
  300. /* DFAR/IFAR: swapped by interrupt.S. */
  301. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  302. access_vm_reg, reset_unknown, c6_DFAR },
  303. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  304. access_vm_reg, reset_unknown, c6_IFAR },
  305. /* PAR swapped by interrupt.S */
  306. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  307. /*
  308. * DC{C,I,CI}SW operations:
  309. */
  310. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  311. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  312. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  313. /*
  314. * L2CTLR access (guest wants to know #CPUs).
  315. */
  316. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  317. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  318. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  319. /*
  320. * Dummy performance monitor implementation.
  321. */
  322. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  323. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  324. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  325. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  326. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  327. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  328. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  329. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  330. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  331. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  332. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  333. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  334. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  335. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  336. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  337. access_vm_reg, reset_unknown, c10_PRRR},
  338. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  339. access_vm_reg, reset_unknown, c10_NMRR},
  340. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  341. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  342. access_vm_reg, reset_unknown, c10_AMAIR0},
  343. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  344. access_vm_reg, reset_unknown, c10_AMAIR1},
  345. /* VBAR: swapped by interrupt.S. */
  346. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  347. NULL, reset_val, c12_VBAR, 0x00000000 },
  348. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  349. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  350. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  351. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  352. NULL, reset_unknown, c13_TID_URW },
  353. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  354. NULL, reset_unknown, c13_TID_URO },
  355. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  356. NULL, reset_unknown, c13_TID_PRIV },
  357. /* CNTKCTL: swapped by interrupt.S. */
  358. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  359. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  360. /* The Configuration Base Address Register. */
  361. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  362. };
  363. /* Target specific emulation tables */
  364. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  365. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  366. {
  367. unsigned int i;
  368. for (i = 1; i < table->num; i++)
  369. BUG_ON(cmp_reg(&table->table[i-1],
  370. &table->table[i]) >= 0);
  371. target_tables[table->target] = table;
  372. }
  373. /* Get specific register table for this target. */
  374. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  375. {
  376. struct kvm_coproc_target_table *table;
  377. table = target_tables[target];
  378. *num = table->num;
  379. return table->table;
  380. }
  381. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  382. const struct coproc_reg table[],
  383. unsigned int num)
  384. {
  385. unsigned int i;
  386. for (i = 0; i < num; i++) {
  387. const struct coproc_reg *r = &table[i];
  388. if (params->is_64bit != r->is_64)
  389. continue;
  390. if (params->CRn != r->CRn)
  391. continue;
  392. if (params->CRm != r->CRm)
  393. continue;
  394. if (params->Op1 != r->Op1)
  395. continue;
  396. if (params->Op2 != r->Op2)
  397. continue;
  398. return r;
  399. }
  400. return NULL;
  401. }
  402. static int emulate_cp15(struct kvm_vcpu *vcpu,
  403. const struct coproc_params *params)
  404. {
  405. size_t num;
  406. const struct coproc_reg *table, *r;
  407. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  408. params->CRm, params->Op2, params->is_write);
  409. table = get_target_table(vcpu->arch.target, &num);
  410. /* Search target-specific then generic table. */
  411. r = find_reg(params, table, num);
  412. if (!r)
  413. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  414. if (likely(r)) {
  415. /* If we don't have an accessor, we should never get here! */
  416. BUG_ON(!r->access);
  417. if (likely(r->access(vcpu, params, r))) {
  418. /* Skip instruction, since it was emulated */
  419. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  420. return 1;
  421. }
  422. /* If access function fails, it should complain. */
  423. } else {
  424. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  425. *vcpu_pc(vcpu));
  426. print_cp_instr(params);
  427. }
  428. kvm_inject_undefined(vcpu);
  429. return 1;
  430. }
  431. /**
  432. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  433. * @vcpu: The VCPU pointer
  434. * @run: The kvm_run struct
  435. */
  436. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  437. {
  438. struct coproc_params params;
  439. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  440. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  441. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  442. params.is_64bit = true;
  443. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  444. params.Op2 = 0;
  445. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  446. params.CRm = 0;
  447. return emulate_cp15(vcpu, &params);
  448. }
  449. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  450. const struct coproc_reg *table, size_t num)
  451. {
  452. unsigned long i;
  453. for (i = 0; i < num; i++)
  454. if (table[i].reset)
  455. table[i].reset(vcpu, &table[i]);
  456. }
  457. /**
  458. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  459. * @vcpu: The VCPU pointer
  460. * @run: The kvm_run struct
  461. */
  462. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  463. {
  464. struct coproc_params params;
  465. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  466. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  467. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  468. params.is_64bit = false;
  469. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  470. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  471. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  472. params.Rt2 = 0;
  473. return emulate_cp15(vcpu, &params);
  474. }
  475. /******************************************************************************
  476. * Userspace API
  477. *****************************************************************************/
  478. static bool index_to_params(u64 id, struct coproc_params *params)
  479. {
  480. switch (id & KVM_REG_SIZE_MASK) {
  481. case KVM_REG_SIZE_U32:
  482. /* Any unused index bits means it's not valid. */
  483. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  484. | KVM_REG_ARM_COPROC_MASK
  485. | KVM_REG_ARM_32_CRN_MASK
  486. | KVM_REG_ARM_CRM_MASK
  487. | KVM_REG_ARM_OPC1_MASK
  488. | KVM_REG_ARM_32_OPC2_MASK))
  489. return false;
  490. params->is_64bit = false;
  491. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  492. >> KVM_REG_ARM_32_CRN_SHIFT);
  493. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  494. >> KVM_REG_ARM_CRM_SHIFT);
  495. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  496. >> KVM_REG_ARM_OPC1_SHIFT);
  497. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  498. >> KVM_REG_ARM_32_OPC2_SHIFT);
  499. return true;
  500. case KVM_REG_SIZE_U64:
  501. /* Any unused index bits means it's not valid. */
  502. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  503. | KVM_REG_ARM_COPROC_MASK
  504. | KVM_REG_ARM_CRM_MASK
  505. | KVM_REG_ARM_OPC1_MASK))
  506. return false;
  507. params->is_64bit = true;
  508. /* CRm to CRn: see cp15_to_index for details */
  509. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  510. >> KVM_REG_ARM_CRM_SHIFT);
  511. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  512. >> KVM_REG_ARM_OPC1_SHIFT);
  513. params->Op2 = 0;
  514. params->CRm = 0;
  515. return true;
  516. default:
  517. return false;
  518. }
  519. }
  520. /* Decode an index value, and find the cp15 coproc_reg entry. */
  521. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  522. u64 id)
  523. {
  524. size_t num;
  525. const struct coproc_reg *table, *r;
  526. struct coproc_params params;
  527. /* We only do cp15 for now. */
  528. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  529. return NULL;
  530. if (!index_to_params(id, &params))
  531. return NULL;
  532. table = get_target_table(vcpu->arch.target, &num);
  533. r = find_reg(&params, table, num);
  534. if (!r)
  535. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  536. /* Not saved in the cp15 array? */
  537. if (r && !r->reg)
  538. r = NULL;
  539. return r;
  540. }
  541. /*
  542. * These are the invariant cp15 registers: we let the guest see the host
  543. * versions of these, so they're part of the guest state.
  544. *
  545. * A future CPU may provide a mechanism to present different values to
  546. * the guest, or a future kvm may trap them.
  547. */
  548. /* Unfortunately, there's no register-argument for mrc, so generate. */
  549. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  550. static void get_##name(struct kvm_vcpu *v, \
  551. const struct coproc_reg *r) \
  552. { \
  553. u32 val; \
  554. \
  555. asm volatile("mrc p15, " __stringify(op1) \
  556. ", %0, c" __stringify(crn) \
  557. ", c" __stringify(crm) \
  558. ", " __stringify(op2) "\n" : "=r" (val)); \
  559. ((struct coproc_reg *)r)->val = val; \
  560. }
  561. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  562. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  563. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  564. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  565. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  566. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  567. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  568. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  569. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  570. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  571. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  572. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  573. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  574. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  575. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  576. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  577. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  578. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  579. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  580. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  581. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  582. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  583. static struct coproc_reg invariant_cp15[] = {
  584. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  585. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  586. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  587. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  588. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  589. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  590. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  591. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  592. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  593. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  594. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  595. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  596. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  597. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  598. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  599. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  600. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  601. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  602. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  603. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  604. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  605. };
  606. /*
  607. * Reads a register value from a userspace address to a kernel
  608. * variable. Make sure that register size matches sizeof(*__val).
  609. */
  610. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  611. {
  612. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  613. return -EFAULT;
  614. return 0;
  615. }
  616. /*
  617. * Writes a register value to a userspace address from a kernel variable.
  618. * Make sure that register size matches sizeof(*__val).
  619. */
  620. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  621. {
  622. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  623. return -EFAULT;
  624. return 0;
  625. }
  626. static int get_invariant_cp15(u64 id, void __user *uaddr)
  627. {
  628. struct coproc_params params;
  629. const struct coproc_reg *r;
  630. int ret;
  631. if (!index_to_params(id, &params))
  632. return -ENOENT;
  633. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  634. if (!r)
  635. return -ENOENT;
  636. ret = -ENOENT;
  637. if (KVM_REG_SIZE(id) == 4) {
  638. u32 val = r->val;
  639. ret = reg_to_user(uaddr, &val, id);
  640. } else if (KVM_REG_SIZE(id) == 8) {
  641. ret = reg_to_user(uaddr, &r->val, id);
  642. }
  643. return ret;
  644. }
  645. static int set_invariant_cp15(u64 id, void __user *uaddr)
  646. {
  647. struct coproc_params params;
  648. const struct coproc_reg *r;
  649. int err;
  650. u64 val;
  651. if (!index_to_params(id, &params))
  652. return -ENOENT;
  653. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  654. if (!r)
  655. return -ENOENT;
  656. err = -ENOENT;
  657. if (KVM_REG_SIZE(id) == 4) {
  658. u32 val32;
  659. err = reg_from_user(&val32, uaddr, id);
  660. if (!err)
  661. val = val32;
  662. } else if (KVM_REG_SIZE(id) == 8) {
  663. err = reg_from_user(&val, uaddr, id);
  664. }
  665. if (err)
  666. return err;
  667. /* This is what we mean by invariant: you can't change it. */
  668. if (r->val != val)
  669. return -EINVAL;
  670. return 0;
  671. }
  672. static bool is_valid_cache(u32 val)
  673. {
  674. u32 level, ctype;
  675. if (val >= CSSELR_MAX)
  676. return false;
  677. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  678. level = (val >> 1);
  679. ctype = (cache_levels >> (level * 3)) & 7;
  680. switch (ctype) {
  681. case 0: /* No cache */
  682. return false;
  683. case 1: /* Instruction cache only */
  684. return (val & 1);
  685. case 2: /* Data cache only */
  686. case 4: /* Unified cache */
  687. return !(val & 1);
  688. case 3: /* Separate instruction and data caches */
  689. return true;
  690. default: /* Reserved: we can't know instruction or data. */
  691. return false;
  692. }
  693. }
  694. /* Which cache CCSIDR represents depends on CSSELR value. */
  695. static u32 get_ccsidr(u32 csselr)
  696. {
  697. u32 ccsidr;
  698. /* Make sure noone else changes CSSELR during this! */
  699. local_irq_disable();
  700. /* Put value into CSSELR */
  701. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  702. isb();
  703. /* Read result out of CCSIDR */
  704. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  705. local_irq_enable();
  706. return ccsidr;
  707. }
  708. static int demux_c15_get(u64 id, void __user *uaddr)
  709. {
  710. u32 val;
  711. u32 __user *uval = uaddr;
  712. /* Fail if we have unknown bits set. */
  713. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  714. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  715. return -ENOENT;
  716. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  717. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  718. if (KVM_REG_SIZE(id) != 4)
  719. return -ENOENT;
  720. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  721. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  722. if (!is_valid_cache(val))
  723. return -ENOENT;
  724. return put_user(get_ccsidr(val), uval);
  725. default:
  726. return -ENOENT;
  727. }
  728. }
  729. static int demux_c15_set(u64 id, void __user *uaddr)
  730. {
  731. u32 val, newval;
  732. u32 __user *uval = uaddr;
  733. /* Fail if we have unknown bits set. */
  734. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  735. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  736. return -ENOENT;
  737. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  738. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  739. if (KVM_REG_SIZE(id) != 4)
  740. return -ENOENT;
  741. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  742. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  743. if (!is_valid_cache(val))
  744. return -ENOENT;
  745. if (get_user(newval, uval))
  746. return -EFAULT;
  747. /* This is also invariant: you can't change it. */
  748. if (newval != get_ccsidr(val))
  749. return -EINVAL;
  750. return 0;
  751. default:
  752. return -ENOENT;
  753. }
  754. }
  755. #ifdef CONFIG_VFPv3
  756. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  757. KVM_REG_ARM_VFP_FPSCR,
  758. KVM_REG_ARM_VFP_FPINST,
  759. KVM_REG_ARM_VFP_FPINST2,
  760. KVM_REG_ARM_VFP_MVFR0,
  761. KVM_REG_ARM_VFP_MVFR1,
  762. KVM_REG_ARM_VFP_FPSID };
  763. static unsigned int num_fp_regs(void)
  764. {
  765. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  766. return 32;
  767. else
  768. return 16;
  769. }
  770. static unsigned int num_vfp_regs(void)
  771. {
  772. /* Normal FP regs + control regs. */
  773. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  774. }
  775. static int copy_vfp_regids(u64 __user *uindices)
  776. {
  777. unsigned int i;
  778. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  779. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  780. for (i = 0; i < num_fp_regs(); i++) {
  781. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  782. uindices))
  783. return -EFAULT;
  784. uindices++;
  785. }
  786. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  787. if (put_user(u32reg | vfp_sysregs[i], uindices))
  788. return -EFAULT;
  789. uindices++;
  790. }
  791. return num_vfp_regs();
  792. }
  793. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  794. {
  795. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  796. u32 val;
  797. /* Fail if we have unknown bits set. */
  798. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  799. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  800. return -ENOENT;
  801. if (vfpid < num_fp_regs()) {
  802. if (KVM_REG_SIZE(id) != 8)
  803. return -ENOENT;
  804. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  805. id);
  806. }
  807. /* FP control registers are all 32 bit. */
  808. if (KVM_REG_SIZE(id) != 4)
  809. return -ENOENT;
  810. switch (vfpid) {
  811. case KVM_REG_ARM_VFP_FPEXC:
  812. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  813. case KVM_REG_ARM_VFP_FPSCR:
  814. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  815. case KVM_REG_ARM_VFP_FPINST:
  816. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  817. case KVM_REG_ARM_VFP_FPINST2:
  818. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  819. case KVM_REG_ARM_VFP_MVFR0:
  820. val = fmrx(MVFR0);
  821. return reg_to_user(uaddr, &val, id);
  822. case KVM_REG_ARM_VFP_MVFR1:
  823. val = fmrx(MVFR1);
  824. return reg_to_user(uaddr, &val, id);
  825. case KVM_REG_ARM_VFP_FPSID:
  826. val = fmrx(FPSID);
  827. return reg_to_user(uaddr, &val, id);
  828. default:
  829. return -ENOENT;
  830. }
  831. }
  832. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  833. {
  834. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  835. u32 val;
  836. /* Fail if we have unknown bits set. */
  837. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  838. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  839. return -ENOENT;
  840. if (vfpid < num_fp_regs()) {
  841. if (KVM_REG_SIZE(id) != 8)
  842. return -ENOENT;
  843. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  844. uaddr, id);
  845. }
  846. /* FP control registers are all 32 bit. */
  847. if (KVM_REG_SIZE(id) != 4)
  848. return -ENOENT;
  849. switch (vfpid) {
  850. case KVM_REG_ARM_VFP_FPEXC:
  851. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  852. case KVM_REG_ARM_VFP_FPSCR:
  853. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  854. case KVM_REG_ARM_VFP_FPINST:
  855. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  856. case KVM_REG_ARM_VFP_FPINST2:
  857. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  858. /* These are invariant. */
  859. case KVM_REG_ARM_VFP_MVFR0:
  860. if (reg_from_user(&val, uaddr, id))
  861. return -EFAULT;
  862. if (val != fmrx(MVFR0))
  863. return -EINVAL;
  864. return 0;
  865. case KVM_REG_ARM_VFP_MVFR1:
  866. if (reg_from_user(&val, uaddr, id))
  867. return -EFAULT;
  868. if (val != fmrx(MVFR1))
  869. return -EINVAL;
  870. return 0;
  871. case KVM_REG_ARM_VFP_FPSID:
  872. if (reg_from_user(&val, uaddr, id))
  873. return -EFAULT;
  874. if (val != fmrx(FPSID))
  875. return -EINVAL;
  876. return 0;
  877. default:
  878. return -ENOENT;
  879. }
  880. }
  881. #else /* !CONFIG_VFPv3 */
  882. static unsigned int num_vfp_regs(void)
  883. {
  884. return 0;
  885. }
  886. static int copy_vfp_regids(u64 __user *uindices)
  887. {
  888. return 0;
  889. }
  890. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  891. {
  892. return -ENOENT;
  893. }
  894. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  895. {
  896. return -ENOENT;
  897. }
  898. #endif /* !CONFIG_VFPv3 */
  899. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  900. {
  901. const struct coproc_reg *r;
  902. void __user *uaddr = (void __user *)(long)reg->addr;
  903. int ret;
  904. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  905. return demux_c15_get(reg->id, uaddr);
  906. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  907. return vfp_get_reg(vcpu, reg->id, uaddr);
  908. r = index_to_coproc_reg(vcpu, reg->id);
  909. if (!r)
  910. return get_invariant_cp15(reg->id, uaddr);
  911. ret = -ENOENT;
  912. if (KVM_REG_SIZE(reg->id) == 8) {
  913. u64 val;
  914. val = vcpu_cp15_reg64_get(vcpu, r);
  915. ret = reg_to_user(uaddr, &val, reg->id);
  916. } else if (KVM_REG_SIZE(reg->id) == 4) {
  917. ret = reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  918. }
  919. return ret;
  920. }
  921. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  922. {
  923. const struct coproc_reg *r;
  924. void __user *uaddr = (void __user *)(long)reg->addr;
  925. int ret;
  926. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  927. return demux_c15_set(reg->id, uaddr);
  928. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  929. return vfp_set_reg(vcpu, reg->id, uaddr);
  930. r = index_to_coproc_reg(vcpu, reg->id);
  931. if (!r)
  932. return set_invariant_cp15(reg->id, uaddr);
  933. ret = -ENOENT;
  934. if (KVM_REG_SIZE(reg->id) == 8) {
  935. u64 val;
  936. ret = reg_from_user(&val, uaddr, reg->id);
  937. if (!ret)
  938. vcpu_cp15_reg64_set(vcpu, r, val);
  939. } else if (KVM_REG_SIZE(reg->id) == 4) {
  940. ret = reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  941. }
  942. return ret;
  943. }
  944. static unsigned int num_demux_regs(void)
  945. {
  946. unsigned int i, count = 0;
  947. for (i = 0; i < CSSELR_MAX; i++)
  948. if (is_valid_cache(i))
  949. count++;
  950. return count;
  951. }
  952. static int write_demux_regids(u64 __user *uindices)
  953. {
  954. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  955. unsigned int i;
  956. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  957. for (i = 0; i < CSSELR_MAX; i++) {
  958. if (!is_valid_cache(i))
  959. continue;
  960. if (put_user(val | i, uindices))
  961. return -EFAULT;
  962. uindices++;
  963. }
  964. return 0;
  965. }
  966. static u64 cp15_to_index(const struct coproc_reg *reg)
  967. {
  968. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  969. if (reg->is_64) {
  970. val |= KVM_REG_SIZE_U64;
  971. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  972. /*
  973. * CRn always denotes the primary coproc. reg. nr. for the
  974. * in-kernel representation, but the user space API uses the
  975. * CRm for the encoding, because it is modelled after the
  976. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  977. * B3-1445
  978. */
  979. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  980. } else {
  981. val |= KVM_REG_SIZE_U32;
  982. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  983. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  984. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  985. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  986. }
  987. return val;
  988. }
  989. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  990. {
  991. if (!*uind)
  992. return true;
  993. if (put_user(cp15_to_index(reg), *uind))
  994. return false;
  995. (*uind)++;
  996. return true;
  997. }
  998. /* Assumed ordered tables, see kvm_coproc_table_init. */
  999. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  1000. {
  1001. const struct coproc_reg *i1, *i2, *end1, *end2;
  1002. unsigned int total = 0;
  1003. size_t num;
  1004. /* We check for duplicates here, to allow arch-specific overrides. */
  1005. i1 = get_target_table(vcpu->arch.target, &num);
  1006. end1 = i1 + num;
  1007. i2 = cp15_regs;
  1008. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  1009. BUG_ON(i1 == end1 || i2 == end2);
  1010. /* Walk carefully, as both tables may refer to the same register. */
  1011. while (i1 || i2) {
  1012. int cmp = cmp_reg(i1, i2);
  1013. /* target-specific overrides generic entry. */
  1014. if (cmp <= 0) {
  1015. /* Ignore registers we trap but don't save. */
  1016. if (i1->reg) {
  1017. if (!copy_reg_to_user(i1, &uind))
  1018. return -EFAULT;
  1019. total++;
  1020. }
  1021. } else {
  1022. /* Ignore registers we trap but don't save. */
  1023. if (i2->reg) {
  1024. if (!copy_reg_to_user(i2, &uind))
  1025. return -EFAULT;
  1026. total++;
  1027. }
  1028. }
  1029. if (cmp <= 0 && ++i1 == end1)
  1030. i1 = NULL;
  1031. if (cmp >= 0 && ++i2 == end2)
  1032. i2 = NULL;
  1033. }
  1034. return total;
  1035. }
  1036. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  1037. {
  1038. return ARRAY_SIZE(invariant_cp15)
  1039. + num_demux_regs()
  1040. + num_vfp_regs()
  1041. + walk_cp15(vcpu, (u64 __user *)NULL);
  1042. }
  1043. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1044. {
  1045. unsigned int i;
  1046. int err;
  1047. /* Then give them all the invariant registers' indices. */
  1048. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  1049. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  1050. return -EFAULT;
  1051. uindices++;
  1052. }
  1053. err = walk_cp15(vcpu, uindices);
  1054. if (err < 0)
  1055. return err;
  1056. uindices += err;
  1057. err = copy_vfp_regids(uindices);
  1058. if (err < 0)
  1059. return err;
  1060. uindices += err;
  1061. return write_demux_regids(uindices);
  1062. }
  1063. void kvm_coproc_table_init(void)
  1064. {
  1065. unsigned int i;
  1066. /* Make sure tables are unique and in order. */
  1067. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  1068. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  1069. /* We abuse the reset function to overwrite the table itself. */
  1070. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1071. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1072. /*
  1073. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1074. *
  1075. * If software reads the Cache Type fields from Ctype1
  1076. * upwards, once it has seen a value of 0b000, no caches
  1077. * exist at further-out levels of the hierarchy. So, for
  1078. * example, if Ctype3 is the first Cache Type field with a
  1079. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1080. * ignored.
  1081. */
  1082. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1083. for (i = 0; i < 7; i++)
  1084. if (((cache_levels >> (i*3)) & 7) == 0)
  1085. break;
  1086. /* Clear all higher bits. */
  1087. cache_levels &= (1 << (i*3))-1;
  1088. }
  1089. /**
  1090. * kvm_reset_coprocs - sets cp15 registers to reset value
  1091. * @vcpu: The VCPU pointer
  1092. *
  1093. * This function finds the right table above and sets the registers on the
  1094. * virtual CPU struct to their architecturally defined reset values.
  1095. */
  1096. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1097. {
  1098. size_t num;
  1099. const struct coproc_reg *table;
  1100. /* Catch someone adding a register without putting in reset entry. */
  1101. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  1102. /* Generic chip reset first (so target could override). */
  1103. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1104. table = get_target_table(vcpu->arch.target, &num);
  1105. reset_coproc_regs(vcpu, table, num);
  1106. for (num = 1; num < NR_CP15_REGS; num++)
  1107. if (vcpu->arch.cp15[num] == 0x42424242)
  1108. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  1109. }