setup.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/init.h>
  23. #include <linux/kexec.h>
  24. #include <linux/of_fdt.h>
  25. #include <linux/cpu.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/smp.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/memblock.h>
  30. #include <linux/bug.h>
  31. #include <linux/compiler.h>
  32. #include <linux/sort.h>
  33. #include <asm/unified.h>
  34. #include <asm/cp15.h>
  35. #include <asm/cpu.h>
  36. #include <asm/cputype.h>
  37. #include <asm/elf.h>
  38. #include <asm/procinfo.h>
  39. #include <asm/psci.h>
  40. #include <asm/sections.h>
  41. #include <asm/setup.h>
  42. #include <asm/smp_plat.h>
  43. #include <asm/mach-types.h>
  44. #include <asm/cacheflush.h>
  45. #include <asm/cachetype.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/prom.h>
  48. #include <asm/mach/arch.h>
  49. #include <asm/mach/irq.h>
  50. #include <asm/mach/time.h>
  51. #include <asm/system_info.h>
  52. #include <asm/system_misc.h>
  53. #include <asm/traps.h>
  54. #include <asm/unwind.h>
  55. #include <asm/memblock.h>
  56. #include <asm/virt.h>
  57. #include "atags.h"
  58. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  59. char fpe_type[8];
  60. static int __init fpe_setup(char *line)
  61. {
  62. memcpy(fpe_type, line, 8);
  63. return 1;
  64. }
  65. __setup("fpe=", fpe_setup);
  66. #endif
  67. extern void init_default_cache_policy(unsigned long);
  68. extern void paging_init(const struct machine_desc *desc);
  69. extern void early_paging_init(const struct machine_desc *,
  70. struct proc_info_list *);
  71. extern void sanity_check_meminfo(void);
  72. extern enum reboot_mode reboot_mode;
  73. extern void setup_dma_zone(const struct machine_desc *desc);
  74. unsigned int processor_id;
  75. EXPORT_SYMBOL(processor_id);
  76. unsigned int __machine_arch_type __read_mostly;
  77. EXPORT_SYMBOL(__machine_arch_type);
  78. unsigned int cacheid __read_mostly;
  79. EXPORT_SYMBOL(cacheid);
  80. unsigned int __atags_pointer __initdata;
  81. unsigned int system_rev;
  82. EXPORT_SYMBOL(system_rev);
  83. unsigned int system_serial_low;
  84. EXPORT_SYMBOL(system_serial_low);
  85. unsigned int system_serial_high;
  86. EXPORT_SYMBOL(system_serial_high);
  87. unsigned int elf_hwcap __read_mostly;
  88. EXPORT_SYMBOL(elf_hwcap);
  89. unsigned int elf_hwcap2 __read_mostly;
  90. EXPORT_SYMBOL(elf_hwcap2);
  91. #ifdef MULTI_CPU
  92. struct processor processor __read_mostly;
  93. #endif
  94. #ifdef MULTI_TLB
  95. struct cpu_tlb_fns cpu_tlb __read_mostly;
  96. #endif
  97. #ifdef MULTI_USER
  98. struct cpu_user_fns cpu_user __read_mostly;
  99. #endif
  100. #ifdef MULTI_CACHE
  101. struct cpu_cache_fns cpu_cache __read_mostly;
  102. #endif
  103. #ifdef CONFIG_OUTER_CACHE
  104. struct outer_cache_fns outer_cache __read_mostly;
  105. EXPORT_SYMBOL(outer_cache);
  106. #endif
  107. /*
  108. * Cached cpu_architecture() result for use by assembler code.
  109. * C code should use the cpu_architecture() function instead of accessing this
  110. * variable directly.
  111. */
  112. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  113. struct stack {
  114. u32 irq[3];
  115. u32 abt[3];
  116. u32 und[3];
  117. u32 fiq[3];
  118. } ____cacheline_aligned;
  119. #ifndef CONFIG_CPU_V7M
  120. static struct stack stacks[NR_CPUS];
  121. #endif
  122. char elf_platform[ELF_PLATFORM_SIZE];
  123. EXPORT_SYMBOL(elf_platform);
  124. static const char *cpu_name;
  125. static const char *machine_name;
  126. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  127. const struct machine_desc *machine_desc __initdata;
  128. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  129. #define ENDIANNESS ((char)endian_test.l)
  130. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  131. /*
  132. * Standard memory resources
  133. */
  134. static struct resource mem_res[] = {
  135. {
  136. .name = "Video RAM",
  137. .start = 0,
  138. .end = 0,
  139. .flags = IORESOURCE_MEM
  140. },
  141. {
  142. .name = "Kernel code",
  143. .start = 0,
  144. .end = 0,
  145. .flags = IORESOURCE_MEM
  146. },
  147. {
  148. .name = "Kernel data",
  149. .start = 0,
  150. .end = 0,
  151. .flags = IORESOURCE_MEM
  152. }
  153. };
  154. #define video_ram mem_res[0]
  155. #define kernel_code mem_res[1]
  156. #define kernel_data mem_res[2]
  157. static struct resource io_res[] = {
  158. {
  159. .name = "reserved",
  160. .start = 0x3bc,
  161. .end = 0x3be,
  162. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  163. },
  164. {
  165. .name = "reserved",
  166. .start = 0x378,
  167. .end = 0x37f,
  168. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  169. },
  170. {
  171. .name = "reserved",
  172. .start = 0x278,
  173. .end = 0x27f,
  174. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  175. }
  176. };
  177. #define lp0 io_res[0]
  178. #define lp1 io_res[1]
  179. #define lp2 io_res[2]
  180. static const char *proc_arch[] = {
  181. "undefined/unknown",
  182. "3",
  183. "4",
  184. "4T",
  185. "5",
  186. "5T",
  187. "5TE",
  188. "5TEJ",
  189. "6TEJ",
  190. "7",
  191. "7M",
  192. "?(12)",
  193. "?(13)",
  194. "?(14)",
  195. "?(15)",
  196. "?(16)",
  197. "?(17)",
  198. };
  199. #ifdef CONFIG_CPU_V7M
  200. static int __get_cpu_architecture(void)
  201. {
  202. return CPU_ARCH_ARMv7M;
  203. }
  204. #else
  205. static int __get_cpu_architecture(void)
  206. {
  207. int cpu_arch;
  208. if ((read_cpuid_id() & 0x0008f000) == 0) {
  209. cpu_arch = CPU_ARCH_UNKNOWN;
  210. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  211. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  212. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  213. cpu_arch = (read_cpuid_id() >> 16) & 7;
  214. if (cpu_arch)
  215. cpu_arch += CPU_ARCH_ARMv3;
  216. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  217. unsigned int mmfr0;
  218. /* Revised CPUID format. Read the Memory Model Feature
  219. * Register 0 and check for VMSAv7 or PMSAv7 */
  220. asm("mrc p15, 0, %0, c0, c1, 4"
  221. : "=r" (mmfr0));
  222. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  223. (mmfr0 & 0x000000f0) >= 0x00000030)
  224. cpu_arch = CPU_ARCH_ARMv7;
  225. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  226. (mmfr0 & 0x000000f0) == 0x00000020)
  227. cpu_arch = CPU_ARCH_ARMv6;
  228. else
  229. cpu_arch = CPU_ARCH_UNKNOWN;
  230. } else
  231. cpu_arch = CPU_ARCH_UNKNOWN;
  232. return cpu_arch;
  233. }
  234. #endif
  235. int __pure cpu_architecture(void)
  236. {
  237. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  238. return __cpu_architecture;
  239. }
  240. static int cpu_has_aliasing_icache(unsigned int arch)
  241. {
  242. int aliasing_icache;
  243. unsigned int id_reg, num_sets, line_size;
  244. /* PIPT caches never alias. */
  245. if (icache_is_pipt())
  246. return 0;
  247. /* arch specifies the register format */
  248. switch (arch) {
  249. case CPU_ARCH_ARMv7:
  250. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  251. : /* No output operands */
  252. : "r" (1));
  253. isb();
  254. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  255. : "=r" (id_reg));
  256. line_size = 4 << ((id_reg & 0x7) + 2);
  257. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  258. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  259. break;
  260. case CPU_ARCH_ARMv6:
  261. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  262. break;
  263. default:
  264. /* I-cache aliases will be handled by D-cache aliasing code */
  265. aliasing_icache = 0;
  266. }
  267. return aliasing_icache;
  268. }
  269. static void __init cacheid_init(void)
  270. {
  271. unsigned int arch = cpu_architecture();
  272. if (arch == CPU_ARCH_ARMv7M) {
  273. cacheid = 0;
  274. } else if (arch >= CPU_ARCH_ARMv6) {
  275. unsigned int cachetype = read_cpuid_cachetype();
  276. if ((cachetype & (7 << 29)) == 4 << 29) {
  277. /* ARMv7 register format */
  278. arch = CPU_ARCH_ARMv7;
  279. cacheid = CACHEID_VIPT_NONALIASING;
  280. switch (cachetype & (3 << 14)) {
  281. case (1 << 14):
  282. cacheid |= CACHEID_ASID_TAGGED;
  283. break;
  284. case (3 << 14):
  285. cacheid |= CACHEID_PIPT;
  286. break;
  287. }
  288. } else {
  289. arch = CPU_ARCH_ARMv6;
  290. if (cachetype & (1 << 23))
  291. cacheid = CACHEID_VIPT_ALIASING;
  292. else
  293. cacheid = CACHEID_VIPT_NONALIASING;
  294. }
  295. if (cpu_has_aliasing_icache(arch))
  296. cacheid |= CACHEID_VIPT_I_ALIASING;
  297. } else {
  298. cacheid = CACHEID_VIVT;
  299. }
  300. pr_info("CPU: %s data cache, %s instruction cache\n",
  301. cache_is_vivt() ? "VIVT" :
  302. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  303. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  304. cache_is_vivt() ? "VIVT" :
  305. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  306. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  307. icache_is_pipt() ? "PIPT" :
  308. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  309. }
  310. /*
  311. * These functions re-use the assembly code in head.S, which
  312. * already provide the required functionality.
  313. */
  314. extern struct proc_info_list *lookup_processor_type(unsigned int);
  315. void __init early_print(const char *str, ...)
  316. {
  317. extern void printascii(const char *);
  318. char buf[256];
  319. va_list ap;
  320. va_start(ap, str);
  321. vsnprintf(buf, sizeof(buf), str, ap);
  322. va_end(ap);
  323. #ifdef CONFIG_DEBUG_LL
  324. printascii(buf);
  325. #endif
  326. printk("%s", buf);
  327. }
  328. static void __init cpuid_init_hwcaps(void)
  329. {
  330. unsigned int divide_instrs, vmsa;
  331. if (cpu_architecture() < CPU_ARCH_ARMv7)
  332. return;
  333. divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
  334. switch (divide_instrs) {
  335. case 2:
  336. elf_hwcap |= HWCAP_IDIVA;
  337. case 1:
  338. elf_hwcap |= HWCAP_IDIVT;
  339. }
  340. /* LPAE implies atomic ldrd/strd instructions */
  341. vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
  342. if (vmsa >= 5)
  343. elf_hwcap |= HWCAP_LPAE;
  344. }
  345. static void __init elf_hwcap_fixup(void)
  346. {
  347. unsigned id = read_cpuid_id();
  348. unsigned sync_prim;
  349. /*
  350. * HWCAP_TLS is available only on 1136 r1p0 and later,
  351. * see also kuser_get_tls_init.
  352. */
  353. if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
  354. ((id >> 20) & 3) == 0) {
  355. elf_hwcap &= ~HWCAP_TLS;
  356. return;
  357. }
  358. /* Verify if CPUID scheme is implemented */
  359. if ((id & 0x000f0000) != 0x000f0000)
  360. return;
  361. /*
  362. * If the CPU supports LDREX/STREX and LDREXB/STREXB,
  363. * avoid advertising SWP; it may not be atomic with
  364. * multiprocessing cores.
  365. */
  366. sync_prim = ((read_cpuid_ext(CPUID_EXT_ISAR3) >> 8) & 0xf0) |
  367. ((read_cpuid_ext(CPUID_EXT_ISAR4) >> 20) & 0x0f);
  368. if (sync_prim >= 0x13)
  369. elf_hwcap &= ~HWCAP_SWP;
  370. }
  371. /*
  372. * cpu_init - initialise one CPU.
  373. *
  374. * cpu_init sets up the per-CPU stacks.
  375. */
  376. void notrace cpu_init(void)
  377. {
  378. #ifndef CONFIG_CPU_V7M
  379. unsigned int cpu = smp_processor_id();
  380. struct stack *stk = &stacks[cpu];
  381. if (cpu >= NR_CPUS) {
  382. pr_crit("CPU%u: bad primary CPU number\n", cpu);
  383. BUG();
  384. }
  385. /*
  386. * This only works on resume and secondary cores. For booting on the
  387. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  388. */
  389. set_my_cpu_offset(per_cpu_offset(cpu));
  390. cpu_proc_init();
  391. /*
  392. * Define the placement constraint for the inline asm directive below.
  393. * In Thumb-2, msr with an immediate value is not allowed.
  394. */
  395. #ifdef CONFIG_THUMB2_KERNEL
  396. #define PLC "r"
  397. #else
  398. #define PLC "I"
  399. #endif
  400. /*
  401. * setup stacks for re-entrant exception handlers
  402. */
  403. __asm__ (
  404. "msr cpsr_c, %1\n\t"
  405. "add r14, %0, %2\n\t"
  406. "mov sp, r14\n\t"
  407. "msr cpsr_c, %3\n\t"
  408. "add r14, %0, %4\n\t"
  409. "mov sp, r14\n\t"
  410. "msr cpsr_c, %5\n\t"
  411. "add r14, %0, %6\n\t"
  412. "mov sp, r14\n\t"
  413. "msr cpsr_c, %7\n\t"
  414. "add r14, %0, %8\n\t"
  415. "mov sp, r14\n\t"
  416. "msr cpsr_c, %9"
  417. :
  418. : "r" (stk),
  419. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  420. "I" (offsetof(struct stack, irq[0])),
  421. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  422. "I" (offsetof(struct stack, abt[0])),
  423. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  424. "I" (offsetof(struct stack, und[0])),
  425. PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
  426. "I" (offsetof(struct stack, fiq[0])),
  427. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  428. : "r14");
  429. #endif
  430. }
  431. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  432. void __init smp_setup_processor_id(void)
  433. {
  434. int i;
  435. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  436. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  437. cpu_logical_map(0) = cpu;
  438. for (i = 1; i < nr_cpu_ids; ++i)
  439. cpu_logical_map(i) = i == cpu ? 0 : i;
  440. /*
  441. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  442. * using percpu variable early, for example, lockdep will
  443. * access percpu variable inside lock_release
  444. */
  445. set_my_cpu_offset(0);
  446. pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
  447. }
  448. struct mpidr_hash mpidr_hash;
  449. #ifdef CONFIG_SMP
  450. /**
  451. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  452. * level in order to build a linear index from an
  453. * MPIDR value. Resulting algorithm is a collision
  454. * free hash carried out through shifting and ORing
  455. */
  456. static void __init smp_build_mpidr_hash(void)
  457. {
  458. u32 i, affinity;
  459. u32 fs[3], bits[3], ls, mask = 0;
  460. /*
  461. * Pre-scan the list of MPIDRS and filter out bits that do
  462. * not contribute to affinity levels, ie they never toggle.
  463. */
  464. for_each_possible_cpu(i)
  465. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  466. pr_debug("mask of set bits 0x%x\n", mask);
  467. /*
  468. * Find and stash the last and first bit set at all affinity levels to
  469. * check how many bits are required to represent them.
  470. */
  471. for (i = 0; i < 3; i++) {
  472. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  473. /*
  474. * Find the MSB bit and LSB bits position
  475. * to determine how many bits are required
  476. * to express the affinity level.
  477. */
  478. ls = fls(affinity);
  479. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  480. bits[i] = ls - fs[i];
  481. }
  482. /*
  483. * An index can be created from the MPIDR by isolating the
  484. * significant bits at each affinity level and by shifting
  485. * them in order to compress the 24 bits values space to a
  486. * compressed set of values. This is equivalent to hashing
  487. * the MPIDR through shifting and ORing. It is a collision free
  488. * hash though not minimal since some levels might contain a number
  489. * of CPUs that is not an exact power of 2 and their bit
  490. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  491. */
  492. mpidr_hash.shift_aff[0] = fs[0];
  493. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  494. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  495. (bits[1] + bits[0]);
  496. mpidr_hash.mask = mask;
  497. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  498. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  499. mpidr_hash.shift_aff[0],
  500. mpidr_hash.shift_aff[1],
  501. mpidr_hash.shift_aff[2],
  502. mpidr_hash.mask,
  503. mpidr_hash.bits);
  504. /*
  505. * 4x is an arbitrary value used to warn on a hash table much bigger
  506. * than expected on most systems.
  507. */
  508. if (mpidr_hash_size() > 4 * num_possible_cpus())
  509. pr_warn("Large number of MPIDR hash buckets detected\n");
  510. sync_cache_w(&mpidr_hash);
  511. }
  512. #endif
  513. static void __init setup_processor(void)
  514. {
  515. struct proc_info_list *list;
  516. /*
  517. * locate processor in the list of supported processor
  518. * types. The linker builds this table for us from the
  519. * entries in arch/arm/mm/proc-*.S
  520. */
  521. list = lookup_processor_type(read_cpuid_id());
  522. if (!list) {
  523. pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
  524. read_cpuid_id());
  525. while (1);
  526. }
  527. cpu_name = list->cpu_name;
  528. __cpu_architecture = __get_cpu_architecture();
  529. #ifdef MULTI_CPU
  530. processor = *list->proc;
  531. #endif
  532. #ifdef MULTI_TLB
  533. cpu_tlb = *list->tlb;
  534. #endif
  535. #ifdef MULTI_USER
  536. cpu_user = *list->user;
  537. #endif
  538. #ifdef MULTI_CACHE
  539. cpu_cache = *list->cache;
  540. #endif
  541. pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  542. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  543. proc_arch[cpu_architecture()], get_cr());
  544. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  545. list->arch_name, ENDIANNESS);
  546. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  547. list->elf_name, ENDIANNESS);
  548. elf_hwcap = list->elf_hwcap;
  549. cpuid_init_hwcaps();
  550. #ifndef CONFIG_ARM_THUMB
  551. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  552. #endif
  553. #ifdef CONFIG_MMU
  554. init_default_cache_policy(list->__cpu_mm_mmu_flags);
  555. #endif
  556. erratum_a15_798181_init();
  557. elf_hwcap_fixup();
  558. cacheid_init();
  559. cpu_init();
  560. }
  561. void __init dump_machine_table(void)
  562. {
  563. const struct machine_desc *p;
  564. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  565. for_each_machine_desc(p)
  566. early_print("%08x\t%s\n", p->nr, p->name);
  567. early_print("\nPlease check your kernel config and/or bootloader.\n");
  568. while (true)
  569. /* can't use cpu_relax() here as it may require MMU setup */;
  570. }
  571. int __init arm_add_memory(u64 start, u64 size)
  572. {
  573. u64 aligned_start;
  574. /*
  575. * Ensure that start/size are aligned to a page boundary.
  576. * Size is appropriately rounded down, start is rounded up.
  577. */
  578. size -= start & ~PAGE_MASK;
  579. aligned_start = PAGE_ALIGN(start);
  580. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  581. if (aligned_start > ULONG_MAX) {
  582. pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
  583. (long long)start);
  584. return -EINVAL;
  585. }
  586. if (aligned_start + size > ULONG_MAX) {
  587. pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
  588. (long long)start);
  589. /*
  590. * To ensure bank->start + bank->size is representable in
  591. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  592. * This means we lose a page after masking.
  593. */
  594. size = ULONG_MAX - aligned_start;
  595. }
  596. #endif
  597. if (aligned_start < PHYS_OFFSET) {
  598. if (aligned_start + size <= PHYS_OFFSET) {
  599. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  600. aligned_start, aligned_start + size);
  601. return -EINVAL;
  602. }
  603. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  604. aligned_start, (u64)PHYS_OFFSET);
  605. size -= PHYS_OFFSET - aligned_start;
  606. aligned_start = PHYS_OFFSET;
  607. }
  608. start = aligned_start;
  609. size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  610. /*
  611. * Check whether this memory region has non-zero size or
  612. * invalid node number.
  613. */
  614. if (size == 0)
  615. return -EINVAL;
  616. memblock_add(start, size);
  617. return 0;
  618. }
  619. /*
  620. * Pick out the memory size. We look for mem=size@start,
  621. * where start and size are "size[KkMm]"
  622. */
  623. static int __init early_mem(char *p)
  624. {
  625. static int usermem __initdata = 0;
  626. u64 size;
  627. u64 start;
  628. char *endp;
  629. /*
  630. * If the user specifies memory size, we
  631. * blow away any automatically generated
  632. * size.
  633. */
  634. if (usermem == 0) {
  635. usermem = 1;
  636. memblock_remove(memblock_start_of_DRAM(),
  637. memblock_end_of_DRAM() - memblock_start_of_DRAM());
  638. }
  639. start = PHYS_OFFSET;
  640. size = memparse(p, &endp);
  641. if (*endp == '@')
  642. start = memparse(endp + 1, NULL);
  643. arm_add_memory(start, size);
  644. return 0;
  645. }
  646. early_param("mem", early_mem);
  647. static void __init request_standard_resources(const struct machine_desc *mdesc)
  648. {
  649. struct memblock_region *region;
  650. struct resource *res;
  651. kernel_code.start = virt_to_phys(_text);
  652. kernel_code.end = virt_to_phys(_etext - 1);
  653. kernel_data.start = virt_to_phys(_sdata);
  654. kernel_data.end = virt_to_phys(_end - 1);
  655. for_each_memblock(memory, region) {
  656. res = memblock_virt_alloc(sizeof(*res), 0);
  657. res->name = "System RAM";
  658. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  659. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  660. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  661. request_resource(&iomem_resource, res);
  662. if (kernel_code.start >= res->start &&
  663. kernel_code.end <= res->end)
  664. request_resource(res, &kernel_code);
  665. if (kernel_data.start >= res->start &&
  666. kernel_data.end <= res->end)
  667. request_resource(res, &kernel_data);
  668. }
  669. if (mdesc->video_start) {
  670. video_ram.start = mdesc->video_start;
  671. video_ram.end = mdesc->video_end;
  672. request_resource(&iomem_resource, &video_ram);
  673. }
  674. /*
  675. * Some machines don't have the possibility of ever
  676. * possessing lp0, lp1 or lp2
  677. */
  678. if (mdesc->reserve_lp0)
  679. request_resource(&ioport_resource, &lp0);
  680. if (mdesc->reserve_lp1)
  681. request_resource(&ioport_resource, &lp1);
  682. if (mdesc->reserve_lp2)
  683. request_resource(&ioport_resource, &lp2);
  684. }
  685. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  686. struct screen_info screen_info = {
  687. .orig_video_lines = 30,
  688. .orig_video_cols = 80,
  689. .orig_video_mode = 0,
  690. .orig_video_ega_bx = 0,
  691. .orig_video_isVGA = 1,
  692. .orig_video_points = 8
  693. };
  694. #endif
  695. static int __init customize_machine(void)
  696. {
  697. /*
  698. * customizes platform devices, or adds new ones
  699. * On DT based machines, we fall back to populating the
  700. * machine from the device tree, if no callback is provided,
  701. * otherwise we would always need an init_machine callback.
  702. */
  703. if (machine_desc->init_machine)
  704. machine_desc->init_machine();
  705. #ifdef CONFIG_OF
  706. else
  707. of_platform_populate(NULL, of_default_bus_match_table,
  708. NULL, NULL);
  709. #endif
  710. return 0;
  711. }
  712. arch_initcall(customize_machine);
  713. static int __init init_machine_late(void)
  714. {
  715. if (machine_desc->init_late)
  716. machine_desc->init_late();
  717. return 0;
  718. }
  719. late_initcall(init_machine_late);
  720. #ifdef CONFIG_KEXEC
  721. static inline unsigned long long get_total_mem(void)
  722. {
  723. unsigned long total;
  724. total = max_low_pfn - min_low_pfn;
  725. return total << PAGE_SHIFT;
  726. }
  727. /**
  728. * reserve_crashkernel() - reserves memory are for crash kernel
  729. *
  730. * This function reserves memory area given in "crashkernel=" kernel command
  731. * line parameter. The memory reserved is used by a dump capture kernel when
  732. * primary kernel is crashing.
  733. */
  734. static void __init reserve_crashkernel(void)
  735. {
  736. unsigned long long crash_size, crash_base;
  737. unsigned long long total_mem;
  738. int ret;
  739. total_mem = get_total_mem();
  740. ret = parse_crashkernel(boot_command_line, total_mem,
  741. &crash_size, &crash_base);
  742. if (ret)
  743. return;
  744. ret = memblock_reserve(crash_base, crash_size);
  745. if (ret < 0) {
  746. pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
  747. (unsigned long)crash_base);
  748. return;
  749. }
  750. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
  751. (unsigned long)(crash_size >> 20),
  752. (unsigned long)(crash_base >> 20),
  753. (unsigned long)(total_mem >> 20));
  754. crashk_res.start = crash_base;
  755. crashk_res.end = crash_base + crash_size - 1;
  756. insert_resource(&iomem_resource, &crashk_res);
  757. }
  758. #else
  759. static inline void reserve_crashkernel(void) {}
  760. #endif /* CONFIG_KEXEC */
  761. void __init hyp_mode_check(void)
  762. {
  763. #ifdef CONFIG_ARM_VIRT_EXT
  764. sync_boot_mode();
  765. if (is_hyp_mode_available()) {
  766. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  767. pr_info("CPU: Virtualization extensions available.\n");
  768. } else if (is_hyp_mode_mismatched()) {
  769. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  770. __boot_cpu_mode & MODE_MASK);
  771. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  772. } else
  773. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  774. #endif
  775. }
  776. void __init setup_arch(char **cmdline_p)
  777. {
  778. const struct machine_desc *mdesc;
  779. setup_processor();
  780. mdesc = setup_machine_fdt(__atags_pointer);
  781. if (!mdesc)
  782. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  783. machine_desc = mdesc;
  784. machine_name = mdesc->name;
  785. if (mdesc->reboot_mode != REBOOT_HARD)
  786. reboot_mode = mdesc->reboot_mode;
  787. init_mm.start_code = (unsigned long) _text;
  788. init_mm.end_code = (unsigned long) _etext;
  789. init_mm.end_data = (unsigned long) _edata;
  790. init_mm.brk = (unsigned long) _end;
  791. /* populate cmd_line too for later use, preserving boot_command_line */
  792. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  793. *cmdline_p = cmd_line;
  794. parse_early_param();
  795. early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
  796. setup_dma_zone(mdesc);
  797. sanity_check_meminfo();
  798. arm_memblock_init(mdesc);
  799. paging_init(mdesc);
  800. request_standard_resources(mdesc);
  801. if (mdesc->restart)
  802. arm_pm_restart = mdesc->restart;
  803. unflatten_device_tree();
  804. arm_dt_init_cpu_maps();
  805. psci_init();
  806. #ifdef CONFIG_SMP
  807. if (is_smp()) {
  808. if (!mdesc->smp_init || !mdesc->smp_init()) {
  809. if (psci_smp_available())
  810. smp_set_ops(&psci_smp_ops);
  811. else if (mdesc->smp)
  812. smp_set_ops(mdesc->smp);
  813. }
  814. smp_init_cpus();
  815. smp_build_mpidr_hash();
  816. }
  817. #endif
  818. if (!is_smp())
  819. hyp_mode_check();
  820. reserve_crashkernel();
  821. #ifdef CONFIG_MULTI_IRQ_HANDLER
  822. handle_arch_irq = mdesc->handle_irq;
  823. #endif
  824. #ifdef CONFIG_VT
  825. #if defined(CONFIG_VGA_CONSOLE)
  826. conswitchp = &vga_con;
  827. #elif defined(CONFIG_DUMMY_CONSOLE)
  828. conswitchp = &dummy_con;
  829. #endif
  830. #endif
  831. if (mdesc->init_early)
  832. mdesc->init_early();
  833. }
  834. static int __init topology_init(void)
  835. {
  836. int cpu;
  837. for_each_possible_cpu(cpu) {
  838. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  839. cpuinfo->cpu.hotpluggable = 1;
  840. register_cpu(&cpuinfo->cpu, cpu);
  841. }
  842. return 0;
  843. }
  844. subsys_initcall(topology_init);
  845. #ifdef CONFIG_HAVE_PROC_CPU
  846. static int __init proc_cpu_init(void)
  847. {
  848. struct proc_dir_entry *res;
  849. res = proc_mkdir("cpu", NULL);
  850. if (!res)
  851. return -ENOMEM;
  852. return 0;
  853. }
  854. fs_initcall(proc_cpu_init);
  855. #endif
  856. static const char *hwcap_str[] = {
  857. "swp",
  858. "half",
  859. "thumb",
  860. "26bit",
  861. "fastmult",
  862. "fpa",
  863. "vfp",
  864. "edsp",
  865. "java",
  866. "iwmmxt",
  867. "crunch",
  868. "thumbee",
  869. "neon",
  870. "vfpv3",
  871. "vfpv3d16",
  872. "tls",
  873. "vfpv4",
  874. "idiva",
  875. "idivt",
  876. "vfpd32",
  877. "lpae",
  878. "evtstrm",
  879. NULL
  880. };
  881. static const char *hwcap2_str[] = {
  882. "aes",
  883. "pmull",
  884. "sha1",
  885. "sha2",
  886. "crc32",
  887. NULL
  888. };
  889. static int c_show(struct seq_file *m, void *v)
  890. {
  891. int i, j;
  892. u32 cpuid;
  893. for_each_online_cpu(i) {
  894. /*
  895. * glibc reads /proc/cpuinfo to determine the number of
  896. * online processors, looking for lines beginning with
  897. * "processor". Give glibc what it expects.
  898. */
  899. seq_printf(m, "processor\t: %d\n", i);
  900. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  901. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  902. cpu_name, cpuid & 15, elf_platform);
  903. /* dump out the processor features */
  904. seq_puts(m, "Features\t: ");
  905. for (j = 0; hwcap_str[j]; j++)
  906. if (elf_hwcap & (1 << j))
  907. seq_printf(m, "%s ", hwcap_str[j]);
  908. for (j = 0; hwcap2_str[j]; j++)
  909. if (elf_hwcap2 & (1 << j))
  910. seq_printf(m, "%s ", hwcap2_str[j]);
  911. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  912. seq_printf(m, "CPU architecture: %s\n",
  913. proc_arch[cpu_architecture()]);
  914. if ((cpuid & 0x0008f000) == 0x00000000) {
  915. /* pre-ARM7 */
  916. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  917. } else {
  918. if ((cpuid & 0x0008f000) == 0x00007000) {
  919. /* ARM7 */
  920. seq_printf(m, "CPU variant\t: 0x%02x\n",
  921. (cpuid >> 16) & 127);
  922. } else {
  923. /* post-ARM7 */
  924. seq_printf(m, "CPU variant\t: 0x%x\n",
  925. (cpuid >> 20) & 15);
  926. }
  927. seq_printf(m, "CPU part\t: 0x%03x\n",
  928. (cpuid >> 4) & 0xfff);
  929. }
  930. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  931. }
  932. seq_printf(m, "Hardware\t: %s\n", machine_name);
  933. seq_printf(m, "Revision\t: %04x\n", system_rev);
  934. seq_printf(m, "Serial\t\t: %08x%08x\n",
  935. system_serial_high, system_serial_low);
  936. return 0;
  937. }
  938. static void *c_start(struct seq_file *m, loff_t *pos)
  939. {
  940. return *pos < 1 ? (void *)1 : NULL;
  941. }
  942. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  943. {
  944. ++*pos;
  945. return NULL;
  946. }
  947. static void c_stop(struct seq_file *m, void *v)
  948. {
  949. }
  950. const struct seq_operations cpuinfo_op = {
  951. .start = c_start,
  952. .next = c_next,
  953. .stop = c_stop,
  954. .show = c_show
  955. };