sock.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/timer.h>
  104. #include <linux/string.h>
  105. #include <linux/sockios.h>
  106. #include <linux/net.h>
  107. #include <linux/mm.h>
  108. #include <linux/slab.h>
  109. #include <linux/interrupt.h>
  110. #include <linux/poll.h>
  111. #include <linux/tcp.h>
  112. #include <linux/init.h>
  113. #include <linux/highmem.h>
  114. #include <linux/user_namespace.h>
  115. #include <linux/static_key.h>
  116. #include <linux/memcontrol.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/uaccess.h>
  119. #include <linux/netdevice.h>
  120. #include <net/protocol.h>
  121. #include <linux/skbuff.h>
  122. #include <net/net_namespace.h>
  123. #include <net/request_sock.h>
  124. #include <net/sock.h>
  125. #include <linux/net_tstamp.h>
  126. #include <net/xfrm.h>
  127. #include <linux/ipsec.h>
  128. #include <net/cls_cgroup.h>
  129. #include <net/netprio_cgroup.h>
  130. #include <linux/sock_diag.h>
  131. #include <linux/filter.h>
  132. #include <trace/events/sock.h>
  133. #ifdef CONFIG_INET
  134. #include <net/tcp.h>
  135. #endif
  136. #include <net/busy_poll.h>
  137. static DEFINE_MUTEX(proto_list_mutex);
  138. static LIST_HEAD(proto_list);
  139. /**
  140. * sk_ns_capable - General socket capability test
  141. * @sk: Socket to use a capability on or through
  142. * @user_ns: The user namespace of the capability to use
  143. * @cap: The capability to use
  144. *
  145. * Test to see if the opener of the socket had when the socket was
  146. * created and the current process has the capability @cap in the user
  147. * namespace @user_ns.
  148. */
  149. bool sk_ns_capable(const struct sock *sk,
  150. struct user_namespace *user_ns, int cap)
  151. {
  152. return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
  153. ns_capable(user_ns, cap);
  154. }
  155. EXPORT_SYMBOL(sk_ns_capable);
  156. /**
  157. * sk_capable - Socket global capability test
  158. * @sk: Socket to use a capability on or through
  159. * @cap: The global capability to use
  160. *
  161. * Test to see if the opener of the socket had when the socket was
  162. * created and the current process has the capability @cap in all user
  163. * namespaces.
  164. */
  165. bool sk_capable(const struct sock *sk, int cap)
  166. {
  167. return sk_ns_capable(sk, &init_user_ns, cap);
  168. }
  169. EXPORT_SYMBOL(sk_capable);
  170. /**
  171. * sk_net_capable - Network namespace socket capability test
  172. * @sk: Socket to use a capability on or through
  173. * @cap: The capability to use
  174. *
  175. * Test to see if the opener of the socket had when the socket was created
  176. * and the current process has the capability @cap over the network namespace
  177. * the socket is a member of.
  178. */
  179. bool sk_net_capable(const struct sock *sk, int cap)
  180. {
  181. return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
  182. }
  183. EXPORT_SYMBOL(sk_net_capable);
  184. #ifdef CONFIG_MEMCG_KMEM
  185. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  186. {
  187. struct proto *proto;
  188. int ret = 0;
  189. mutex_lock(&proto_list_mutex);
  190. list_for_each_entry(proto, &proto_list, node) {
  191. if (proto->init_cgroup) {
  192. ret = proto->init_cgroup(memcg, ss);
  193. if (ret)
  194. goto out;
  195. }
  196. }
  197. mutex_unlock(&proto_list_mutex);
  198. return ret;
  199. out:
  200. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  201. if (proto->destroy_cgroup)
  202. proto->destroy_cgroup(memcg);
  203. mutex_unlock(&proto_list_mutex);
  204. return ret;
  205. }
  206. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  207. {
  208. struct proto *proto;
  209. mutex_lock(&proto_list_mutex);
  210. list_for_each_entry_reverse(proto, &proto_list, node)
  211. if (proto->destroy_cgroup)
  212. proto->destroy_cgroup(memcg);
  213. mutex_unlock(&proto_list_mutex);
  214. }
  215. #endif
  216. /*
  217. * Each address family might have different locking rules, so we have
  218. * one slock key per address family:
  219. */
  220. static struct lock_class_key af_family_keys[AF_MAX];
  221. static struct lock_class_key af_family_slock_keys[AF_MAX];
  222. #if defined(CONFIG_MEMCG_KMEM)
  223. struct static_key memcg_socket_limit_enabled;
  224. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  225. #endif
  226. /*
  227. * Make lock validator output more readable. (we pre-construct these
  228. * strings build-time, so that runtime initialization of socket
  229. * locks is fast):
  230. */
  231. static const char *const af_family_key_strings[AF_MAX+1] = {
  232. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  233. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  234. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  235. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  236. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  237. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  238. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  239. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  240. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  241. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  242. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  243. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  244. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  245. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
  246. };
  247. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  248. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  249. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  250. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  251. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  252. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  253. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  254. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  255. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  256. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  257. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  258. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  259. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  260. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  261. "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
  262. };
  263. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  264. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  265. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  266. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  267. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  268. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  269. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  270. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  271. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  272. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  273. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  274. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  275. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  276. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  277. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
  278. };
  279. /*
  280. * sk_callback_lock locking rules are per-address-family,
  281. * so split the lock classes by using a per-AF key:
  282. */
  283. static struct lock_class_key af_callback_keys[AF_MAX];
  284. /* Take into consideration the size of the struct sk_buff overhead in the
  285. * determination of these values, since that is non-constant across
  286. * platforms. This makes socket queueing behavior and performance
  287. * not depend upon such differences.
  288. */
  289. #define _SK_MEM_PACKETS 256
  290. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  291. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  292. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  293. /* Run time adjustable parameters. */
  294. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  295. EXPORT_SYMBOL(sysctl_wmem_max);
  296. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  297. EXPORT_SYMBOL(sysctl_rmem_max);
  298. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  299. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  300. /* Maximal space eaten by iovec or ancillary data plus some space */
  301. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  302. EXPORT_SYMBOL(sysctl_optmem_max);
  303. int sysctl_tstamp_allow_data __read_mostly = 1;
  304. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  305. EXPORT_SYMBOL_GPL(memalloc_socks);
  306. /**
  307. * sk_set_memalloc - sets %SOCK_MEMALLOC
  308. * @sk: socket to set it on
  309. *
  310. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  311. * It's the responsibility of the admin to adjust min_free_kbytes
  312. * to meet the requirements
  313. */
  314. void sk_set_memalloc(struct sock *sk)
  315. {
  316. sock_set_flag(sk, SOCK_MEMALLOC);
  317. sk->sk_allocation |= __GFP_MEMALLOC;
  318. static_key_slow_inc(&memalloc_socks);
  319. }
  320. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  321. void sk_clear_memalloc(struct sock *sk)
  322. {
  323. sock_reset_flag(sk, SOCK_MEMALLOC);
  324. sk->sk_allocation &= ~__GFP_MEMALLOC;
  325. static_key_slow_dec(&memalloc_socks);
  326. /*
  327. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  328. * progress of swapping. SOCK_MEMALLOC may be cleared while
  329. * it has rmem allocations due to the last swapfile being deactivated
  330. * but there is a risk that the socket is unusable due to exceeding
  331. * the rmem limits. Reclaim the reserves and obey rmem limits again.
  332. */
  333. sk_mem_reclaim(sk);
  334. }
  335. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  336. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  337. {
  338. int ret;
  339. unsigned long pflags = current->flags;
  340. /* these should have been dropped before queueing */
  341. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  342. current->flags |= PF_MEMALLOC;
  343. ret = sk->sk_backlog_rcv(sk, skb);
  344. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  345. return ret;
  346. }
  347. EXPORT_SYMBOL(__sk_backlog_rcv);
  348. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  349. {
  350. struct timeval tv;
  351. if (optlen < sizeof(tv))
  352. return -EINVAL;
  353. if (copy_from_user(&tv, optval, sizeof(tv)))
  354. return -EFAULT;
  355. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  356. return -EDOM;
  357. if (tv.tv_sec < 0) {
  358. static int warned __read_mostly;
  359. *timeo_p = 0;
  360. if (warned < 10 && net_ratelimit()) {
  361. warned++;
  362. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  363. __func__, current->comm, task_pid_nr(current));
  364. }
  365. return 0;
  366. }
  367. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  368. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  369. return 0;
  370. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  371. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  372. return 0;
  373. }
  374. static void sock_warn_obsolete_bsdism(const char *name)
  375. {
  376. static int warned;
  377. static char warncomm[TASK_COMM_LEN];
  378. if (strcmp(warncomm, current->comm) && warned < 5) {
  379. strcpy(warncomm, current->comm);
  380. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  381. warncomm, name);
  382. warned++;
  383. }
  384. }
  385. static bool sock_needs_netstamp(const struct sock *sk)
  386. {
  387. switch (sk->sk_family) {
  388. case AF_UNSPEC:
  389. case AF_UNIX:
  390. return false;
  391. default:
  392. return true;
  393. }
  394. }
  395. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  396. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  397. {
  398. if (sk->sk_flags & flags) {
  399. sk->sk_flags &= ~flags;
  400. if (sock_needs_netstamp(sk) &&
  401. !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  402. net_disable_timestamp();
  403. }
  404. }
  405. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  406. {
  407. int err;
  408. unsigned long flags;
  409. struct sk_buff_head *list = &sk->sk_receive_queue;
  410. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  411. atomic_inc(&sk->sk_drops);
  412. trace_sock_rcvqueue_full(sk, skb);
  413. return -ENOMEM;
  414. }
  415. err = sk_filter(sk, skb);
  416. if (err)
  417. return err;
  418. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  419. atomic_inc(&sk->sk_drops);
  420. return -ENOBUFS;
  421. }
  422. skb->dev = NULL;
  423. skb_set_owner_r(skb, sk);
  424. /* we escape from rcu protected region, make sure we dont leak
  425. * a norefcounted dst
  426. */
  427. skb_dst_force(skb);
  428. spin_lock_irqsave(&list->lock, flags);
  429. sock_skb_set_dropcount(sk, skb);
  430. __skb_queue_tail(list, skb);
  431. spin_unlock_irqrestore(&list->lock, flags);
  432. if (!sock_flag(sk, SOCK_DEAD))
  433. sk->sk_data_ready(sk);
  434. return 0;
  435. }
  436. EXPORT_SYMBOL(sock_queue_rcv_skb);
  437. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  438. {
  439. int rc = NET_RX_SUCCESS;
  440. if (sk_filter(sk, skb))
  441. goto discard_and_relse;
  442. skb->dev = NULL;
  443. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  444. atomic_inc(&sk->sk_drops);
  445. goto discard_and_relse;
  446. }
  447. if (nested)
  448. bh_lock_sock_nested(sk);
  449. else
  450. bh_lock_sock(sk);
  451. if (!sock_owned_by_user(sk)) {
  452. /*
  453. * trylock + unlock semantics:
  454. */
  455. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  456. rc = sk_backlog_rcv(sk, skb);
  457. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  458. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  459. bh_unlock_sock(sk);
  460. atomic_inc(&sk->sk_drops);
  461. goto discard_and_relse;
  462. }
  463. bh_unlock_sock(sk);
  464. out:
  465. sock_put(sk);
  466. return rc;
  467. discard_and_relse:
  468. kfree_skb(skb);
  469. goto out;
  470. }
  471. EXPORT_SYMBOL(sk_receive_skb);
  472. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  473. {
  474. struct dst_entry *dst = __sk_dst_get(sk);
  475. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  476. sk_tx_queue_clear(sk);
  477. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  478. dst_release(dst);
  479. return NULL;
  480. }
  481. return dst;
  482. }
  483. EXPORT_SYMBOL(__sk_dst_check);
  484. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  485. {
  486. struct dst_entry *dst = sk_dst_get(sk);
  487. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  488. sk_dst_reset(sk);
  489. dst_release(dst);
  490. return NULL;
  491. }
  492. return dst;
  493. }
  494. EXPORT_SYMBOL(sk_dst_check);
  495. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  496. int optlen)
  497. {
  498. int ret = -ENOPROTOOPT;
  499. #ifdef CONFIG_NETDEVICES
  500. struct net *net = sock_net(sk);
  501. char devname[IFNAMSIZ];
  502. int index;
  503. /* Sorry... */
  504. ret = -EPERM;
  505. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  506. goto out;
  507. ret = -EINVAL;
  508. if (optlen < 0)
  509. goto out;
  510. /* Bind this socket to a particular device like "eth0",
  511. * as specified in the passed interface name. If the
  512. * name is "" or the option length is zero the socket
  513. * is not bound.
  514. */
  515. if (optlen > IFNAMSIZ - 1)
  516. optlen = IFNAMSIZ - 1;
  517. memset(devname, 0, sizeof(devname));
  518. ret = -EFAULT;
  519. if (copy_from_user(devname, optval, optlen))
  520. goto out;
  521. index = 0;
  522. if (devname[0] != '\0') {
  523. struct net_device *dev;
  524. rcu_read_lock();
  525. dev = dev_get_by_name_rcu(net, devname);
  526. if (dev)
  527. index = dev->ifindex;
  528. rcu_read_unlock();
  529. ret = -ENODEV;
  530. if (!dev)
  531. goto out;
  532. }
  533. lock_sock(sk);
  534. sk->sk_bound_dev_if = index;
  535. sk_dst_reset(sk);
  536. release_sock(sk);
  537. ret = 0;
  538. out:
  539. #endif
  540. return ret;
  541. }
  542. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  543. int __user *optlen, int len)
  544. {
  545. int ret = -ENOPROTOOPT;
  546. #ifdef CONFIG_NETDEVICES
  547. struct net *net = sock_net(sk);
  548. char devname[IFNAMSIZ];
  549. if (sk->sk_bound_dev_if == 0) {
  550. len = 0;
  551. goto zero;
  552. }
  553. ret = -EINVAL;
  554. if (len < IFNAMSIZ)
  555. goto out;
  556. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  557. if (ret)
  558. goto out;
  559. len = strlen(devname) + 1;
  560. ret = -EFAULT;
  561. if (copy_to_user(optval, devname, len))
  562. goto out;
  563. zero:
  564. ret = -EFAULT;
  565. if (put_user(len, optlen))
  566. goto out;
  567. ret = 0;
  568. out:
  569. #endif
  570. return ret;
  571. }
  572. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  573. {
  574. if (valbool)
  575. sock_set_flag(sk, bit);
  576. else
  577. sock_reset_flag(sk, bit);
  578. }
  579. bool sk_mc_loop(struct sock *sk)
  580. {
  581. if (dev_recursion_level())
  582. return false;
  583. if (!sk)
  584. return true;
  585. switch (sk->sk_family) {
  586. case AF_INET:
  587. return inet_sk(sk)->mc_loop;
  588. #if IS_ENABLED(CONFIG_IPV6)
  589. case AF_INET6:
  590. return inet6_sk(sk)->mc_loop;
  591. #endif
  592. }
  593. WARN_ON(1);
  594. return true;
  595. }
  596. EXPORT_SYMBOL(sk_mc_loop);
  597. /*
  598. * This is meant for all protocols to use and covers goings on
  599. * at the socket level. Everything here is generic.
  600. */
  601. int sock_setsockopt(struct socket *sock, int level, int optname,
  602. char __user *optval, unsigned int optlen)
  603. {
  604. struct sock *sk = sock->sk;
  605. int val;
  606. int valbool;
  607. struct linger ling;
  608. int ret = 0;
  609. /*
  610. * Options without arguments
  611. */
  612. if (optname == SO_BINDTODEVICE)
  613. return sock_setbindtodevice(sk, optval, optlen);
  614. if (optlen < sizeof(int))
  615. return -EINVAL;
  616. if (get_user(val, (int __user *)optval))
  617. return -EFAULT;
  618. valbool = val ? 1 : 0;
  619. lock_sock(sk);
  620. switch (optname) {
  621. case SO_DEBUG:
  622. if (val && !capable(CAP_NET_ADMIN))
  623. ret = -EACCES;
  624. else
  625. sock_valbool_flag(sk, SOCK_DBG, valbool);
  626. break;
  627. case SO_REUSEADDR:
  628. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  629. break;
  630. case SO_REUSEPORT:
  631. sk->sk_reuseport = valbool;
  632. break;
  633. case SO_TYPE:
  634. case SO_PROTOCOL:
  635. case SO_DOMAIN:
  636. case SO_ERROR:
  637. ret = -ENOPROTOOPT;
  638. break;
  639. case SO_DONTROUTE:
  640. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  641. break;
  642. case SO_BROADCAST:
  643. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  644. break;
  645. case SO_SNDBUF:
  646. /* Don't error on this BSD doesn't and if you think
  647. * about it this is right. Otherwise apps have to
  648. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  649. * are treated in BSD as hints
  650. */
  651. val = min_t(u32, val, sysctl_wmem_max);
  652. set_sndbuf:
  653. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  654. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  655. /* Wake up sending tasks if we upped the value. */
  656. sk->sk_write_space(sk);
  657. break;
  658. case SO_SNDBUFFORCE:
  659. if (!capable(CAP_NET_ADMIN)) {
  660. ret = -EPERM;
  661. break;
  662. }
  663. goto set_sndbuf;
  664. case SO_RCVBUF:
  665. /* Don't error on this BSD doesn't and if you think
  666. * about it this is right. Otherwise apps have to
  667. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  668. * are treated in BSD as hints
  669. */
  670. val = min_t(u32, val, sysctl_rmem_max);
  671. set_rcvbuf:
  672. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  673. /*
  674. * We double it on the way in to account for
  675. * "struct sk_buff" etc. overhead. Applications
  676. * assume that the SO_RCVBUF setting they make will
  677. * allow that much actual data to be received on that
  678. * socket.
  679. *
  680. * Applications are unaware that "struct sk_buff" and
  681. * other overheads allocate from the receive buffer
  682. * during socket buffer allocation.
  683. *
  684. * And after considering the possible alternatives,
  685. * returning the value we actually used in getsockopt
  686. * is the most desirable behavior.
  687. */
  688. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  689. break;
  690. case SO_RCVBUFFORCE:
  691. if (!capable(CAP_NET_ADMIN)) {
  692. ret = -EPERM;
  693. break;
  694. }
  695. goto set_rcvbuf;
  696. case SO_KEEPALIVE:
  697. #ifdef CONFIG_INET
  698. if (sk->sk_protocol == IPPROTO_TCP &&
  699. sk->sk_type == SOCK_STREAM)
  700. tcp_set_keepalive(sk, valbool);
  701. #endif
  702. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  703. break;
  704. case SO_OOBINLINE:
  705. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  706. break;
  707. case SO_NO_CHECK:
  708. sk->sk_no_check_tx = valbool;
  709. break;
  710. case SO_PRIORITY:
  711. if ((val >= 0 && val <= 6) ||
  712. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  713. sk->sk_priority = val;
  714. else
  715. ret = -EPERM;
  716. break;
  717. case SO_LINGER:
  718. if (optlen < sizeof(ling)) {
  719. ret = -EINVAL; /* 1003.1g */
  720. break;
  721. }
  722. if (copy_from_user(&ling, optval, sizeof(ling))) {
  723. ret = -EFAULT;
  724. break;
  725. }
  726. if (!ling.l_onoff)
  727. sock_reset_flag(sk, SOCK_LINGER);
  728. else {
  729. #if (BITS_PER_LONG == 32)
  730. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  731. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  732. else
  733. #endif
  734. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  735. sock_set_flag(sk, SOCK_LINGER);
  736. }
  737. break;
  738. case SO_BSDCOMPAT:
  739. sock_warn_obsolete_bsdism("setsockopt");
  740. break;
  741. case SO_PASSCRED:
  742. if (valbool)
  743. set_bit(SOCK_PASSCRED, &sock->flags);
  744. else
  745. clear_bit(SOCK_PASSCRED, &sock->flags);
  746. break;
  747. case SO_TIMESTAMP:
  748. case SO_TIMESTAMPNS:
  749. if (valbool) {
  750. if (optname == SO_TIMESTAMP)
  751. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  752. else
  753. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  754. sock_set_flag(sk, SOCK_RCVTSTAMP);
  755. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  756. } else {
  757. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  758. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  759. }
  760. break;
  761. case SO_TIMESTAMPING:
  762. if (val & ~SOF_TIMESTAMPING_MASK) {
  763. ret = -EINVAL;
  764. break;
  765. }
  766. if (val & SOF_TIMESTAMPING_OPT_ID &&
  767. !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
  768. if (sk->sk_protocol == IPPROTO_TCP) {
  769. if (sk->sk_state != TCP_ESTABLISHED) {
  770. ret = -EINVAL;
  771. break;
  772. }
  773. sk->sk_tskey = tcp_sk(sk)->snd_una;
  774. } else {
  775. sk->sk_tskey = 0;
  776. }
  777. }
  778. sk->sk_tsflags = val;
  779. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  780. sock_enable_timestamp(sk,
  781. SOCK_TIMESTAMPING_RX_SOFTWARE);
  782. else
  783. sock_disable_timestamp(sk,
  784. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  785. break;
  786. case SO_RCVLOWAT:
  787. if (val < 0)
  788. val = INT_MAX;
  789. sk->sk_rcvlowat = val ? : 1;
  790. break;
  791. case SO_RCVTIMEO:
  792. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  793. break;
  794. case SO_SNDTIMEO:
  795. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  796. break;
  797. case SO_ATTACH_FILTER:
  798. ret = -EINVAL;
  799. if (optlen == sizeof(struct sock_fprog)) {
  800. struct sock_fprog fprog;
  801. ret = -EFAULT;
  802. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  803. break;
  804. ret = sk_attach_filter(&fprog, sk);
  805. }
  806. break;
  807. case SO_ATTACH_BPF:
  808. ret = -EINVAL;
  809. if (optlen == sizeof(u32)) {
  810. u32 ufd;
  811. ret = -EFAULT;
  812. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  813. break;
  814. ret = sk_attach_bpf(ufd, sk);
  815. }
  816. break;
  817. case SO_DETACH_FILTER:
  818. ret = sk_detach_filter(sk);
  819. break;
  820. case SO_LOCK_FILTER:
  821. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  822. ret = -EPERM;
  823. else
  824. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  825. break;
  826. case SO_PASSSEC:
  827. if (valbool)
  828. set_bit(SOCK_PASSSEC, &sock->flags);
  829. else
  830. clear_bit(SOCK_PASSSEC, &sock->flags);
  831. break;
  832. case SO_MARK:
  833. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  834. ret = -EPERM;
  835. else
  836. sk->sk_mark = val;
  837. break;
  838. case SO_RXQ_OVFL:
  839. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  840. break;
  841. case SO_WIFI_STATUS:
  842. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  843. break;
  844. case SO_PEEK_OFF:
  845. if (sock->ops->set_peek_off)
  846. ret = sock->ops->set_peek_off(sk, val);
  847. else
  848. ret = -EOPNOTSUPP;
  849. break;
  850. case SO_NOFCS:
  851. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  852. break;
  853. case SO_SELECT_ERR_QUEUE:
  854. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  855. break;
  856. #ifdef CONFIG_NET_RX_BUSY_POLL
  857. case SO_BUSY_POLL:
  858. /* allow unprivileged users to decrease the value */
  859. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  860. ret = -EPERM;
  861. else {
  862. if (val < 0)
  863. ret = -EINVAL;
  864. else
  865. sk->sk_ll_usec = val;
  866. }
  867. break;
  868. #endif
  869. case SO_MAX_PACING_RATE:
  870. sk->sk_max_pacing_rate = val;
  871. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  872. sk->sk_max_pacing_rate);
  873. break;
  874. case SO_INCOMING_CPU:
  875. sk->sk_incoming_cpu = val;
  876. break;
  877. default:
  878. ret = -ENOPROTOOPT;
  879. break;
  880. }
  881. release_sock(sk);
  882. return ret;
  883. }
  884. EXPORT_SYMBOL(sock_setsockopt);
  885. static void cred_to_ucred(struct pid *pid, const struct cred *cred,
  886. struct ucred *ucred)
  887. {
  888. ucred->pid = pid_vnr(pid);
  889. ucred->uid = ucred->gid = -1;
  890. if (cred) {
  891. struct user_namespace *current_ns = current_user_ns();
  892. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  893. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  894. }
  895. }
  896. int sock_getsockopt(struct socket *sock, int level, int optname,
  897. char __user *optval, int __user *optlen)
  898. {
  899. struct sock *sk = sock->sk;
  900. union {
  901. int val;
  902. struct linger ling;
  903. struct timeval tm;
  904. } v;
  905. int lv = sizeof(int);
  906. int len;
  907. if (get_user(len, optlen))
  908. return -EFAULT;
  909. if (len < 0)
  910. return -EINVAL;
  911. memset(&v, 0, sizeof(v));
  912. switch (optname) {
  913. case SO_DEBUG:
  914. v.val = sock_flag(sk, SOCK_DBG);
  915. break;
  916. case SO_DONTROUTE:
  917. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  918. break;
  919. case SO_BROADCAST:
  920. v.val = sock_flag(sk, SOCK_BROADCAST);
  921. break;
  922. case SO_SNDBUF:
  923. v.val = sk->sk_sndbuf;
  924. break;
  925. case SO_RCVBUF:
  926. v.val = sk->sk_rcvbuf;
  927. break;
  928. case SO_REUSEADDR:
  929. v.val = sk->sk_reuse;
  930. break;
  931. case SO_REUSEPORT:
  932. v.val = sk->sk_reuseport;
  933. break;
  934. case SO_KEEPALIVE:
  935. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  936. break;
  937. case SO_TYPE:
  938. v.val = sk->sk_type;
  939. break;
  940. case SO_PROTOCOL:
  941. v.val = sk->sk_protocol;
  942. break;
  943. case SO_DOMAIN:
  944. v.val = sk->sk_family;
  945. break;
  946. case SO_ERROR:
  947. v.val = -sock_error(sk);
  948. if (v.val == 0)
  949. v.val = xchg(&sk->sk_err_soft, 0);
  950. break;
  951. case SO_OOBINLINE:
  952. v.val = sock_flag(sk, SOCK_URGINLINE);
  953. break;
  954. case SO_NO_CHECK:
  955. v.val = sk->sk_no_check_tx;
  956. break;
  957. case SO_PRIORITY:
  958. v.val = sk->sk_priority;
  959. break;
  960. case SO_LINGER:
  961. lv = sizeof(v.ling);
  962. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  963. v.ling.l_linger = sk->sk_lingertime / HZ;
  964. break;
  965. case SO_BSDCOMPAT:
  966. sock_warn_obsolete_bsdism("getsockopt");
  967. break;
  968. case SO_TIMESTAMP:
  969. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  970. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  971. break;
  972. case SO_TIMESTAMPNS:
  973. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  974. break;
  975. case SO_TIMESTAMPING:
  976. v.val = sk->sk_tsflags;
  977. break;
  978. case SO_RCVTIMEO:
  979. lv = sizeof(struct timeval);
  980. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  981. v.tm.tv_sec = 0;
  982. v.tm.tv_usec = 0;
  983. } else {
  984. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  985. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  986. }
  987. break;
  988. case SO_SNDTIMEO:
  989. lv = sizeof(struct timeval);
  990. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  991. v.tm.tv_sec = 0;
  992. v.tm.tv_usec = 0;
  993. } else {
  994. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  995. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  996. }
  997. break;
  998. case SO_RCVLOWAT:
  999. v.val = sk->sk_rcvlowat;
  1000. break;
  1001. case SO_SNDLOWAT:
  1002. v.val = 1;
  1003. break;
  1004. case SO_PASSCRED:
  1005. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  1006. break;
  1007. case SO_PEERCRED:
  1008. {
  1009. struct ucred peercred;
  1010. if (len > sizeof(peercred))
  1011. len = sizeof(peercred);
  1012. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  1013. if (copy_to_user(optval, &peercred, len))
  1014. return -EFAULT;
  1015. goto lenout;
  1016. }
  1017. case SO_PEERNAME:
  1018. {
  1019. char address[128];
  1020. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  1021. return -ENOTCONN;
  1022. if (lv < len)
  1023. return -EINVAL;
  1024. if (copy_to_user(optval, address, len))
  1025. return -EFAULT;
  1026. goto lenout;
  1027. }
  1028. /* Dubious BSD thing... Probably nobody even uses it, but
  1029. * the UNIX standard wants it for whatever reason... -DaveM
  1030. */
  1031. case SO_ACCEPTCONN:
  1032. v.val = sk->sk_state == TCP_LISTEN;
  1033. break;
  1034. case SO_PASSSEC:
  1035. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  1036. break;
  1037. case SO_PEERSEC:
  1038. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  1039. case SO_MARK:
  1040. v.val = sk->sk_mark;
  1041. break;
  1042. case SO_RXQ_OVFL:
  1043. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  1044. break;
  1045. case SO_WIFI_STATUS:
  1046. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  1047. break;
  1048. case SO_PEEK_OFF:
  1049. if (!sock->ops->set_peek_off)
  1050. return -EOPNOTSUPP;
  1051. v.val = sk->sk_peek_off;
  1052. break;
  1053. case SO_NOFCS:
  1054. v.val = sock_flag(sk, SOCK_NOFCS);
  1055. break;
  1056. case SO_BINDTODEVICE:
  1057. return sock_getbindtodevice(sk, optval, optlen, len);
  1058. case SO_GET_FILTER:
  1059. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1060. if (len < 0)
  1061. return len;
  1062. goto lenout;
  1063. case SO_LOCK_FILTER:
  1064. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1065. break;
  1066. case SO_BPF_EXTENSIONS:
  1067. v.val = bpf_tell_extensions();
  1068. break;
  1069. case SO_SELECT_ERR_QUEUE:
  1070. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1071. break;
  1072. #ifdef CONFIG_NET_RX_BUSY_POLL
  1073. case SO_BUSY_POLL:
  1074. v.val = sk->sk_ll_usec;
  1075. break;
  1076. #endif
  1077. case SO_MAX_PACING_RATE:
  1078. v.val = sk->sk_max_pacing_rate;
  1079. break;
  1080. case SO_INCOMING_CPU:
  1081. v.val = sk->sk_incoming_cpu;
  1082. break;
  1083. default:
  1084. /* We implement the SO_SNDLOWAT etc to not be settable
  1085. * (1003.1g 7).
  1086. */
  1087. return -ENOPROTOOPT;
  1088. }
  1089. if (len > lv)
  1090. len = lv;
  1091. if (copy_to_user(optval, &v, len))
  1092. return -EFAULT;
  1093. lenout:
  1094. if (put_user(len, optlen))
  1095. return -EFAULT;
  1096. return 0;
  1097. }
  1098. /*
  1099. * Initialize an sk_lock.
  1100. *
  1101. * (We also register the sk_lock with the lock validator.)
  1102. */
  1103. static inline void sock_lock_init(struct sock *sk)
  1104. {
  1105. sock_lock_init_class_and_name(sk,
  1106. af_family_slock_key_strings[sk->sk_family],
  1107. af_family_slock_keys + sk->sk_family,
  1108. af_family_key_strings[sk->sk_family],
  1109. af_family_keys + sk->sk_family);
  1110. }
  1111. /*
  1112. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1113. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1114. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1115. */
  1116. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1117. {
  1118. #ifdef CONFIG_SECURITY_NETWORK
  1119. void *sptr = nsk->sk_security;
  1120. #endif
  1121. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1122. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1123. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1124. #ifdef CONFIG_SECURITY_NETWORK
  1125. nsk->sk_security = sptr;
  1126. security_sk_clone(osk, nsk);
  1127. #endif
  1128. }
  1129. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1130. {
  1131. unsigned long nulls1, nulls2;
  1132. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1133. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1134. if (nulls1 > nulls2)
  1135. swap(nulls1, nulls2);
  1136. if (nulls1 != 0)
  1137. memset((char *)sk, 0, nulls1);
  1138. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1139. nulls2 - nulls1 - sizeof(void *));
  1140. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1141. size - nulls2 - sizeof(void *));
  1142. }
  1143. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1144. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1145. int family)
  1146. {
  1147. struct sock *sk;
  1148. struct kmem_cache *slab;
  1149. slab = prot->slab;
  1150. if (slab != NULL) {
  1151. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1152. if (!sk)
  1153. return sk;
  1154. if (priority & __GFP_ZERO) {
  1155. if (prot->clear_sk)
  1156. prot->clear_sk(sk, prot->obj_size);
  1157. else
  1158. sk_prot_clear_nulls(sk, prot->obj_size);
  1159. }
  1160. } else
  1161. sk = kmalloc(prot->obj_size, priority);
  1162. if (sk != NULL) {
  1163. kmemcheck_annotate_bitfield(sk, flags);
  1164. if (security_sk_alloc(sk, family, priority))
  1165. goto out_free;
  1166. if (!try_module_get(prot->owner))
  1167. goto out_free_sec;
  1168. sk_tx_queue_clear(sk);
  1169. }
  1170. return sk;
  1171. out_free_sec:
  1172. security_sk_free(sk);
  1173. out_free:
  1174. if (slab != NULL)
  1175. kmem_cache_free(slab, sk);
  1176. else
  1177. kfree(sk);
  1178. return NULL;
  1179. }
  1180. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1181. {
  1182. struct kmem_cache *slab;
  1183. struct module *owner;
  1184. owner = prot->owner;
  1185. slab = prot->slab;
  1186. security_sk_free(sk);
  1187. if (slab != NULL)
  1188. kmem_cache_free(slab, sk);
  1189. else
  1190. kfree(sk);
  1191. module_put(owner);
  1192. }
  1193. /**
  1194. * sk_alloc - All socket objects are allocated here
  1195. * @net: the applicable net namespace
  1196. * @family: protocol family
  1197. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1198. * @prot: struct proto associated with this new sock instance
  1199. * @kern: is this to be a kernel socket?
  1200. */
  1201. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1202. struct proto *prot, int kern)
  1203. {
  1204. struct sock *sk;
  1205. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1206. if (sk) {
  1207. sk->sk_family = family;
  1208. /*
  1209. * See comment in struct sock definition to understand
  1210. * why we need sk_prot_creator -acme
  1211. */
  1212. sk->sk_prot = sk->sk_prot_creator = prot;
  1213. sock_lock_init(sk);
  1214. sk->sk_net_refcnt = kern ? 0 : 1;
  1215. if (likely(sk->sk_net_refcnt))
  1216. get_net(net);
  1217. sock_net_set(sk, net);
  1218. atomic_set(&sk->sk_wmem_alloc, 1);
  1219. sock_update_classid(&sk->sk_cgrp_data);
  1220. sock_update_netprioidx(&sk->sk_cgrp_data);
  1221. }
  1222. return sk;
  1223. }
  1224. EXPORT_SYMBOL(sk_alloc);
  1225. void sk_destruct(struct sock *sk)
  1226. {
  1227. struct sk_filter *filter;
  1228. if (sk->sk_destruct)
  1229. sk->sk_destruct(sk);
  1230. filter = rcu_dereference_check(sk->sk_filter,
  1231. atomic_read(&sk->sk_wmem_alloc) == 0);
  1232. if (filter) {
  1233. sk_filter_uncharge(sk, filter);
  1234. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1235. }
  1236. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1237. if (atomic_read(&sk->sk_omem_alloc))
  1238. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1239. __func__, atomic_read(&sk->sk_omem_alloc));
  1240. if (sk->sk_peer_cred)
  1241. put_cred(sk->sk_peer_cred);
  1242. put_pid(sk->sk_peer_pid);
  1243. if (likely(sk->sk_net_refcnt))
  1244. put_net(sock_net(sk));
  1245. sk_prot_free(sk->sk_prot_creator, sk);
  1246. }
  1247. static void __sk_free(struct sock *sk)
  1248. {
  1249. if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
  1250. sock_diag_broadcast_destroy(sk);
  1251. else
  1252. sk_destruct(sk);
  1253. }
  1254. void sk_free(struct sock *sk)
  1255. {
  1256. /*
  1257. * We subtract one from sk_wmem_alloc and can know if
  1258. * some packets are still in some tx queue.
  1259. * If not null, sock_wfree() will call __sk_free(sk) later
  1260. */
  1261. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1262. __sk_free(sk);
  1263. }
  1264. EXPORT_SYMBOL(sk_free);
  1265. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1266. {
  1267. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1268. sock_update_memcg(newsk);
  1269. }
  1270. /**
  1271. * sk_clone_lock - clone a socket, and lock its clone
  1272. * @sk: the socket to clone
  1273. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1274. *
  1275. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1276. */
  1277. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1278. {
  1279. struct sock *newsk;
  1280. bool is_charged = true;
  1281. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1282. if (newsk != NULL) {
  1283. struct sk_filter *filter;
  1284. sock_copy(newsk, sk);
  1285. /* SANITY */
  1286. if (likely(newsk->sk_net_refcnt))
  1287. get_net(sock_net(newsk));
  1288. sk_node_init(&newsk->sk_node);
  1289. sock_lock_init(newsk);
  1290. bh_lock_sock(newsk);
  1291. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1292. newsk->sk_backlog.len = 0;
  1293. atomic_set(&newsk->sk_rmem_alloc, 0);
  1294. /*
  1295. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1296. */
  1297. atomic_set(&newsk->sk_wmem_alloc, 1);
  1298. atomic_set(&newsk->sk_omem_alloc, 0);
  1299. skb_queue_head_init(&newsk->sk_receive_queue);
  1300. skb_queue_head_init(&newsk->sk_write_queue);
  1301. rwlock_init(&newsk->sk_callback_lock);
  1302. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1303. af_callback_keys + newsk->sk_family,
  1304. af_family_clock_key_strings[newsk->sk_family]);
  1305. newsk->sk_dst_cache = NULL;
  1306. newsk->sk_wmem_queued = 0;
  1307. newsk->sk_forward_alloc = 0;
  1308. newsk->sk_send_head = NULL;
  1309. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1310. sock_reset_flag(newsk, SOCK_DONE);
  1311. skb_queue_head_init(&newsk->sk_error_queue);
  1312. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1313. if (filter != NULL)
  1314. /* though it's an empty new sock, the charging may fail
  1315. * if sysctl_optmem_max was changed between creation of
  1316. * original socket and cloning
  1317. */
  1318. is_charged = sk_filter_charge(newsk, filter);
  1319. if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
  1320. /* It is still raw copy of parent, so invalidate
  1321. * destructor and make plain sk_free() */
  1322. newsk->sk_destruct = NULL;
  1323. bh_unlock_sock(newsk);
  1324. sk_free(newsk);
  1325. newsk = NULL;
  1326. goto out;
  1327. }
  1328. newsk->sk_err = 0;
  1329. newsk->sk_priority = 0;
  1330. newsk->sk_incoming_cpu = raw_smp_processor_id();
  1331. atomic64_set(&newsk->sk_cookie, 0);
  1332. /*
  1333. * Before updating sk_refcnt, we must commit prior changes to memory
  1334. * (Documentation/RCU/rculist_nulls.txt for details)
  1335. */
  1336. smp_wmb();
  1337. atomic_set(&newsk->sk_refcnt, 2);
  1338. /*
  1339. * Increment the counter in the same struct proto as the master
  1340. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1341. * is the same as sk->sk_prot->socks, as this field was copied
  1342. * with memcpy).
  1343. *
  1344. * This _changes_ the previous behaviour, where
  1345. * tcp_create_openreq_child always was incrementing the
  1346. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1347. * to be taken into account in all callers. -acme
  1348. */
  1349. sk_refcnt_debug_inc(newsk);
  1350. sk_set_socket(newsk, NULL);
  1351. newsk->sk_wq = NULL;
  1352. sk_update_clone(sk, newsk);
  1353. if (newsk->sk_prot->sockets_allocated)
  1354. sk_sockets_allocated_inc(newsk);
  1355. if (sock_needs_netstamp(sk) &&
  1356. newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1357. net_enable_timestamp();
  1358. }
  1359. out:
  1360. return newsk;
  1361. }
  1362. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1363. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1364. {
  1365. u32 max_segs = 1;
  1366. sk_dst_set(sk, dst);
  1367. sk->sk_route_caps = dst->dev->features;
  1368. if (sk->sk_route_caps & NETIF_F_GSO)
  1369. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1370. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1371. if (sk_can_gso(sk)) {
  1372. if (dst->header_len) {
  1373. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1374. } else {
  1375. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1376. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1377. max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
  1378. }
  1379. }
  1380. sk->sk_gso_max_segs = max_segs;
  1381. }
  1382. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1383. /*
  1384. * Simple resource managers for sockets.
  1385. */
  1386. /*
  1387. * Write buffer destructor automatically called from kfree_skb.
  1388. */
  1389. void sock_wfree(struct sk_buff *skb)
  1390. {
  1391. struct sock *sk = skb->sk;
  1392. unsigned int len = skb->truesize;
  1393. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1394. /*
  1395. * Keep a reference on sk_wmem_alloc, this will be released
  1396. * after sk_write_space() call
  1397. */
  1398. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1399. sk->sk_write_space(sk);
  1400. len = 1;
  1401. }
  1402. /*
  1403. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1404. * could not do because of in-flight packets
  1405. */
  1406. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1407. __sk_free(sk);
  1408. }
  1409. EXPORT_SYMBOL(sock_wfree);
  1410. void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
  1411. {
  1412. skb_orphan(skb);
  1413. skb->sk = sk;
  1414. #ifdef CONFIG_INET
  1415. if (unlikely(!sk_fullsock(sk))) {
  1416. skb->destructor = sock_edemux;
  1417. sock_hold(sk);
  1418. return;
  1419. }
  1420. #endif
  1421. skb->destructor = sock_wfree;
  1422. skb_set_hash_from_sk(skb, sk);
  1423. /*
  1424. * We used to take a refcount on sk, but following operation
  1425. * is enough to guarantee sk_free() wont free this sock until
  1426. * all in-flight packets are completed
  1427. */
  1428. atomic_add(skb->truesize, &sk->sk_wmem_alloc);
  1429. }
  1430. EXPORT_SYMBOL(skb_set_owner_w);
  1431. void skb_orphan_partial(struct sk_buff *skb)
  1432. {
  1433. /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
  1434. * so we do not completely orphan skb, but transfert all
  1435. * accounted bytes but one, to avoid unexpected reorders.
  1436. */
  1437. if (skb->destructor == sock_wfree
  1438. #ifdef CONFIG_INET
  1439. || skb->destructor == tcp_wfree
  1440. #endif
  1441. ) {
  1442. atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
  1443. skb->truesize = 1;
  1444. } else {
  1445. skb_orphan(skb);
  1446. }
  1447. }
  1448. EXPORT_SYMBOL(skb_orphan_partial);
  1449. /*
  1450. * Read buffer destructor automatically called from kfree_skb.
  1451. */
  1452. void sock_rfree(struct sk_buff *skb)
  1453. {
  1454. struct sock *sk = skb->sk;
  1455. unsigned int len = skb->truesize;
  1456. atomic_sub(len, &sk->sk_rmem_alloc);
  1457. sk_mem_uncharge(sk, len);
  1458. }
  1459. EXPORT_SYMBOL(sock_rfree);
  1460. /*
  1461. * Buffer destructor for skbs that are not used directly in read or write
  1462. * path, e.g. for error handler skbs. Automatically called from kfree_skb.
  1463. */
  1464. void sock_efree(struct sk_buff *skb)
  1465. {
  1466. sock_put(skb->sk);
  1467. }
  1468. EXPORT_SYMBOL(sock_efree);
  1469. kuid_t sock_i_uid(struct sock *sk)
  1470. {
  1471. kuid_t uid;
  1472. read_lock_bh(&sk->sk_callback_lock);
  1473. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1474. read_unlock_bh(&sk->sk_callback_lock);
  1475. return uid;
  1476. }
  1477. EXPORT_SYMBOL(sock_i_uid);
  1478. unsigned long sock_i_ino(struct sock *sk)
  1479. {
  1480. unsigned long ino;
  1481. read_lock_bh(&sk->sk_callback_lock);
  1482. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1483. read_unlock_bh(&sk->sk_callback_lock);
  1484. return ino;
  1485. }
  1486. EXPORT_SYMBOL(sock_i_ino);
  1487. /*
  1488. * Allocate a skb from the socket's send buffer.
  1489. */
  1490. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1491. gfp_t priority)
  1492. {
  1493. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1494. struct sk_buff *skb = alloc_skb(size, priority);
  1495. if (skb) {
  1496. skb_set_owner_w(skb, sk);
  1497. return skb;
  1498. }
  1499. }
  1500. return NULL;
  1501. }
  1502. EXPORT_SYMBOL(sock_wmalloc);
  1503. /*
  1504. * Allocate a memory block from the socket's option memory buffer.
  1505. */
  1506. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1507. {
  1508. if ((unsigned int)size <= sysctl_optmem_max &&
  1509. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1510. void *mem;
  1511. /* First do the add, to avoid the race if kmalloc
  1512. * might sleep.
  1513. */
  1514. atomic_add(size, &sk->sk_omem_alloc);
  1515. mem = kmalloc(size, priority);
  1516. if (mem)
  1517. return mem;
  1518. atomic_sub(size, &sk->sk_omem_alloc);
  1519. }
  1520. return NULL;
  1521. }
  1522. EXPORT_SYMBOL(sock_kmalloc);
  1523. /* Free an option memory block. Note, we actually want the inline
  1524. * here as this allows gcc to detect the nullify and fold away the
  1525. * condition entirely.
  1526. */
  1527. static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
  1528. const bool nullify)
  1529. {
  1530. if (WARN_ON_ONCE(!mem))
  1531. return;
  1532. if (nullify)
  1533. kzfree(mem);
  1534. else
  1535. kfree(mem);
  1536. atomic_sub(size, &sk->sk_omem_alloc);
  1537. }
  1538. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1539. {
  1540. __sock_kfree_s(sk, mem, size, false);
  1541. }
  1542. EXPORT_SYMBOL(sock_kfree_s);
  1543. void sock_kzfree_s(struct sock *sk, void *mem, int size)
  1544. {
  1545. __sock_kfree_s(sk, mem, size, true);
  1546. }
  1547. EXPORT_SYMBOL(sock_kzfree_s);
  1548. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1549. I think, these locks should be removed for datagram sockets.
  1550. */
  1551. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1552. {
  1553. DEFINE_WAIT(wait);
  1554. sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1555. for (;;) {
  1556. if (!timeo)
  1557. break;
  1558. if (signal_pending(current))
  1559. break;
  1560. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1561. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1562. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1563. break;
  1564. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1565. break;
  1566. if (sk->sk_err)
  1567. break;
  1568. timeo = schedule_timeout(timeo);
  1569. }
  1570. finish_wait(sk_sleep(sk), &wait);
  1571. return timeo;
  1572. }
  1573. /*
  1574. * Generic send/receive buffer handlers
  1575. */
  1576. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1577. unsigned long data_len, int noblock,
  1578. int *errcode, int max_page_order)
  1579. {
  1580. struct sk_buff *skb;
  1581. long timeo;
  1582. int err;
  1583. timeo = sock_sndtimeo(sk, noblock);
  1584. for (;;) {
  1585. err = sock_error(sk);
  1586. if (err != 0)
  1587. goto failure;
  1588. err = -EPIPE;
  1589. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1590. goto failure;
  1591. if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
  1592. break;
  1593. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1594. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1595. err = -EAGAIN;
  1596. if (!timeo)
  1597. goto failure;
  1598. if (signal_pending(current))
  1599. goto interrupted;
  1600. timeo = sock_wait_for_wmem(sk, timeo);
  1601. }
  1602. skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
  1603. errcode, sk->sk_allocation);
  1604. if (skb)
  1605. skb_set_owner_w(skb, sk);
  1606. return skb;
  1607. interrupted:
  1608. err = sock_intr_errno(timeo);
  1609. failure:
  1610. *errcode = err;
  1611. return NULL;
  1612. }
  1613. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1614. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1615. int noblock, int *errcode)
  1616. {
  1617. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1618. }
  1619. EXPORT_SYMBOL(sock_alloc_send_skb);
  1620. int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
  1621. struct sockcm_cookie *sockc)
  1622. {
  1623. struct cmsghdr *cmsg;
  1624. for_each_cmsghdr(cmsg, msg) {
  1625. if (!CMSG_OK(msg, cmsg))
  1626. return -EINVAL;
  1627. if (cmsg->cmsg_level != SOL_SOCKET)
  1628. continue;
  1629. switch (cmsg->cmsg_type) {
  1630. case SO_MARK:
  1631. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  1632. return -EPERM;
  1633. if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
  1634. return -EINVAL;
  1635. sockc->mark = *(u32 *)CMSG_DATA(cmsg);
  1636. break;
  1637. default:
  1638. return -EINVAL;
  1639. }
  1640. }
  1641. return 0;
  1642. }
  1643. EXPORT_SYMBOL(sock_cmsg_send);
  1644. /* On 32bit arches, an skb frag is limited to 2^15 */
  1645. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1646. /**
  1647. * skb_page_frag_refill - check that a page_frag contains enough room
  1648. * @sz: minimum size of the fragment we want to get
  1649. * @pfrag: pointer to page_frag
  1650. * @gfp: priority for memory allocation
  1651. *
  1652. * Note: While this allocator tries to use high order pages, there is
  1653. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1654. * less or equal than PAGE_SIZE.
  1655. */
  1656. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
  1657. {
  1658. if (pfrag->page) {
  1659. if (atomic_read(&pfrag->page->_count) == 1) {
  1660. pfrag->offset = 0;
  1661. return true;
  1662. }
  1663. if (pfrag->offset + sz <= pfrag->size)
  1664. return true;
  1665. put_page(pfrag->page);
  1666. }
  1667. pfrag->offset = 0;
  1668. if (SKB_FRAG_PAGE_ORDER) {
  1669. /* Avoid direct reclaim but allow kswapd to wake */
  1670. pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
  1671. __GFP_COMP | __GFP_NOWARN |
  1672. __GFP_NORETRY,
  1673. SKB_FRAG_PAGE_ORDER);
  1674. if (likely(pfrag->page)) {
  1675. pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
  1676. return true;
  1677. }
  1678. }
  1679. pfrag->page = alloc_page(gfp);
  1680. if (likely(pfrag->page)) {
  1681. pfrag->size = PAGE_SIZE;
  1682. return true;
  1683. }
  1684. return false;
  1685. }
  1686. EXPORT_SYMBOL(skb_page_frag_refill);
  1687. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1688. {
  1689. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1690. return true;
  1691. sk_enter_memory_pressure(sk);
  1692. sk_stream_moderate_sndbuf(sk);
  1693. return false;
  1694. }
  1695. EXPORT_SYMBOL(sk_page_frag_refill);
  1696. static void __lock_sock(struct sock *sk)
  1697. __releases(&sk->sk_lock.slock)
  1698. __acquires(&sk->sk_lock.slock)
  1699. {
  1700. DEFINE_WAIT(wait);
  1701. for (;;) {
  1702. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1703. TASK_UNINTERRUPTIBLE);
  1704. spin_unlock_bh(&sk->sk_lock.slock);
  1705. schedule();
  1706. spin_lock_bh(&sk->sk_lock.slock);
  1707. if (!sock_owned_by_user(sk))
  1708. break;
  1709. }
  1710. finish_wait(&sk->sk_lock.wq, &wait);
  1711. }
  1712. static void __release_sock(struct sock *sk)
  1713. __releases(&sk->sk_lock.slock)
  1714. __acquires(&sk->sk_lock.slock)
  1715. {
  1716. struct sk_buff *skb = sk->sk_backlog.head;
  1717. do {
  1718. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1719. bh_unlock_sock(sk);
  1720. do {
  1721. struct sk_buff *next = skb->next;
  1722. prefetch(next);
  1723. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1724. skb->next = NULL;
  1725. sk_backlog_rcv(sk, skb);
  1726. /*
  1727. * We are in process context here with softirqs
  1728. * disabled, use cond_resched_softirq() to preempt.
  1729. * This is safe to do because we've taken the backlog
  1730. * queue private:
  1731. */
  1732. cond_resched_softirq();
  1733. skb = next;
  1734. } while (skb != NULL);
  1735. bh_lock_sock(sk);
  1736. } while ((skb = sk->sk_backlog.head) != NULL);
  1737. /*
  1738. * Doing the zeroing here guarantee we can not loop forever
  1739. * while a wild producer attempts to flood us.
  1740. */
  1741. sk->sk_backlog.len = 0;
  1742. }
  1743. /**
  1744. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1745. * @sk: sock to wait on
  1746. * @timeo: for how long
  1747. * @skb: last skb seen on sk_receive_queue
  1748. *
  1749. * Now socket state including sk->sk_err is changed only under lock,
  1750. * hence we may omit checks after joining wait queue.
  1751. * We check receive queue before schedule() only as optimization;
  1752. * it is very likely that release_sock() added new data.
  1753. */
  1754. int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
  1755. {
  1756. int rc;
  1757. DEFINE_WAIT(wait);
  1758. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1759. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1760. rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
  1761. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1762. finish_wait(sk_sleep(sk), &wait);
  1763. return rc;
  1764. }
  1765. EXPORT_SYMBOL(sk_wait_data);
  1766. /**
  1767. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1768. * @sk: socket
  1769. * @size: memory size to allocate
  1770. * @kind: allocation type
  1771. *
  1772. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1773. * rmem allocation. This function assumes that protocols which have
  1774. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1775. */
  1776. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1777. {
  1778. struct proto *prot = sk->sk_prot;
  1779. int amt = sk_mem_pages(size);
  1780. long allocated;
  1781. int parent_status = UNDER_LIMIT;
  1782. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1783. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1784. /* Under limit. */
  1785. if (parent_status == UNDER_LIMIT &&
  1786. allocated <= sk_prot_mem_limits(sk, 0)) {
  1787. sk_leave_memory_pressure(sk);
  1788. return 1;
  1789. }
  1790. /* Under pressure. (we or our parents) */
  1791. if ((parent_status > SOFT_LIMIT) ||
  1792. allocated > sk_prot_mem_limits(sk, 1))
  1793. sk_enter_memory_pressure(sk);
  1794. /* Over hard limit (we or our parents) */
  1795. if ((parent_status == OVER_LIMIT) ||
  1796. (allocated > sk_prot_mem_limits(sk, 2)))
  1797. goto suppress_allocation;
  1798. /* guarantee minimum buffer size under pressure */
  1799. if (kind == SK_MEM_RECV) {
  1800. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1801. return 1;
  1802. } else { /* SK_MEM_SEND */
  1803. if (sk->sk_type == SOCK_STREAM) {
  1804. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1805. return 1;
  1806. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1807. prot->sysctl_wmem[0])
  1808. return 1;
  1809. }
  1810. if (sk_has_memory_pressure(sk)) {
  1811. int alloc;
  1812. if (!sk_under_memory_pressure(sk))
  1813. return 1;
  1814. alloc = sk_sockets_allocated_read_positive(sk);
  1815. if (sk_prot_mem_limits(sk, 2) > alloc *
  1816. sk_mem_pages(sk->sk_wmem_queued +
  1817. atomic_read(&sk->sk_rmem_alloc) +
  1818. sk->sk_forward_alloc))
  1819. return 1;
  1820. }
  1821. suppress_allocation:
  1822. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1823. sk_stream_moderate_sndbuf(sk);
  1824. /* Fail only if socket is _under_ its sndbuf.
  1825. * In this case we cannot block, so that we have to fail.
  1826. */
  1827. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1828. return 1;
  1829. }
  1830. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1831. /* Alas. Undo changes. */
  1832. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1833. sk_memory_allocated_sub(sk, amt);
  1834. return 0;
  1835. }
  1836. EXPORT_SYMBOL(__sk_mem_schedule);
  1837. /**
  1838. * __sk_mem_reclaim - reclaim memory_allocated
  1839. * @sk: socket
  1840. * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
  1841. */
  1842. void __sk_mem_reclaim(struct sock *sk, int amount)
  1843. {
  1844. amount >>= SK_MEM_QUANTUM_SHIFT;
  1845. sk_memory_allocated_sub(sk, amount);
  1846. sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
  1847. if (sk_under_memory_pressure(sk) &&
  1848. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1849. sk_leave_memory_pressure(sk);
  1850. }
  1851. EXPORT_SYMBOL(__sk_mem_reclaim);
  1852. /*
  1853. * Set of default routines for initialising struct proto_ops when
  1854. * the protocol does not support a particular function. In certain
  1855. * cases where it makes no sense for a protocol to have a "do nothing"
  1856. * function, some default processing is provided.
  1857. */
  1858. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1859. {
  1860. return -EOPNOTSUPP;
  1861. }
  1862. EXPORT_SYMBOL(sock_no_bind);
  1863. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1864. int len, int flags)
  1865. {
  1866. return -EOPNOTSUPP;
  1867. }
  1868. EXPORT_SYMBOL(sock_no_connect);
  1869. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1870. {
  1871. return -EOPNOTSUPP;
  1872. }
  1873. EXPORT_SYMBOL(sock_no_socketpair);
  1874. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1875. {
  1876. return -EOPNOTSUPP;
  1877. }
  1878. EXPORT_SYMBOL(sock_no_accept);
  1879. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1880. int *len, int peer)
  1881. {
  1882. return -EOPNOTSUPP;
  1883. }
  1884. EXPORT_SYMBOL(sock_no_getname);
  1885. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1886. {
  1887. return 0;
  1888. }
  1889. EXPORT_SYMBOL(sock_no_poll);
  1890. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1891. {
  1892. return -EOPNOTSUPP;
  1893. }
  1894. EXPORT_SYMBOL(sock_no_ioctl);
  1895. int sock_no_listen(struct socket *sock, int backlog)
  1896. {
  1897. return -EOPNOTSUPP;
  1898. }
  1899. EXPORT_SYMBOL(sock_no_listen);
  1900. int sock_no_shutdown(struct socket *sock, int how)
  1901. {
  1902. return -EOPNOTSUPP;
  1903. }
  1904. EXPORT_SYMBOL(sock_no_shutdown);
  1905. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1906. char __user *optval, unsigned int optlen)
  1907. {
  1908. return -EOPNOTSUPP;
  1909. }
  1910. EXPORT_SYMBOL(sock_no_setsockopt);
  1911. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1912. char __user *optval, int __user *optlen)
  1913. {
  1914. return -EOPNOTSUPP;
  1915. }
  1916. EXPORT_SYMBOL(sock_no_getsockopt);
  1917. int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
  1918. {
  1919. return -EOPNOTSUPP;
  1920. }
  1921. EXPORT_SYMBOL(sock_no_sendmsg);
  1922. int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
  1923. int flags)
  1924. {
  1925. return -EOPNOTSUPP;
  1926. }
  1927. EXPORT_SYMBOL(sock_no_recvmsg);
  1928. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1929. {
  1930. /* Mirror missing mmap method error code */
  1931. return -ENODEV;
  1932. }
  1933. EXPORT_SYMBOL(sock_no_mmap);
  1934. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1935. {
  1936. ssize_t res;
  1937. struct msghdr msg = {.msg_flags = flags};
  1938. struct kvec iov;
  1939. char *kaddr = kmap(page);
  1940. iov.iov_base = kaddr + offset;
  1941. iov.iov_len = size;
  1942. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1943. kunmap(page);
  1944. return res;
  1945. }
  1946. EXPORT_SYMBOL(sock_no_sendpage);
  1947. /*
  1948. * Default Socket Callbacks
  1949. */
  1950. static void sock_def_wakeup(struct sock *sk)
  1951. {
  1952. struct socket_wq *wq;
  1953. rcu_read_lock();
  1954. wq = rcu_dereference(sk->sk_wq);
  1955. if (skwq_has_sleeper(wq))
  1956. wake_up_interruptible_all(&wq->wait);
  1957. rcu_read_unlock();
  1958. }
  1959. static void sock_def_error_report(struct sock *sk)
  1960. {
  1961. struct socket_wq *wq;
  1962. rcu_read_lock();
  1963. wq = rcu_dereference(sk->sk_wq);
  1964. if (skwq_has_sleeper(wq))
  1965. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1966. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1967. rcu_read_unlock();
  1968. }
  1969. static void sock_def_readable(struct sock *sk)
  1970. {
  1971. struct socket_wq *wq;
  1972. rcu_read_lock();
  1973. wq = rcu_dereference(sk->sk_wq);
  1974. if (skwq_has_sleeper(wq))
  1975. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1976. POLLRDNORM | POLLRDBAND);
  1977. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1978. rcu_read_unlock();
  1979. }
  1980. static void sock_def_write_space(struct sock *sk)
  1981. {
  1982. struct socket_wq *wq;
  1983. rcu_read_lock();
  1984. /* Do not wake up a writer until he can make "significant"
  1985. * progress. --DaveM
  1986. */
  1987. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1988. wq = rcu_dereference(sk->sk_wq);
  1989. if (skwq_has_sleeper(wq))
  1990. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1991. POLLWRNORM | POLLWRBAND);
  1992. /* Should agree with poll, otherwise some programs break */
  1993. if (sock_writeable(sk))
  1994. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1995. }
  1996. rcu_read_unlock();
  1997. }
  1998. static void sock_def_destruct(struct sock *sk)
  1999. {
  2000. }
  2001. void sk_send_sigurg(struct sock *sk)
  2002. {
  2003. if (sk->sk_socket && sk->sk_socket->file)
  2004. if (send_sigurg(&sk->sk_socket->file->f_owner))
  2005. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  2006. }
  2007. EXPORT_SYMBOL(sk_send_sigurg);
  2008. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  2009. unsigned long expires)
  2010. {
  2011. if (!mod_timer(timer, expires))
  2012. sock_hold(sk);
  2013. }
  2014. EXPORT_SYMBOL(sk_reset_timer);
  2015. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  2016. {
  2017. if (del_timer(timer))
  2018. __sock_put(sk);
  2019. }
  2020. EXPORT_SYMBOL(sk_stop_timer);
  2021. void sock_init_data(struct socket *sock, struct sock *sk)
  2022. {
  2023. skb_queue_head_init(&sk->sk_receive_queue);
  2024. skb_queue_head_init(&sk->sk_write_queue);
  2025. skb_queue_head_init(&sk->sk_error_queue);
  2026. sk->sk_send_head = NULL;
  2027. init_timer(&sk->sk_timer);
  2028. sk->sk_allocation = GFP_KERNEL;
  2029. sk->sk_rcvbuf = sysctl_rmem_default;
  2030. sk->sk_sndbuf = sysctl_wmem_default;
  2031. sk->sk_state = TCP_CLOSE;
  2032. sk_set_socket(sk, sock);
  2033. sock_set_flag(sk, SOCK_ZAPPED);
  2034. if (sock) {
  2035. sk->sk_type = sock->type;
  2036. sk->sk_wq = sock->wq;
  2037. sock->sk = sk;
  2038. } else
  2039. sk->sk_wq = NULL;
  2040. rwlock_init(&sk->sk_callback_lock);
  2041. lockdep_set_class_and_name(&sk->sk_callback_lock,
  2042. af_callback_keys + sk->sk_family,
  2043. af_family_clock_key_strings[sk->sk_family]);
  2044. sk->sk_state_change = sock_def_wakeup;
  2045. sk->sk_data_ready = sock_def_readable;
  2046. sk->sk_write_space = sock_def_write_space;
  2047. sk->sk_error_report = sock_def_error_report;
  2048. sk->sk_destruct = sock_def_destruct;
  2049. sk->sk_frag.page = NULL;
  2050. sk->sk_frag.offset = 0;
  2051. sk->sk_peek_off = -1;
  2052. sk->sk_peer_pid = NULL;
  2053. sk->sk_peer_cred = NULL;
  2054. sk->sk_write_pending = 0;
  2055. sk->sk_rcvlowat = 1;
  2056. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  2057. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  2058. sk->sk_stamp = ktime_set(-1L, 0);
  2059. #ifdef CONFIG_NET_RX_BUSY_POLL
  2060. sk->sk_napi_id = 0;
  2061. sk->sk_ll_usec = sysctl_net_busy_read;
  2062. #endif
  2063. sk->sk_max_pacing_rate = ~0U;
  2064. sk->sk_pacing_rate = ~0U;
  2065. sk->sk_incoming_cpu = -1;
  2066. /*
  2067. * Before updating sk_refcnt, we must commit prior changes to memory
  2068. * (Documentation/RCU/rculist_nulls.txt for details)
  2069. */
  2070. smp_wmb();
  2071. atomic_set(&sk->sk_refcnt, 1);
  2072. atomic_set(&sk->sk_drops, 0);
  2073. }
  2074. EXPORT_SYMBOL(sock_init_data);
  2075. void lock_sock_nested(struct sock *sk, int subclass)
  2076. {
  2077. might_sleep();
  2078. spin_lock_bh(&sk->sk_lock.slock);
  2079. if (sk->sk_lock.owned)
  2080. __lock_sock(sk);
  2081. sk->sk_lock.owned = 1;
  2082. spin_unlock(&sk->sk_lock.slock);
  2083. /*
  2084. * The sk_lock has mutex_lock() semantics here:
  2085. */
  2086. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2087. local_bh_enable();
  2088. }
  2089. EXPORT_SYMBOL(lock_sock_nested);
  2090. void release_sock(struct sock *sk)
  2091. {
  2092. /*
  2093. * The sk_lock has mutex_unlock() semantics:
  2094. */
  2095. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  2096. spin_lock_bh(&sk->sk_lock.slock);
  2097. if (sk->sk_backlog.tail)
  2098. __release_sock(sk);
  2099. /* Warning : release_cb() might need to release sk ownership,
  2100. * ie call sock_release_ownership(sk) before us.
  2101. */
  2102. if (sk->sk_prot->release_cb)
  2103. sk->sk_prot->release_cb(sk);
  2104. sock_release_ownership(sk);
  2105. if (waitqueue_active(&sk->sk_lock.wq))
  2106. wake_up(&sk->sk_lock.wq);
  2107. spin_unlock_bh(&sk->sk_lock.slock);
  2108. }
  2109. EXPORT_SYMBOL(release_sock);
  2110. /**
  2111. * lock_sock_fast - fast version of lock_sock
  2112. * @sk: socket
  2113. *
  2114. * This version should be used for very small section, where process wont block
  2115. * return false if fast path is taken
  2116. * sk_lock.slock locked, owned = 0, BH disabled
  2117. * return true if slow path is taken
  2118. * sk_lock.slock unlocked, owned = 1, BH enabled
  2119. */
  2120. bool lock_sock_fast(struct sock *sk)
  2121. {
  2122. might_sleep();
  2123. spin_lock_bh(&sk->sk_lock.slock);
  2124. if (!sk->sk_lock.owned)
  2125. /*
  2126. * Note : We must disable BH
  2127. */
  2128. return false;
  2129. __lock_sock(sk);
  2130. sk->sk_lock.owned = 1;
  2131. spin_unlock(&sk->sk_lock.slock);
  2132. /*
  2133. * The sk_lock has mutex_lock() semantics here:
  2134. */
  2135. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2136. local_bh_enable();
  2137. return true;
  2138. }
  2139. EXPORT_SYMBOL(lock_sock_fast);
  2140. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2141. {
  2142. struct timeval tv;
  2143. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2144. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2145. tv = ktime_to_timeval(sk->sk_stamp);
  2146. if (tv.tv_sec == -1)
  2147. return -ENOENT;
  2148. if (tv.tv_sec == 0) {
  2149. sk->sk_stamp = ktime_get_real();
  2150. tv = ktime_to_timeval(sk->sk_stamp);
  2151. }
  2152. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2153. }
  2154. EXPORT_SYMBOL(sock_get_timestamp);
  2155. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2156. {
  2157. struct timespec ts;
  2158. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2159. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2160. ts = ktime_to_timespec(sk->sk_stamp);
  2161. if (ts.tv_sec == -1)
  2162. return -ENOENT;
  2163. if (ts.tv_sec == 0) {
  2164. sk->sk_stamp = ktime_get_real();
  2165. ts = ktime_to_timespec(sk->sk_stamp);
  2166. }
  2167. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2168. }
  2169. EXPORT_SYMBOL(sock_get_timestampns);
  2170. void sock_enable_timestamp(struct sock *sk, int flag)
  2171. {
  2172. if (!sock_flag(sk, flag)) {
  2173. unsigned long previous_flags = sk->sk_flags;
  2174. sock_set_flag(sk, flag);
  2175. /*
  2176. * we just set one of the two flags which require net
  2177. * time stamping, but time stamping might have been on
  2178. * already because of the other one
  2179. */
  2180. if (sock_needs_netstamp(sk) &&
  2181. !(previous_flags & SK_FLAGS_TIMESTAMP))
  2182. net_enable_timestamp();
  2183. }
  2184. }
  2185. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2186. int level, int type)
  2187. {
  2188. struct sock_exterr_skb *serr;
  2189. struct sk_buff *skb;
  2190. int copied, err;
  2191. err = -EAGAIN;
  2192. skb = sock_dequeue_err_skb(sk);
  2193. if (skb == NULL)
  2194. goto out;
  2195. copied = skb->len;
  2196. if (copied > len) {
  2197. msg->msg_flags |= MSG_TRUNC;
  2198. copied = len;
  2199. }
  2200. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  2201. if (err)
  2202. goto out_free_skb;
  2203. sock_recv_timestamp(msg, sk, skb);
  2204. serr = SKB_EXT_ERR(skb);
  2205. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2206. msg->msg_flags |= MSG_ERRQUEUE;
  2207. err = copied;
  2208. out_free_skb:
  2209. kfree_skb(skb);
  2210. out:
  2211. return err;
  2212. }
  2213. EXPORT_SYMBOL(sock_recv_errqueue);
  2214. /*
  2215. * Get a socket option on an socket.
  2216. *
  2217. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2218. * asynchronous errors should be reported by getsockopt. We assume
  2219. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2220. */
  2221. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2222. char __user *optval, int __user *optlen)
  2223. {
  2224. struct sock *sk = sock->sk;
  2225. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2226. }
  2227. EXPORT_SYMBOL(sock_common_getsockopt);
  2228. #ifdef CONFIG_COMPAT
  2229. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2230. char __user *optval, int __user *optlen)
  2231. {
  2232. struct sock *sk = sock->sk;
  2233. if (sk->sk_prot->compat_getsockopt != NULL)
  2234. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2235. optval, optlen);
  2236. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2237. }
  2238. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2239. #endif
  2240. int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  2241. int flags)
  2242. {
  2243. struct sock *sk = sock->sk;
  2244. int addr_len = 0;
  2245. int err;
  2246. err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
  2247. flags & ~MSG_DONTWAIT, &addr_len);
  2248. if (err >= 0)
  2249. msg->msg_namelen = addr_len;
  2250. return err;
  2251. }
  2252. EXPORT_SYMBOL(sock_common_recvmsg);
  2253. /*
  2254. * Set socket options on an inet socket.
  2255. */
  2256. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2257. char __user *optval, unsigned int optlen)
  2258. {
  2259. struct sock *sk = sock->sk;
  2260. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2261. }
  2262. EXPORT_SYMBOL(sock_common_setsockopt);
  2263. #ifdef CONFIG_COMPAT
  2264. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2265. char __user *optval, unsigned int optlen)
  2266. {
  2267. struct sock *sk = sock->sk;
  2268. if (sk->sk_prot->compat_setsockopt != NULL)
  2269. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2270. optval, optlen);
  2271. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2272. }
  2273. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2274. #endif
  2275. void sk_common_release(struct sock *sk)
  2276. {
  2277. if (sk->sk_prot->destroy)
  2278. sk->sk_prot->destroy(sk);
  2279. /*
  2280. * Observation: when sock_common_release is called, processes have
  2281. * no access to socket. But net still has.
  2282. * Step one, detach it from networking:
  2283. *
  2284. * A. Remove from hash tables.
  2285. */
  2286. sk->sk_prot->unhash(sk);
  2287. /*
  2288. * In this point socket cannot receive new packets, but it is possible
  2289. * that some packets are in flight because some CPU runs receiver and
  2290. * did hash table lookup before we unhashed socket. They will achieve
  2291. * receive queue and will be purged by socket destructor.
  2292. *
  2293. * Also we still have packets pending on receive queue and probably,
  2294. * our own packets waiting in device queues. sock_destroy will drain
  2295. * receive queue, but transmitted packets will delay socket destruction
  2296. * until the last reference will be released.
  2297. */
  2298. sock_orphan(sk);
  2299. xfrm_sk_free_policy(sk);
  2300. sk_refcnt_debug_release(sk);
  2301. if (sk->sk_frag.page) {
  2302. put_page(sk->sk_frag.page);
  2303. sk->sk_frag.page = NULL;
  2304. }
  2305. sock_put(sk);
  2306. }
  2307. EXPORT_SYMBOL(sk_common_release);
  2308. #ifdef CONFIG_PROC_FS
  2309. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2310. struct prot_inuse {
  2311. int val[PROTO_INUSE_NR];
  2312. };
  2313. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2314. #ifdef CONFIG_NET_NS
  2315. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2316. {
  2317. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2318. }
  2319. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2320. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2321. {
  2322. int cpu, idx = prot->inuse_idx;
  2323. int res = 0;
  2324. for_each_possible_cpu(cpu)
  2325. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2326. return res >= 0 ? res : 0;
  2327. }
  2328. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2329. static int __net_init sock_inuse_init_net(struct net *net)
  2330. {
  2331. net->core.inuse = alloc_percpu(struct prot_inuse);
  2332. return net->core.inuse ? 0 : -ENOMEM;
  2333. }
  2334. static void __net_exit sock_inuse_exit_net(struct net *net)
  2335. {
  2336. free_percpu(net->core.inuse);
  2337. }
  2338. static struct pernet_operations net_inuse_ops = {
  2339. .init = sock_inuse_init_net,
  2340. .exit = sock_inuse_exit_net,
  2341. };
  2342. static __init int net_inuse_init(void)
  2343. {
  2344. if (register_pernet_subsys(&net_inuse_ops))
  2345. panic("Cannot initialize net inuse counters");
  2346. return 0;
  2347. }
  2348. core_initcall(net_inuse_init);
  2349. #else
  2350. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2351. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2352. {
  2353. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2354. }
  2355. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2356. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2357. {
  2358. int cpu, idx = prot->inuse_idx;
  2359. int res = 0;
  2360. for_each_possible_cpu(cpu)
  2361. res += per_cpu(prot_inuse, cpu).val[idx];
  2362. return res >= 0 ? res : 0;
  2363. }
  2364. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2365. #endif
  2366. static void assign_proto_idx(struct proto *prot)
  2367. {
  2368. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2369. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2370. pr_err("PROTO_INUSE_NR exhausted\n");
  2371. return;
  2372. }
  2373. set_bit(prot->inuse_idx, proto_inuse_idx);
  2374. }
  2375. static void release_proto_idx(struct proto *prot)
  2376. {
  2377. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2378. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2379. }
  2380. #else
  2381. static inline void assign_proto_idx(struct proto *prot)
  2382. {
  2383. }
  2384. static inline void release_proto_idx(struct proto *prot)
  2385. {
  2386. }
  2387. #endif
  2388. static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
  2389. {
  2390. if (!rsk_prot)
  2391. return;
  2392. kfree(rsk_prot->slab_name);
  2393. rsk_prot->slab_name = NULL;
  2394. kmem_cache_destroy(rsk_prot->slab);
  2395. rsk_prot->slab = NULL;
  2396. }
  2397. static int req_prot_init(const struct proto *prot)
  2398. {
  2399. struct request_sock_ops *rsk_prot = prot->rsk_prot;
  2400. if (!rsk_prot)
  2401. return 0;
  2402. rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
  2403. prot->name);
  2404. if (!rsk_prot->slab_name)
  2405. return -ENOMEM;
  2406. rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
  2407. rsk_prot->obj_size, 0,
  2408. prot->slab_flags, NULL);
  2409. if (!rsk_prot->slab) {
  2410. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2411. prot->name);
  2412. return -ENOMEM;
  2413. }
  2414. return 0;
  2415. }
  2416. int proto_register(struct proto *prot, int alloc_slab)
  2417. {
  2418. if (alloc_slab) {
  2419. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2420. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2421. NULL);
  2422. if (prot->slab == NULL) {
  2423. pr_crit("%s: Can't create sock SLAB cache!\n",
  2424. prot->name);
  2425. goto out;
  2426. }
  2427. if (req_prot_init(prot))
  2428. goto out_free_request_sock_slab;
  2429. if (prot->twsk_prot != NULL) {
  2430. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2431. if (prot->twsk_prot->twsk_slab_name == NULL)
  2432. goto out_free_request_sock_slab;
  2433. prot->twsk_prot->twsk_slab =
  2434. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2435. prot->twsk_prot->twsk_obj_size,
  2436. 0,
  2437. prot->slab_flags,
  2438. NULL);
  2439. if (prot->twsk_prot->twsk_slab == NULL)
  2440. goto out_free_timewait_sock_slab_name;
  2441. }
  2442. }
  2443. mutex_lock(&proto_list_mutex);
  2444. list_add(&prot->node, &proto_list);
  2445. assign_proto_idx(prot);
  2446. mutex_unlock(&proto_list_mutex);
  2447. return 0;
  2448. out_free_timewait_sock_slab_name:
  2449. kfree(prot->twsk_prot->twsk_slab_name);
  2450. out_free_request_sock_slab:
  2451. req_prot_cleanup(prot->rsk_prot);
  2452. kmem_cache_destroy(prot->slab);
  2453. prot->slab = NULL;
  2454. out:
  2455. return -ENOBUFS;
  2456. }
  2457. EXPORT_SYMBOL(proto_register);
  2458. void proto_unregister(struct proto *prot)
  2459. {
  2460. mutex_lock(&proto_list_mutex);
  2461. release_proto_idx(prot);
  2462. list_del(&prot->node);
  2463. mutex_unlock(&proto_list_mutex);
  2464. kmem_cache_destroy(prot->slab);
  2465. prot->slab = NULL;
  2466. req_prot_cleanup(prot->rsk_prot);
  2467. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2468. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2469. kfree(prot->twsk_prot->twsk_slab_name);
  2470. prot->twsk_prot->twsk_slab = NULL;
  2471. }
  2472. }
  2473. EXPORT_SYMBOL(proto_unregister);
  2474. #ifdef CONFIG_PROC_FS
  2475. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2476. __acquires(proto_list_mutex)
  2477. {
  2478. mutex_lock(&proto_list_mutex);
  2479. return seq_list_start_head(&proto_list, *pos);
  2480. }
  2481. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2482. {
  2483. return seq_list_next(v, &proto_list, pos);
  2484. }
  2485. static void proto_seq_stop(struct seq_file *seq, void *v)
  2486. __releases(proto_list_mutex)
  2487. {
  2488. mutex_unlock(&proto_list_mutex);
  2489. }
  2490. static char proto_method_implemented(const void *method)
  2491. {
  2492. return method == NULL ? 'n' : 'y';
  2493. }
  2494. static long sock_prot_memory_allocated(struct proto *proto)
  2495. {
  2496. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2497. }
  2498. static char *sock_prot_memory_pressure(struct proto *proto)
  2499. {
  2500. return proto->memory_pressure != NULL ?
  2501. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2502. }
  2503. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2504. {
  2505. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2506. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2507. proto->name,
  2508. proto->obj_size,
  2509. sock_prot_inuse_get(seq_file_net(seq), proto),
  2510. sock_prot_memory_allocated(proto),
  2511. sock_prot_memory_pressure(proto),
  2512. proto->max_header,
  2513. proto->slab == NULL ? "no" : "yes",
  2514. module_name(proto->owner),
  2515. proto_method_implemented(proto->close),
  2516. proto_method_implemented(proto->connect),
  2517. proto_method_implemented(proto->disconnect),
  2518. proto_method_implemented(proto->accept),
  2519. proto_method_implemented(proto->ioctl),
  2520. proto_method_implemented(proto->init),
  2521. proto_method_implemented(proto->destroy),
  2522. proto_method_implemented(proto->shutdown),
  2523. proto_method_implemented(proto->setsockopt),
  2524. proto_method_implemented(proto->getsockopt),
  2525. proto_method_implemented(proto->sendmsg),
  2526. proto_method_implemented(proto->recvmsg),
  2527. proto_method_implemented(proto->sendpage),
  2528. proto_method_implemented(proto->bind),
  2529. proto_method_implemented(proto->backlog_rcv),
  2530. proto_method_implemented(proto->hash),
  2531. proto_method_implemented(proto->unhash),
  2532. proto_method_implemented(proto->get_port),
  2533. proto_method_implemented(proto->enter_memory_pressure));
  2534. }
  2535. static int proto_seq_show(struct seq_file *seq, void *v)
  2536. {
  2537. if (v == &proto_list)
  2538. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2539. "protocol",
  2540. "size",
  2541. "sockets",
  2542. "memory",
  2543. "press",
  2544. "maxhdr",
  2545. "slab",
  2546. "module",
  2547. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2548. else
  2549. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2550. return 0;
  2551. }
  2552. static const struct seq_operations proto_seq_ops = {
  2553. .start = proto_seq_start,
  2554. .next = proto_seq_next,
  2555. .stop = proto_seq_stop,
  2556. .show = proto_seq_show,
  2557. };
  2558. static int proto_seq_open(struct inode *inode, struct file *file)
  2559. {
  2560. return seq_open_net(inode, file, &proto_seq_ops,
  2561. sizeof(struct seq_net_private));
  2562. }
  2563. static const struct file_operations proto_seq_fops = {
  2564. .owner = THIS_MODULE,
  2565. .open = proto_seq_open,
  2566. .read = seq_read,
  2567. .llseek = seq_lseek,
  2568. .release = seq_release_net,
  2569. };
  2570. static __net_init int proto_init_net(struct net *net)
  2571. {
  2572. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2573. return -ENOMEM;
  2574. return 0;
  2575. }
  2576. static __net_exit void proto_exit_net(struct net *net)
  2577. {
  2578. remove_proc_entry("protocols", net->proc_net);
  2579. }
  2580. static __net_initdata struct pernet_operations proto_net_ops = {
  2581. .init = proto_init_net,
  2582. .exit = proto_exit_net,
  2583. };
  2584. static int __init proto_init(void)
  2585. {
  2586. return register_pernet_subsys(&proto_net_ops);
  2587. }
  2588. subsys_initcall(proto_init);
  2589. #endif /* PROC_FS */