security.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/dcache.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/security.h>
  19. #include <linux/integrity.h>
  20. #include <linux/ima.h>
  21. #include <linux/evm.h>
  22. #include <linux/fsnotify.h>
  23. #include <linux/mman.h>
  24. #include <linux/mount.h>
  25. #include <linux/personality.h>
  26. #include <linux/backing-dev.h>
  27. #include <net/flow.h>
  28. #define MAX_LSM_EVM_XATTR 2
  29. /* Boot-time LSM user choice */
  30. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  31. CONFIG_DEFAULT_SECURITY;
  32. static struct security_operations *security_ops;
  33. static struct security_operations default_security_ops = {
  34. .name = "default",
  35. };
  36. static inline int __init verify(struct security_operations *ops)
  37. {
  38. /* verify the security_operations structure exists */
  39. if (!ops)
  40. return -EINVAL;
  41. security_fixup_ops(ops);
  42. return 0;
  43. }
  44. static void __init do_security_initcalls(void)
  45. {
  46. initcall_t *call;
  47. call = __security_initcall_start;
  48. while (call < __security_initcall_end) {
  49. (*call) ();
  50. call++;
  51. }
  52. }
  53. /**
  54. * security_init - initializes the security framework
  55. *
  56. * This should be called early in the kernel initialization sequence.
  57. */
  58. int __init security_init(void)
  59. {
  60. printk(KERN_INFO "Security Framework initialized\n");
  61. security_fixup_ops(&default_security_ops);
  62. security_ops = &default_security_ops;
  63. do_security_initcalls();
  64. return 0;
  65. }
  66. void reset_security_ops(void)
  67. {
  68. security_ops = &default_security_ops;
  69. }
  70. /* Save user chosen LSM */
  71. static int __init choose_lsm(char *str)
  72. {
  73. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  74. return 1;
  75. }
  76. __setup("security=", choose_lsm);
  77. /**
  78. * security_module_enable - Load given security module on boot ?
  79. * @ops: a pointer to the struct security_operations that is to be checked.
  80. *
  81. * Each LSM must pass this method before registering its own operations
  82. * to avoid security registration races. This method may also be used
  83. * to check if your LSM is currently loaded during kernel initialization.
  84. *
  85. * Return true if:
  86. * -The passed LSM is the one chosen by user at boot time,
  87. * -or the passed LSM is configured as the default and the user did not
  88. * choose an alternate LSM at boot time.
  89. * Otherwise, return false.
  90. */
  91. int __init security_module_enable(struct security_operations *ops)
  92. {
  93. return !strcmp(ops->name, chosen_lsm);
  94. }
  95. /**
  96. * register_security - registers a security framework with the kernel
  97. * @ops: a pointer to the struct security_options that is to be registered
  98. *
  99. * This function allows a security module to register itself with the
  100. * kernel security subsystem. Some rudimentary checking is done on the @ops
  101. * value passed to this function. You'll need to check first if your LSM
  102. * is allowed to register its @ops by calling security_module_enable(@ops).
  103. *
  104. * If there is already a security module registered with the kernel,
  105. * an error will be returned. Otherwise %0 is returned on success.
  106. */
  107. int __init register_security(struct security_operations *ops)
  108. {
  109. if (verify(ops)) {
  110. printk(KERN_DEBUG "%s could not verify "
  111. "security_operations structure.\n", __func__);
  112. return -EINVAL;
  113. }
  114. if (security_ops != &default_security_ops)
  115. return -EAGAIN;
  116. security_ops = ops;
  117. return 0;
  118. }
  119. /* Security operations */
  120. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  121. {
  122. #ifdef CONFIG_SECURITY_YAMA_STACKED
  123. int rc;
  124. rc = yama_ptrace_access_check(child, mode);
  125. if (rc)
  126. return rc;
  127. #endif
  128. return security_ops->ptrace_access_check(child, mode);
  129. }
  130. int security_ptrace_traceme(struct task_struct *parent)
  131. {
  132. #ifdef CONFIG_SECURITY_YAMA_STACKED
  133. int rc;
  134. rc = yama_ptrace_traceme(parent);
  135. if (rc)
  136. return rc;
  137. #endif
  138. return security_ops->ptrace_traceme(parent);
  139. }
  140. int security_capget(struct task_struct *target,
  141. kernel_cap_t *effective,
  142. kernel_cap_t *inheritable,
  143. kernel_cap_t *permitted)
  144. {
  145. return security_ops->capget(target, effective, inheritable, permitted);
  146. }
  147. int security_capset(struct cred *new, const struct cred *old,
  148. const kernel_cap_t *effective,
  149. const kernel_cap_t *inheritable,
  150. const kernel_cap_t *permitted)
  151. {
  152. return security_ops->capset(new, old,
  153. effective, inheritable, permitted);
  154. }
  155. int security_capable(const struct cred *cred, struct user_namespace *ns,
  156. int cap)
  157. {
  158. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  159. }
  160. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  161. int cap)
  162. {
  163. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  164. }
  165. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  166. {
  167. return security_ops->quotactl(cmds, type, id, sb);
  168. }
  169. int security_quota_on(struct dentry *dentry)
  170. {
  171. return security_ops->quota_on(dentry);
  172. }
  173. int security_syslog(int type)
  174. {
  175. return security_ops->syslog(type);
  176. }
  177. int security_settime(const struct timespec *ts, const struct timezone *tz)
  178. {
  179. return security_ops->settime(ts, tz);
  180. }
  181. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  182. {
  183. return security_ops->vm_enough_memory(mm, pages);
  184. }
  185. int security_bprm_set_creds(struct linux_binprm *bprm)
  186. {
  187. return security_ops->bprm_set_creds(bprm);
  188. }
  189. int security_bprm_check(struct linux_binprm *bprm)
  190. {
  191. int ret;
  192. ret = security_ops->bprm_check_security(bprm);
  193. if (ret)
  194. return ret;
  195. return ima_bprm_check(bprm);
  196. }
  197. void security_bprm_committing_creds(struct linux_binprm *bprm)
  198. {
  199. security_ops->bprm_committing_creds(bprm);
  200. }
  201. void security_bprm_committed_creds(struct linux_binprm *bprm)
  202. {
  203. security_ops->bprm_committed_creds(bprm);
  204. }
  205. int security_bprm_secureexec(struct linux_binprm *bprm)
  206. {
  207. return security_ops->bprm_secureexec(bprm);
  208. }
  209. int security_sb_alloc(struct super_block *sb)
  210. {
  211. return security_ops->sb_alloc_security(sb);
  212. }
  213. void security_sb_free(struct super_block *sb)
  214. {
  215. security_ops->sb_free_security(sb);
  216. }
  217. int security_sb_copy_data(char *orig, char *copy)
  218. {
  219. return security_ops->sb_copy_data(orig, copy);
  220. }
  221. EXPORT_SYMBOL(security_sb_copy_data);
  222. int security_sb_remount(struct super_block *sb, void *data)
  223. {
  224. return security_ops->sb_remount(sb, data);
  225. }
  226. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  227. {
  228. return security_ops->sb_kern_mount(sb, flags, data);
  229. }
  230. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  231. {
  232. return security_ops->sb_show_options(m, sb);
  233. }
  234. int security_sb_statfs(struct dentry *dentry)
  235. {
  236. return security_ops->sb_statfs(dentry);
  237. }
  238. int security_sb_mount(const char *dev_name, struct path *path,
  239. const char *type, unsigned long flags, void *data)
  240. {
  241. return security_ops->sb_mount(dev_name, path, type, flags, data);
  242. }
  243. int security_sb_umount(struct vfsmount *mnt, int flags)
  244. {
  245. return security_ops->sb_umount(mnt, flags);
  246. }
  247. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  248. {
  249. return security_ops->sb_pivotroot(old_path, new_path);
  250. }
  251. int security_sb_set_mnt_opts(struct super_block *sb,
  252. struct security_mnt_opts *opts,
  253. unsigned long kern_flags,
  254. unsigned long *set_kern_flags)
  255. {
  256. return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
  257. set_kern_flags);
  258. }
  259. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  260. int security_sb_clone_mnt_opts(const struct super_block *oldsb,
  261. struct super_block *newsb)
  262. {
  263. return security_ops->sb_clone_mnt_opts(oldsb, newsb);
  264. }
  265. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  266. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  267. {
  268. return security_ops->sb_parse_opts_str(options, opts);
  269. }
  270. EXPORT_SYMBOL(security_sb_parse_opts_str);
  271. int security_inode_alloc(struct inode *inode)
  272. {
  273. inode->i_security = NULL;
  274. return security_ops->inode_alloc_security(inode);
  275. }
  276. void security_inode_free(struct inode *inode)
  277. {
  278. integrity_inode_free(inode);
  279. security_ops->inode_free_security(inode);
  280. }
  281. int security_dentry_init_security(struct dentry *dentry, int mode,
  282. struct qstr *name, void **ctx,
  283. u32 *ctxlen)
  284. {
  285. return security_ops->dentry_init_security(dentry, mode, name,
  286. ctx, ctxlen);
  287. }
  288. EXPORT_SYMBOL(security_dentry_init_security);
  289. int security_inode_init_security(struct inode *inode, struct inode *dir,
  290. const struct qstr *qstr,
  291. const initxattrs initxattrs, void *fs_data)
  292. {
  293. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  294. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  295. int ret;
  296. if (unlikely(IS_PRIVATE(inode)))
  297. return 0;
  298. if (!initxattrs)
  299. return security_ops->inode_init_security(inode, dir, qstr,
  300. NULL, NULL, NULL);
  301. memset(new_xattrs, 0, sizeof(new_xattrs));
  302. lsm_xattr = new_xattrs;
  303. ret = security_ops->inode_init_security(inode, dir, qstr,
  304. &lsm_xattr->name,
  305. &lsm_xattr->value,
  306. &lsm_xattr->value_len);
  307. if (ret)
  308. goto out;
  309. evm_xattr = lsm_xattr + 1;
  310. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  311. if (ret)
  312. goto out;
  313. ret = initxattrs(inode, new_xattrs, fs_data);
  314. out:
  315. for (xattr = new_xattrs; xattr->value != NULL; xattr++)
  316. kfree(xattr->value);
  317. return (ret == -EOPNOTSUPP) ? 0 : ret;
  318. }
  319. EXPORT_SYMBOL(security_inode_init_security);
  320. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  321. const struct qstr *qstr, const char **name,
  322. void **value, size_t *len)
  323. {
  324. if (unlikely(IS_PRIVATE(inode)))
  325. return -EOPNOTSUPP;
  326. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  327. len);
  328. }
  329. EXPORT_SYMBOL(security_old_inode_init_security);
  330. #ifdef CONFIG_SECURITY_PATH
  331. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  332. unsigned int dev)
  333. {
  334. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  335. return 0;
  336. return security_ops->path_mknod(dir, dentry, mode, dev);
  337. }
  338. EXPORT_SYMBOL(security_path_mknod);
  339. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  340. {
  341. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  342. return 0;
  343. return security_ops->path_mkdir(dir, dentry, mode);
  344. }
  345. EXPORT_SYMBOL(security_path_mkdir);
  346. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  347. {
  348. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  349. return 0;
  350. return security_ops->path_rmdir(dir, dentry);
  351. }
  352. int security_path_unlink(struct path *dir, struct dentry *dentry)
  353. {
  354. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  355. return 0;
  356. return security_ops->path_unlink(dir, dentry);
  357. }
  358. EXPORT_SYMBOL(security_path_unlink);
  359. int security_path_symlink(struct path *dir, struct dentry *dentry,
  360. const char *old_name)
  361. {
  362. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  363. return 0;
  364. return security_ops->path_symlink(dir, dentry, old_name);
  365. }
  366. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  367. struct dentry *new_dentry)
  368. {
  369. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  370. return 0;
  371. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  372. }
  373. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  374. struct path *new_dir, struct dentry *new_dentry,
  375. unsigned int flags)
  376. {
  377. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  378. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  379. return 0;
  380. if (flags & RENAME_EXCHANGE) {
  381. int err = security_ops->path_rename(new_dir, new_dentry,
  382. old_dir, old_dentry);
  383. if (err)
  384. return err;
  385. }
  386. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  387. new_dentry);
  388. }
  389. EXPORT_SYMBOL(security_path_rename);
  390. int security_path_truncate(struct path *path)
  391. {
  392. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  393. return 0;
  394. return security_ops->path_truncate(path);
  395. }
  396. int security_path_chmod(struct path *path, umode_t mode)
  397. {
  398. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  399. return 0;
  400. return security_ops->path_chmod(path, mode);
  401. }
  402. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  403. {
  404. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  405. return 0;
  406. return security_ops->path_chown(path, uid, gid);
  407. }
  408. int security_path_chroot(struct path *path)
  409. {
  410. return security_ops->path_chroot(path);
  411. }
  412. #endif
  413. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  414. {
  415. if (unlikely(IS_PRIVATE(dir)))
  416. return 0;
  417. return security_ops->inode_create(dir, dentry, mode);
  418. }
  419. EXPORT_SYMBOL_GPL(security_inode_create);
  420. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  421. struct dentry *new_dentry)
  422. {
  423. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  424. return 0;
  425. return security_ops->inode_link(old_dentry, dir, new_dentry);
  426. }
  427. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  428. {
  429. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  430. return 0;
  431. return security_ops->inode_unlink(dir, dentry);
  432. }
  433. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  434. const char *old_name)
  435. {
  436. if (unlikely(IS_PRIVATE(dir)))
  437. return 0;
  438. return security_ops->inode_symlink(dir, dentry, old_name);
  439. }
  440. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  441. {
  442. if (unlikely(IS_PRIVATE(dir)))
  443. return 0;
  444. return security_ops->inode_mkdir(dir, dentry, mode);
  445. }
  446. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  447. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  448. {
  449. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  450. return 0;
  451. return security_ops->inode_rmdir(dir, dentry);
  452. }
  453. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  454. {
  455. if (unlikely(IS_PRIVATE(dir)))
  456. return 0;
  457. return security_ops->inode_mknod(dir, dentry, mode, dev);
  458. }
  459. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  460. struct inode *new_dir, struct dentry *new_dentry,
  461. unsigned int flags)
  462. {
  463. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  464. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  465. return 0;
  466. if (flags & RENAME_EXCHANGE) {
  467. int err = security_ops->inode_rename(new_dir, new_dentry,
  468. old_dir, old_dentry);
  469. if (err)
  470. return err;
  471. }
  472. return security_ops->inode_rename(old_dir, old_dentry,
  473. new_dir, new_dentry);
  474. }
  475. int security_inode_readlink(struct dentry *dentry)
  476. {
  477. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  478. return 0;
  479. return security_ops->inode_readlink(dentry);
  480. }
  481. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  482. {
  483. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  484. return 0;
  485. return security_ops->inode_follow_link(dentry, nd);
  486. }
  487. int security_inode_permission(struct inode *inode, int mask)
  488. {
  489. if (unlikely(IS_PRIVATE(inode)))
  490. return 0;
  491. return security_ops->inode_permission(inode, mask);
  492. }
  493. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  494. {
  495. int ret;
  496. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  497. return 0;
  498. ret = security_ops->inode_setattr(dentry, attr);
  499. if (ret)
  500. return ret;
  501. return evm_inode_setattr(dentry, attr);
  502. }
  503. EXPORT_SYMBOL_GPL(security_inode_setattr);
  504. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  505. {
  506. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  507. return 0;
  508. return security_ops->inode_getattr(mnt, dentry);
  509. }
  510. int security_inode_setxattr(struct dentry *dentry, const char *name,
  511. const void *value, size_t size, int flags)
  512. {
  513. int ret;
  514. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  515. return 0;
  516. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  517. if (ret)
  518. return ret;
  519. ret = ima_inode_setxattr(dentry, name, value, size);
  520. if (ret)
  521. return ret;
  522. return evm_inode_setxattr(dentry, name, value, size);
  523. }
  524. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  525. const void *value, size_t size, int flags)
  526. {
  527. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  528. return;
  529. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  530. evm_inode_post_setxattr(dentry, name, value, size);
  531. }
  532. int security_inode_getxattr(struct dentry *dentry, const char *name)
  533. {
  534. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  535. return 0;
  536. return security_ops->inode_getxattr(dentry, name);
  537. }
  538. int security_inode_listxattr(struct dentry *dentry)
  539. {
  540. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  541. return 0;
  542. return security_ops->inode_listxattr(dentry);
  543. }
  544. int security_inode_removexattr(struct dentry *dentry, const char *name)
  545. {
  546. int ret;
  547. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  548. return 0;
  549. ret = security_ops->inode_removexattr(dentry, name);
  550. if (ret)
  551. return ret;
  552. ret = ima_inode_removexattr(dentry, name);
  553. if (ret)
  554. return ret;
  555. return evm_inode_removexattr(dentry, name);
  556. }
  557. int security_inode_need_killpriv(struct dentry *dentry)
  558. {
  559. return security_ops->inode_need_killpriv(dentry);
  560. }
  561. int security_inode_killpriv(struct dentry *dentry)
  562. {
  563. return security_ops->inode_killpriv(dentry);
  564. }
  565. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  566. {
  567. if (unlikely(IS_PRIVATE(inode)))
  568. return -EOPNOTSUPP;
  569. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  570. }
  571. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  572. {
  573. if (unlikely(IS_PRIVATE(inode)))
  574. return -EOPNOTSUPP;
  575. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  576. }
  577. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  578. {
  579. if (unlikely(IS_PRIVATE(inode)))
  580. return 0;
  581. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  582. }
  583. EXPORT_SYMBOL(security_inode_listsecurity);
  584. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  585. {
  586. security_ops->inode_getsecid(inode, secid);
  587. }
  588. int security_file_permission(struct file *file, int mask)
  589. {
  590. int ret;
  591. ret = security_ops->file_permission(file, mask);
  592. if (ret)
  593. return ret;
  594. return fsnotify_perm(file, mask);
  595. }
  596. int security_file_alloc(struct file *file)
  597. {
  598. return security_ops->file_alloc_security(file);
  599. }
  600. void security_file_free(struct file *file)
  601. {
  602. security_ops->file_free_security(file);
  603. }
  604. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  605. {
  606. return security_ops->file_ioctl(file, cmd, arg);
  607. }
  608. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  609. {
  610. /*
  611. * Does we have PROT_READ and does the application expect
  612. * it to imply PROT_EXEC? If not, nothing to talk about...
  613. */
  614. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  615. return prot;
  616. if (!(current->personality & READ_IMPLIES_EXEC))
  617. return prot;
  618. /*
  619. * if that's an anonymous mapping, let it.
  620. */
  621. if (!file)
  622. return prot | PROT_EXEC;
  623. /*
  624. * ditto if it's not on noexec mount, except that on !MMU we need
  625. * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
  626. */
  627. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  628. #ifndef CONFIG_MMU
  629. unsigned long caps = 0;
  630. struct address_space *mapping = file->f_mapping;
  631. if (mapping && mapping->backing_dev_info)
  632. caps = mapping->backing_dev_info->capabilities;
  633. if (!(caps & BDI_CAP_EXEC_MAP))
  634. return prot;
  635. #endif
  636. return prot | PROT_EXEC;
  637. }
  638. /* anything on noexec mount won't get PROT_EXEC */
  639. return prot;
  640. }
  641. int security_mmap_file(struct file *file, unsigned long prot,
  642. unsigned long flags)
  643. {
  644. int ret;
  645. ret = security_ops->mmap_file(file, prot,
  646. mmap_prot(file, prot), flags);
  647. if (ret)
  648. return ret;
  649. return ima_file_mmap(file, prot);
  650. }
  651. int security_mmap_addr(unsigned long addr)
  652. {
  653. return security_ops->mmap_addr(addr);
  654. }
  655. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  656. unsigned long prot)
  657. {
  658. return security_ops->file_mprotect(vma, reqprot, prot);
  659. }
  660. int security_file_lock(struct file *file, unsigned int cmd)
  661. {
  662. return security_ops->file_lock(file, cmd);
  663. }
  664. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  665. {
  666. return security_ops->file_fcntl(file, cmd, arg);
  667. }
  668. int security_file_set_fowner(struct file *file)
  669. {
  670. return security_ops->file_set_fowner(file);
  671. }
  672. int security_file_send_sigiotask(struct task_struct *tsk,
  673. struct fown_struct *fown, int sig)
  674. {
  675. return security_ops->file_send_sigiotask(tsk, fown, sig);
  676. }
  677. int security_file_receive(struct file *file)
  678. {
  679. return security_ops->file_receive(file);
  680. }
  681. int security_file_open(struct file *file, const struct cred *cred)
  682. {
  683. int ret;
  684. ret = security_ops->file_open(file, cred);
  685. if (ret)
  686. return ret;
  687. return fsnotify_perm(file, MAY_OPEN);
  688. }
  689. int security_task_create(unsigned long clone_flags)
  690. {
  691. return security_ops->task_create(clone_flags);
  692. }
  693. void security_task_free(struct task_struct *task)
  694. {
  695. #ifdef CONFIG_SECURITY_YAMA_STACKED
  696. yama_task_free(task);
  697. #endif
  698. security_ops->task_free(task);
  699. }
  700. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  701. {
  702. return security_ops->cred_alloc_blank(cred, gfp);
  703. }
  704. void security_cred_free(struct cred *cred)
  705. {
  706. security_ops->cred_free(cred);
  707. }
  708. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  709. {
  710. return security_ops->cred_prepare(new, old, gfp);
  711. }
  712. void security_transfer_creds(struct cred *new, const struct cred *old)
  713. {
  714. security_ops->cred_transfer(new, old);
  715. }
  716. int security_kernel_act_as(struct cred *new, u32 secid)
  717. {
  718. return security_ops->kernel_act_as(new, secid);
  719. }
  720. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  721. {
  722. return security_ops->kernel_create_files_as(new, inode);
  723. }
  724. int security_kernel_module_request(char *kmod_name)
  725. {
  726. return security_ops->kernel_module_request(kmod_name);
  727. }
  728. int security_kernel_module_from_file(struct file *file)
  729. {
  730. int ret;
  731. ret = security_ops->kernel_module_from_file(file);
  732. if (ret)
  733. return ret;
  734. return ima_module_check(file);
  735. }
  736. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  737. int flags)
  738. {
  739. return security_ops->task_fix_setuid(new, old, flags);
  740. }
  741. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  742. {
  743. return security_ops->task_setpgid(p, pgid);
  744. }
  745. int security_task_getpgid(struct task_struct *p)
  746. {
  747. return security_ops->task_getpgid(p);
  748. }
  749. int security_task_getsid(struct task_struct *p)
  750. {
  751. return security_ops->task_getsid(p);
  752. }
  753. void security_task_getsecid(struct task_struct *p, u32 *secid)
  754. {
  755. security_ops->task_getsecid(p, secid);
  756. }
  757. EXPORT_SYMBOL(security_task_getsecid);
  758. int security_task_setnice(struct task_struct *p, int nice)
  759. {
  760. return security_ops->task_setnice(p, nice);
  761. }
  762. int security_task_setioprio(struct task_struct *p, int ioprio)
  763. {
  764. return security_ops->task_setioprio(p, ioprio);
  765. }
  766. int security_task_getioprio(struct task_struct *p)
  767. {
  768. return security_ops->task_getioprio(p);
  769. }
  770. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  771. struct rlimit *new_rlim)
  772. {
  773. return security_ops->task_setrlimit(p, resource, new_rlim);
  774. }
  775. int security_task_setscheduler(struct task_struct *p)
  776. {
  777. return security_ops->task_setscheduler(p);
  778. }
  779. int security_task_getscheduler(struct task_struct *p)
  780. {
  781. return security_ops->task_getscheduler(p);
  782. }
  783. int security_task_movememory(struct task_struct *p)
  784. {
  785. return security_ops->task_movememory(p);
  786. }
  787. int security_task_kill(struct task_struct *p, struct siginfo *info,
  788. int sig, u32 secid)
  789. {
  790. return security_ops->task_kill(p, info, sig, secid);
  791. }
  792. int security_task_wait(struct task_struct *p)
  793. {
  794. return security_ops->task_wait(p);
  795. }
  796. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  797. unsigned long arg4, unsigned long arg5)
  798. {
  799. #ifdef CONFIG_SECURITY_YAMA_STACKED
  800. int rc;
  801. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  802. if (rc != -ENOSYS)
  803. return rc;
  804. #endif
  805. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  806. }
  807. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  808. {
  809. security_ops->task_to_inode(p, inode);
  810. }
  811. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  812. {
  813. return security_ops->ipc_permission(ipcp, flag);
  814. }
  815. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  816. {
  817. security_ops->ipc_getsecid(ipcp, secid);
  818. }
  819. int security_msg_msg_alloc(struct msg_msg *msg)
  820. {
  821. return security_ops->msg_msg_alloc_security(msg);
  822. }
  823. void security_msg_msg_free(struct msg_msg *msg)
  824. {
  825. security_ops->msg_msg_free_security(msg);
  826. }
  827. int security_msg_queue_alloc(struct msg_queue *msq)
  828. {
  829. return security_ops->msg_queue_alloc_security(msq);
  830. }
  831. void security_msg_queue_free(struct msg_queue *msq)
  832. {
  833. security_ops->msg_queue_free_security(msq);
  834. }
  835. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  836. {
  837. return security_ops->msg_queue_associate(msq, msqflg);
  838. }
  839. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  840. {
  841. return security_ops->msg_queue_msgctl(msq, cmd);
  842. }
  843. int security_msg_queue_msgsnd(struct msg_queue *msq,
  844. struct msg_msg *msg, int msqflg)
  845. {
  846. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  847. }
  848. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  849. struct task_struct *target, long type, int mode)
  850. {
  851. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  852. }
  853. int security_shm_alloc(struct shmid_kernel *shp)
  854. {
  855. return security_ops->shm_alloc_security(shp);
  856. }
  857. void security_shm_free(struct shmid_kernel *shp)
  858. {
  859. security_ops->shm_free_security(shp);
  860. }
  861. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  862. {
  863. return security_ops->shm_associate(shp, shmflg);
  864. }
  865. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  866. {
  867. return security_ops->shm_shmctl(shp, cmd);
  868. }
  869. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  870. {
  871. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  872. }
  873. int security_sem_alloc(struct sem_array *sma)
  874. {
  875. return security_ops->sem_alloc_security(sma);
  876. }
  877. void security_sem_free(struct sem_array *sma)
  878. {
  879. security_ops->sem_free_security(sma);
  880. }
  881. int security_sem_associate(struct sem_array *sma, int semflg)
  882. {
  883. return security_ops->sem_associate(sma, semflg);
  884. }
  885. int security_sem_semctl(struct sem_array *sma, int cmd)
  886. {
  887. return security_ops->sem_semctl(sma, cmd);
  888. }
  889. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  890. unsigned nsops, int alter)
  891. {
  892. return security_ops->sem_semop(sma, sops, nsops, alter);
  893. }
  894. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  895. {
  896. if (unlikely(inode && IS_PRIVATE(inode)))
  897. return;
  898. security_ops->d_instantiate(dentry, inode);
  899. }
  900. EXPORT_SYMBOL(security_d_instantiate);
  901. int security_getprocattr(struct task_struct *p, char *name, char **value)
  902. {
  903. return security_ops->getprocattr(p, name, value);
  904. }
  905. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  906. {
  907. return security_ops->setprocattr(p, name, value, size);
  908. }
  909. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  910. {
  911. return security_ops->netlink_send(sk, skb);
  912. }
  913. int security_ismaclabel(const char *name)
  914. {
  915. return security_ops->ismaclabel(name);
  916. }
  917. EXPORT_SYMBOL(security_ismaclabel);
  918. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  919. {
  920. return security_ops->secid_to_secctx(secid, secdata, seclen);
  921. }
  922. EXPORT_SYMBOL(security_secid_to_secctx);
  923. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  924. {
  925. return security_ops->secctx_to_secid(secdata, seclen, secid);
  926. }
  927. EXPORT_SYMBOL(security_secctx_to_secid);
  928. void security_release_secctx(char *secdata, u32 seclen)
  929. {
  930. security_ops->release_secctx(secdata, seclen);
  931. }
  932. EXPORT_SYMBOL(security_release_secctx);
  933. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  934. {
  935. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  936. }
  937. EXPORT_SYMBOL(security_inode_notifysecctx);
  938. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  939. {
  940. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  941. }
  942. EXPORT_SYMBOL(security_inode_setsecctx);
  943. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  944. {
  945. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  946. }
  947. EXPORT_SYMBOL(security_inode_getsecctx);
  948. #ifdef CONFIG_SECURITY_NETWORK
  949. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  950. {
  951. return security_ops->unix_stream_connect(sock, other, newsk);
  952. }
  953. EXPORT_SYMBOL(security_unix_stream_connect);
  954. int security_unix_may_send(struct socket *sock, struct socket *other)
  955. {
  956. return security_ops->unix_may_send(sock, other);
  957. }
  958. EXPORT_SYMBOL(security_unix_may_send);
  959. int security_socket_create(int family, int type, int protocol, int kern)
  960. {
  961. return security_ops->socket_create(family, type, protocol, kern);
  962. }
  963. int security_socket_post_create(struct socket *sock, int family,
  964. int type, int protocol, int kern)
  965. {
  966. return security_ops->socket_post_create(sock, family, type,
  967. protocol, kern);
  968. }
  969. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  970. {
  971. return security_ops->socket_bind(sock, address, addrlen);
  972. }
  973. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  974. {
  975. return security_ops->socket_connect(sock, address, addrlen);
  976. }
  977. int security_socket_listen(struct socket *sock, int backlog)
  978. {
  979. return security_ops->socket_listen(sock, backlog);
  980. }
  981. int security_socket_accept(struct socket *sock, struct socket *newsock)
  982. {
  983. return security_ops->socket_accept(sock, newsock);
  984. }
  985. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  986. {
  987. return security_ops->socket_sendmsg(sock, msg, size);
  988. }
  989. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  990. int size, int flags)
  991. {
  992. return security_ops->socket_recvmsg(sock, msg, size, flags);
  993. }
  994. int security_socket_getsockname(struct socket *sock)
  995. {
  996. return security_ops->socket_getsockname(sock);
  997. }
  998. int security_socket_getpeername(struct socket *sock)
  999. {
  1000. return security_ops->socket_getpeername(sock);
  1001. }
  1002. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  1003. {
  1004. return security_ops->socket_getsockopt(sock, level, optname);
  1005. }
  1006. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  1007. {
  1008. return security_ops->socket_setsockopt(sock, level, optname);
  1009. }
  1010. int security_socket_shutdown(struct socket *sock, int how)
  1011. {
  1012. return security_ops->socket_shutdown(sock, how);
  1013. }
  1014. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1015. {
  1016. return security_ops->socket_sock_rcv_skb(sk, skb);
  1017. }
  1018. EXPORT_SYMBOL(security_sock_rcv_skb);
  1019. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1020. int __user *optlen, unsigned len)
  1021. {
  1022. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1023. }
  1024. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1025. {
  1026. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1027. }
  1028. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1029. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1030. {
  1031. return security_ops->sk_alloc_security(sk, family, priority);
  1032. }
  1033. void security_sk_free(struct sock *sk)
  1034. {
  1035. security_ops->sk_free_security(sk);
  1036. }
  1037. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1038. {
  1039. security_ops->sk_clone_security(sk, newsk);
  1040. }
  1041. EXPORT_SYMBOL(security_sk_clone);
  1042. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1043. {
  1044. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1045. }
  1046. EXPORT_SYMBOL(security_sk_classify_flow);
  1047. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1048. {
  1049. security_ops->req_classify_flow(req, fl);
  1050. }
  1051. EXPORT_SYMBOL(security_req_classify_flow);
  1052. void security_sock_graft(struct sock *sk, struct socket *parent)
  1053. {
  1054. security_ops->sock_graft(sk, parent);
  1055. }
  1056. EXPORT_SYMBOL(security_sock_graft);
  1057. int security_inet_conn_request(struct sock *sk,
  1058. struct sk_buff *skb, struct request_sock *req)
  1059. {
  1060. return security_ops->inet_conn_request(sk, skb, req);
  1061. }
  1062. EXPORT_SYMBOL(security_inet_conn_request);
  1063. void security_inet_csk_clone(struct sock *newsk,
  1064. const struct request_sock *req)
  1065. {
  1066. security_ops->inet_csk_clone(newsk, req);
  1067. }
  1068. void security_inet_conn_established(struct sock *sk,
  1069. struct sk_buff *skb)
  1070. {
  1071. security_ops->inet_conn_established(sk, skb);
  1072. }
  1073. int security_secmark_relabel_packet(u32 secid)
  1074. {
  1075. return security_ops->secmark_relabel_packet(secid);
  1076. }
  1077. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1078. void security_secmark_refcount_inc(void)
  1079. {
  1080. security_ops->secmark_refcount_inc();
  1081. }
  1082. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1083. void security_secmark_refcount_dec(void)
  1084. {
  1085. security_ops->secmark_refcount_dec();
  1086. }
  1087. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1088. int security_tun_dev_alloc_security(void **security)
  1089. {
  1090. return security_ops->tun_dev_alloc_security(security);
  1091. }
  1092. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1093. void security_tun_dev_free_security(void *security)
  1094. {
  1095. security_ops->tun_dev_free_security(security);
  1096. }
  1097. EXPORT_SYMBOL(security_tun_dev_free_security);
  1098. int security_tun_dev_create(void)
  1099. {
  1100. return security_ops->tun_dev_create();
  1101. }
  1102. EXPORT_SYMBOL(security_tun_dev_create);
  1103. int security_tun_dev_attach_queue(void *security)
  1104. {
  1105. return security_ops->tun_dev_attach_queue(security);
  1106. }
  1107. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1108. int security_tun_dev_attach(struct sock *sk, void *security)
  1109. {
  1110. return security_ops->tun_dev_attach(sk, security);
  1111. }
  1112. EXPORT_SYMBOL(security_tun_dev_attach);
  1113. int security_tun_dev_open(void *security)
  1114. {
  1115. return security_ops->tun_dev_open(security);
  1116. }
  1117. EXPORT_SYMBOL(security_tun_dev_open);
  1118. void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
  1119. {
  1120. security_ops->skb_owned_by(skb, sk);
  1121. }
  1122. #endif /* CONFIG_SECURITY_NETWORK */
  1123. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1124. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
  1125. struct xfrm_user_sec_ctx *sec_ctx,
  1126. gfp_t gfp)
  1127. {
  1128. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
  1129. }
  1130. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1131. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1132. struct xfrm_sec_ctx **new_ctxp)
  1133. {
  1134. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1135. }
  1136. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1137. {
  1138. security_ops->xfrm_policy_free_security(ctx);
  1139. }
  1140. EXPORT_SYMBOL(security_xfrm_policy_free);
  1141. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1142. {
  1143. return security_ops->xfrm_policy_delete_security(ctx);
  1144. }
  1145. int security_xfrm_state_alloc(struct xfrm_state *x,
  1146. struct xfrm_user_sec_ctx *sec_ctx)
  1147. {
  1148. return security_ops->xfrm_state_alloc(x, sec_ctx);
  1149. }
  1150. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1151. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1152. struct xfrm_sec_ctx *polsec, u32 secid)
  1153. {
  1154. return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
  1155. }
  1156. int security_xfrm_state_delete(struct xfrm_state *x)
  1157. {
  1158. return security_ops->xfrm_state_delete_security(x);
  1159. }
  1160. EXPORT_SYMBOL(security_xfrm_state_delete);
  1161. void security_xfrm_state_free(struct xfrm_state *x)
  1162. {
  1163. security_ops->xfrm_state_free_security(x);
  1164. }
  1165. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1166. {
  1167. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1168. }
  1169. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1170. struct xfrm_policy *xp,
  1171. const struct flowi *fl)
  1172. {
  1173. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1174. }
  1175. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1176. {
  1177. return security_ops->xfrm_decode_session(skb, secid, 1);
  1178. }
  1179. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1180. {
  1181. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1182. BUG_ON(rc);
  1183. }
  1184. EXPORT_SYMBOL(security_skb_classify_flow);
  1185. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1186. #ifdef CONFIG_KEYS
  1187. int security_key_alloc(struct key *key, const struct cred *cred,
  1188. unsigned long flags)
  1189. {
  1190. return security_ops->key_alloc(key, cred, flags);
  1191. }
  1192. void security_key_free(struct key *key)
  1193. {
  1194. security_ops->key_free(key);
  1195. }
  1196. int security_key_permission(key_ref_t key_ref,
  1197. const struct cred *cred, key_perm_t perm)
  1198. {
  1199. return security_ops->key_permission(key_ref, cred, perm);
  1200. }
  1201. int security_key_getsecurity(struct key *key, char **_buffer)
  1202. {
  1203. return security_ops->key_getsecurity(key, _buffer);
  1204. }
  1205. #endif /* CONFIG_KEYS */
  1206. #ifdef CONFIG_AUDIT
  1207. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1208. {
  1209. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1210. }
  1211. int security_audit_rule_known(struct audit_krule *krule)
  1212. {
  1213. return security_ops->audit_rule_known(krule);
  1214. }
  1215. void security_audit_rule_free(void *lsmrule)
  1216. {
  1217. security_ops->audit_rule_free(lsmrule);
  1218. }
  1219. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1220. struct audit_context *actx)
  1221. {
  1222. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1223. }
  1224. #endif /* CONFIG_AUDIT */