process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/leds.h>
  33. #include <linux/reboot.h>
  34. #include <asm/cacheflush.h>
  35. #include <asm/idmap.h>
  36. #include <asm/processor.h>
  37. #include <asm/thread_notify.h>
  38. #include <asm/stacktrace.h>
  39. #include <asm/system_misc.h>
  40. #include <asm/mach/time.h>
  41. #include <asm/tls.h>
  42. #ifdef CONFIG_CC_STACKPROTECTOR
  43. #include <linux/stackprotector.h>
  44. unsigned long __stack_chk_guard __read_mostly;
  45. EXPORT_SYMBOL(__stack_chk_guard);
  46. #endif
  47. static const char *processor_modes[] __maybe_unused = {
  48. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  49. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  50. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  51. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  52. };
  53. static const char *isa_modes[] __maybe_unused = {
  54. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  55. };
  56. extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  57. typedef void (*phys_reset_t)(unsigned long);
  58. /*
  59. * A temporary stack to use for CPU reset. This is static so that we
  60. * don't clobber it with the identity mapping. When running with this
  61. * stack, any references to the current task *will not work* so you
  62. * should really do as little as possible before jumping to your reset
  63. * code.
  64. */
  65. static u64 soft_restart_stack[16];
  66. static void __soft_restart(void *addr)
  67. {
  68. phys_reset_t phys_reset;
  69. /* Take out a flat memory mapping. */
  70. setup_mm_for_reboot();
  71. /* Clean and invalidate caches */
  72. flush_cache_all();
  73. /* Turn off caching */
  74. cpu_proc_fin();
  75. /* Push out any further dirty data, and ensure cache is empty */
  76. flush_cache_all();
  77. /* Switch to the identity mapping. */
  78. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  79. phys_reset((unsigned long)addr);
  80. /* Should never get here. */
  81. BUG();
  82. }
  83. void soft_restart(unsigned long addr)
  84. {
  85. u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
  86. /* Disable interrupts first */
  87. raw_local_irq_disable();
  88. local_fiq_disable();
  89. /* Disable the L2 if we're the last man standing. */
  90. if (num_online_cpus() == 1)
  91. outer_disable();
  92. /* Change to the new stack and continue with the reset. */
  93. call_with_stack(__soft_restart, (void *)addr, (void *)stack);
  94. /* Should never get here. */
  95. BUG();
  96. }
  97. /*
  98. * Function pointers to optional machine specific functions
  99. */
  100. void (*pm_power_off)(void);
  101. EXPORT_SYMBOL(pm_power_off);
  102. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  103. /*
  104. * This is our default idle handler.
  105. */
  106. void (*arm_pm_idle)(void);
  107. /*
  108. * Called from the core idle loop.
  109. */
  110. void arch_cpu_idle(void)
  111. {
  112. if (arm_pm_idle)
  113. arm_pm_idle();
  114. else
  115. cpu_do_idle();
  116. local_irq_enable();
  117. }
  118. void arch_cpu_idle_prepare(void)
  119. {
  120. local_fiq_enable();
  121. }
  122. void arch_cpu_idle_enter(void)
  123. {
  124. ledtrig_cpu(CPU_LED_IDLE_START);
  125. #ifdef CONFIG_PL310_ERRATA_769419
  126. wmb();
  127. #endif
  128. }
  129. void arch_cpu_idle_exit(void)
  130. {
  131. ledtrig_cpu(CPU_LED_IDLE_END);
  132. }
  133. #ifdef CONFIG_HOTPLUG_CPU
  134. void arch_cpu_idle_dead(void)
  135. {
  136. cpu_die();
  137. }
  138. #endif
  139. /*
  140. * Called by kexec, immediately prior to machine_kexec().
  141. *
  142. * This must completely disable all secondary CPUs; simply causing those CPUs
  143. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  144. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  145. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  146. * functionality embodied in disable_nonboot_cpus() to achieve this.
  147. */
  148. void machine_shutdown(void)
  149. {
  150. disable_nonboot_cpus();
  151. }
  152. /*
  153. * Halting simply requires that the secondary CPUs stop performing any
  154. * activity (executing tasks, handling interrupts). smp_send_stop()
  155. * achieves this.
  156. */
  157. void machine_halt(void)
  158. {
  159. local_irq_disable();
  160. smp_send_stop();
  161. local_irq_disable();
  162. while (1);
  163. }
  164. /*
  165. * Power-off simply requires that the secondary CPUs stop performing any
  166. * activity (executing tasks, handling interrupts). smp_send_stop()
  167. * achieves this. When the system power is turned off, it will take all CPUs
  168. * with it.
  169. */
  170. void machine_power_off(void)
  171. {
  172. local_irq_disable();
  173. smp_send_stop();
  174. if (pm_power_off)
  175. pm_power_off();
  176. }
  177. /*
  178. * Restart requires that the secondary CPUs stop performing any activity
  179. * while the primary CPU resets the system. Systems with a single CPU can
  180. * use soft_restart() as their machine descriptor's .restart hook, since that
  181. * will cause the only available CPU to reset. Systems with multiple CPUs must
  182. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  183. * This is required so that any code running after reset on the primary CPU
  184. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  185. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  186. * to use. Implementing such co-ordination would be essentially impossible.
  187. */
  188. void machine_restart(char *cmd)
  189. {
  190. local_irq_disable();
  191. smp_send_stop();
  192. if (arm_pm_restart)
  193. arm_pm_restart(reboot_mode, cmd);
  194. else
  195. do_kernel_restart(cmd);
  196. /* Give a grace period for failure to restart of 1s */
  197. mdelay(1000);
  198. /* Whoops - the platform was unable to reboot. Tell the user! */
  199. printk("Reboot failed -- System halted\n");
  200. local_irq_disable();
  201. while (1);
  202. }
  203. void __show_regs(struct pt_regs *regs)
  204. {
  205. unsigned long flags;
  206. char buf[64];
  207. show_regs_print_info(KERN_DEFAULT);
  208. print_symbol("PC is at %s\n", instruction_pointer(regs));
  209. print_symbol("LR is at %s\n", regs->ARM_lr);
  210. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  211. "sp : %08lx ip : %08lx fp : %08lx\n",
  212. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  213. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  214. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  215. regs->ARM_r10, regs->ARM_r9,
  216. regs->ARM_r8);
  217. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  218. regs->ARM_r7, regs->ARM_r6,
  219. regs->ARM_r5, regs->ARM_r4);
  220. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  221. regs->ARM_r3, regs->ARM_r2,
  222. regs->ARM_r1, regs->ARM_r0);
  223. flags = regs->ARM_cpsr;
  224. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  225. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  226. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  227. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  228. buf[4] = '\0';
  229. #ifndef CONFIG_CPU_V7M
  230. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  231. buf, interrupts_enabled(regs) ? "n" : "ff",
  232. fast_interrupts_enabled(regs) ? "n" : "ff",
  233. processor_modes[processor_mode(regs)],
  234. isa_modes[isa_mode(regs)],
  235. get_fs() == get_ds() ? "kernel" : "user");
  236. #else
  237. printk("xPSR: %08lx\n", regs->ARM_cpsr);
  238. #endif
  239. #ifdef CONFIG_CPU_CP15
  240. {
  241. unsigned int ctrl;
  242. buf[0] = '\0';
  243. #ifdef CONFIG_CPU_CP15_MMU
  244. {
  245. unsigned int transbase, dac;
  246. asm("mrc p15, 0, %0, c2, c0\n\t"
  247. "mrc p15, 0, %1, c3, c0\n"
  248. : "=r" (transbase), "=r" (dac));
  249. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  250. transbase, dac);
  251. }
  252. #endif
  253. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  254. printk("Control: %08x%s\n", ctrl, buf);
  255. }
  256. #endif
  257. }
  258. void show_regs(struct pt_regs * regs)
  259. {
  260. __show_regs(regs);
  261. dump_stack();
  262. }
  263. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  264. EXPORT_SYMBOL_GPL(thread_notify_head);
  265. /*
  266. * Free current thread data structures etc..
  267. */
  268. void exit_thread(void)
  269. {
  270. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  271. }
  272. void flush_thread(void)
  273. {
  274. struct thread_info *thread = current_thread_info();
  275. struct task_struct *tsk = current;
  276. flush_ptrace_hw_breakpoint(tsk);
  277. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  278. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  279. memset(&thread->fpstate, 0, sizeof(union fp_state));
  280. flush_tls();
  281. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  282. }
  283. void release_thread(struct task_struct *dead_task)
  284. {
  285. }
  286. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  287. int
  288. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  289. unsigned long stk_sz, struct task_struct *p)
  290. {
  291. struct thread_info *thread = task_thread_info(p);
  292. struct pt_regs *childregs = task_pt_regs(p);
  293. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  294. if (likely(!(p->flags & PF_KTHREAD))) {
  295. *childregs = *current_pt_regs();
  296. childregs->ARM_r0 = 0;
  297. if (stack_start)
  298. childregs->ARM_sp = stack_start;
  299. } else {
  300. memset(childregs, 0, sizeof(struct pt_regs));
  301. thread->cpu_context.r4 = stk_sz;
  302. thread->cpu_context.r5 = stack_start;
  303. childregs->ARM_cpsr = SVC_MODE;
  304. }
  305. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  306. thread->cpu_context.sp = (unsigned long)childregs;
  307. clear_ptrace_hw_breakpoint(p);
  308. if (clone_flags & CLONE_SETTLS)
  309. thread->tp_value[0] = childregs->ARM_r3;
  310. thread->tp_value[1] = get_tpuser();
  311. thread_notify(THREAD_NOTIFY_COPY, thread);
  312. return 0;
  313. }
  314. /*
  315. * Fill in the task's elfregs structure for a core dump.
  316. */
  317. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  318. {
  319. elf_core_copy_regs(elfregs, task_pt_regs(t));
  320. return 1;
  321. }
  322. /*
  323. * fill in the fpe structure for a core dump...
  324. */
  325. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  326. {
  327. struct thread_info *thread = current_thread_info();
  328. int used_math = thread->used_cp[1] | thread->used_cp[2];
  329. if (used_math)
  330. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  331. return used_math != 0;
  332. }
  333. EXPORT_SYMBOL(dump_fpu);
  334. unsigned long get_wchan(struct task_struct *p)
  335. {
  336. struct stackframe frame;
  337. unsigned long stack_page;
  338. int count = 0;
  339. if (!p || p == current || p->state == TASK_RUNNING)
  340. return 0;
  341. frame.fp = thread_saved_fp(p);
  342. frame.sp = thread_saved_sp(p);
  343. frame.lr = 0; /* recovered from the stack */
  344. frame.pc = thread_saved_pc(p);
  345. stack_page = (unsigned long)task_stack_page(p);
  346. do {
  347. if (frame.sp < stack_page ||
  348. frame.sp >= stack_page + THREAD_SIZE ||
  349. unwind_frame(&frame) < 0)
  350. return 0;
  351. if (!in_sched_functions(frame.pc))
  352. return frame.pc;
  353. } while (count ++ < 16);
  354. return 0;
  355. }
  356. unsigned long arch_randomize_brk(struct mm_struct *mm)
  357. {
  358. unsigned long range_end = mm->brk + 0x02000000;
  359. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  360. }
  361. #ifdef CONFIG_MMU
  362. #ifdef CONFIG_KUSER_HELPERS
  363. /*
  364. * The vectors page is always readable from user space for the
  365. * atomic helpers. Insert it into the gate_vma so that it is visible
  366. * through ptrace and /proc/<pid>/mem.
  367. */
  368. static struct vm_area_struct gate_vma = {
  369. .vm_start = 0xffff0000,
  370. .vm_end = 0xffff0000 + PAGE_SIZE,
  371. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  372. };
  373. static int __init gate_vma_init(void)
  374. {
  375. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  376. return 0;
  377. }
  378. arch_initcall(gate_vma_init);
  379. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  380. {
  381. return &gate_vma;
  382. }
  383. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  384. {
  385. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  386. }
  387. int in_gate_area_no_mm(unsigned long addr)
  388. {
  389. return in_gate_area(NULL, addr);
  390. }
  391. #define is_gate_vma(vma) ((vma) == &gate_vma)
  392. #else
  393. #define is_gate_vma(vma) 0
  394. #endif
  395. const char *arch_vma_name(struct vm_area_struct *vma)
  396. {
  397. return is_gate_vma(vma) ? "[vectors]" : NULL;
  398. }
  399. /* If possible, provide a placement hint at a random offset from the
  400. * stack for the signal page.
  401. */
  402. static unsigned long sigpage_addr(const struct mm_struct *mm,
  403. unsigned int npages)
  404. {
  405. unsigned long offset;
  406. unsigned long first;
  407. unsigned long last;
  408. unsigned long addr;
  409. unsigned int slots;
  410. first = PAGE_ALIGN(mm->start_stack);
  411. last = TASK_SIZE - (npages << PAGE_SHIFT);
  412. /* No room after stack? */
  413. if (first > last)
  414. return 0;
  415. /* Just enough room? */
  416. if (first == last)
  417. return first;
  418. slots = ((last - first) >> PAGE_SHIFT) + 1;
  419. offset = get_random_int() % slots;
  420. addr = first + (offset << PAGE_SHIFT);
  421. return addr;
  422. }
  423. static struct page *signal_page;
  424. extern struct page *get_signal_page(void);
  425. static const struct vm_special_mapping sigpage_mapping = {
  426. .name = "[sigpage]",
  427. .pages = &signal_page,
  428. };
  429. int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
  430. {
  431. struct mm_struct *mm = current->mm;
  432. struct vm_area_struct *vma;
  433. unsigned long addr;
  434. unsigned long hint;
  435. int ret = 0;
  436. if (!signal_page)
  437. signal_page = get_signal_page();
  438. if (!signal_page)
  439. return -ENOMEM;
  440. down_write(&mm->mmap_sem);
  441. hint = sigpage_addr(mm, 1);
  442. addr = get_unmapped_area(NULL, hint, PAGE_SIZE, 0, 0);
  443. if (IS_ERR_VALUE(addr)) {
  444. ret = addr;
  445. goto up_fail;
  446. }
  447. vma = _install_special_mapping(mm, addr, PAGE_SIZE,
  448. VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
  449. &sigpage_mapping);
  450. if (IS_ERR(vma)) {
  451. ret = PTR_ERR(vma);
  452. goto up_fail;
  453. }
  454. mm->context.sigpage = addr;
  455. up_fail:
  456. up_write(&mm->mmap_sem);
  457. return ret;
  458. }
  459. #endif