init_64.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/memory.h>
  30. #include <linux/memory_hotplug.h>
  31. #include <linux/memremap.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <linux/kcore.h>
  35. #include <asm/processor.h>
  36. #include <asm/bios_ebda.h>
  37. #include <linux/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/dma.h>
  41. #include <asm/fixmap.h>
  42. #include <asm/e820/api.h>
  43. #include <asm/apic.h>
  44. #include <asm/tlb.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/proto.h>
  47. #include <asm/smp.h>
  48. #include <asm/sections.h>
  49. #include <asm/kdebug.h>
  50. #include <asm/numa.h>
  51. #include <asm/set_memory.h>
  52. #include <asm/init.h>
  53. #include <asm/uv/uv.h>
  54. #include <asm/setup.h>
  55. #include "mm_internal.h"
  56. #include "ident_map.c"
  57. /*
  58. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  59. * physical space so we can cache the place of the first one and move
  60. * around without checking the pgd every time.
  61. */
  62. /* Bits supported by the hardware: */
  63. pteval_t __supported_pte_mask __read_mostly = ~0;
  64. /* Bits allowed in normal kernel mappings: */
  65. pteval_t __default_kernel_pte_mask __read_mostly = ~0;
  66. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  67. /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
  68. EXPORT_SYMBOL(__default_kernel_pte_mask);
  69. int force_personality32;
  70. /*
  71. * noexec32=on|off
  72. * Control non executable heap for 32bit processes.
  73. * To control the stack too use noexec=off
  74. *
  75. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  76. * off PROT_READ implies PROT_EXEC
  77. */
  78. static int __init nonx32_setup(char *str)
  79. {
  80. if (!strcmp(str, "on"))
  81. force_personality32 &= ~READ_IMPLIES_EXEC;
  82. else if (!strcmp(str, "off"))
  83. force_personality32 |= READ_IMPLIES_EXEC;
  84. return 1;
  85. }
  86. __setup("noexec32=", nonx32_setup);
  87. static void sync_global_pgds_l5(unsigned long start, unsigned long end)
  88. {
  89. unsigned long addr;
  90. for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
  91. const pgd_t *pgd_ref = pgd_offset_k(addr);
  92. struct page *page;
  93. /* Check for overflow */
  94. if (addr < start)
  95. break;
  96. if (pgd_none(*pgd_ref))
  97. continue;
  98. spin_lock(&pgd_lock);
  99. list_for_each_entry(page, &pgd_list, lru) {
  100. pgd_t *pgd;
  101. spinlock_t *pgt_lock;
  102. pgd = (pgd_t *)page_address(page) + pgd_index(addr);
  103. /* the pgt_lock only for Xen */
  104. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  105. spin_lock(pgt_lock);
  106. if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
  107. BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
  108. if (pgd_none(*pgd))
  109. set_pgd(pgd, *pgd_ref);
  110. spin_unlock(pgt_lock);
  111. }
  112. spin_unlock(&pgd_lock);
  113. }
  114. }
  115. static void sync_global_pgds_l4(unsigned long start, unsigned long end)
  116. {
  117. unsigned long addr;
  118. for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
  119. pgd_t *pgd_ref = pgd_offset_k(addr);
  120. const p4d_t *p4d_ref;
  121. struct page *page;
  122. /*
  123. * With folded p4d, pgd_none() is always false, we need to
  124. * handle synchonization on p4d level.
  125. */
  126. MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
  127. p4d_ref = p4d_offset(pgd_ref, addr);
  128. if (p4d_none(*p4d_ref))
  129. continue;
  130. spin_lock(&pgd_lock);
  131. list_for_each_entry(page, &pgd_list, lru) {
  132. pgd_t *pgd;
  133. p4d_t *p4d;
  134. spinlock_t *pgt_lock;
  135. pgd = (pgd_t *)page_address(page) + pgd_index(addr);
  136. p4d = p4d_offset(pgd, addr);
  137. /* the pgt_lock only for Xen */
  138. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  139. spin_lock(pgt_lock);
  140. if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
  141. BUG_ON(p4d_page_vaddr(*p4d)
  142. != p4d_page_vaddr(*p4d_ref));
  143. if (p4d_none(*p4d))
  144. set_p4d(p4d, *p4d_ref);
  145. spin_unlock(pgt_lock);
  146. }
  147. spin_unlock(&pgd_lock);
  148. }
  149. }
  150. /*
  151. * When memory was added make sure all the processes MM have
  152. * suitable PGD entries in the local PGD level page.
  153. */
  154. void sync_global_pgds(unsigned long start, unsigned long end)
  155. {
  156. if (pgtable_l5_enabled())
  157. sync_global_pgds_l5(start, end);
  158. else
  159. sync_global_pgds_l4(start, end);
  160. }
  161. /*
  162. * NOTE: This function is marked __ref because it calls __init function
  163. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  164. */
  165. static __ref void *spp_getpage(void)
  166. {
  167. void *ptr;
  168. if (after_bootmem)
  169. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  170. else
  171. ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
  172. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  173. panic("set_pte_phys: cannot allocate page data %s\n",
  174. after_bootmem ? "after bootmem" : "");
  175. }
  176. pr_debug("spp_getpage %p\n", ptr);
  177. return ptr;
  178. }
  179. static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
  180. {
  181. if (pgd_none(*pgd)) {
  182. p4d_t *p4d = (p4d_t *)spp_getpage();
  183. pgd_populate(&init_mm, pgd, p4d);
  184. if (p4d != p4d_offset(pgd, 0))
  185. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  186. p4d, p4d_offset(pgd, 0));
  187. }
  188. return p4d_offset(pgd, vaddr);
  189. }
  190. static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
  191. {
  192. if (p4d_none(*p4d)) {
  193. pud_t *pud = (pud_t *)spp_getpage();
  194. p4d_populate(&init_mm, p4d, pud);
  195. if (pud != pud_offset(p4d, 0))
  196. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  197. pud, pud_offset(p4d, 0));
  198. }
  199. return pud_offset(p4d, vaddr);
  200. }
  201. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  202. {
  203. if (pud_none(*pud)) {
  204. pmd_t *pmd = (pmd_t *) spp_getpage();
  205. pud_populate(&init_mm, pud, pmd);
  206. if (pmd != pmd_offset(pud, 0))
  207. printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
  208. pmd, pmd_offset(pud, 0));
  209. }
  210. return pmd_offset(pud, vaddr);
  211. }
  212. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  213. {
  214. if (pmd_none(*pmd)) {
  215. pte_t *pte = (pte_t *) spp_getpage();
  216. pmd_populate_kernel(&init_mm, pmd, pte);
  217. if (pte != pte_offset_kernel(pmd, 0))
  218. printk(KERN_ERR "PAGETABLE BUG #03!\n");
  219. }
  220. return pte_offset_kernel(pmd, vaddr);
  221. }
  222. static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
  223. {
  224. pmd_t *pmd = fill_pmd(pud, vaddr);
  225. pte_t *pte = fill_pte(pmd, vaddr);
  226. set_pte(pte, new_pte);
  227. /*
  228. * It's enough to flush this one mapping.
  229. * (PGE mappings get flushed as well)
  230. */
  231. __flush_tlb_one_kernel(vaddr);
  232. }
  233. void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
  234. {
  235. p4d_t *p4d = p4d_page + p4d_index(vaddr);
  236. pud_t *pud = fill_pud(p4d, vaddr);
  237. __set_pte_vaddr(pud, vaddr, new_pte);
  238. }
  239. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  240. {
  241. pud_t *pud = pud_page + pud_index(vaddr);
  242. __set_pte_vaddr(pud, vaddr, new_pte);
  243. }
  244. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  245. {
  246. pgd_t *pgd;
  247. p4d_t *p4d_page;
  248. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  249. pgd = pgd_offset_k(vaddr);
  250. if (pgd_none(*pgd)) {
  251. printk(KERN_ERR
  252. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  253. return;
  254. }
  255. p4d_page = p4d_offset(pgd, 0);
  256. set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
  257. }
  258. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  259. {
  260. pgd_t *pgd;
  261. p4d_t *p4d;
  262. pud_t *pud;
  263. pgd = pgd_offset_k(vaddr);
  264. p4d = fill_p4d(pgd, vaddr);
  265. pud = fill_pud(p4d, vaddr);
  266. return fill_pmd(pud, vaddr);
  267. }
  268. pte_t * __init populate_extra_pte(unsigned long vaddr)
  269. {
  270. pmd_t *pmd;
  271. pmd = populate_extra_pmd(vaddr);
  272. return fill_pte(pmd, vaddr);
  273. }
  274. /*
  275. * Create large page table mappings for a range of physical addresses.
  276. */
  277. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  278. enum page_cache_mode cache)
  279. {
  280. pgd_t *pgd;
  281. p4d_t *p4d;
  282. pud_t *pud;
  283. pmd_t *pmd;
  284. pgprot_t prot;
  285. pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
  286. pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
  287. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  288. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  289. pgd = pgd_offset_k((unsigned long)__va(phys));
  290. if (pgd_none(*pgd)) {
  291. p4d = (p4d_t *) spp_getpage();
  292. set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
  293. _PAGE_USER));
  294. }
  295. p4d = p4d_offset(pgd, (unsigned long)__va(phys));
  296. if (p4d_none(*p4d)) {
  297. pud = (pud_t *) spp_getpage();
  298. set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
  299. _PAGE_USER));
  300. }
  301. pud = pud_offset(p4d, (unsigned long)__va(phys));
  302. if (pud_none(*pud)) {
  303. pmd = (pmd_t *) spp_getpage();
  304. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  305. _PAGE_USER));
  306. }
  307. pmd = pmd_offset(pud, phys);
  308. BUG_ON(!pmd_none(*pmd));
  309. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  310. }
  311. }
  312. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  313. {
  314. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
  315. }
  316. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  317. {
  318. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
  319. }
  320. /*
  321. * The head.S code sets up the kernel high mapping:
  322. *
  323. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  324. *
  325. * phys_base holds the negative offset to the kernel, which is added
  326. * to the compile time generated pmds. This results in invalid pmds up
  327. * to the point where we hit the physaddr 0 mapping.
  328. *
  329. * We limit the mappings to the region from _text to _brk_end. _brk_end
  330. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  331. * well, as they are located before _text:
  332. */
  333. void __init cleanup_highmap(void)
  334. {
  335. unsigned long vaddr = __START_KERNEL_map;
  336. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  337. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  338. pmd_t *pmd = level2_kernel_pgt;
  339. /*
  340. * Native path, max_pfn_mapped is not set yet.
  341. * Xen has valid max_pfn_mapped set in
  342. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  343. */
  344. if (max_pfn_mapped)
  345. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  346. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  347. if (pmd_none(*pmd))
  348. continue;
  349. if (vaddr < (unsigned long) _text || vaddr > end)
  350. set_pmd(pmd, __pmd(0));
  351. }
  352. }
  353. /*
  354. * Create PTE level page table mapping for physical addresses.
  355. * It returns the last physical address mapped.
  356. */
  357. static unsigned long __meminit
  358. phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
  359. pgprot_t prot)
  360. {
  361. unsigned long pages = 0, paddr_next;
  362. unsigned long paddr_last = paddr_end;
  363. pte_t *pte;
  364. int i;
  365. pte = pte_page + pte_index(paddr);
  366. i = pte_index(paddr);
  367. for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
  368. paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
  369. if (paddr >= paddr_end) {
  370. if (!after_bootmem &&
  371. !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
  372. E820_TYPE_RAM) &&
  373. !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
  374. E820_TYPE_RESERVED_KERN))
  375. set_pte(pte, __pte(0));
  376. continue;
  377. }
  378. /*
  379. * We will re-use the existing mapping.
  380. * Xen for example has some special requirements, like mapping
  381. * pagetable pages as RO. So assume someone who pre-setup
  382. * these mappings are more intelligent.
  383. */
  384. if (!pte_none(*pte)) {
  385. if (!after_bootmem)
  386. pages++;
  387. continue;
  388. }
  389. if (0)
  390. pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
  391. pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  392. pages++;
  393. set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
  394. paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
  395. }
  396. update_page_count(PG_LEVEL_4K, pages);
  397. return paddr_last;
  398. }
  399. /*
  400. * Create PMD level page table mapping for physical addresses. The virtual
  401. * and physical address have to be aligned at this level.
  402. * It returns the last physical address mapped.
  403. */
  404. static unsigned long __meminit
  405. phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
  406. unsigned long page_size_mask, pgprot_t prot)
  407. {
  408. unsigned long pages = 0, paddr_next;
  409. unsigned long paddr_last = paddr_end;
  410. int i = pmd_index(paddr);
  411. for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
  412. pmd_t *pmd = pmd_page + pmd_index(paddr);
  413. pte_t *pte;
  414. pgprot_t new_prot = prot;
  415. paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
  416. if (paddr >= paddr_end) {
  417. if (!after_bootmem &&
  418. !e820__mapped_any(paddr & PMD_MASK, paddr_next,
  419. E820_TYPE_RAM) &&
  420. !e820__mapped_any(paddr & PMD_MASK, paddr_next,
  421. E820_TYPE_RESERVED_KERN))
  422. set_pmd(pmd, __pmd(0));
  423. continue;
  424. }
  425. if (!pmd_none(*pmd)) {
  426. if (!pmd_large(*pmd)) {
  427. spin_lock(&init_mm.page_table_lock);
  428. pte = (pte_t *)pmd_page_vaddr(*pmd);
  429. paddr_last = phys_pte_init(pte, paddr,
  430. paddr_end, prot);
  431. spin_unlock(&init_mm.page_table_lock);
  432. continue;
  433. }
  434. /*
  435. * If we are ok with PG_LEVEL_2M mapping, then we will
  436. * use the existing mapping,
  437. *
  438. * Otherwise, we will split the large page mapping but
  439. * use the same existing protection bits except for
  440. * large page, so that we don't violate Intel's TLB
  441. * Application note (317080) which says, while changing
  442. * the page sizes, new and old translations should
  443. * not differ with respect to page frame and
  444. * attributes.
  445. */
  446. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  447. if (!after_bootmem)
  448. pages++;
  449. paddr_last = paddr_next;
  450. continue;
  451. }
  452. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  453. }
  454. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  455. pages++;
  456. spin_lock(&init_mm.page_table_lock);
  457. set_pte((pte_t *)pmd,
  458. pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
  459. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  460. spin_unlock(&init_mm.page_table_lock);
  461. paddr_last = paddr_next;
  462. continue;
  463. }
  464. pte = alloc_low_page();
  465. paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
  466. spin_lock(&init_mm.page_table_lock);
  467. pmd_populate_kernel(&init_mm, pmd, pte);
  468. spin_unlock(&init_mm.page_table_lock);
  469. }
  470. update_page_count(PG_LEVEL_2M, pages);
  471. return paddr_last;
  472. }
  473. /*
  474. * Create PUD level page table mapping for physical addresses. The virtual
  475. * and physical address do not have to be aligned at this level. KASLR can
  476. * randomize virtual addresses up to this level.
  477. * It returns the last physical address mapped.
  478. */
  479. static unsigned long __meminit
  480. phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
  481. unsigned long page_size_mask)
  482. {
  483. unsigned long pages = 0, paddr_next;
  484. unsigned long paddr_last = paddr_end;
  485. unsigned long vaddr = (unsigned long)__va(paddr);
  486. int i = pud_index(vaddr);
  487. for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
  488. pud_t *pud;
  489. pmd_t *pmd;
  490. pgprot_t prot = PAGE_KERNEL;
  491. vaddr = (unsigned long)__va(paddr);
  492. pud = pud_page + pud_index(vaddr);
  493. paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
  494. if (paddr >= paddr_end) {
  495. if (!after_bootmem &&
  496. !e820__mapped_any(paddr & PUD_MASK, paddr_next,
  497. E820_TYPE_RAM) &&
  498. !e820__mapped_any(paddr & PUD_MASK, paddr_next,
  499. E820_TYPE_RESERVED_KERN))
  500. set_pud(pud, __pud(0));
  501. continue;
  502. }
  503. if (!pud_none(*pud)) {
  504. if (!pud_large(*pud)) {
  505. pmd = pmd_offset(pud, 0);
  506. paddr_last = phys_pmd_init(pmd, paddr,
  507. paddr_end,
  508. page_size_mask,
  509. prot);
  510. __flush_tlb_all();
  511. continue;
  512. }
  513. /*
  514. * If we are ok with PG_LEVEL_1G mapping, then we will
  515. * use the existing mapping.
  516. *
  517. * Otherwise, we will split the gbpage mapping but use
  518. * the same existing protection bits except for large
  519. * page, so that we don't violate Intel's TLB
  520. * Application note (317080) which says, while changing
  521. * the page sizes, new and old translations should
  522. * not differ with respect to page frame and
  523. * attributes.
  524. */
  525. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  526. if (!after_bootmem)
  527. pages++;
  528. paddr_last = paddr_next;
  529. continue;
  530. }
  531. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  532. }
  533. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  534. pages++;
  535. spin_lock(&init_mm.page_table_lock);
  536. set_pte((pte_t *)pud,
  537. pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
  538. PAGE_KERNEL_LARGE));
  539. spin_unlock(&init_mm.page_table_lock);
  540. paddr_last = paddr_next;
  541. continue;
  542. }
  543. pmd = alloc_low_page();
  544. paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
  545. page_size_mask, prot);
  546. spin_lock(&init_mm.page_table_lock);
  547. pud_populate(&init_mm, pud, pmd);
  548. spin_unlock(&init_mm.page_table_lock);
  549. }
  550. __flush_tlb_all();
  551. update_page_count(PG_LEVEL_1G, pages);
  552. return paddr_last;
  553. }
  554. static unsigned long __meminit
  555. phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
  556. unsigned long page_size_mask)
  557. {
  558. unsigned long paddr_next, paddr_last = paddr_end;
  559. unsigned long vaddr = (unsigned long)__va(paddr);
  560. int i = p4d_index(vaddr);
  561. if (!pgtable_l5_enabled())
  562. return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask);
  563. for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) {
  564. p4d_t *p4d;
  565. pud_t *pud;
  566. vaddr = (unsigned long)__va(paddr);
  567. p4d = p4d_page + p4d_index(vaddr);
  568. paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
  569. if (paddr >= paddr_end) {
  570. if (!after_bootmem &&
  571. !e820__mapped_any(paddr & P4D_MASK, paddr_next,
  572. E820_TYPE_RAM) &&
  573. !e820__mapped_any(paddr & P4D_MASK, paddr_next,
  574. E820_TYPE_RESERVED_KERN))
  575. set_p4d(p4d, __p4d(0));
  576. continue;
  577. }
  578. if (!p4d_none(*p4d)) {
  579. pud = pud_offset(p4d, 0);
  580. paddr_last = phys_pud_init(pud, paddr,
  581. paddr_end,
  582. page_size_mask);
  583. __flush_tlb_all();
  584. continue;
  585. }
  586. pud = alloc_low_page();
  587. paddr_last = phys_pud_init(pud, paddr, paddr_end,
  588. page_size_mask);
  589. spin_lock(&init_mm.page_table_lock);
  590. p4d_populate(&init_mm, p4d, pud);
  591. spin_unlock(&init_mm.page_table_lock);
  592. }
  593. __flush_tlb_all();
  594. return paddr_last;
  595. }
  596. /*
  597. * Create page table mapping for the physical memory for specific physical
  598. * addresses. The virtual and physical addresses have to be aligned on PMD level
  599. * down. It returns the last physical address mapped.
  600. */
  601. unsigned long __meminit
  602. kernel_physical_mapping_init(unsigned long paddr_start,
  603. unsigned long paddr_end,
  604. unsigned long page_size_mask)
  605. {
  606. bool pgd_changed = false;
  607. unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
  608. paddr_last = paddr_end;
  609. vaddr = (unsigned long)__va(paddr_start);
  610. vaddr_end = (unsigned long)__va(paddr_end);
  611. vaddr_start = vaddr;
  612. for (; vaddr < vaddr_end; vaddr = vaddr_next) {
  613. pgd_t *pgd = pgd_offset_k(vaddr);
  614. p4d_t *p4d;
  615. vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
  616. if (pgd_val(*pgd)) {
  617. p4d = (p4d_t *)pgd_page_vaddr(*pgd);
  618. paddr_last = phys_p4d_init(p4d, __pa(vaddr),
  619. __pa(vaddr_end),
  620. page_size_mask);
  621. continue;
  622. }
  623. p4d = alloc_low_page();
  624. paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
  625. page_size_mask);
  626. spin_lock(&init_mm.page_table_lock);
  627. if (pgtable_l5_enabled())
  628. pgd_populate(&init_mm, pgd, p4d);
  629. else
  630. p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
  631. spin_unlock(&init_mm.page_table_lock);
  632. pgd_changed = true;
  633. }
  634. if (pgd_changed)
  635. sync_global_pgds(vaddr_start, vaddr_end - 1);
  636. __flush_tlb_all();
  637. return paddr_last;
  638. }
  639. #ifndef CONFIG_NUMA
  640. void __init initmem_init(void)
  641. {
  642. memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
  643. }
  644. #endif
  645. void __init paging_init(void)
  646. {
  647. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  648. sparse_init();
  649. /*
  650. * clear the default setting with node 0
  651. * note: don't use nodes_clear here, that is really clearing when
  652. * numa support is not compiled in, and later node_set_state
  653. * will not set it back.
  654. */
  655. node_clear_state(0, N_MEMORY);
  656. if (N_MEMORY != N_NORMAL_MEMORY)
  657. node_clear_state(0, N_NORMAL_MEMORY);
  658. zone_sizes_init();
  659. }
  660. /*
  661. * Memory hotplug specific functions
  662. */
  663. #ifdef CONFIG_MEMORY_HOTPLUG
  664. /*
  665. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  666. * updating.
  667. */
  668. static void update_end_of_memory_vars(u64 start, u64 size)
  669. {
  670. unsigned long end_pfn = PFN_UP(start + size);
  671. if (end_pfn > max_pfn) {
  672. max_pfn = end_pfn;
  673. max_low_pfn = end_pfn;
  674. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  675. }
  676. }
  677. int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
  678. struct vmem_altmap *altmap, bool want_memblock)
  679. {
  680. int ret;
  681. ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
  682. WARN_ON_ONCE(ret);
  683. /* update max_pfn, max_low_pfn and high_memory */
  684. update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
  685. nr_pages << PAGE_SHIFT);
  686. return ret;
  687. }
  688. int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
  689. bool want_memblock)
  690. {
  691. unsigned long start_pfn = start >> PAGE_SHIFT;
  692. unsigned long nr_pages = size >> PAGE_SHIFT;
  693. init_memory_mapping(start, start + size);
  694. return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
  695. }
  696. #define PAGE_INUSE 0xFD
  697. static void __meminit free_pagetable(struct page *page, int order)
  698. {
  699. unsigned long magic;
  700. unsigned int nr_pages = 1 << order;
  701. /* bootmem page has reserved flag */
  702. if (PageReserved(page)) {
  703. __ClearPageReserved(page);
  704. magic = (unsigned long)page->freelist;
  705. if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
  706. while (nr_pages--)
  707. put_page_bootmem(page++);
  708. } else
  709. while (nr_pages--)
  710. free_reserved_page(page++);
  711. } else
  712. free_pages((unsigned long)page_address(page), order);
  713. }
  714. static void __meminit free_hugepage_table(struct page *page,
  715. struct vmem_altmap *altmap)
  716. {
  717. if (altmap)
  718. vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
  719. else
  720. free_pagetable(page, get_order(PMD_SIZE));
  721. }
  722. static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
  723. {
  724. pte_t *pte;
  725. int i;
  726. for (i = 0; i < PTRS_PER_PTE; i++) {
  727. pte = pte_start + i;
  728. if (!pte_none(*pte))
  729. return;
  730. }
  731. /* free a pte talbe */
  732. free_pagetable(pmd_page(*pmd), 0);
  733. spin_lock(&init_mm.page_table_lock);
  734. pmd_clear(pmd);
  735. spin_unlock(&init_mm.page_table_lock);
  736. }
  737. static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
  738. {
  739. pmd_t *pmd;
  740. int i;
  741. for (i = 0; i < PTRS_PER_PMD; i++) {
  742. pmd = pmd_start + i;
  743. if (!pmd_none(*pmd))
  744. return;
  745. }
  746. /* free a pmd talbe */
  747. free_pagetable(pud_page(*pud), 0);
  748. spin_lock(&init_mm.page_table_lock);
  749. pud_clear(pud);
  750. spin_unlock(&init_mm.page_table_lock);
  751. }
  752. static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
  753. {
  754. pud_t *pud;
  755. int i;
  756. for (i = 0; i < PTRS_PER_PUD; i++) {
  757. pud = pud_start + i;
  758. if (!pud_none(*pud))
  759. return;
  760. }
  761. /* free a pud talbe */
  762. free_pagetable(p4d_page(*p4d), 0);
  763. spin_lock(&init_mm.page_table_lock);
  764. p4d_clear(p4d);
  765. spin_unlock(&init_mm.page_table_lock);
  766. }
  767. static void __meminit
  768. remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
  769. bool direct)
  770. {
  771. unsigned long next, pages = 0;
  772. pte_t *pte;
  773. void *page_addr;
  774. phys_addr_t phys_addr;
  775. pte = pte_start + pte_index(addr);
  776. for (; addr < end; addr = next, pte++) {
  777. next = (addr + PAGE_SIZE) & PAGE_MASK;
  778. if (next > end)
  779. next = end;
  780. if (!pte_present(*pte))
  781. continue;
  782. /*
  783. * We mapped [0,1G) memory as identity mapping when
  784. * initializing, in arch/x86/kernel/head_64.S. These
  785. * pagetables cannot be removed.
  786. */
  787. phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
  788. if (phys_addr < (phys_addr_t)0x40000000)
  789. return;
  790. if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
  791. /*
  792. * Do not free direct mapping pages since they were
  793. * freed when offlining, or simplely not in use.
  794. */
  795. if (!direct)
  796. free_pagetable(pte_page(*pte), 0);
  797. spin_lock(&init_mm.page_table_lock);
  798. pte_clear(&init_mm, addr, pte);
  799. spin_unlock(&init_mm.page_table_lock);
  800. /* For non-direct mapping, pages means nothing. */
  801. pages++;
  802. } else {
  803. /*
  804. * If we are here, we are freeing vmemmap pages since
  805. * direct mapped memory ranges to be freed are aligned.
  806. *
  807. * If we are not removing the whole page, it means
  808. * other page structs in this page are being used and
  809. * we canot remove them. So fill the unused page_structs
  810. * with 0xFD, and remove the page when it is wholly
  811. * filled with 0xFD.
  812. */
  813. memset((void *)addr, PAGE_INUSE, next - addr);
  814. page_addr = page_address(pte_page(*pte));
  815. if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
  816. free_pagetable(pte_page(*pte), 0);
  817. spin_lock(&init_mm.page_table_lock);
  818. pte_clear(&init_mm, addr, pte);
  819. spin_unlock(&init_mm.page_table_lock);
  820. }
  821. }
  822. }
  823. /* Call free_pte_table() in remove_pmd_table(). */
  824. flush_tlb_all();
  825. if (direct)
  826. update_page_count(PG_LEVEL_4K, -pages);
  827. }
  828. static void __meminit
  829. remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
  830. bool direct, struct vmem_altmap *altmap)
  831. {
  832. unsigned long next, pages = 0;
  833. pte_t *pte_base;
  834. pmd_t *pmd;
  835. void *page_addr;
  836. pmd = pmd_start + pmd_index(addr);
  837. for (; addr < end; addr = next, pmd++) {
  838. next = pmd_addr_end(addr, end);
  839. if (!pmd_present(*pmd))
  840. continue;
  841. if (pmd_large(*pmd)) {
  842. if (IS_ALIGNED(addr, PMD_SIZE) &&
  843. IS_ALIGNED(next, PMD_SIZE)) {
  844. if (!direct)
  845. free_hugepage_table(pmd_page(*pmd),
  846. altmap);
  847. spin_lock(&init_mm.page_table_lock);
  848. pmd_clear(pmd);
  849. spin_unlock(&init_mm.page_table_lock);
  850. pages++;
  851. } else {
  852. /* If here, we are freeing vmemmap pages. */
  853. memset((void *)addr, PAGE_INUSE, next - addr);
  854. page_addr = page_address(pmd_page(*pmd));
  855. if (!memchr_inv(page_addr, PAGE_INUSE,
  856. PMD_SIZE)) {
  857. free_hugepage_table(pmd_page(*pmd),
  858. altmap);
  859. spin_lock(&init_mm.page_table_lock);
  860. pmd_clear(pmd);
  861. spin_unlock(&init_mm.page_table_lock);
  862. }
  863. }
  864. continue;
  865. }
  866. pte_base = (pte_t *)pmd_page_vaddr(*pmd);
  867. remove_pte_table(pte_base, addr, next, direct);
  868. free_pte_table(pte_base, pmd);
  869. }
  870. /* Call free_pmd_table() in remove_pud_table(). */
  871. if (direct)
  872. update_page_count(PG_LEVEL_2M, -pages);
  873. }
  874. static void __meminit
  875. remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
  876. struct vmem_altmap *altmap, bool direct)
  877. {
  878. unsigned long next, pages = 0;
  879. pmd_t *pmd_base;
  880. pud_t *pud;
  881. void *page_addr;
  882. pud = pud_start + pud_index(addr);
  883. for (; addr < end; addr = next, pud++) {
  884. next = pud_addr_end(addr, end);
  885. if (!pud_present(*pud))
  886. continue;
  887. if (pud_large(*pud)) {
  888. if (IS_ALIGNED(addr, PUD_SIZE) &&
  889. IS_ALIGNED(next, PUD_SIZE)) {
  890. if (!direct)
  891. free_pagetable(pud_page(*pud),
  892. get_order(PUD_SIZE));
  893. spin_lock(&init_mm.page_table_lock);
  894. pud_clear(pud);
  895. spin_unlock(&init_mm.page_table_lock);
  896. pages++;
  897. } else {
  898. /* If here, we are freeing vmemmap pages. */
  899. memset((void *)addr, PAGE_INUSE, next - addr);
  900. page_addr = page_address(pud_page(*pud));
  901. if (!memchr_inv(page_addr, PAGE_INUSE,
  902. PUD_SIZE)) {
  903. free_pagetable(pud_page(*pud),
  904. get_order(PUD_SIZE));
  905. spin_lock(&init_mm.page_table_lock);
  906. pud_clear(pud);
  907. spin_unlock(&init_mm.page_table_lock);
  908. }
  909. }
  910. continue;
  911. }
  912. pmd_base = pmd_offset(pud, 0);
  913. remove_pmd_table(pmd_base, addr, next, direct, altmap);
  914. free_pmd_table(pmd_base, pud);
  915. }
  916. if (direct)
  917. update_page_count(PG_LEVEL_1G, -pages);
  918. }
  919. static void __meminit
  920. remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
  921. struct vmem_altmap *altmap, bool direct)
  922. {
  923. unsigned long next, pages = 0;
  924. pud_t *pud_base;
  925. p4d_t *p4d;
  926. p4d = p4d_start + p4d_index(addr);
  927. for (; addr < end; addr = next, p4d++) {
  928. next = p4d_addr_end(addr, end);
  929. if (!p4d_present(*p4d))
  930. continue;
  931. BUILD_BUG_ON(p4d_large(*p4d));
  932. pud_base = pud_offset(p4d, 0);
  933. remove_pud_table(pud_base, addr, next, altmap, direct);
  934. /*
  935. * For 4-level page tables we do not want to free PUDs, but in the
  936. * 5-level case we should free them. This code will have to change
  937. * to adapt for boot-time switching between 4 and 5 level page tables.
  938. */
  939. if (pgtable_l5_enabled())
  940. free_pud_table(pud_base, p4d);
  941. }
  942. if (direct)
  943. update_page_count(PG_LEVEL_512G, -pages);
  944. }
  945. /* start and end are both virtual address. */
  946. static void __meminit
  947. remove_pagetable(unsigned long start, unsigned long end, bool direct,
  948. struct vmem_altmap *altmap)
  949. {
  950. unsigned long next;
  951. unsigned long addr;
  952. pgd_t *pgd;
  953. p4d_t *p4d;
  954. for (addr = start; addr < end; addr = next) {
  955. next = pgd_addr_end(addr, end);
  956. pgd = pgd_offset_k(addr);
  957. if (!pgd_present(*pgd))
  958. continue;
  959. p4d = p4d_offset(pgd, 0);
  960. remove_p4d_table(p4d, addr, next, altmap, direct);
  961. }
  962. flush_tlb_all();
  963. }
  964. void __ref vmemmap_free(unsigned long start, unsigned long end,
  965. struct vmem_altmap *altmap)
  966. {
  967. remove_pagetable(start, end, false, altmap);
  968. }
  969. #ifdef CONFIG_MEMORY_HOTREMOVE
  970. static void __meminit
  971. kernel_physical_mapping_remove(unsigned long start, unsigned long end)
  972. {
  973. start = (unsigned long)__va(start);
  974. end = (unsigned long)__va(end);
  975. remove_pagetable(start, end, true, NULL);
  976. }
  977. int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
  978. {
  979. unsigned long start_pfn = start >> PAGE_SHIFT;
  980. unsigned long nr_pages = size >> PAGE_SHIFT;
  981. struct page *page = pfn_to_page(start_pfn);
  982. struct zone *zone;
  983. int ret;
  984. /* With altmap the first mapped page is offset from @start */
  985. if (altmap)
  986. page += vmem_altmap_offset(altmap);
  987. zone = page_zone(page);
  988. ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
  989. WARN_ON_ONCE(ret);
  990. kernel_physical_mapping_remove(start, start + size);
  991. return ret;
  992. }
  993. #endif
  994. #endif /* CONFIG_MEMORY_HOTPLUG */
  995. static struct kcore_list kcore_vsyscall;
  996. static void __init register_page_bootmem_info(void)
  997. {
  998. #ifdef CONFIG_NUMA
  999. int i;
  1000. for_each_online_node(i)
  1001. register_page_bootmem_info_node(NODE_DATA(i));
  1002. #endif
  1003. }
  1004. void __init mem_init(void)
  1005. {
  1006. pci_iommu_alloc();
  1007. /* clear_bss() already clear the empty_zero_page */
  1008. /* this will put all memory onto the freelists */
  1009. free_all_bootmem();
  1010. after_bootmem = 1;
  1011. x86_init.hyper.init_after_bootmem();
  1012. /*
  1013. * Must be done after boot memory is put on freelist, because here we
  1014. * might set fields in deferred struct pages that have not yet been
  1015. * initialized, and free_all_bootmem() initializes all the reserved
  1016. * deferred pages for us.
  1017. */
  1018. register_page_bootmem_info();
  1019. /* Register memory areas for /proc/kcore */
  1020. if (get_gate_vma(&init_mm))
  1021. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
  1022. mem_init_print_info(NULL);
  1023. }
  1024. int kernel_set_to_readonly;
  1025. void set_kernel_text_rw(void)
  1026. {
  1027. unsigned long start = PFN_ALIGN(_text);
  1028. unsigned long end = PFN_ALIGN(__stop___ex_table);
  1029. if (!kernel_set_to_readonly)
  1030. return;
  1031. pr_debug("Set kernel text: %lx - %lx for read write\n",
  1032. start, end);
  1033. /*
  1034. * Make the kernel identity mapping for text RW. Kernel text
  1035. * mapping will always be RO. Refer to the comment in
  1036. * static_protections() in pageattr.c
  1037. */
  1038. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  1039. }
  1040. void set_kernel_text_ro(void)
  1041. {
  1042. unsigned long start = PFN_ALIGN(_text);
  1043. unsigned long end = PFN_ALIGN(__stop___ex_table);
  1044. if (!kernel_set_to_readonly)
  1045. return;
  1046. pr_debug("Set kernel text: %lx - %lx for read only\n",
  1047. start, end);
  1048. /*
  1049. * Set the kernel identity mapping for text RO.
  1050. */
  1051. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  1052. }
  1053. void mark_rodata_ro(void)
  1054. {
  1055. unsigned long start = PFN_ALIGN(_text);
  1056. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  1057. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  1058. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  1059. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  1060. unsigned long all_end;
  1061. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  1062. (end - start) >> 10);
  1063. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  1064. kernel_set_to_readonly = 1;
  1065. /*
  1066. * The rodata/data/bss/brk section (but not the kernel text!)
  1067. * should also be not-executable.
  1068. *
  1069. * We align all_end to PMD_SIZE because the existing mapping
  1070. * is a full PMD. If we would align _brk_end to PAGE_SIZE we
  1071. * split the PMD and the reminder between _brk_end and the end
  1072. * of the PMD will remain mapped executable.
  1073. *
  1074. * Any PMD which was setup after the one which covers _brk_end
  1075. * has been zapped already via cleanup_highmem().
  1076. */
  1077. all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
  1078. set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
  1079. #ifdef CONFIG_CPA_DEBUG
  1080. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  1081. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  1082. printk(KERN_INFO "Testing CPA: again\n");
  1083. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  1084. #endif
  1085. free_kernel_image_pages((void *)text_end, (void *)rodata_start);
  1086. free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
  1087. debug_checkwx();
  1088. }
  1089. int kern_addr_valid(unsigned long addr)
  1090. {
  1091. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  1092. pgd_t *pgd;
  1093. p4d_t *p4d;
  1094. pud_t *pud;
  1095. pmd_t *pmd;
  1096. pte_t *pte;
  1097. if (above != 0 && above != -1UL)
  1098. return 0;
  1099. pgd = pgd_offset_k(addr);
  1100. if (pgd_none(*pgd))
  1101. return 0;
  1102. p4d = p4d_offset(pgd, addr);
  1103. if (p4d_none(*p4d))
  1104. return 0;
  1105. pud = pud_offset(p4d, addr);
  1106. if (pud_none(*pud))
  1107. return 0;
  1108. if (pud_large(*pud))
  1109. return pfn_valid(pud_pfn(*pud));
  1110. pmd = pmd_offset(pud, addr);
  1111. if (pmd_none(*pmd))
  1112. return 0;
  1113. if (pmd_large(*pmd))
  1114. return pfn_valid(pmd_pfn(*pmd));
  1115. pte = pte_offset_kernel(pmd, addr);
  1116. if (pte_none(*pte))
  1117. return 0;
  1118. return pfn_valid(pte_pfn(*pte));
  1119. }
  1120. /*
  1121. * Block size is the minimum amount of memory which can be hotplugged or
  1122. * hotremoved. It must be power of two and must be equal or larger than
  1123. * MIN_MEMORY_BLOCK_SIZE.
  1124. */
  1125. #define MAX_BLOCK_SIZE (2UL << 30)
  1126. /* Amount of ram needed to start using large blocks */
  1127. #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
  1128. /* Adjustable memory block size */
  1129. static unsigned long set_memory_block_size;
  1130. int __init set_memory_block_size_order(unsigned int order)
  1131. {
  1132. unsigned long size = 1UL << order;
  1133. if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
  1134. return -EINVAL;
  1135. set_memory_block_size = size;
  1136. return 0;
  1137. }
  1138. static unsigned long probe_memory_block_size(void)
  1139. {
  1140. unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
  1141. unsigned long bz;
  1142. /* If memory block size has been set, then use it */
  1143. bz = set_memory_block_size;
  1144. if (bz)
  1145. goto done;
  1146. /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
  1147. if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
  1148. bz = MIN_MEMORY_BLOCK_SIZE;
  1149. goto done;
  1150. }
  1151. /* Find the largest allowed block size that aligns to memory end */
  1152. for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
  1153. if (IS_ALIGNED(boot_mem_end, bz))
  1154. break;
  1155. }
  1156. done:
  1157. pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
  1158. return bz;
  1159. }
  1160. static unsigned long memory_block_size_probed;
  1161. unsigned long memory_block_size_bytes(void)
  1162. {
  1163. if (!memory_block_size_probed)
  1164. memory_block_size_probed = probe_memory_block_size();
  1165. return memory_block_size_probed;
  1166. }
  1167. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1168. /*
  1169. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  1170. */
  1171. static long __meminitdata addr_start, addr_end;
  1172. static void __meminitdata *p_start, *p_end;
  1173. static int __meminitdata node_start;
  1174. static int __meminit vmemmap_populate_hugepages(unsigned long start,
  1175. unsigned long end, int node, struct vmem_altmap *altmap)
  1176. {
  1177. unsigned long addr;
  1178. unsigned long next;
  1179. pgd_t *pgd;
  1180. p4d_t *p4d;
  1181. pud_t *pud;
  1182. pmd_t *pmd;
  1183. for (addr = start; addr < end; addr = next) {
  1184. next = pmd_addr_end(addr, end);
  1185. pgd = vmemmap_pgd_populate(addr, node);
  1186. if (!pgd)
  1187. return -ENOMEM;
  1188. p4d = vmemmap_p4d_populate(pgd, addr, node);
  1189. if (!p4d)
  1190. return -ENOMEM;
  1191. pud = vmemmap_pud_populate(p4d, addr, node);
  1192. if (!pud)
  1193. return -ENOMEM;
  1194. pmd = pmd_offset(pud, addr);
  1195. if (pmd_none(*pmd)) {
  1196. void *p;
  1197. if (altmap)
  1198. p = altmap_alloc_block_buf(PMD_SIZE, altmap);
  1199. else
  1200. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  1201. if (p) {
  1202. pte_t entry;
  1203. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1204. PAGE_KERNEL_LARGE);
  1205. set_pmd(pmd, __pmd(pte_val(entry)));
  1206. /* check to see if we have contiguous blocks */
  1207. if (p_end != p || node_start != node) {
  1208. if (p_start)
  1209. pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1210. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1211. addr_start = addr;
  1212. node_start = node;
  1213. p_start = p;
  1214. }
  1215. addr_end = addr + PMD_SIZE;
  1216. p_end = p + PMD_SIZE;
  1217. continue;
  1218. } else if (altmap)
  1219. return -ENOMEM; /* no fallback */
  1220. } else if (pmd_large(*pmd)) {
  1221. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1222. continue;
  1223. }
  1224. if (vmemmap_populate_basepages(addr, next, node))
  1225. return -ENOMEM;
  1226. }
  1227. return 0;
  1228. }
  1229. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
  1230. struct vmem_altmap *altmap)
  1231. {
  1232. int err;
  1233. if (boot_cpu_has(X86_FEATURE_PSE))
  1234. err = vmemmap_populate_hugepages(start, end, node, altmap);
  1235. else if (altmap) {
  1236. pr_err_once("%s: no cpu support for altmap allocations\n",
  1237. __func__);
  1238. err = -ENOMEM;
  1239. } else
  1240. err = vmemmap_populate_basepages(start, end, node);
  1241. if (!err)
  1242. sync_global_pgds(start, end - 1);
  1243. return err;
  1244. }
  1245. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
  1246. void register_page_bootmem_memmap(unsigned long section_nr,
  1247. struct page *start_page, unsigned long nr_pages)
  1248. {
  1249. unsigned long addr = (unsigned long)start_page;
  1250. unsigned long end = (unsigned long)(start_page + nr_pages);
  1251. unsigned long next;
  1252. pgd_t *pgd;
  1253. p4d_t *p4d;
  1254. pud_t *pud;
  1255. pmd_t *pmd;
  1256. unsigned int nr_pmd_pages;
  1257. struct page *page;
  1258. for (; addr < end; addr = next) {
  1259. pte_t *pte = NULL;
  1260. pgd = pgd_offset_k(addr);
  1261. if (pgd_none(*pgd)) {
  1262. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1263. continue;
  1264. }
  1265. get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
  1266. p4d = p4d_offset(pgd, addr);
  1267. if (p4d_none(*p4d)) {
  1268. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1269. continue;
  1270. }
  1271. get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
  1272. pud = pud_offset(p4d, addr);
  1273. if (pud_none(*pud)) {
  1274. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1275. continue;
  1276. }
  1277. get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
  1278. if (!boot_cpu_has(X86_FEATURE_PSE)) {
  1279. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1280. pmd = pmd_offset(pud, addr);
  1281. if (pmd_none(*pmd))
  1282. continue;
  1283. get_page_bootmem(section_nr, pmd_page(*pmd),
  1284. MIX_SECTION_INFO);
  1285. pte = pte_offset_kernel(pmd, addr);
  1286. if (pte_none(*pte))
  1287. continue;
  1288. get_page_bootmem(section_nr, pte_page(*pte),
  1289. SECTION_INFO);
  1290. } else {
  1291. next = pmd_addr_end(addr, end);
  1292. pmd = pmd_offset(pud, addr);
  1293. if (pmd_none(*pmd))
  1294. continue;
  1295. nr_pmd_pages = 1 << get_order(PMD_SIZE);
  1296. page = pmd_page(*pmd);
  1297. while (nr_pmd_pages--)
  1298. get_page_bootmem(section_nr, page++,
  1299. SECTION_INFO);
  1300. }
  1301. }
  1302. }
  1303. #endif
  1304. void __meminit vmemmap_populate_print_last(void)
  1305. {
  1306. if (p_start) {
  1307. pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1308. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1309. p_start = NULL;
  1310. p_end = NULL;
  1311. node_start = 0;
  1312. }
  1313. }
  1314. #endif