disk-io.c 122 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int rw;
  119. int mirror_num;
  120. unsigned long bio_flags;
  121. /*
  122. * bio_offset is optional, can be used if the pages in the bio
  123. * can't tell us where in the file the bio should go
  124. */
  125. u64 bio_offset;
  126. struct btrfs_work work;
  127. int error;
  128. };
  129. /*
  130. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  131. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  132. * the level the eb occupies in the tree.
  133. *
  134. * Different roots are used for different purposes and may nest inside each
  135. * other and they require separate keysets. As lockdep keys should be
  136. * static, assign keysets according to the purpose of the root as indicated
  137. * by btrfs_root->objectid. This ensures that all special purpose roots
  138. * have separate keysets.
  139. *
  140. * Lock-nesting across peer nodes is always done with the immediate parent
  141. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  142. * subclass to avoid triggering lockdep warning in such cases.
  143. *
  144. * The key is set by the readpage_end_io_hook after the buffer has passed
  145. * csum validation but before the pages are unlocked. It is also set by
  146. * btrfs_init_new_buffer on freshly allocated blocks.
  147. *
  148. * We also add a check to make sure the highest level of the tree is the
  149. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  150. * needs update as well.
  151. */
  152. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  153. # if BTRFS_MAX_LEVEL != 8
  154. # error
  155. # endif
  156. static struct btrfs_lockdep_keyset {
  157. u64 id; /* root objectid */
  158. const char *name_stem; /* lock name stem */
  159. char names[BTRFS_MAX_LEVEL + 1][20];
  160. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  161. } btrfs_lockdep_keysets[] = {
  162. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  163. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  164. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  165. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  166. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  167. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  168. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  169. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  170. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  171. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  172. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  173. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  174. { .id = 0, .name_stem = "tree" },
  175. };
  176. void __init btrfs_init_lockdep(void)
  177. {
  178. int i, j;
  179. /* initialize lockdep class names */
  180. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  181. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  182. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  183. snprintf(ks->names[j], sizeof(ks->names[j]),
  184. "btrfs-%s-%02d", ks->name_stem, j);
  185. }
  186. }
  187. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  188. int level)
  189. {
  190. struct btrfs_lockdep_keyset *ks;
  191. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  192. /* find the matching keyset, id 0 is the default entry */
  193. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  194. if (ks->id == objectid)
  195. break;
  196. lockdep_set_class_and_name(&eb->lock,
  197. &ks->keys[level], ks->names[level]);
  198. }
  199. #endif
  200. /*
  201. * extents on the btree inode are pretty simple, there's one extent
  202. * that covers the entire device
  203. */
  204. static struct extent_map *btree_get_extent(struct inode *inode,
  205. struct page *page, size_t pg_offset, u64 start, u64 len,
  206. int create)
  207. {
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev =
  215. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  216. read_unlock(&em_tree->lock);
  217. goto out;
  218. }
  219. read_unlock(&em_tree->lock);
  220. em = alloc_extent_map();
  221. if (!em) {
  222. em = ERR_PTR(-ENOMEM);
  223. goto out;
  224. }
  225. em->start = 0;
  226. em->len = (u64)-1;
  227. em->block_len = (u64)-1;
  228. em->block_start = 0;
  229. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  230. write_lock(&em_tree->lock);
  231. ret = add_extent_mapping(em_tree, em, 0);
  232. if (ret == -EEXIST) {
  233. free_extent_map(em);
  234. em = lookup_extent_mapping(em_tree, start, len);
  235. if (!em)
  236. em = ERR_PTR(-EIO);
  237. } else if (ret) {
  238. free_extent_map(em);
  239. em = ERR_PTR(ret);
  240. }
  241. write_unlock(&em_tree->lock);
  242. out:
  243. return em;
  244. }
  245. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  246. {
  247. return btrfs_crc32c(seed, data, len);
  248. }
  249. void btrfs_csum_final(u32 crc, char *result)
  250. {
  251. put_unaligned_le32(~crc, result);
  252. }
  253. /*
  254. * compute the csum for a btree block, and either verify it or write it
  255. * into the csum field of the block.
  256. */
  257. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  258. struct extent_buffer *buf,
  259. int verify)
  260. {
  261. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  262. char *result = NULL;
  263. unsigned long len;
  264. unsigned long cur_len;
  265. unsigned long offset = BTRFS_CSUM_SIZE;
  266. char *kaddr;
  267. unsigned long map_start;
  268. unsigned long map_len;
  269. int err;
  270. u32 crc = ~(u32)0;
  271. unsigned long inline_result;
  272. len = buf->len - offset;
  273. while (len > 0) {
  274. err = map_private_extent_buffer(buf, offset, 32,
  275. &kaddr, &map_start, &map_len);
  276. if (err)
  277. return err;
  278. cur_len = min(len, map_len - (offset - map_start));
  279. crc = btrfs_csum_data(kaddr + offset - map_start,
  280. crc, cur_len);
  281. len -= cur_len;
  282. offset += cur_len;
  283. }
  284. if (csum_size > sizeof(inline_result)) {
  285. result = kzalloc(csum_size, GFP_NOFS);
  286. if (!result)
  287. return -ENOMEM;
  288. } else {
  289. result = (char *)&inline_result;
  290. }
  291. btrfs_csum_final(crc, result);
  292. if (verify) {
  293. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  294. u32 val;
  295. u32 found = 0;
  296. memcpy(&found, result, csum_size);
  297. read_extent_buffer(buf, &val, 0, csum_size);
  298. btrfs_warn_rl(fs_info,
  299. "%s checksum verify failed on %llu wanted %X found %X "
  300. "level %d",
  301. fs_info->sb->s_id, buf->start,
  302. val, found, btrfs_header_level(buf));
  303. if (result != (char *)&inline_result)
  304. kfree(result);
  305. return -EUCLEAN;
  306. }
  307. } else {
  308. write_extent_buffer(buf, result, 0, csum_size);
  309. }
  310. if (result != (char *)&inline_result)
  311. kfree(result);
  312. return 0;
  313. }
  314. /*
  315. * we can't consider a given block up to date unless the transid of the
  316. * block matches the transid in the parent node's pointer. This is how we
  317. * detect blocks that either didn't get written at all or got written
  318. * in the wrong place.
  319. */
  320. static int verify_parent_transid(struct extent_io_tree *io_tree,
  321. struct extent_buffer *eb, u64 parent_transid,
  322. int atomic)
  323. {
  324. struct extent_state *cached_state = NULL;
  325. int ret;
  326. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  327. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  328. return 0;
  329. if (atomic)
  330. return -EAGAIN;
  331. if (need_lock) {
  332. btrfs_tree_read_lock(eb);
  333. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  334. }
  335. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  336. &cached_state);
  337. if (extent_buffer_uptodate(eb) &&
  338. btrfs_header_generation(eb) == parent_transid) {
  339. ret = 0;
  340. goto out;
  341. }
  342. btrfs_err_rl(eb->fs_info,
  343. "parent transid verify failed on %llu wanted %llu found %llu",
  344. eb->start,
  345. parent_transid, btrfs_header_generation(eb));
  346. ret = 1;
  347. /*
  348. * Things reading via commit roots that don't have normal protection,
  349. * like send, can have a really old block in cache that may point at a
  350. * block that has been freed and re-allocated. So don't clear uptodate
  351. * if we find an eb that is under IO (dirty/writeback) because we could
  352. * end up reading in the stale data and then writing it back out and
  353. * making everybody very sad.
  354. */
  355. if (!extent_buffer_under_io(eb))
  356. clear_extent_buffer_uptodate(eb);
  357. out:
  358. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  359. &cached_state, GFP_NOFS);
  360. if (need_lock)
  361. btrfs_tree_read_unlock_blocking(eb);
  362. return ret;
  363. }
  364. /*
  365. * Return 0 if the superblock checksum type matches the checksum value of that
  366. * algorithm. Pass the raw disk superblock data.
  367. */
  368. static int btrfs_check_super_csum(char *raw_disk_sb)
  369. {
  370. struct btrfs_super_block *disk_sb =
  371. (struct btrfs_super_block *)raw_disk_sb;
  372. u16 csum_type = btrfs_super_csum_type(disk_sb);
  373. int ret = 0;
  374. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  375. u32 crc = ~(u32)0;
  376. const int csum_size = sizeof(crc);
  377. char result[csum_size];
  378. /*
  379. * The super_block structure does not span the whole
  380. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  381. * is filled with zeros and is included in the checksum.
  382. */
  383. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  384. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  385. btrfs_csum_final(crc, result);
  386. if (memcmp(raw_disk_sb, result, csum_size))
  387. ret = 1;
  388. }
  389. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  390. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  391. csum_type);
  392. ret = 1;
  393. }
  394. return ret;
  395. }
  396. /*
  397. * helper to read a given tree block, doing retries as required when
  398. * the checksums don't match and we have alternate mirrors to try.
  399. */
  400. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  401. struct extent_buffer *eb,
  402. u64 start, u64 parent_transid)
  403. {
  404. struct extent_io_tree *io_tree;
  405. int failed = 0;
  406. int ret;
  407. int num_copies = 0;
  408. int mirror_num = 0;
  409. int failed_mirror = 0;
  410. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  411. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. ret = read_extent_buffer_pages(io_tree, eb, start,
  414. WAIT_COMPLETE,
  415. btree_get_extent, mirror_num);
  416. if (!ret) {
  417. if (!verify_parent_transid(io_tree, eb,
  418. parent_transid, 0))
  419. break;
  420. else
  421. ret = -EIO;
  422. }
  423. /*
  424. * This buffer's crc is fine, but its contents are corrupted, so
  425. * there is no reason to read the other copies, they won't be
  426. * any less wrong.
  427. */
  428. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  429. break;
  430. num_copies = btrfs_num_copies(root->fs_info,
  431. eb->start, eb->len);
  432. if (num_copies == 1)
  433. break;
  434. if (!failed_mirror) {
  435. failed = 1;
  436. failed_mirror = eb->read_mirror;
  437. }
  438. mirror_num++;
  439. if (mirror_num == failed_mirror)
  440. mirror_num++;
  441. if (mirror_num > num_copies)
  442. break;
  443. }
  444. if (failed && !ret && failed_mirror)
  445. repair_eb_io_failure(root, eb, failed_mirror);
  446. return ret;
  447. }
  448. /*
  449. * checksum a dirty tree block before IO. This has extra checks to make sure
  450. * we only fill in the checksum field in the first page of a multi-page block
  451. */
  452. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  453. {
  454. u64 start = page_offset(page);
  455. u64 found_start;
  456. struct extent_buffer *eb;
  457. eb = (struct extent_buffer *)page->private;
  458. if (page != eb->pages[0])
  459. return 0;
  460. found_start = btrfs_header_bytenr(eb);
  461. /*
  462. * Please do not consolidate these warnings into a single if.
  463. * It is useful to know what went wrong.
  464. */
  465. if (WARN_ON(found_start != start))
  466. return -EUCLEAN;
  467. if (WARN_ON(!PageUptodate(page)))
  468. return -EUCLEAN;
  469. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  470. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  471. return csum_tree_block(fs_info, eb, 0);
  472. }
  473. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  474. struct extent_buffer *eb)
  475. {
  476. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  477. u8 fsid[BTRFS_UUID_SIZE];
  478. int ret = 1;
  479. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  480. while (fs_devices) {
  481. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  482. ret = 0;
  483. break;
  484. }
  485. fs_devices = fs_devices->seed;
  486. }
  487. return ret;
  488. }
  489. #define CORRUPT(reason, eb, root, slot) \
  490. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  491. "root=%llu, slot=%d", reason, \
  492. btrfs_header_bytenr(eb), root->objectid, slot)
  493. static noinline int check_leaf(struct btrfs_root *root,
  494. struct extent_buffer *leaf)
  495. {
  496. struct btrfs_key key;
  497. struct btrfs_key leaf_key;
  498. u32 nritems = btrfs_header_nritems(leaf);
  499. int slot;
  500. if (nritems == 0)
  501. return 0;
  502. /* Check the 0 item */
  503. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  504. BTRFS_LEAF_DATA_SIZE(root)) {
  505. CORRUPT("invalid item offset size pair", leaf, root, 0);
  506. return -EIO;
  507. }
  508. /*
  509. * Check to make sure each items keys are in the correct order and their
  510. * offsets make sense. We only have to loop through nritems-1 because
  511. * we check the current slot against the next slot, which verifies the
  512. * next slot's offset+size makes sense and that the current's slot
  513. * offset is correct.
  514. */
  515. for (slot = 0; slot < nritems - 1; slot++) {
  516. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  517. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  518. /* Make sure the keys are in the right order */
  519. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  520. CORRUPT("bad key order", leaf, root, slot);
  521. return -EIO;
  522. }
  523. /*
  524. * Make sure the offset and ends are right, remember that the
  525. * item data starts at the end of the leaf and grows towards the
  526. * front.
  527. */
  528. if (btrfs_item_offset_nr(leaf, slot) !=
  529. btrfs_item_end_nr(leaf, slot + 1)) {
  530. CORRUPT("slot offset bad", leaf, root, slot);
  531. return -EIO;
  532. }
  533. /*
  534. * Check to make sure that we don't point outside of the leaf,
  535. * just in case all the items are consistent to each other, but
  536. * all point outside of the leaf.
  537. */
  538. if (btrfs_item_end_nr(leaf, slot) >
  539. BTRFS_LEAF_DATA_SIZE(root)) {
  540. CORRUPT("slot end outside of leaf", leaf, root, slot);
  541. return -EIO;
  542. }
  543. }
  544. return 0;
  545. }
  546. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  547. u64 phy_offset, struct page *page,
  548. u64 start, u64 end, int mirror)
  549. {
  550. u64 found_start;
  551. int found_level;
  552. struct extent_buffer *eb;
  553. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  554. struct btrfs_fs_info *fs_info = root->fs_info;
  555. int ret = 0;
  556. int reads_done;
  557. if (!page->private)
  558. goto out;
  559. eb = (struct extent_buffer *)page->private;
  560. /* the pending IO might have been the only thing that kept this buffer
  561. * in memory. Make sure we have a ref for all this other checks
  562. */
  563. extent_buffer_get(eb);
  564. reads_done = atomic_dec_and_test(&eb->io_pages);
  565. if (!reads_done)
  566. goto err;
  567. eb->read_mirror = mirror;
  568. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  569. ret = -EIO;
  570. goto err;
  571. }
  572. found_start = btrfs_header_bytenr(eb);
  573. if (found_start != eb->start) {
  574. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  575. found_start, eb->start);
  576. ret = -EIO;
  577. goto err;
  578. }
  579. if (check_tree_block_fsid(fs_info, eb)) {
  580. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  581. eb->start);
  582. ret = -EIO;
  583. goto err;
  584. }
  585. found_level = btrfs_header_level(eb);
  586. if (found_level >= BTRFS_MAX_LEVEL) {
  587. btrfs_err(fs_info, "bad tree block level %d",
  588. (int)btrfs_header_level(eb));
  589. ret = -EIO;
  590. goto err;
  591. }
  592. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  593. eb, found_level);
  594. ret = csum_tree_block(fs_info, eb, 1);
  595. if (ret)
  596. goto err;
  597. /*
  598. * If this is a leaf block and it is corrupt, set the corrupt bit so
  599. * that we don't try and read the other copies of this block, just
  600. * return -EIO.
  601. */
  602. if (found_level == 0 && check_leaf(root, eb)) {
  603. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  604. ret = -EIO;
  605. }
  606. if (!ret)
  607. set_extent_buffer_uptodate(eb);
  608. err:
  609. if (reads_done &&
  610. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  611. btree_readahead_hook(fs_info, eb, eb->start, ret);
  612. if (ret) {
  613. /*
  614. * our io error hook is going to dec the io pages
  615. * again, we have to make sure it has something
  616. * to decrement
  617. */
  618. atomic_inc(&eb->io_pages);
  619. clear_extent_buffer_uptodate(eb);
  620. }
  621. free_extent_buffer(eb);
  622. out:
  623. return ret;
  624. }
  625. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  626. {
  627. struct extent_buffer *eb;
  628. eb = (struct extent_buffer *)page->private;
  629. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  630. eb->read_mirror = failed_mirror;
  631. atomic_dec(&eb->io_pages);
  632. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  633. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  634. return -EIO; /* we fixed nothing */
  635. }
  636. static void end_workqueue_bio(struct bio *bio)
  637. {
  638. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  639. struct btrfs_fs_info *fs_info;
  640. struct btrfs_workqueue *wq;
  641. btrfs_work_func_t func;
  642. fs_info = end_io_wq->info;
  643. end_io_wq->error = bio->bi_error;
  644. if (bio->bi_rw & REQ_WRITE) {
  645. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  646. wq = fs_info->endio_meta_write_workers;
  647. func = btrfs_endio_meta_write_helper;
  648. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  649. wq = fs_info->endio_freespace_worker;
  650. func = btrfs_freespace_write_helper;
  651. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  652. wq = fs_info->endio_raid56_workers;
  653. func = btrfs_endio_raid56_helper;
  654. } else {
  655. wq = fs_info->endio_write_workers;
  656. func = btrfs_endio_write_helper;
  657. }
  658. } else {
  659. if (unlikely(end_io_wq->metadata ==
  660. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  661. wq = fs_info->endio_repair_workers;
  662. func = btrfs_endio_repair_helper;
  663. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  664. wq = fs_info->endio_raid56_workers;
  665. func = btrfs_endio_raid56_helper;
  666. } else if (end_io_wq->metadata) {
  667. wq = fs_info->endio_meta_workers;
  668. func = btrfs_endio_meta_helper;
  669. } else {
  670. wq = fs_info->endio_workers;
  671. func = btrfs_endio_helper;
  672. }
  673. }
  674. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  675. btrfs_queue_work(wq, &end_io_wq->work);
  676. }
  677. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  678. enum btrfs_wq_endio_type metadata)
  679. {
  680. struct btrfs_end_io_wq *end_io_wq;
  681. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  682. if (!end_io_wq)
  683. return -ENOMEM;
  684. end_io_wq->private = bio->bi_private;
  685. end_io_wq->end_io = bio->bi_end_io;
  686. end_io_wq->info = info;
  687. end_io_wq->error = 0;
  688. end_io_wq->bio = bio;
  689. end_io_wq->metadata = metadata;
  690. bio->bi_private = end_io_wq;
  691. bio->bi_end_io = end_workqueue_bio;
  692. return 0;
  693. }
  694. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  695. {
  696. unsigned long limit = min_t(unsigned long,
  697. info->thread_pool_size,
  698. info->fs_devices->open_devices);
  699. return 256 * limit;
  700. }
  701. static void run_one_async_start(struct btrfs_work *work)
  702. {
  703. struct async_submit_bio *async;
  704. int ret;
  705. async = container_of(work, struct async_submit_bio, work);
  706. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  707. async->mirror_num, async->bio_flags,
  708. async->bio_offset);
  709. if (ret)
  710. async->error = ret;
  711. }
  712. static void run_one_async_done(struct btrfs_work *work)
  713. {
  714. struct btrfs_fs_info *fs_info;
  715. struct async_submit_bio *async;
  716. int limit;
  717. async = container_of(work, struct async_submit_bio, work);
  718. fs_info = BTRFS_I(async->inode)->root->fs_info;
  719. limit = btrfs_async_submit_limit(fs_info);
  720. limit = limit * 2 / 3;
  721. /*
  722. * atomic_dec_return implies a barrier for waitqueue_active
  723. */
  724. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  725. waitqueue_active(&fs_info->async_submit_wait))
  726. wake_up(&fs_info->async_submit_wait);
  727. /* If an error occurred we just want to clean up the bio and move on */
  728. if (async->error) {
  729. async->bio->bi_error = async->error;
  730. bio_endio(async->bio);
  731. return;
  732. }
  733. async->submit_bio_done(async->inode, async->rw, async->bio,
  734. async->mirror_num, async->bio_flags,
  735. async->bio_offset);
  736. }
  737. static void run_one_async_free(struct btrfs_work *work)
  738. {
  739. struct async_submit_bio *async;
  740. async = container_of(work, struct async_submit_bio, work);
  741. kfree(async);
  742. }
  743. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  744. int rw, struct bio *bio, int mirror_num,
  745. unsigned long bio_flags,
  746. u64 bio_offset,
  747. extent_submit_bio_hook_t *submit_bio_start,
  748. extent_submit_bio_hook_t *submit_bio_done)
  749. {
  750. struct async_submit_bio *async;
  751. async = kmalloc(sizeof(*async), GFP_NOFS);
  752. if (!async)
  753. return -ENOMEM;
  754. async->inode = inode;
  755. async->rw = rw;
  756. async->bio = bio;
  757. async->mirror_num = mirror_num;
  758. async->submit_bio_start = submit_bio_start;
  759. async->submit_bio_done = submit_bio_done;
  760. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  761. run_one_async_done, run_one_async_free);
  762. async->bio_flags = bio_flags;
  763. async->bio_offset = bio_offset;
  764. async->error = 0;
  765. atomic_inc(&fs_info->nr_async_submits);
  766. if (rw & REQ_SYNC)
  767. btrfs_set_work_high_priority(&async->work);
  768. btrfs_queue_work(fs_info->workers, &async->work);
  769. while (atomic_read(&fs_info->async_submit_draining) &&
  770. atomic_read(&fs_info->nr_async_submits)) {
  771. wait_event(fs_info->async_submit_wait,
  772. (atomic_read(&fs_info->nr_async_submits) == 0));
  773. }
  774. return 0;
  775. }
  776. static int btree_csum_one_bio(struct bio *bio)
  777. {
  778. struct bio_vec *bvec;
  779. struct btrfs_root *root;
  780. int i, ret = 0;
  781. bio_for_each_segment_all(bvec, bio, i) {
  782. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  783. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  784. if (ret)
  785. break;
  786. }
  787. return ret;
  788. }
  789. static int __btree_submit_bio_start(struct inode *inode, int rw,
  790. struct bio *bio, int mirror_num,
  791. unsigned long bio_flags,
  792. u64 bio_offset)
  793. {
  794. /*
  795. * when we're called for a write, we're already in the async
  796. * submission context. Just jump into btrfs_map_bio
  797. */
  798. return btree_csum_one_bio(bio);
  799. }
  800. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  801. int mirror_num, unsigned long bio_flags,
  802. u64 bio_offset)
  803. {
  804. int ret;
  805. /*
  806. * when we're called for a write, we're already in the async
  807. * submission context. Just jump into btrfs_map_bio
  808. */
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  810. if (ret) {
  811. bio->bi_error = ret;
  812. bio_endio(bio);
  813. }
  814. return ret;
  815. }
  816. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  817. {
  818. if (bio_flags & EXTENT_BIO_TREE_LOG)
  819. return 0;
  820. #ifdef CONFIG_X86
  821. if (static_cpu_has(X86_FEATURE_XMM4_2))
  822. return 0;
  823. #endif
  824. return 1;
  825. }
  826. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  827. int mirror_num, unsigned long bio_flags,
  828. u64 bio_offset)
  829. {
  830. int async = check_async_write(inode, bio_flags);
  831. int ret;
  832. if (!(rw & REQ_WRITE)) {
  833. /*
  834. * called for a read, do the setup so that checksum validation
  835. * can happen in the async kernel threads
  836. */
  837. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  838. bio, BTRFS_WQ_ENDIO_METADATA);
  839. if (ret)
  840. goto out_w_error;
  841. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  842. mirror_num, 0);
  843. } else if (!async) {
  844. ret = btree_csum_one_bio(bio);
  845. if (ret)
  846. goto out_w_error;
  847. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  848. mirror_num, 0);
  849. } else {
  850. /*
  851. * kthread helpers are used to submit writes so that
  852. * checksumming can happen in parallel across all CPUs
  853. */
  854. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  855. inode, rw, bio, mirror_num, 0,
  856. bio_offset,
  857. __btree_submit_bio_start,
  858. __btree_submit_bio_done);
  859. }
  860. if (ret)
  861. goto out_w_error;
  862. return 0;
  863. out_w_error:
  864. bio->bi_error = ret;
  865. bio_endio(bio);
  866. return ret;
  867. }
  868. #ifdef CONFIG_MIGRATION
  869. static int btree_migratepage(struct address_space *mapping,
  870. struct page *newpage, struct page *page,
  871. enum migrate_mode mode)
  872. {
  873. /*
  874. * we can't safely write a btree page from here,
  875. * we haven't done the locking hook
  876. */
  877. if (PageDirty(page))
  878. return -EAGAIN;
  879. /*
  880. * Buffers may be managed in a filesystem specific way.
  881. * We must have no buffers or drop them.
  882. */
  883. if (page_has_private(page) &&
  884. !try_to_release_page(page, GFP_KERNEL))
  885. return -EAGAIN;
  886. return migrate_page(mapping, newpage, page, mode);
  887. }
  888. #endif
  889. static int btree_writepages(struct address_space *mapping,
  890. struct writeback_control *wbc)
  891. {
  892. struct btrfs_fs_info *fs_info;
  893. int ret;
  894. if (wbc->sync_mode == WB_SYNC_NONE) {
  895. if (wbc->for_kupdate)
  896. return 0;
  897. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  898. /* this is a bit racy, but that's ok */
  899. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  900. BTRFS_DIRTY_METADATA_THRESH);
  901. if (ret < 0)
  902. return 0;
  903. }
  904. return btree_write_cache_pages(mapping, wbc);
  905. }
  906. static int btree_readpage(struct file *file, struct page *page)
  907. {
  908. struct extent_io_tree *tree;
  909. tree = &BTRFS_I(page->mapping->host)->io_tree;
  910. return extent_read_full_page(tree, page, btree_get_extent, 0);
  911. }
  912. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  913. {
  914. if (PageWriteback(page) || PageDirty(page))
  915. return 0;
  916. return try_release_extent_buffer(page);
  917. }
  918. static void btree_invalidatepage(struct page *page, unsigned int offset,
  919. unsigned int length)
  920. {
  921. struct extent_io_tree *tree;
  922. tree = &BTRFS_I(page->mapping->host)->io_tree;
  923. extent_invalidatepage(tree, page, offset);
  924. btree_releasepage(page, GFP_NOFS);
  925. if (PagePrivate(page)) {
  926. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  927. "page private not zero on page %llu",
  928. (unsigned long long)page_offset(page));
  929. ClearPagePrivate(page);
  930. set_page_private(page, 0);
  931. put_page(page);
  932. }
  933. }
  934. static int btree_set_page_dirty(struct page *page)
  935. {
  936. #ifdef DEBUG
  937. struct extent_buffer *eb;
  938. BUG_ON(!PagePrivate(page));
  939. eb = (struct extent_buffer *)page->private;
  940. BUG_ON(!eb);
  941. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  942. BUG_ON(!atomic_read(&eb->refs));
  943. btrfs_assert_tree_locked(eb);
  944. #endif
  945. return __set_page_dirty_nobuffers(page);
  946. }
  947. static const struct address_space_operations btree_aops = {
  948. .readpage = btree_readpage,
  949. .writepages = btree_writepages,
  950. .releasepage = btree_releasepage,
  951. .invalidatepage = btree_invalidatepage,
  952. #ifdef CONFIG_MIGRATION
  953. .migratepage = btree_migratepage,
  954. #endif
  955. .set_page_dirty = btree_set_page_dirty,
  956. };
  957. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  958. {
  959. struct extent_buffer *buf = NULL;
  960. struct inode *btree_inode = root->fs_info->btree_inode;
  961. buf = btrfs_find_create_tree_block(root, bytenr);
  962. if (!buf)
  963. return;
  964. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  965. buf, 0, WAIT_NONE, btree_get_extent, 0);
  966. free_extent_buffer(buf);
  967. }
  968. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  969. int mirror_num, struct extent_buffer **eb)
  970. {
  971. struct extent_buffer *buf = NULL;
  972. struct inode *btree_inode = root->fs_info->btree_inode;
  973. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  974. int ret;
  975. buf = btrfs_find_create_tree_block(root, bytenr);
  976. if (!buf)
  977. return 0;
  978. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  979. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  980. btree_get_extent, mirror_num);
  981. if (ret) {
  982. free_extent_buffer(buf);
  983. return ret;
  984. }
  985. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  986. free_extent_buffer(buf);
  987. return -EIO;
  988. } else if (extent_buffer_uptodate(buf)) {
  989. *eb = buf;
  990. } else {
  991. free_extent_buffer(buf);
  992. }
  993. return 0;
  994. }
  995. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  996. u64 bytenr)
  997. {
  998. return find_extent_buffer(fs_info, bytenr);
  999. }
  1000. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  1001. u64 bytenr)
  1002. {
  1003. if (btrfs_test_is_dummy_root(root))
  1004. return alloc_test_extent_buffer(root->fs_info, bytenr);
  1005. return alloc_extent_buffer(root->fs_info, bytenr);
  1006. }
  1007. int btrfs_write_tree_block(struct extent_buffer *buf)
  1008. {
  1009. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1010. buf->start + buf->len - 1);
  1011. }
  1012. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1013. {
  1014. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1015. buf->start, buf->start + buf->len - 1);
  1016. }
  1017. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1018. u64 parent_transid)
  1019. {
  1020. struct extent_buffer *buf = NULL;
  1021. int ret;
  1022. buf = btrfs_find_create_tree_block(root, bytenr);
  1023. if (!buf)
  1024. return ERR_PTR(-ENOMEM);
  1025. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1026. if (ret) {
  1027. free_extent_buffer(buf);
  1028. return ERR_PTR(ret);
  1029. }
  1030. return buf;
  1031. }
  1032. void clean_tree_block(struct btrfs_trans_handle *trans,
  1033. struct btrfs_fs_info *fs_info,
  1034. struct extent_buffer *buf)
  1035. {
  1036. if (btrfs_header_generation(buf) ==
  1037. fs_info->running_transaction->transid) {
  1038. btrfs_assert_tree_locked(buf);
  1039. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1040. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1041. -buf->len,
  1042. fs_info->dirty_metadata_batch);
  1043. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1044. btrfs_set_lock_blocking(buf);
  1045. clear_extent_buffer_dirty(buf);
  1046. }
  1047. }
  1048. }
  1049. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1050. {
  1051. struct btrfs_subvolume_writers *writers;
  1052. int ret;
  1053. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1054. if (!writers)
  1055. return ERR_PTR(-ENOMEM);
  1056. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1057. if (ret < 0) {
  1058. kfree(writers);
  1059. return ERR_PTR(ret);
  1060. }
  1061. init_waitqueue_head(&writers->wait);
  1062. return writers;
  1063. }
  1064. static void
  1065. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1066. {
  1067. percpu_counter_destroy(&writers->counter);
  1068. kfree(writers);
  1069. }
  1070. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1071. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1072. u64 objectid)
  1073. {
  1074. root->node = NULL;
  1075. root->commit_root = NULL;
  1076. root->sectorsize = sectorsize;
  1077. root->nodesize = nodesize;
  1078. root->stripesize = stripesize;
  1079. root->state = 0;
  1080. root->orphan_cleanup_state = 0;
  1081. root->objectid = objectid;
  1082. root->last_trans = 0;
  1083. root->highest_objectid = 0;
  1084. root->nr_delalloc_inodes = 0;
  1085. root->nr_ordered_extents = 0;
  1086. root->name = NULL;
  1087. root->inode_tree = RB_ROOT;
  1088. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1089. root->block_rsv = NULL;
  1090. root->orphan_block_rsv = NULL;
  1091. INIT_LIST_HEAD(&root->dirty_list);
  1092. INIT_LIST_HEAD(&root->root_list);
  1093. INIT_LIST_HEAD(&root->delalloc_inodes);
  1094. INIT_LIST_HEAD(&root->delalloc_root);
  1095. INIT_LIST_HEAD(&root->ordered_extents);
  1096. INIT_LIST_HEAD(&root->ordered_root);
  1097. INIT_LIST_HEAD(&root->logged_list[0]);
  1098. INIT_LIST_HEAD(&root->logged_list[1]);
  1099. spin_lock_init(&root->orphan_lock);
  1100. spin_lock_init(&root->inode_lock);
  1101. spin_lock_init(&root->delalloc_lock);
  1102. spin_lock_init(&root->ordered_extent_lock);
  1103. spin_lock_init(&root->accounting_lock);
  1104. spin_lock_init(&root->log_extents_lock[0]);
  1105. spin_lock_init(&root->log_extents_lock[1]);
  1106. mutex_init(&root->objectid_mutex);
  1107. mutex_init(&root->log_mutex);
  1108. mutex_init(&root->ordered_extent_mutex);
  1109. mutex_init(&root->delalloc_mutex);
  1110. init_waitqueue_head(&root->log_writer_wait);
  1111. init_waitqueue_head(&root->log_commit_wait[0]);
  1112. init_waitqueue_head(&root->log_commit_wait[1]);
  1113. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1114. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1115. atomic_set(&root->log_commit[0], 0);
  1116. atomic_set(&root->log_commit[1], 0);
  1117. atomic_set(&root->log_writers, 0);
  1118. atomic_set(&root->log_batch, 0);
  1119. atomic_set(&root->orphan_inodes, 0);
  1120. atomic_set(&root->refs, 1);
  1121. atomic_set(&root->will_be_snapshoted, 0);
  1122. atomic_set(&root->qgroup_meta_rsv, 0);
  1123. root->log_transid = 0;
  1124. root->log_transid_committed = -1;
  1125. root->last_log_commit = 0;
  1126. if (fs_info)
  1127. extent_io_tree_init(&root->dirty_log_pages,
  1128. fs_info->btree_inode->i_mapping);
  1129. memset(&root->root_key, 0, sizeof(root->root_key));
  1130. memset(&root->root_item, 0, sizeof(root->root_item));
  1131. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1132. if (fs_info)
  1133. root->defrag_trans_start = fs_info->generation;
  1134. else
  1135. root->defrag_trans_start = 0;
  1136. root->root_key.objectid = objectid;
  1137. root->anon_dev = 0;
  1138. spin_lock_init(&root->root_item_lock);
  1139. }
  1140. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1141. gfp_t flags)
  1142. {
  1143. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1144. if (root)
  1145. root->fs_info = fs_info;
  1146. return root;
  1147. }
  1148. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1149. /* Should only be used by the testing infrastructure */
  1150. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1151. {
  1152. struct btrfs_root *root;
  1153. root = btrfs_alloc_root(NULL, GFP_KERNEL);
  1154. if (!root)
  1155. return ERR_PTR(-ENOMEM);
  1156. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1157. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1158. root->alloc_bytenr = 0;
  1159. return root;
  1160. }
  1161. #endif
  1162. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1163. struct btrfs_fs_info *fs_info,
  1164. u64 objectid)
  1165. {
  1166. struct extent_buffer *leaf;
  1167. struct btrfs_root *tree_root = fs_info->tree_root;
  1168. struct btrfs_root *root;
  1169. struct btrfs_key key;
  1170. int ret = 0;
  1171. uuid_le uuid;
  1172. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1173. if (!root)
  1174. return ERR_PTR(-ENOMEM);
  1175. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1176. tree_root->stripesize, root, fs_info, objectid);
  1177. root->root_key.objectid = objectid;
  1178. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1179. root->root_key.offset = 0;
  1180. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1181. if (IS_ERR(leaf)) {
  1182. ret = PTR_ERR(leaf);
  1183. leaf = NULL;
  1184. goto fail;
  1185. }
  1186. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1187. btrfs_set_header_bytenr(leaf, leaf->start);
  1188. btrfs_set_header_generation(leaf, trans->transid);
  1189. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1190. btrfs_set_header_owner(leaf, objectid);
  1191. root->node = leaf;
  1192. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1193. BTRFS_FSID_SIZE);
  1194. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1195. btrfs_header_chunk_tree_uuid(leaf),
  1196. BTRFS_UUID_SIZE);
  1197. btrfs_mark_buffer_dirty(leaf);
  1198. root->commit_root = btrfs_root_node(root);
  1199. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1200. root->root_item.flags = 0;
  1201. root->root_item.byte_limit = 0;
  1202. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1203. btrfs_set_root_generation(&root->root_item, trans->transid);
  1204. btrfs_set_root_level(&root->root_item, 0);
  1205. btrfs_set_root_refs(&root->root_item, 1);
  1206. btrfs_set_root_used(&root->root_item, leaf->len);
  1207. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1208. btrfs_set_root_dirid(&root->root_item, 0);
  1209. uuid_le_gen(&uuid);
  1210. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1211. root->root_item.drop_level = 0;
  1212. key.objectid = objectid;
  1213. key.type = BTRFS_ROOT_ITEM_KEY;
  1214. key.offset = 0;
  1215. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1216. if (ret)
  1217. goto fail;
  1218. btrfs_tree_unlock(leaf);
  1219. return root;
  1220. fail:
  1221. if (leaf) {
  1222. btrfs_tree_unlock(leaf);
  1223. free_extent_buffer(root->commit_root);
  1224. free_extent_buffer(leaf);
  1225. }
  1226. kfree(root);
  1227. return ERR_PTR(ret);
  1228. }
  1229. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1230. struct btrfs_fs_info *fs_info)
  1231. {
  1232. struct btrfs_root *root;
  1233. struct btrfs_root *tree_root = fs_info->tree_root;
  1234. struct extent_buffer *leaf;
  1235. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1236. if (!root)
  1237. return ERR_PTR(-ENOMEM);
  1238. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1239. tree_root->stripesize, root, fs_info,
  1240. BTRFS_TREE_LOG_OBJECTID);
  1241. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1242. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1243. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1244. /*
  1245. * DON'T set REF_COWS for log trees
  1246. *
  1247. * log trees do not get reference counted because they go away
  1248. * before a real commit is actually done. They do store pointers
  1249. * to file data extents, and those reference counts still get
  1250. * updated (along with back refs to the log tree).
  1251. */
  1252. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1253. NULL, 0, 0, 0);
  1254. if (IS_ERR(leaf)) {
  1255. kfree(root);
  1256. return ERR_CAST(leaf);
  1257. }
  1258. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1259. btrfs_set_header_bytenr(leaf, leaf->start);
  1260. btrfs_set_header_generation(leaf, trans->transid);
  1261. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1262. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1263. root->node = leaf;
  1264. write_extent_buffer(root->node, root->fs_info->fsid,
  1265. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1266. btrfs_mark_buffer_dirty(root->node);
  1267. btrfs_tree_unlock(root->node);
  1268. return root;
  1269. }
  1270. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1271. struct btrfs_fs_info *fs_info)
  1272. {
  1273. struct btrfs_root *log_root;
  1274. log_root = alloc_log_tree(trans, fs_info);
  1275. if (IS_ERR(log_root))
  1276. return PTR_ERR(log_root);
  1277. WARN_ON(fs_info->log_root_tree);
  1278. fs_info->log_root_tree = log_root;
  1279. return 0;
  1280. }
  1281. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1282. struct btrfs_root *root)
  1283. {
  1284. struct btrfs_root *log_root;
  1285. struct btrfs_inode_item *inode_item;
  1286. log_root = alloc_log_tree(trans, root->fs_info);
  1287. if (IS_ERR(log_root))
  1288. return PTR_ERR(log_root);
  1289. log_root->last_trans = trans->transid;
  1290. log_root->root_key.offset = root->root_key.objectid;
  1291. inode_item = &log_root->root_item.inode;
  1292. btrfs_set_stack_inode_generation(inode_item, 1);
  1293. btrfs_set_stack_inode_size(inode_item, 3);
  1294. btrfs_set_stack_inode_nlink(inode_item, 1);
  1295. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1296. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1297. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1298. WARN_ON(root->log_root);
  1299. root->log_root = log_root;
  1300. root->log_transid = 0;
  1301. root->log_transid_committed = -1;
  1302. root->last_log_commit = 0;
  1303. return 0;
  1304. }
  1305. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1306. struct btrfs_key *key)
  1307. {
  1308. struct btrfs_root *root;
  1309. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1310. struct btrfs_path *path;
  1311. u64 generation;
  1312. int ret;
  1313. path = btrfs_alloc_path();
  1314. if (!path)
  1315. return ERR_PTR(-ENOMEM);
  1316. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1317. if (!root) {
  1318. ret = -ENOMEM;
  1319. goto alloc_fail;
  1320. }
  1321. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1322. tree_root->stripesize, root, fs_info, key->objectid);
  1323. ret = btrfs_find_root(tree_root, key, path,
  1324. &root->root_item, &root->root_key);
  1325. if (ret) {
  1326. if (ret > 0)
  1327. ret = -ENOENT;
  1328. goto find_fail;
  1329. }
  1330. generation = btrfs_root_generation(&root->root_item);
  1331. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1332. generation);
  1333. if (IS_ERR(root->node)) {
  1334. ret = PTR_ERR(root->node);
  1335. goto find_fail;
  1336. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1337. ret = -EIO;
  1338. free_extent_buffer(root->node);
  1339. goto find_fail;
  1340. }
  1341. root->commit_root = btrfs_root_node(root);
  1342. out:
  1343. btrfs_free_path(path);
  1344. return root;
  1345. find_fail:
  1346. kfree(root);
  1347. alloc_fail:
  1348. root = ERR_PTR(ret);
  1349. goto out;
  1350. }
  1351. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1352. struct btrfs_key *location)
  1353. {
  1354. struct btrfs_root *root;
  1355. root = btrfs_read_tree_root(tree_root, location);
  1356. if (IS_ERR(root))
  1357. return root;
  1358. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1359. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1360. btrfs_check_and_init_root_item(&root->root_item);
  1361. }
  1362. return root;
  1363. }
  1364. int btrfs_init_fs_root(struct btrfs_root *root)
  1365. {
  1366. int ret;
  1367. struct btrfs_subvolume_writers *writers;
  1368. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1369. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1370. GFP_NOFS);
  1371. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1372. ret = -ENOMEM;
  1373. goto fail;
  1374. }
  1375. writers = btrfs_alloc_subvolume_writers();
  1376. if (IS_ERR(writers)) {
  1377. ret = PTR_ERR(writers);
  1378. goto fail;
  1379. }
  1380. root->subv_writers = writers;
  1381. btrfs_init_free_ino_ctl(root);
  1382. spin_lock_init(&root->ino_cache_lock);
  1383. init_waitqueue_head(&root->ino_cache_wait);
  1384. ret = get_anon_bdev(&root->anon_dev);
  1385. if (ret)
  1386. goto free_writers;
  1387. mutex_lock(&root->objectid_mutex);
  1388. ret = btrfs_find_highest_objectid(root,
  1389. &root->highest_objectid);
  1390. if (ret) {
  1391. mutex_unlock(&root->objectid_mutex);
  1392. goto free_root_dev;
  1393. }
  1394. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1395. mutex_unlock(&root->objectid_mutex);
  1396. return 0;
  1397. free_root_dev:
  1398. free_anon_bdev(root->anon_dev);
  1399. free_writers:
  1400. btrfs_free_subvolume_writers(root->subv_writers);
  1401. fail:
  1402. kfree(root->free_ino_ctl);
  1403. kfree(root->free_ino_pinned);
  1404. return ret;
  1405. }
  1406. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1407. u64 root_id)
  1408. {
  1409. struct btrfs_root *root;
  1410. spin_lock(&fs_info->fs_roots_radix_lock);
  1411. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1412. (unsigned long)root_id);
  1413. spin_unlock(&fs_info->fs_roots_radix_lock);
  1414. return root;
  1415. }
  1416. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1417. struct btrfs_root *root)
  1418. {
  1419. int ret;
  1420. ret = radix_tree_preload(GFP_NOFS);
  1421. if (ret)
  1422. return ret;
  1423. spin_lock(&fs_info->fs_roots_radix_lock);
  1424. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1425. (unsigned long)root->root_key.objectid,
  1426. root);
  1427. if (ret == 0)
  1428. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1429. spin_unlock(&fs_info->fs_roots_radix_lock);
  1430. radix_tree_preload_end();
  1431. return ret;
  1432. }
  1433. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1434. struct btrfs_key *location,
  1435. bool check_ref)
  1436. {
  1437. struct btrfs_root *root;
  1438. struct btrfs_path *path;
  1439. struct btrfs_key key;
  1440. int ret;
  1441. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1442. return fs_info->tree_root;
  1443. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1444. return fs_info->extent_root;
  1445. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1446. return fs_info->chunk_root;
  1447. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1448. return fs_info->dev_root;
  1449. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1450. return fs_info->csum_root;
  1451. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1452. return fs_info->quota_root ? fs_info->quota_root :
  1453. ERR_PTR(-ENOENT);
  1454. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1455. return fs_info->uuid_root ? fs_info->uuid_root :
  1456. ERR_PTR(-ENOENT);
  1457. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1458. return fs_info->free_space_root ? fs_info->free_space_root :
  1459. ERR_PTR(-ENOENT);
  1460. again:
  1461. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1462. if (root) {
  1463. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1464. return ERR_PTR(-ENOENT);
  1465. return root;
  1466. }
  1467. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1468. if (IS_ERR(root))
  1469. return root;
  1470. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1471. ret = -ENOENT;
  1472. goto fail;
  1473. }
  1474. ret = btrfs_init_fs_root(root);
  1475. if (ret)
  1476. goto fail;
  1477. path = btrfs_alloc_path();
  1478. if (!path) {
  1479. ret = -ENOMEM;
  1480. goto fail;
  1481. }
  1482. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1483. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1484. key.offset = location->objectid;
  1485. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1486. btrfs_free_path(path);
  1487. if (ret < 0)
  1488. goto fail;
  1489. if (ret == 0)
  1490. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1491. ret = btrfs_insert_fs_root(fs_info, root);
  1492. if (ret) {
  1493. if (ret == -EEXIST) {
  1494. free_fs_root(root);
  1495. goto again;
  1496. }
  1497. goto fail;
  1498. }
  1499. return root;
  1500. fail:
  1501. free_fs_root(root);
  1502. return ERR_PTR(ret);
  1503. }
  1504. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1505. {
  1506. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1507. int ret = 0;
  1508. struct btrfs_device *device;
  1509. struct backing_dev_info *bdi;
  1510. rcu_read_lock();
  1511. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1512. if (!device->bdev)
  1513. continue;
  1514. bdi = blk_get_backing_dev_info(device->bdev);
  1515. if (bdi_congested(bdi, bdi_bits)) {
  1516. ret = 1;
  1517. break;
  1518. }
  1519. }
  1520. rcu_read_unlock();
  1521. return ret;
  1522. }
  1523. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1524. {
  1525. int err;
  1526. err = bdi_setup_and_register(bdi, "btrfs");
  1527. if (err)
  1528. return err;
  1529. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1530. bdi->congested_fn = btrfs_congested_fn;
  1531. bdi->congested_data = info;
  1532. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1533. return 0;
  1534. }
  1535. /*
  1536. * called by the kthread helper functions to finally call the bio end_io
  1537. * functions. This is where read checksum verification actually happens
  1538. */
  1539. static void end_workqueue_fn(struct btrfs_work *work)
  1540. {
  1541. struct bio *bio;
  1542. struct btrfs_end_io_wq *end_io_wq;
  1543. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1544. bio = end_io_wq->bio;
  1545. bio->bi_error = end_io_wq->error;
  1546. bio->bi_private = end_io_wq->private;
  1547. bio->bi_end_io = end_io_wq->end_io;
  1548. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1549. bio_endio(bio);
  1550. }
  1551. static int cleaner_kthread(void *arg)
  1552. {
  1553. struct btrfs_root *root = arg;
  1554. int again;
  1555. struct btrfs_trans_handle *trans;
  1556. do {
  1557. again = 0;
  1558. /* Make the cleaner go to sleep early. */
  1559. if (btrfs_need_cleaner_sleep(root))
  1560. goto sleep;
  1561. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1562. goto sleep;
  1563. /*
  1564. * Avoid the problem that we change the status of the fs
  1565. * during the above check and trylock.
  1566. */
  1567. if (btrfs_need_cleaner_sleep(root)) {
  1568. mutex_unlock(&root->fs_info->cleaner_mutex);
  1569. goto sleep;
  1570. }
  1571. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1572. btrfs_run_delayed_iputs(root);
  1573. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1574. again = btrfs_clean_one_deleted_snapshot(root);
  1575. mutex_unlock(&root->fs_info->cleaner_mutex);
  1576. /*
  1577. * The defragger has dealt with the R/O remount and umount,
  1578. * needn't do anything special here.
  1579. */
  1580. btrfs_run_defrag_inodes(root->fs_info);
  1581. /*
  1582. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1583. * with relocation (btrfs_relocate_chunk) and relocation
  1584. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1585. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1586. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1587. * unused block groups.
  1588. */
  1589. btrfs_delete_unused_bgs(root->fs_info);
  1590. sleep:
  1591. if (!again) {
  1592. set_current_state(TASK_INTERRUPTIBLE);
  1593. if (!kthread_should_stop())
  1594. schedule();
  1595. __set_current_state(TASK_RUNNING);
  1596. }
  1597. } while (!kthread_should_stop());
  1598. /*
  1599. * Transaction kthread is stopped before us and wakes us up.
  1600. * However we might have started a new transaction and COWed some
  1601. * tree blocks when deleting unused block groups for example. So
  1602. * make sure we commit the transaction we started to have a clean
  1603. * shutdown when evicting the btree inode - if it has dirty pages
  1604. * when we do the final iput() on it, eviction will trigger a
  1605. * writeback for it which will fail with null pointer dereferences
  1606. * since work queues and other resources were already released and
  1607. * destroyed by the time the iput/eviction/writeback is made.
  1608. */
  1609. trans = btrfs_attach_transaction(root);
  1610. if (IS_ERR(trans)) {
  1611. if (PTR_ERR(trans) != -ENOENT)
  1612. btrfs_err(root->fs_info,
  1613. "cleaner transaction attach returned %ld",
  1614. PTR_ERR(trans));
  1615. } else {
  1616. int ret;
  1617. ret = btrfs_commit_transaction(trans, root);
  1618. if (ret)
  1619. btrfs_err(root->fs_info,
  1620. "cleaner open transaction commit returned %d",
  1621. ret);
  1622. }
  1623. return 0;
  1624. }
  1625. static int transaction_kthread(void *arg)
  1626. {
  1627. struct btrfs_root *root = arg;
  1628. struct btrfs_trans_handle *trans;
  1629. struct btrfs_transaction *cur;
  1630. u64 transid;
  1631. unsigned long now;
  1632. unsigned long delay;
  1633. bool cannot_commit;
  1634. do {
  1635. cannot_commit = false;
  1636. delay = HZ * root->fs_info->commit_interval;
  1637. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1638. spin_lock(&root->fs_info->trans_lock);
  1639. cur = root->fs_info->running_transaction;
  1640. if (!cur) {
  1641. spin_unlock(&root->fs_info->trans_lock);
  1642. goto sleep;
  1643. }
  1644. now = get_seconds();
  1645. if (cur->state < TRANS_STATE_BLOCKED &&
  1646. (now < cur->start_time ||
  1647. now - cur->start_time < root->fs_info->commit_interval)) {
  1648. spin_unlock(&root->fs_info->trans_lock);
  1649. delay = HZ * 5;
  1650. goto sleep;
  1651. }
  1652. transid = cur->transid;
  1653. spin_unlock(&root->fs_info->trans_lock);
  1654. /* If the file system is aborted, this will always fail. */
  1655. trans = btrfs_attach_transaction(root);
  1656. if (IS_ERR(trans)) {
  1657. if (PTR_ERR(trans) != -ENOENT)
  1658. cannot_commit = true;
  1659. goto sleep;
  1660. }
  1661. if (transid == trans->transid) {
  1662. btrfs_commit_transaction(trans, root);
  1663. } else {
  1664. btrfs_end_transaction(trans, root);
  1665. }
  1666. sleep:
  1667. wake_up_process(root->fs_info->cleaner_kthread);
  1668. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1669. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1670. &root->fs_info->fs_state)))
  1671. btrfs_cleanup_transaction(root);
  1672. set_current_state(TASK_INTERRUPTIBLE);
  1673. if (!kthread_should_stop() &&
  1674. (!btrfs_transaction_blocked(root->fs_info) ||
  1675. cannot_commit))
  1676. schedule_timeout(delay);
  1677. __set_current_state(TASK_RUNNING);
  1678. } while (!kthread_should_stop());
  1679. return 0;
  1680. }
  1681. /*
  1682. * this will find the highest generation in the array of
  1683. * root backups. The index of the highest array is returned,
  1684. * or -1 if we can't find anything.
  1685. *
  1686. * We check to make sure the array is valid by comparing the
  1687. * generation of the latest root in the array with the generation
  1688. * in the super block. If they don't match we pitch it.
  1689. */
  1690. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1691. {
  1692. u64 cur;
  1693. int newest_index = -1;
  1694. struct btrfs_root_backup *root_backup;
  1695. int i;
  1696. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1697. root_backup = info->super_copy->super_roots + i;
  1698. cur = btrfs_backup_tree_root_gen(root_backup);
  1699. if (cur == newest_gen)
  1700. newest_index = i;
  1701. }
  1702. /* check to see if we actually wrapped around */
  1703. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1704. root_backup = info->super_copy->super_roots;
  1705. cur = btrfs_backup_tree_root_gen(root_backup);
  1706. if (cur == newest_gen)
  1707. newest_index = 0;
  1708. }
  1709. return newest_index;
  1710. }
  1711. /*
  1712. * find the oldest backup so we know where to store new entries
  1713. * in the backup array. This will set the backup_root_index
  1714. * field in the fs_info struct
  1715. */
  1716. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1717. u64 newest_gen)
  1718. {
  1719. int newest_index = -1;
  1720. newest_index = find_newest_super_backup(info, newest_gen);
  1721. /* if there was garbage in there, just move along */
  1722. if (newest_index == -1) {
  1723. info->backup_root_index = 0;
  1724. } else {
  1725. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1726. }
  1727. }
  1728. /*
  1729. * copy all the root pointers into the super backup array.
  1730. * this will bump the backup pointer by one when it is
  1731. * done
  1732. */
  1733. static void backup_super_roots(struct btrfs_fs_info *info)
  1734. {
  1735. int next_backup;
  1736. struct btrfs_root_backup *root_backup;
  1737. int last_backup;
  1738. next_backup = info->backup_root_index;
  1739. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1740. BTRFS_NUM_BACKUP_ROOTS;
  1741. /*
  1742. * just overwrite the last backup if we're at the same generation
  1743. * this happens only at umount
  1744. */
  1745. root_backup = info->super_for_commit->super_roots + last_backup;
  1746. if (btrfs_backup_tree_root_gen(root_backup) ==
  1747. btrfs_header_generation(info->tree_root->node))
  1748. next_backup = last_backup;
  1749. root_backup = info->super_for_commit->super_roots + next_backup;
  1750. /*
  1751. * make sure all of our padding and empty slots get zero filled
  1752. * regardless of which ones we use today
  1753. */
  1754. memset(root_backup, 0, sizeof(*root_backup));
  1755. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1756. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1757. btrfs_set_backup_tree_root_gen(root_backup,
  1758. btrfs_header_generation(info->tree_root->node));
  1759. btrfs_set_backup_tree_root_level(root_backup,
  1760. btrfs_header_level(info->tree_root->node));
  1761. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1762. btrfs_set_backup_chunk_root_gen(root_backup,
  1763. btrfs_header_generation(info->chunk_root->node));
  1764. btrfs_set_backup_chunk_root_level(root_backup,
  1765. btrfs_header_level(info->chunk_root->node));
  1766. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1767. btrfs_set_backup_extent_root_gen(root_backup,
  1768. btrfs_header_generation(info->extent_root->node));
  1769. btrfs_set_backup_extent_root_level(root_backup,
  1770. btrfs_header_level(info->extent_root->node));
  1771. /*
  1772. * we might commit during log recovery, which happens before we set
  1773. * the fs_root. Make sure it is valid before we fill it in.
  1774. */
  1775. if (info->fs_root && info->fs_root->node) {
  1776. btrfs_set_backup_fs_root(root_backup,
  1777. info->fs_root->node->start);
  1778. btrfs_set_backup_fs_root_gen(root_backup,
  1779. btrfs_header_generation(info->fs_root->node));
  1780. btrfs_set_backup_fs_root_level(root_backup,
  1781. btrfs_header_level(info->fs_root->node));
  1782. }
  1783. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1784. btrfs_set_backup_dev_root_gen(root_backup,
  1785. btrfs_header_generation(info->dev_root->node));
  1786. btrfs_set_backup_dev_root_level(root_backup,
  1787. btrfs_header_level(info->dev_root->node));
  1788. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1789. btrfs_set_backup_csum_root_gen(root_backup,
  1790. btrfs_header_generation(info->csum_root->node));
  1791. btrfs_set_backup_csum_root_level(root_backup,
  1792. btrfs_header_level(info->csum_root->node));
  1793. btrfs_set_backup_total_bytes(root_backup,
  1794. btrfs_super_total_bytes(info->super_copy));
  1795. btrfs_set_backup_bytes_used(root_backup,
  1796. btrfs_super_bytes_used(info->super_copy));
  1797. btrfs_set_backup_num_devices(root_backup,
  1798. btrfs_super_num_devices(info->super_copy));
  1799. /*
  1800. * if we don't copy this out to the super_copy, it won't get remembered
  1801. * for the next commit
  1802. */
  1803. memcpy(&info->super_copy->super_roots,
  1804. &info->super_for_commit->super_roots,
  1805. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1806. }
  1807. /*
  1808. * this copies info out of the root backup array and back into
  1809. * the in-memory super block. It is meant to help iterate through
  1810. * the array, so you send it the number of backups you've already
  1811. * tried and the last backup index you used.
  1812. *
  1813. * this returns -1 when it has tried all the backups
  1814. */
  1815. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1816. struct btrfs_super_block *super,
  1817. int *num_backups_tried, int *backup_index)
  1818. {
  1819. struct btrfs_root_backup *root_backup;
  1820. int newest = *backup_index;
  1821. if (*num_backups_tried == 0) {
  1822. u64 gen = btrfs_super_generation(super);
  1823. newest = find_newest_super_backup(info, gen);
  1824. if (newest == -1)
  1825. return -1;
  1826. *backup_index = newest;
  1827. *num_backups_tried = 1;
  1828. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1829. /* we've tried all the backups, all done */
  1830. return -1;
  1831. } else {
  1832. /* jump to the next oldest backup */
  1833. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1834. BTRFS_NUM_BACKUP_ROOTS;
  1835. *backup_index = newest;
  1836. *num_backups_tried += 1;
  1837. }
  1838. root_backup = super->super_roots + newest;
  1839. btrfs_set_super_generation(super,
  1840. btrfs_backup_tree_root_gen(root_backup));
  1841. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1842. btrfs_set_super_root_level(super,
  1843. btrfs_backup_tree_root_level(root_backup));
  1844. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1845. /*
  1846. * fixme: the total bytes and num_devices need to match or we should
  1847. * need a fsck
  1848. */
  1849. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1850. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1851. return 0;
  1852. }
  1853. /* helper to cleanup workers */
  1854. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1855. {
  1856. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1857. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1858. btrfs_destroy_workqueue(fs_info->workers);
  1859. btrfs_destroy_workqueue(fs_info->endio_workers);
  1860. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1861. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1862. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1863. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1864. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1865. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1866. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1867. btrfs_destroy_workqueue(fs_info->submit_workers);
  1868. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1869. btrfs_destroy_workqueue(fs_info->caching_workers);
  1870. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1871. btrfs_destroy_workqueue(fs_info->flush_workers);
  1872. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1873. btrfs_destroy_workqueue(fs_info->extent_workers);
  1874. }
  1875. static void free_root_extent_buffers(struct btrfs_root *root)
  1876. {
  1877. if (root) {
  1878. free_extent_buffer(root->node);
  1879. free_extent_buffer(root->commit_root);
  1880. root->node = NULL;
  1881. root->commit_root = NULL;
  1882. }
  1883. }
  1884. /* helper to cleanup tree roots */
  1885. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1886. {
  1887. free_root_extent_buffers(info->tree_root);
  1888. free_root_extent_buffers(info->dev_root);
  1889. free_root_extent_buffers(info->extent_root);
  1890. free_root_extent_buffers(info->csum_root);
  1891. free_root_extent_buffers(info->quota_root);
  1892. free_root_extent_buffers(info->uuid_root);
  1893. if (chunk_root)
  1894. free_root_extent_buffers(info->chunk_root);
  1895. free_root_extent_buffers(info->free_space_root);
  1896. }
  1897. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1898. {
  1899. int ret;
  1900. struct btrfs_root *gang[8];
  1901. int i;
  1902. while (!list_empty(&fs_info->dead_roots)) {
  1903. gang[0] = list_entry(fs_info->dead_roots.next,
  1904. struct btrfs_root, root_list);
  1905. list_del(&gang[0]->root_list);
  1906. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1907. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1908. } else {
  1909. free_extent_buffer(gang[0]->node);
  1910. free_extent_buffer(gang[0]->commit_root);
  1911. btrfs_put_fs_root(gang[0]);
  1912. }
  1913. }
  1914. while (1) {
  1915. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1916. (void **)gang, 0,
  1917. ARRAY_SIZE(gang));
  1918. if (!ret)
  1919. break;
  1920. for (i = 0; i < ret; i++)
  1921. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1922. }
  1923. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1924. btrfs_free_log_root_tree(NULL, fs_info);
  1925. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1926. fs_info->pinned_extents);
  1927. }
  1928. }
  1929. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1930. {
  1931. mutex_init(&fs_info->scrub_lock);
  1932. atomic_set(&fs_info->scrubs_running, 0);
  1933. atomic_set(&fs_info->scrub_pause_req, 0);
  1934. atomic_set(&fs_info->scrubs_paused, 0);
  1935. atomic_set(&fs_info->scrub_cancel_req, 0);
  1936. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1937. fs_info->scrub_workers_refcnt = 0;
  1938. }
  1939. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1940. {
  1941. spin_lock_init(&fs_info->balance_lock);
  1942. mutex_init(&fs_info->balance_mutex);
  1943. atomic_set(&fs_info->balance_running, 0);
  1944. atomic_set(&fs_info->balance_pause_req, 0);
  1945. atomic_set(&fs_info->balance_cancel_req, 0);
  1946. fs_info->balance_ctl = NULL;
  1947. init_waitqueue_head(&fs_info->balance_wait_q);
  1948. }
  1949. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1950. struct btrfs_root *tree_root)
  1951. {
  1952. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1953. set_nlink(fs_info->btree_inode, 1);
  1954. /*
  1955. * we set the i_size on the btree inode to the max possible int.
  1956. * the real end of the address space is determined by all of
  1957. * the devices in the system
  1958. */
  1959. fs_info->btree_inode->i_size = OFFSET_MAX;
  1960. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1961. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1962. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1963. fs_info->btree_inode->i_mapping);
  1964. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1965. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1966. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1967. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1968. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1969. sizeof(struct btrfs_key));
  1970. set_bit(BTRFS_INODE_DUMMY,
  1971. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1972. btrfs_insert_inode_hash(fs_info->btree_inode);
  1973. }
  1974. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1975. {
  1976. fs_info->dev_replace.lock_owner = 0;
  1977. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1978. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1979. rwlock_init(&fs_info->dev_replace.lock);
  1980. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1981. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1982. init_waitqueue_head(&fs_info->replace_wait);
  1983. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1984. }
  1985. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1986. {
  1987. spin_lock_init(&fs_info->qgroup_lock);
  1988. mutex_init(&fs_info->qgroup_ioctl_lock);
  1989. fs_info->qgroup_tree = RB_ROOT;
  1990. fs_info->qgroup_op_tree = RB_ROOT;
  1991. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1992. fs_info->qgroup_seq = 1;
  1993. fs_info->quota_enabled = 0;
  1994. fs_info->pending_quota_state = 0;
  1995. fs_info->qgroup_ulist = NULL;
  1996. mutex_init(&fs_info->qgroup_rescan_lock);
  1997. }
  1998. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1999. struct btrfs_fs_devices *fs_devices)
  2000. {
  2001. int max_active = fs_info->thread_pool_size;
  2002. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2003. fs_info->workers =
  2004. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2005. max_active, 16);
  2006. fs_info->delalloc_workers =
  2007. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2008. fs_info->flush_workers =
  2009. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2010. fs_info->caching_workers =
  2011. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2012. /*
  2013. * a higher idle thresh on the submit workers makes it much more
  2014. * likely that bios will be send down in a sane order to the
  2015. * devices
  2016. */
  2017. fs_info->submit_workers =
  2018. btrfs_alloc_workqueue("submit", flags,
  2019. min_t(u64, fs_devices->num_devices,
  2020. max_active), 64);
  2021. fs_info->fixup_workers =
  2022. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2023. /*
  2024. * endios are largely parallel and should have a very
  2025. * low idle thresh
  2026. */
  2027. fs_info->endio_workers =
  2028. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2029. fs_info->endio_meta_workers =
  2030. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2031. fs_info->endio_meta_write_workers =
  2032. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2033. fs_info->endio_raid56_workers =
  2034. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2035. fs_info->endio_repair_workers =
  2036. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2037. fs_info->rmw_workers =
  2038. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2039. fs_info->endio_write_workers =
  2040. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2041. fs_info->endio_freespace_worker =
  2042. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2043. fs_info->delayed_workers =
  2044. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2045. fs_info->readahead_workers =
  2046. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2047. fs_info->qgroup_rescan_workers =
  2048. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2049. fs_info->extent_workers =
  2050. btrfs_alloc_workqueue("extent-refs", flags,
  2051. min_t(u64, fs_devices->num_devices,
  2052. max_active), 8);
  2053. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2054. fs_info->submit_workers && fs_info->flush_workers &&
  2055. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2056. fs_info->endio_meta_write_workers &&
  2057. fs_info->endio_repair_workers &&
  2058. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2059. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2060. fs_info->caching_workers && fs_info->readahead_workers &&
  2061. fs_info->fixup_workers && fs_info->delayed_workers &&
  2062. fs_info->extent_workers &&
  2063. fs_info->qgroup_rescan_workers)) {
  2064. return -ENOMEM;
  2065. }
  2066. return 0;
  2067. }
  2068. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2069. struct btrfs_fs_devices *fs_devices)
  2070. {
  2071. int ret;
  2072. struct btrfs_root *tree_root = fs_info->tree_root;
  2073. struct btrfs_root *log_tree_root;
  2074. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2075. u64 bytenr = btrfs_super_log_root(disk_super);
  2076. if (fs_devices->rw_devices == 0) {
  2077. btrfs_warn(fs_info, "log replay required on RO media");
  2078. return -EIO;
  2079. }
  2080. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2081. if (!log_tree_root)
  2082. return -ENOMEM;
  2083. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2084. tree_root->stripesize, log_tree_root, fs_info,
  2085. BTRFS_TREE_LOG_OBJECTID);
  2086. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2087. fs_info->generation + 1);
  2088. if (IS_ERR(log_tree_root->node)) {
  2089. btrfs_warn(fs_info, "failed to read log tree");
  2090. ret = PTR_ERR(log_tree_root->node);
  2091. kfree(log_tree_root);
  2092. return ret;
  2093. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2094. btrfs_err(fs_info, "failed to read log tree");
  2095. free_extent_buffer(log_tree_root->node);
  2096. kfree(log_tree_root);
  2097. return -EIO;
  2098. }
  2099. /* returns with log_tree_root freed on success */
  2100. ret = btrfs_recover_log_trees(log_tree_root);
  2101. if (ret) {
  2102. btrfs_handle_fs_error(tree_root->fs_info, ret,
  2103. "Failed to recover log tree");
  2104. free_extent_buffer(log_tree_root->node);
  2105. kfree(log_tree_root);
  2106. return ret;
  2107. }
  2108. if (fs_info->sb->s_flags & MS_RDONLY) {
  2109. ret = btrfs_commit_super(tree_root);
  2110. if (ret)
  2111. return ret;
  2112. }
  2113. return 0;
  2114. }
  2115. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2116. struct btrfs_root *tree_root)
  2117. {
  2118. struct btrfs_root *root;
  2119. struct btrfs_key location;
  2120. int ret;
  2121. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2122. location.type = BTRFS_ROOT_ITEM_KEY;
  2123. location.offset = 0;
  2124. root = btrfs_read_tree_root(tree_root, &location);
  2125. if (IS_ERR(root))
  2126. return PTR_ERR(root);
  2127. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2128. fs_info->extent_root = root;
  2129. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2130. root = btrfs_read_tree_root(tree_root, &location);
  2131. if (IS_ERR(root))
  2132. return PTR_ERR(root);
  2133. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2134. fs_info->dev_root = root;
  2135. btrfs_init_devices_late(fs_info);
  2136. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2137. root = btrfs_read_tree_root(tree_root, &location);
  2138. if (IS_ERR(root))
  2139. return PTR_ERR(root);
  2140. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2141. fs_info->csum_root = root;
  2142. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2143. root = btrfs_read_tree_root(tree_root, &location);
  2144. if (!IS_ERR(root)) {
  2145. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2146. fs_info->quota_enabled = 1;
  2147. fs_info->pending_quota_state = 1;
  2148. fs_info->quota_root = root;
  2149. }
  2150. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2151. root = btrfs_read_tree_root(tree_root, &location);
  2152. if (IS_ERR(root)) {
  2153. ret = PTR_ERR(root);
  2154. if (ret != -ENOENT)
  2155. return ret;
  2156. } else {
  2157. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2158. fs_info->uuid_root = root;
  2159. }
  2160. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2161. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2162. root = btrfs_read_tree_root(tree_root, &location);
  2163. if (IS_ERR(root))
  2164. return PTR_ERR(root);
  2165. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2166. fs_info->free_space_root = root;
  2167. }
  2168. return 0;
  2169. }
  2170. int open_ctree(struct super_block *sb,
  2171. struct btrfs_fs_devices *fs_devices,
  2172. char *options)
  2173. {
  2174. u32 sectorsize;
  2175. u32 nodesize;
  2176. u32 stripesize;
  2177. u64 generation;
  2178. u64 features;
  2179. struct btrfs_key location;
  2180. struct buffer_head *bh;
  2181. struct btrfs_super_block *disk_super;
  2182. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2183. struct btrfs_root *tree_root;
  2184. struct btrfs_root *chunk_root;
  2185. int ret;
  2186. int err = -EINVAL;
  2187. int num_backups_tried = 0;
  2188. int backup_index = 0;
  2189. int max_active;
  2190. bool cleaner_mutex_locked = false;
  2191. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2192. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2193. if (!tree_root || !chunk_root) {
  2194. err = -ENOMEM;
  2195. goto fail;
  2196. }
  2197. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2198. if (ret) {
  2199. err = ret;
  2200. goto fail;
  2201. }
  2202. ret = setup_bdi(fs_info, &fs_info->bdi);
  2203. if (ret) {
  2204. err = ret;
  2205. goto fail_srcu;
  2206. }
  2207. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2208. if (ret) {
  2209. err = ret;
  2210. goto fail_bdi;
  2211. }
  2212. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2213. (1 + ilog2(nr_cpu_ids));
  2214. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2215. if (ret) {
  2216. err = ret;
  2217. goto fail_dirty_metadata_bytes;
  2218. }
  2219. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2220. if (ret) {
  2221. err = ret;
  2222. goto fail_delalloc_bytes;
  2223. }
  2224. fs_info->btree_inode = new_inode(sb);
  2225. if (!fs_info->btree_inode) {
  2226. err = -ENOMEM;
  2227. goto fail_bio_counter;
  2228. }
  2229. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2230. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2231. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2232. INIT_LIST_HEAD(&fs_info->trans_list);
  2233. INIT_LIST_HEAD(&fs_info->dead_roots);
  2234. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2235. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2236. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2237. spin_lock_init(&fs_info->delalloc_root_lock);
  2238. spin_lock_init(&fs_info->trans_lock);
  2239. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2240. spin_lock_init(&fs_info->delayed_iput_lock);
  2241. spin_lock_init(&fs_info->defrag_inodes_lock);
  2242. spin_lock_init(&fs_info->free_chunk_lock);
  2243. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2244. spin_lock_init(&fs_info->super_lock);
  2245. spin_lock_init(&fs_info->qgroup_op_lock);
  2246. spin_lock_init(&fs_info->buffer_lock);
  2247. spin_lock_init(&fs_info->unused_bgs_lock);
  2248. rwlock_init(&fs_info->tree_mod_log_lock);
  2249. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2250. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2251. mutex_init(&fs_info->reloc_mutex);
  2252. mutex_init(&fs_info->delalloc_root_mutex);
  2253. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2254. seqlock_init(&fs_info->profiles_lock);
  2255. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2256. INIT_LIST_HEAD(&fs_info->space_info);
  2257. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2258. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2259. btrfs_mapping_init(&fs_info->mapping_tree);
  2260. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2261. BTRFS_BLOCK_RSV_GLOBAL);
  2262. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2263. BTRFS_BLOCK_RSV_DELALLOC);
  2264. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2265. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2266. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2267. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2268. BTRFS_BLOCK_RSV_DELOPS);
  2269. atomic_set(&fs_info->nr_async_submits, 0);
  2270. atomic_set(&fs_info->async_delalloc_pages, 0);
  2271. atomic_set(&fs_info->async_submit_draining, 0);
  2272. atomic_set(&fs_info->nr_async_bios, 0);
  2273. atomic_set(&fs_info->defrag_running, 0);
  2274. atomic_set(&fs_info->qgroup_op_seq, 0);
  2275. atomic_set(&fs_info->reada_works_cnt, 0);
  2276. atomic64_set(&fs_info->tree_mod_seq, 0);
  2277. fs_info->sb = sb;
  2278. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2279. fs_info->metadata_ratio = 0;
  2280. fs_info->defrag_inodes = RB_ROOT;
  2281. fs_info->free_chunk_space = 0;
  2282. fs_info->tree_mod_log = RB_ROOT;
  2283. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2284. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2285. /* readahead state */
  2286. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2287. spin_lock_init(&fs_info->reada_lock);
  2288. fs_info->thread_pool_size = min_t(unsigned long,
  2289. num_online_cpus() + 2, 8);
  2290. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2291. spin_lock_init(&fs_info->ordered_root_lock);
  2292. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2293. GFP_KERNEL);
  2294. if (!fs_info->delayed_root) {
  2295. err = -ENOMEM;
  2296. goto fail_iput;
  2297. }
  2298. btrfs_init_delayed_root(fs_info->delayed_root);
  2299. btrfs_init_scrub(fs_info);
  2300. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2301. fs_info->check_integrity_print_mask = 0;
  2302. #endif
  2303. btrfs_init_balance(fs_info);
  2304. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2305. sb->s_blocksize = 4096;
  2306. sb->s_blocksize_bits = blksize_bits(4096);
  2307. sb->s_bdi = &fs_info->bdi;
  2308. btrfs_init_btree_inode(fs_info, tree_root);
  2309. spin_lock_init(&fs_info->block_group_cache_lock);
  2310. fs_info->block_group_cache_tree = RB_ROOT;
  2311. fs_info->first_logical_byte = (u64)-1;
  2312. extent_io_tree_init(&fs_info->freed_extents[0],
  2313. fs_info->btree_inode->i_mapping);
  2314. extent_io_tree_init(&fs_info->freed_extents[1],
  2315. fs_info->btree_inode->i_mapping);
  2316. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2317. fs_info->do_barriers = 1;
  2318. mutex_init(&fs_info->ordered_operations_mutex);
  2319. mutex_init(&fs_info->tree_log_mutex);
  2320. mutex_init(&fs_info->chunk_mutex);
  2321. mutex_init(&fs_info->transaction_kthread_mutex);
  2322. mutex_init(&fs_info->cleaner_mutex);
  2323. mutex_init(&fs_info->volume_mutex);
  2324. mutex_init(&fs_info->ro_block_group_mutex);
  2325. init_rwsem(&fs_info->commit_root_sem);
  2326. init_rwsem(&fs_info->cleanup_work_sem);
  2327. init_rwsem(&fs_info->subvol_sem);
  2328. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2329. btrfs_init_dev_replace_locks(fs_info);
  2330. btrfs_init_qgroup(fs_info);
  2331. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2332. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2333. init_waitqueue_head(&fs_info->transaction_throttle);
  2334. init_waitqueue_head(&fs_info->transaction_wait);
  2335. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2336. init_waitqueue_head(&fs_info->async_submit_wait);
  2337. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2338. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2339. if (ret) {
  2340. err = ret;
  2341. goto fail_alloc;
  2342. }
  2343. __setup_root(4096, 4096, 4096, tree_root,
  2344. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2345. invalidate_bdev(fs_devices->latest_bdev);
  2346. /*
  2347. * Read super block and check the signature bytes only
  2348. */
  2349. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2350. if (IS_ERR(bh)) {
  2351. err = PTR_ERR(bh);
  2352. goto fail_alloc;
  2353. }
  2354. /*
  2355. * We want to check superblock checksum, the type is stored inside.
  2356. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2357. */
  2358. if (btrfs_check_super_csum(bh->b_data)) {
  2359. btrfs_err(fs_info, "superblock checksum mismatch");
  2360. err = -EINVAL;
  2361. brelse(bh);
  2362. goto fail_alloc;
  2363. }
  2364. /*
  2365. * super_copy is zeroed at allocation time and we never touch the
  2366. * following bytes up to INFO_SIZE, the checksum is calculated from
  2367. * the whole block of INFO_SIZE
  2368. */
  2369. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2370. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2371. sizeof(*fs_info->super_for_commit));
  2372. brelse(bh);
  2373. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2374. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2375. if (ret) {
  2376. btrfs_err(fs_info, "superblock contains fatal errors");
  2377. err = -EINVAL;
  2378. goto fail_alloc;
  2379. }
  2380. disk_super = fs_info->super_copy;
  2381. if (!btrfs_super_root(disk_super))
  2382. goto fail_alloc;
  2383. /* check FS state, whether FS is broken. */
  2384. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2385. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2386. /*
  2387. * run through our array of backup supers and setup
  2388. * our ring pointer to the oldest one
  2389. */
  2390. generation = btrfs_super_generation(disk_super);
  2391. find_oldest_super_backup(fs_info, generation);
  2392. /*
  2393. * In the long term, we'll store the compression type in the super
  2394. * block, and it'll be used for per file compression control.
  2395. */
  2396. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2397. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2398. if (ret) {
  2399. err = ret;
  2400. goto fail_alloc;
  2401. }
  2402. features = btrfs_super_incompat_flags(disk_super) &
  2403. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2404. if (features) {
  2405. btrfs_err(fs_info,
  2406. "cannot mount because of unsupported optional features (%llx)",
  2407. features);
  2408. err = -EINVAL;
  2409. goto fail_alloc;
  2410. }
  2411. features = btrfs_super_incompat_flags(disk_super);
  2412. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2413. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2414. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2415. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2416. btrfs_info(fs_info, "has skinny extents");
  2417. /*
  2418. * flag our filesystem as having big metadata blocks if
  2419. * they are bigger than the page size
  2420. */
  2421. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2422. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2423. btrfs_info(fs_info,
  2424. "flagging fs with big metadata feature");
  2425. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2426. }
  2427. nodesize = btrfs_super_nodesize(disk_super);
  2428. sectorsize = btrfs_super_sectorsize(disk_super);
  2429. stripesize = btrfs_super_stripesize(disk_super);
  2430. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2431. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2432. /*
  2433. * mixed block groups end up with duplicate but slightly offset
  2434. * extent buffers for the same range. It leads to corruptions
  2435. */
  2436. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2437. (sectorsize != nodesize)) {
  2438. btrfs_err(fs_info,
  2439. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2440. nodesize, sectorsize);
  2441. goto fail_alloc;
  2442. }
  2443. /*
  2444. * Needn't use the lock because there is no other task which will
  2445. * update the flag.
  2446. */
  2447. btrfs_set_super_incompat_flags(disk_super, features);
  2448. features = btrfs_super_compat_ro_flags(disk_super) &
  2449. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2450. if (!(sb->s_flags & MS_RDONLY) && features) {
  2451. btrfs_err(fs_info,
  2452. "cannot mount read-write because of unsupported optional features (%llx)",
  2453. features);
  2454. err = -EINVAL;
  2455. goto fail_alloc;
  2456. }
  2457. max_active = fs_info->thread_pool_size;
  2458. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2459. if (ret) {
  2460. err = ret;
  2461. goto fail_sb_buffer;
  2462. }
  2463. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2464. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2465. SZ_4M / PAGE_SIZE);
  2466. tree_root->nodesize = nodesize;
  2467. tree_root->sectorsize = sectorsize;
  2468. tree_root->stripesize = stripesize;
  2469. sb->s_blocksize = sectorsize;
  2470. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2471. mutex_lock(&fs_info->chunk_mutex);
  2472. ret = btrfs_read_sys_array(tree_root);
  2473. mutex_unlock(&fs_info->chunk_mutex);
  2474. if (ret) {
  2475. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2476. goto fail_sb_buffer;
  2477. }
  2478. generation = btrfs_super_chunk_root_generation(disk_super);
  2479. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2480. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2481. chunk_root->node = read_tree_block(chunk_root,
  2482. btrfs_super_chunk_root(disk_super),
  2483. generation);
  2484. if (IS_ERR(chunk_root->node) ||
  2485. !extent_buffer_uptodate(chunk_root->node)) {
  2486. btrfs_err(fs_info, "failed to read chunk root");
  2487. if (!IS_ERR(chunk_root->node))
  2488. free_extent_buffer(chunk_root->node);
  2489. chunk_root->node = NULL;
  2490. goto fail_tree_roots;
  2491. }
  2492. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2493. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2494. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2495. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2496. ret = btrfs_read_chunk_tree(chunk_root);
  2497. if (ret) {
  2498. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2499. goto fail_tree_roots;
  2500. }
  2501. /*
  2502. * keep the device that is marked to be the target device for the
  2503. * dev_replace procedure
  2504. */
  2505. btrfs_close_extra_devices(fs_devices, 0);
  2506. if (!fs_devices->latest_bdev) {
  2507. btrfs_err(fs_info, "failed to read devices");
  2508. goto fail_tree_roots;
  2509. }
  2510. retry_root_backup:
  2511. generation = btrfs_super_generation(disk_super);
  2512. tree_root->node = read_tree_block(tree_root,
  2513. btrfs_super_root(disk_super),
  2514. generation);
  2515. if (IS_ERR(tree_root->node) ||
  2516. !extent_buffer_uptodate(tree_root->node)) {
  2517. btrfs_warn(fs_info, "failed to read tree root");
  2518. if (!IS_ERR(tree_root->node))
  2519. free_extent_buffer(tree_root->node);
  2520. tree_root->node = NULL;
  2521. goto recovery_tree_root;
  2522. }
  2523. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2524. tree_root->commit_root = btrfs_root_node(tree_root);
  2525. btrfs_set_root_refs(&tree_root->root_item, 1);
  2526. mutex_lock(&tree_root->objectid_mutex);
  2527. ret = btrfs_find_highest_objectid(tree_root,
  2528. &tree_root->highest_objectid);
  2529. if (ret) {
  2530. mutex_unlock(&tree_root->objectid_mutex);
  2531. goto recovery_tree_root;
  2532. }
  2533. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2534. mutex_unlock(&tree_root->objectid_mutex);
  2535. ret = btrfs_read_roots(fs_info, tree_root);
  2536. if (ret)
  2537. goto recovery_tree_root;
  2538. fs_info->generation = generation;
  2539. fs_info->last_trans_committed = generation;
  2540. ret = btrfs_recover_balance(fs_info);
  2541. if (ret) {
  2542. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2543. goto fail_block_groups;
  2544. }
  2545. ret = btrfs_init_dev_stats(fs_info);
  2546. if (ret) {
  2547. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2548. goto fail_block_groups;
  2549. }
  2550. ret = btrfs_init_dev_replace(fs_info);
  2551. if (ret) {
  2552. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2553. goto fail_block_groups;
  2554. }
  2555. btrfs_close_extra_devices(fs_devices, 1);
  2556. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2557. if (ret) {
  2558. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2559. ret);
  2560. goto fail_block_groups;
  2561. }
  2562. ret = btrfs_sysfs_add_device(fs_devices);
  2563. if (ret) {
  2564. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2565. ret);
  2566. goto fail_fsdev_sysfs;
  2567. }
  2568. ret = btrfs_sysfs_add_mounted(fs_info);
  2569. if (ret) {
  2570. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2571. goto fail_fsdev_sysfs;
  2572. }
  2573. ret = btrfs_init_space_info(fs_info);
  2574. if (ret) {
  2575. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2576. goto fail_sysfs;
  2577. }
  2578. ret = btrfs_read_block_groups(fs_info->extent_root);
  2579. if (ret) {
  2580. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2581. goto fail_sysfs;
  2582. }
  2583. fs_info->num_tolerated_disk_barrier_failures =
  2584. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2585. if (fs_info->fs_devices->missing_devices >
  2586. fs_info->num_tolerated_disk_barrier_failures &&
  2587. !(sb->s_flags & MS_RDONLY)) {
  2588. btrfs_warn(fs_info,
  2589. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2590. fs_info->fs_devices->missing_devices,
  2591. fs_info->num_tolerated_disk_barrier_failures);
  2592. goto fail_sysfs;
  2593. }
  2594. /*
  2595. * Hold the cleaner_mutex thread here so that we don't block
  2596. * for a long time on btrfs_recover_relocation. cleaner_kthread
  2597. * will wait for us to finish mounting the filesystem.
  2598. */
  2599. mutex_lock(&fs_info->cleaner_mutex);
  2600. cleaner_mutex_locked = true;
  2601. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2602. "btrfs-cleaner");
  2603. if (IS_ERR(fs_info->cleaner_kthread))
  2604. goto fail_sysfs;
  2605. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2606. tree_root,
  2607. "btrfs-transaction");
  2608. if (IS_ERR(fs_info->transaction_kthread))
  2609. goto fail_cleaner;
  2610. if (!btrfs_test_opt(tree_root, SSD) &&
  2611. !btrfs_test_opt(tree_root, NOSSD) &&
  2612. !fs_info->fs_devices->rotating) {
  2613. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2614. btrfs_set_opt(fs_info->mount_opt, SSD);
  2615. }
  2616. /*
  2617. * Mount does not set all options immediately, we can do it now and do
  2618. * not have to wait for transaction commit
  2619. */
  2620. btrfs_apply_pending_changes(fs_info);
  2621. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2622. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2623. ret = btrfsic_mount(tree_root, fs_devices,
  2624. btrfs_test_opt(tree_root,
  2625. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2626. 1 : 0,
  2627. fs_info->check_integrity_print_mask);
  2628. if (ret)
  2629. btrfs_warn(fs_info,
  2630. "failed to initialize integrity check module: %d",
  2631. ret);
  2632. }
  2633. #endif
  2634. ret = btrfs_read_qgroup_config(fs_info);
  2635. if (ret)
  2636. goto fail_trans_kthread;
  2637. /* do not make disk changes in broken FS or nologreplay is given */
  2638. if (btrfs_super_log_root(disk_super) != 0 &&
  2639. !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
  2640. ret = btrfs_replay_log(fs_info, fs_devices);
  2641. if (ret) {
  2642. err = ret;
  2643. goto fail_qgroup;
  2644. }
  2645. }
  2646. ret = btrfs_find_orphan_roots(tree_root);
  2647. if (ret)
  2648. goto fail_qgroup;
  2649. if (!(sb->s_flags & MS_RDONLY)) {
  2650. ret = btrfs_cleanup_fs_roots(fs_info);
  2651. if (ret)
  2652. goto fail_qgroup;
  2653. /* We locked cleaner_mutex before creating cleaner_kthread. */
  2654. ret = btrfs_recover_relocation(tree_root);
  2655. if (ret < 0) {
  2656. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2657. ret);
  2658. err = -EINVAL;
  2659. goto fail_qgroup;
  2660. }
  2661. }
  2662. mutex_unlock(&fs_info->cleaner_mutex);
  2663. cleaner_mutex_locked = false;
  2664. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2665. location.type = BTRFS_ROOT_ITEM_KEY;
  2666. location.offset = 0;
  2667. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2668. if (IS_ERR(fs_info->fs_root)) {
  2669. err = PTR_ERR(fs_info->fs_root);
  2670. goto fail_qgroup;
  2671. }
  2672. if (sb->s_flags & MS_RDONLY)
  2673. return 0;
  2674. if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
  2675. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2676. btrfs_info(fs_info, "creating free space tree");
  2677. ret = btrfs_create_free_space_tree(fs_info);
  2678. if (ret) {
  2679. btrfs_warn(fs_info,
  2680. "failed to create free space tree: %d", ret);
  2681. close_ctree(tree_root);
  2682. return ret;
  2683. }
  2684. }
  2685. down_read(&fs_info->cleanup_work_sem);
  2686. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2687. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2688. up_read(&fs_info->cleanup_work_sem);
  2689. close_ctree(tree_root);
  2690. return ret;
  2691. }
  2692. up_read(&fs_info->cleanup_work_sem);
  2693. ret = btrfs_resume_balance_async(fs_info);
  2694. if (ret) {
  2695. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2696. close_ctree(tree_root);
  2697. return ret;
  2698. }
  2699. ret = btrfs_resume_dev_replace_async(fs_info);
  2700. if (ret) {
  2701. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2702. close_ctree(tree_root);
  2703. return ret;
  2704. }
  2705. btrfs_qgroup_rescan_resume(fs_info);
  2706. if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
  2707. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2708. btrfs_info(fs_info, "clearing free space tree");
  2709. ret = btrfs_clear_free_space_tree(fs_info);
  2710. if (ret) {
  2711. btrfs_warn(fs_info,
  2712. "failed to clear free space tree: %d", ret);
  2713. close_ctree(tree_root);
  2714. return ret;
  2715. }
  2716. }
  2717. if (!fs_info->uuid_root) {
  2718. btrfs_info(fs_info, "creating UUID tree");
  2719. ret = btrfs_create_uuid_tree(fs_info);
  2720. if (ret) {
  2721. btrfs_warn(fs_info,
  2722. "failed to create the UUID tree: %d", ret);
  2723. close_ctree(tree_root);
  2724. return ret;
  2725. }
  2726. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2727. fs_info->generation !=
  2728. btrfs_super_uuid_tree_generation(disk_super)) {
  2729. btrfs_info(fs_info, "checking UUID tree");
  2730. ret = btrfs_check_uuid_tree(fs_info);
  2731. if (ret) {
  2732. btrfs_warn(fs_info,
  2733. "failed to check the UUID tree: %d", ret);
  2734. close_ctree(tree_root);
  2735. return ret;
  2736. }
  2737. } else {
  2738. fs_info->update_uuid_tree_gen = 1;
  2739. }
  2740. fs_info->open = 1;
  2741. /*
  2742. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2743. * no need to keep the flag
  2744. */
  2745. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2746. return 0;
  2747. fail_qgroup:
  2748. btrfs_free_qgroup_config(fs_info);
  2749. fail_trans_kthread:
  2750. kthread_stop(fs_info->transaction_kthread);
  2751. btrfs_cleanup_transaction(fs_info->tree_root);
  2752. btrfs_free_fs_roots(fs_info);
  2753. fail_cleaner:
  2754. kthread_stop(fs_info->cleaner_kthread);
  2755. /*
  2756. * make sure we're done with the btree inode before we stop our
  2757. * kthreads
  2758. */
  2759. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2760. fail_sysfs:
  2761. if (cleaner_mutex_locked) {
  2762. mutex_unlock(&fs_info->cleaner_mutex);
  2763. cleaner_mutex_locked = false;
  2764. }
  2765. btrfs_sysfs_remove_mounted(fs_info);
  2766. fail_fsdev_sysfs:
  2767. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2768. fail_block_groups:
  2769. btrfs_put_block_group_cache(fs_info);
  2770. btrfs_free_block_groups(fs_info);
  2771. fail_tree_roots:
  2772. free_root_pointers(fs_info, 1);
  2773. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2774. fail_sb_buffer:
  2775. btrfs_stop_all_workers(fs_info);
  2776. fail_alloc:
  2777. fail_iput:
  2778. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2779. iput(fs_info->btree_inode);
  2780. fail_bio_counter:
  2781. percpu_counter_destroy(&fs_info->bio_counter);
  2782. fail_delalloc_bytes:
  2783. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2784. fail_dirty_metadata_bytes:
  2785. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2786. fail_bdi:
  2787. bdi_destroy(&fs_info->bdi);
  2788. fail_srcu:
  2789. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2790. fail:
  2791. btrfs_free_stripe_hash_table(fs_info);
  2792. btrfs_close_devices(fs_info->fs_devices);
  2793. return err;
  2794. recovery_tree_root:
  2795. if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
  2796. goto fail_tree_roots;
  2797. free_root_pointers(fs_info, 0);
  2798. /* don't use the log in recovery mode, it won't be valid */
  2799. btrfs_set_super_log_root(disk_super, 0);
  2800. /* we can't trust the free space cache either */
  2801. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2802. ret = next_root_backup(fs_info, fs_info->super_copy,
  2803. &num_backups_tried, &backup_index);
  2804. if (ret == -1)
  2805. goto fail_block_groups;
  2806. goto retry_root_backup;
  2807. }
  2808. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2809. {
  2810. if (uptodate) {
  2811. set_buffer_uptodate(bh);
  2812. } else {
  2813. struct btrfs_device *device = (struct btrfs_device *)
  2814. bh->b_private;
  2815. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2816. "lost page write due to IO error on %s",
  2817. rcu_str_deref(device->name));
  2818. /* note, we don't set_buffer_write_io_error because we have
  2819. * our own ways of dealing with the IO errors
  2820. */
  2821. clear_buffer_uptodate(bh);
  2822. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2823. }
  2824. unlock_buffer(bh);
  2825. put_bh(bh);
  2826. }
  2827. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2828. struct buffer_head **bh_ret)
  2829. {
  2830. struct buffer_head *bh;
  2831. struct btrfs_super_block *super;
  2832. u64 bytenr;
  2833. bytenr = btrfs_sb_offset(copy_num);
  2834. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2835. return -EINVAL;
  2836. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2837. /*
  2838. * If we fail to read from the underlying devices, as of now
  2839. * the best option we have is to mark it EIO.
  2840. */
  2841. if (!bh)
  2842. return -EIO;
  2843. super = (struct btrfs_super_block *)bh->b_data;
  2844. if (btrfs_super_bytenr(super) != bytenr ||
  2845. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2846. brelse(bh);
  2847. return -EINVAL;
  2848. }
  2849. *bh_ret = bh;
  2850. return 0;
  2851. }
  2852. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2853. {
  2854. struct buffer_head *bh;
  2855. struct buffer_head *latest = NULL;
  2856. struct btrfs_super_block *super;
  2857. int i;
  2858. u64 transid = 0;
  2859. int ret = -EINVAL;
  2860. /* we would like to check all the supers, but that would make
  2861. * a btrfs mount succeed after a mkfs from a different FS.
  2862. * So, we need to add a special mount option to scan for
  2863. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2864. */
  2865. for (i = 0; i < 1; i++) {
  2866. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2867. if (ret)
  2868. continue;
  2869. super = (struct btrfs_super_block *)bh->b_data;
  2870. if (!latest || btrfs_super_generation(super) > transid) {
  2871. brelse(latest);
  2872. latest = bh;
  2873. transid = btrfs_super_generation(super);
  2874. } else {
  2875. brelse(bh);
  2876. }
  2877. }
  2878. if (!latest)
  2879. return ERR_PTR(ret);
  2880. return latest;
  2881. }
  2882. /*
  2883. * this should be called twice, once with wait == 0 and
  2884. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2885. * we write are pinned.
  2886. *
  2887. * They are released when wait == 1 is done.
  2888. * max_mirrors must be the same for both runs, and it indicates how
  2889. * many supers on this one device should be written.
  2890. *
  2891. * max_mirrors == 0 means to write them all.
  2892. */
  2893. static int write_dev_supers(struct btrfs_device *device,
  2894. struct btrfs_super_block *sb,
  2895. int do_barriers, int wait, int max_mirrors)
  2896. {
  2897. struct buffer_head *bh;
  2898. int i;
  2899. int ret;
  2900. int errors = 0;
  2901. u32 crc;
  2902. u64 bytenr;
  2903. if (max_mirrors == 0)
  2904. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2905. for (i = 0; i < max_mirrors; i++) {
  2906. bytenr = btrfs_sb_offset(i);
  2907. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2908. device->commit_total_bytes)
  2909. break;
  2910. if (wait) {
  2911. bh = __find_get_block(device->bdev, bytenr / 4096,
  2912. BTRFS_SUPER_INFO_SIZE);
  2913. if (!bh) {
  2914. errors++;
  2915. continue;
  2916. }
  2917. wait_on_buffer(bh);
  2918. if (!buffer_uptodate(bh))
  2919. errors++;
  2920. /* drop our reference */
  2921. brelse(bh);
  2922. /* drop the reference from the wait == 0 run */
  2923. brelse(bh);
  2924. continue;
  2925. } else {
  2926. btrfs_set_super_bytenr(sb, bytenr);
  2927. crc = ~(u32)0;
  2928. crc = btrfs_csum_data((char *)sb +
  2929. BTRFS_CSUM_SIZE, crc,
  2930. BTRFS_SUPER_INFO_SIZE -
  2931. BTRFS_CSUM_SIZE);
  2932. btrfs_csum_final(crc, sb->csum);
  2933. /*
  2934. * one reference for us, and we leave it for the
  2935. * caller
  2936. */
  2937. bh = __getblk(device->bdev, bytenr / 4096,
  2938. BTRFS_SUPER_INFO_SIZE);
  2939. if (!bh) {
  2940. btrfs_err(device->dev_root->fs_info,
  2941. "couldn't get super buffer head for bytenr %llu",
  2942. bytenr);
  2943. errors++;
  2944. continue;
  2945. }
  2946. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2947. /* one reference for submit_bh */
  2948. get_bh(bh);
  2949. set_buffer_uptodate(bh);
  2950. lock_buffer(bh);
  2951. bh->b_end_io = btrfs_end_buffer_write_sync;
  2952. bh->b_private = device;
  2953. }
  2954. /*
  2955. * we fua the first super. The others we allow
  2956. * to go down lazy.
  2957. */
  2958. if (i == 0)
  2959. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
  2960. else
  2961. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
  2962. if (ret)
  2963. errors++;
  2964. }
  2965. return errors < i ? 0 : -1;
  2966. }
  2967. /*
  2968. * endio for the write_dev_flush, this will wake anyone waiting
  2969. * for the barrier when it is done
  2970. */
  2971. static void btrfs_end_empty_barrier(struct bio *bio)
  2972. {
  2973. if (bio->bi_private)
  2974. complete(bio->bi_private);
  2975. bio_put(bio);
  2976. }
  2977. /*
  2978. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2979. * sent down. With wait == 1, it waits for the previous flush.
  2980. *
  2981. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2982. * capable
  2983. */
  2984. static int write_dev_flush(struct btrfs_device *device, int wait)
  2985. {
  2986. struct bio *bio;
  2987. int ret = 0;
  2988. if (device->nobarriers)
  2989. return 0;
  2990. if (wait) {
  2991. bio = device->flush_bio;
  2992. if (!bio)
  2993. return 0;
  2994. wait_for_completion(&device->flush_wait);
  2995. if (bio->bi_error) {
  2996. ret = bio->bi_error;
  2997. btrfs_dev_stat_inc_and_print(device,
  2998. BTRFS_DEV_STAT_FLUSH_ERRS);
  2999. }
  3000. /* drop the reference from the wait == 0 run */
  3001. bio_put(bio);
  3002. device->flush_bio = NULL;
  3003. return ret;
  3004. }
  3005. /*
  3006. * one reference for us, and we leave it for the
  3007. * caller
  3008. */
  3009. device->flush_bio = NULL;
  3010. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3011. if (!bio)
  3012. return -ENOMEM;
  3013. bio->bi_end_io = btrfs_end_empty_barrier;
  3014. bio->bi_bdev = device->bdev;
  3015. bio->bi_rw = WRITE_FLUSH;
  3016. init_completion(&device->flush_wait);
  3017. bio->bi_private = &device->flush_wait;
  3018. device->flush_bio = bio;
  3019. bio_get(bio);
  3020. btrfsic_submit_bio(bio);
  3021. return 0;
  3022. }
  3023. /*
  3024. * send an empty flush down to each device in parallel,
  3025. * then wait for them
  3026. */
  3027. static int barrier_all_devices(struct btrfs_fs_info *info)
  3028. {
  3029. struct list_head *head;
  3030. struct btrfs_device *dev;
  3031. int errors_send = 0;
  3032. int errors_wait = 0;
  3033. int ret;
  3034. /* send down all the barriers */
  3035. head = &info->fs_devices->devices;
  3036. list_for_each_entry_rcu(dev, head, dev_list) {
  3037. if (dev->missing)
  3038. continue;
  3039. if (!dev->bdev) {
  3040. errors_send++;
  3041. continue;
  3042. }
  3043. if (!dev->in_fs_metadata || !dev->writeable)
  3044. continue;
  3045. ret = write_dev_flush(dev, 0);
  3046. if (ret)
  3047. errors_send++;
  3048. }
  3049. /* wait for all the barriers */
  3050. list_for_each_entry_rcu(dev, head, dev_list) {
  3051. if (dev->missing)
  3052. continue;
  3053. if (!dev->bdev) {
  3054. errors_wait++;
  3055. continue;
  3056. }
  3057. if (!dev->in_fs_metadata || !dev->writeable)
  3058. continue;
  3059. ret = write_dev_flush(dev, 1);
  3060. if (ret)
  3061. errors_wait++;
  3062. }
  3063. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3064. errors_wait > info->num_tolerated_disk_barrier_failures)
  3065. return -EIO;
  3066. return 0;
  3067. }
  3068. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3069. {
  3070. int raid_type;
  3071. int min_tolerated = INT_MAX;
  3072. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3073. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3074. min_tolerated = min(min_tolerated,
  3075. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3076. tolerated_failures);
  3077. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3078. if (raid_type == BTRFS_RAID_SINGLE)
  3079. continue;
  3080. if (!(flags & btrfs_raid_group[raid_type]))
  3081. continue;
  3082. min_tolerated = min(min_tolerated,
  3083. btrfs_raid_array[raid_type].
  3084. tolerated_failures);
  3085. }
  3086. if (min_tolerated == INT_MAX) {
  3087. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3088. min_tolerated = 0;
  3089. }
  3090. return min_tolerated;
  3091. }
  3092. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3093. struct btrfs_fs_info *fs_info)
  3094. {
  3095. struct btrfs_ioctl_space_info space;
  3096. struct btrfs_space_info *sinfo;
  3097. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3098. BTRFS_BLOCK_GROUP_SYSTEM,
  3099. BTRFS_BLOCK_GROUP_METADATA,
  3100. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3101. int i;
  3102. int c;
  3103. int num_tolerated_disk_barrier_failures =
  3104. (int)fs_info->fs_devices->num_devices;
  3105. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3106. struct btrfs_space_info *tmp;
  3107. sinfo = NULL;
  3108. rcu_read_lock();
  3109. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3110. if (tmp->flags == types[i]) {
  3111. sinfo = tmp;
  3112. break;
  3113. }
  3114. }
  3115. rcu_read_unlock();
  3116. if (!sinfo)
  3117. continue;
  3118. down_read(&sinfo->groups_sem);
  3119. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3120. u64 flags;
  3121. if (list_empty(&sinfo->block_groups[c]))
  3122. continue;
  3123. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3124. &space);
  3125. if (space.total_bytes == 0 || space.used_bytes == 0)
  3126. continue;
  3127. flags = space.flags;
  3128. num_tolerated_disk_barrier_failures = min(
  3129. num_tolerated_disk_barrier_failures,
  3130. btrfs_get_num_tolerated_disk_barrier_failures(
  3131. flags));
  3132. }
  3133. up_read(&sinfo->groups_sem);
  3134. }
  3135. return num_tolerated_disk_barrier_failures;
  3136. }
  3137. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3138. {
  3139. struct list_head *head;
  3140. struct btrfs_device *dev;
  3141. struct btrfs_super_block *sb;
  3142. struct btrfs_dev_item *dev_item;
  3143. int ret;
  3144. int do_barriers;
  3145. int max_errors;
  3146. int total_errors = 0;
  3147. u64 flags;
  3148. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3149. backup_super_roots(root->fs_info);
  3150. sb = root->fs_info->super_for_commit;
  3151. dev_item = &sb->dev_item;
  3152. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3153. head = &root->fs_info->fs_devices->devices;
  3154. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3155. if (do_barriers) {
  3156. ret = barrier_all_devices(root->fs_info);
  3157. if (ret) {
  3158. mutex_unlock(
  3159. &root->fs_info->fs_devices->device_list_mutex);
  3160. btrfs_handle_fs_error(root->fs_info, ret,
  3161. "errors while submitting device barriers.");
  3162. return ret;
  3163. }
  3164. }
  3165. list_for_each_entry_rcu(dev, head, dev_list) {
  3166. if (!dev->bdev) {
  3167. total_errors++;
  3168. continue;
  3169. }
  3170. if (!dev->in_fs_metadata || !dev->writeable)
  3171. continue;
  3172. btrfs_set_stack_device_generation(dev_item, 0);
  3173. btrfs_set_stack_device_type(dev_item, dev->type);
  3174. btrfs_set_stack_device_id(dev_item, dev->devid);
  3175. btrfs_set_stack_device_total_bytes(dev_item,
  3176. dev->commit_total_bytes);
  3177. btrfs_set_stack_device_bytes_used(dev_item,
  3178. dev->commit_bytes_used);
  3179. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3180. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3181. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3182. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3183. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3184. flags = btrfs_super_flags(sb);
  3185. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3186. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3187. if (ret)
  3188. total_errors++;
  3189. }
  3190. if (total_errors > max_errors) {
  3191. btrfs_err(root->fs_info, "%d errors while writing supers",
  3192. total_errors);
  3193. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3194. /* FUA is masked off if unsupported and can't be the reason */
  3195. btrfs_handle_fs_error(root->fs_info, -EIO,
  3196. "%d errors while writing supers", total_errors);
  3197. return -EIO;
  3198. }
  3199. total_errors = 0;
  3200. list_for_each_entry_rcu(dev, head, dev_list) {
  3201. if (!dev->bdev)
  3202. continue;
  3203. if (!dev->in_fs_metadata || !dev->writeable)
  3204. continue;
  3205. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3206. if (ret)
  3207. total_errors++;
  3208. }
  3209. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3210. if (total_errors > max_errors) {
  3211. btrfs_handle_fs_error(root->fs_info, -EIO,
  3212. "%d errors while writing supers", total_errors);
  3213. return -EIO;
  3214. }
  3215. return 0;
  3216. }
  3217. int write_ctree_super(struct btrfs_trans_handle *trans,
  3218. struct btrfs_root *root, int max_mirrors)
  3219. {
  3220. return write_all_supers(root, max_mirrors);
  3221. }
  3222. /* Drop a fs root from the radix tree and free it. */
  3223. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3224. struct btrfs_root *root)
  3225. {
  3226. spin_lock(&fs_info->fs_roots_radix_lock);
  3227. radix_tree_delete(&fs_info->fs_roots_radix,
  3228. (unsigned long)root->root_key.objectid);
  3229. spin_unlock(&fs_info->fs_roots_radix_lock);
  3230. if (btrfs_root_refs(&root->root_item) == 0)
  3231. synchronize_srcu(&fs_info->subvol_srcu);
  3232. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3233. btrfs_free_log(NULL, root);
  3234. if (root->free_ino_pinned)
  3235. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3236. if (root->free_ino_ctl)
  3237. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3238. free_fs_root(root);
  3239. }
  3240. static void free_fs_root(struct btrfs_root *root)
  3241. {
  3242. iput(root->ino_cache_inode);
  3243. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3244. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3245. root->orphan_block_rsv = NULL;
  3246. if (root->anon_dev)
  3247. free_anon_bdev(root->anon_dev);
  3248. if (root->subv_writers)
  3249. btrfs_free_subvolume_writers(root->subv_writers);
  3250. free_extent_buffer(root->node);
  3251. free_extent_buffer(root->commit_root);
  3252. kfree(root->free_ino_ctl);
  3253. kfree(root->free_ino_pinned);
  3254. kfree(root->name);
  3255. btrfs_put_fs_root(root);
  3256. }
  3257. void btrfs_free_fs_root(struct btrfs_root *root)
  3258. {
  3259. free_fs_root(root);
  3260. }
  3261. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3262. {
  3263. u64 root_objectid = 0;
  3264. struct btrfs_root *gang[8];
  3265. int i = 0;
  3266. int err = 0;
  3267. unsigned int ret = 0;
  3268. int index;
  3269. while (1) {
  3270. index = srcu_read_lock(&fs_info->subvol_srcu);
  3271. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3272. (void **)gang, root_objectid,
  3273. ARRAY_SIZE(gang));
  3274. if (!ret) {
  3275. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3276. break;
  3277. }
  3278. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3279. for (i = 0; i < ret; i++) {
  3280. /* Avoid to grab roots in dead_roots */
  3281. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3282. gang[i] = NULL;
  3283. continue;
  3284. }
  3285. /* grab all the search result for later use */
  3286. gang[i] = btrfs_grab_fs_root(gang[i]);
  3287. }
  3288. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3289. for (i = 0; i < ret; i++) {
  3290. if (!gang[i])
  3291. continue;
  3292. root_objectid = gang[i]->root_key.objectid;
  3293. err = btrfs_orphan_cleanup(gang[i]);
  3294. if (err)
  3295. break;
  3296. btrfs_put_fs_root(gang[i]);
  3297. }
  3298. root_objectid++;
  3299. }
  3300. /* release the uncleaned roots due to error */
  3301. for (; i < ret; i++) {
  3302. if (gang[i])
  3303. btrfs_put_fs_root(gang[i]);
  3304. }
  3305. return err;
  3306. }
  3307. int btrfs_commit_super(struct btrfs_root *root)
  3308. {
  3309. struct btrfs_trans_handle *trans;
  3310. mutex_lock(&root->fs_info->cleaner_mutex);
  3311. btrfs_run_delayed_iputs(root);
  3312. mutex_unlock(&root->fs_info->cleaner_mutex);
  3313. wake_up_process(root->fs_info->cleaner_kthread);
  3314. /* wait until ongoing cleanup work done */
  3315. down_write(&root->fs_info->cleanup_work_sem);
  3316. up_write(&root->fs_info->cleanup_work_sem);
  3317. trans = btrfs_join_transaction(root);
  3318. if (IS_ERR(trans))
  3319. return PTR_ERR(trans);
  3320. return btrfs_commit_transaction(trans, root);
  3321. }
  3322. void close_ctree(struct btrfs_root *root)
  3323. {
  3324. struct btrfs_fs_info *fs_info = root->fs_info;
  3325. int ret;
  3326. fs_info->closing = 1;
  3327. smp_mb();
  3328. /* wait for the qgroup rescan worker to stop */
  3329. btrfs_qgroup_wait_for_completion(fs_info);
  3330. /* wait for the uuid_scan task to finish */
  3331. down(&fs_info->uuid_tree_rescan_sem);
  3332. /* avoid complains from lockdep et al., set sem back to initial state */
  3333. up(&fs_info->uuid_tree_rescan_sem);
  3334. /* pause restriper - we want to resume on mount */
  3335. btrfs_pause_balance(fs_info);
  3336. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3337. btrfs_scrub_cancel(fs_info);
  3338. /* wait for any defraggers to finish */
  3339. wait_event(fs_info->transaction_wait,
  3340. (atomic_read(&fs_info->defrag_running) == 0));
  3341. /* clear out the rbtree of defraggable inodes */
  3342. btrfs_cleanup_defrag_inodes(fs_info);
  3343. cancel_work_sync(&fs_info->async_reclaim_work);
  3344. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3345. /*
  3346. * If the cleaner thread is stopped and there are
  3347. * block groups queued for removal, the deletion will be
  3348. * skipped when we quit the cleaner thread.
  3349. */
  3350. btrfs_delete_unused_bgs(root->fs_info);
  3351. ret = btrfs_commit_super(root);
  3352. if (ret)
  3353. btrfs_err(fs_info, "commit super ret %d", ret);
  3354. }
  3355. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3356. btrfs_error_commit_super(root);
  3357. kthread_stop(fs_info->transaction_kthread);
  3358. kthread_stop(fs_info->cleaner_kthread);
  3359. fs_info->closing = 2;
  3360. smp_mb();
  3361. btrfs_free_qgroup_config(fs_info);
  3362. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3363. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3364. percpu_counter_sum(&fs_info->delalloc_bytes));
  3365. }
  3366. btrfs_sysfs_remove_mounted(fs_info);
  3367. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3368. btrfs_free_fs_roots(fs_info);
  3369. btrfs_put_block_group_cache(fs_info);
  3370. btrfs_free_block_groups(fs_info);
  3371. /*
  3372. * we must make sure there is not any read request to
  3373. * submit after we stopping all workers.
  3374. */
  3375. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3376. btrfs_stop_all_workers(fs_info);
  3377. fs_info->open = 0;
  3378. free_root_pointers(fs_info, 1);
  3379. iput(fs_info->btree_inode);
  3380. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3381. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3382. btrfsic_unmount(root, fs_info->fs_devices);
  3383. #endif
  3384. btrfs_close_devices(fs_info->fs_devices);
  3385. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3386. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3387. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3388. percpu_counter_destroy(&fs_info->bio_counter);
  3389. bdi_destroy(&fs_info->bdi);
  3390. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3391. btrfs_free_stripe_hash_table(fs_info);
  3392. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3393. root->orphan_block_rsv = NULL;
  3394. lock_chunks(root);
  3395. while (!list_empty(&fs_info->pinned_chunks)) {
  3396. struct extent_map *em;
  3397. em = list_first_entry(&fs_info->pinned_chunks,
  3398. struct extent_map, list);
  3399. list_del_init(&em->list);
  3400. free_extent_map(em);
  3401. }
  3402. unlock_chunks(root);
  3403. }
  3404. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3405. int atomic)
  3406. {
  3407. int ret;
  3408. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3409. ret = extent_buffer_uptodate(buf);
  3410. if (!ret)
  3411. return ret;
  3412. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3413. parent_transid, atomic);
  3414. if (ret == -EAGAIN)
  3415. return ret;
  3416. return !ret;
  3417. }
  3418. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3419. {
  3420. struct btrfs_root *root;
  3421. u64 transid = btrfs_header_generation(buf);
  3422. int was_dirty;
  3423. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3424. /*
  3425. * This is a fast path so only do this check if we have sanity tests
  3426. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3427. * outside of the sanity tests.
  3428. */
  3429. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3430. return;
  3431. #endif
  3432. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3433. btrfs_assert_tree_locked(buf);
  3434. if (transid != root->fs_info->generation)
  3435. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3436. "found %llu running %llu\n",
  3437. buf->start, transid, root->fs_info->generation);
  3438. was_dirty = set_extent_buffer_dirty(buf);
  3439. if (!was_dirty)
  3440. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3441. buf->len,
  3442. root->fs_info->dirty_metadata_batch);
  3443. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3444. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3445. btrfs_print_leaf(root, buf);
  3446. ASSERT(0);
  3447. }
  3448. #endif
  3449. }
  3450. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3451. int flush_delayed)
  3452. {
  3453. /*
  3454. * looks as though older kernels can get into trouble with
  3455. * this code, they end up stuck in balance_dirty_pages forever
  3456. */
  3457. int ret;
  3458. if (current->flags & PF_MEMALLOC)
  3459. return;
  3460. if (flush_delayed)
  3461. btrfs_balance_delayed_items(root);
  3462. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3463. BTRFS_DIRTY_METADATA_THRESH);
  3464. if (ret > 0) {
  3465. balance_dirty_pages_ratelimited(
  3466. root->fs_info->btree_inode->i_mapping);
  3467. }
  3468. }
  3469. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3470. {
  3471. __btrfs_btree_balance_dirty(root, 1);
  3472. }
  3473. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3474. {
  3475. __btrfs_btree_balance_dirty(root, 0);
  3476. }
  3477. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3478. {
  3479. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3480. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3481. }
  3482. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3483. int read_only)
  3484. {
  3485. struct btrfs_super_block *sb = fs_info->super_copy;
  3486. u64 nodesize = btrfs_super_nodesize(sb);
  3487. u64 sectorsize = btrfs_super_sectorsize(sb);
  3488. int ret = 0;
  3489. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3490. printk(KERN_ERR "BTRFS: no valid FS found\n");
  3491. ret = -EINVAL;
  3492. }
  3493. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3494. printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
  3495. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3496. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3497. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3498. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3499. ret = -EINVAL;
  3500. }
  3501. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3502. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3503. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3504. ret = -EINVAL;
  3505. }
  3506. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3507. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3508. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3509. ret = -EINVAL;
  3510. }
  3511. /*
  3512. * Check sectorsize and nodesize first, other check will need it.
  3513. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3514. */
  3515. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3516. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3517. printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
  3518. ret = -EINVAL;
  3519. }
  3520. /* Only PAGE SIZE is supported yet */
  3521. if (sectorsize != PAGE_SIZE) {
  3522. printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
  3523. sectorsize, PAGE_SIZE);
  3524. ret = -EINVAL;
  3525. }
  3526. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3527. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3528. printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
  3529. ret = -EINVAL;
  3530. }
  3531. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3532. printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
  3533. le32_to_cpu(sb->__unused_leafsize),
  3534. nodesize);
  3535. ret = -EINVAL;
  3536. }
  3537. /* Root alignment check */
  3538. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3539. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3540. btrfs_super_root(sb));
  3541. ret = -EINVAL;
  3542. }
  3543. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3544. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3545. btrfs_super_chunk_root(sb));
  3546. ret = -EINVAL;
  3547. }
  3548. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3549. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3550. btrfs_super_log_root(sb));
  3551. ret = -EINVAL;
  3552. }
  3553. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3554. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3555. fs_info->fsid, sb->dev_item.fsid);
  3556. ret = -EINVAL;
  3557. }
  3558. /*
  3559. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3560. * done later
  3561. */
  3562. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3563. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3564. btrfs_super_num_devices(sb));
  3565. if (btrfs_super_num_devices(sb) == 0) {
  3566. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3567. ret = -EINVAL;
  3568. }
  3569. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3570. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3571. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3572. ret = -EINVAL;
  3573. }
  3574. /*
  3575. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3576. * and one chunk
  3577. */
  3578. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3579. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3580. btrfs_super_sys_array_size(sb),
  3581. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3582. ret = -EINVAL;
  3583. }
  3584. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3585. + sizeof(struct btrfs_chunk)) {
  3586. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3587. btrfs_super_sys_array_size(sb),
  3588. sizeof(struct btrfs_disk_key)
  3589. + sizeof(struct btrfs_chunk));
  3590. ret = -EINVAL;
  3591. }
  3592. /*
  3593. * The generation is a global counter, we'll trust it more than the others
  3594. * but it's still possible that it's the one that's wrong.
  3595. */
  3596. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3597. printk(KERN_WARNING
  3598. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3599. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3600. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3601. && btrfs_super_cache_generation(sb) != (u64)-1)
  3602. printk(KERN_WARNING
  3603. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3604. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3605. return ret;
  3606. }
  3607. static void btrfs_error_commit_super(struct btrfs_root *root)
  3608. {
  3609. mutex_lock(&root->fs_info->cleaner_mutex);
  3610. btrfs_run_delayed_iputs(root);
  3611. mutex_unlock(&root->fs_info->cleaner_mutex);
  3612. down_write(&root->fs_info->cleanup_work_sem);
  3613. up_write(&root->fs_info->cleanup_work_sem);
  3614. /* cleanup FS via transaction */
  3615. btrfs_cleanup_transaction(root);
  3616. }
  3617. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3618. {
  3619. struct btrfs_ordered_extent *ordered;
  3620. spin_lock(&root->ordered_extent_lock);
  3621. /*
  3622. * This will just short circuit the ordered completion stuff which will
  3623. * make sure the ordered extent gets properly cleaned up.
  3624. */
  3625. list_for_each_entry(ordered, &root->ordered_extents,
  3626. root_extent_list)
  3627. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3628. spin_unlock(&root->ordered_extent_lock);
  3629. }
  3630. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3631. {
  3632. struct btrfs_root *root;
  3633. struct list_head splice;
  3634. INIT_LIST_HEAD(&splice);
  3635. spin_lock(&fs_info->ordered_root_lock);
  3636. list_splice_init(&fs_info->ordered_roots, &splice);
  3637. while (!list_empty(&splice)) {
  3638. root = list_first_entry(&splice, struct btrfs_root,
  3639. ordered_root);
  3640. list_move_tail(&root->ordered_root,
  3641. &fs_info->ordered_roots);
  3642. spin_unlock(&fs_info->ordered_root_lock);
  3643. btrfs_destroy_ordered_extents(root);
  3644. cond_resched();
  3645. spin_lock(&fs_info->ordered_root_lock);
  3646. }
  3647. spin_unlock(&fs_info->ordered_root_lock);
  3648. }
  3649. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3650. struct btrfs_root *root)
  3651. {
  3652. struct rb_node *node;
  3653. struct btrfs_delayed_ref_root *delayed_refs;
  3654. struct btrfs_delayed_ref_node *ref;
  3655. int ret = 0;
  3656. delayed_refs = &trans->delayed_refs;
  3657. spin_lock(&delayed_refs->lock);
  3658. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3659. spin_unlock(&delayed_refs->lock);
  3660. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3661. return ret;
  3662. }
  3663. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3664. struct btrfs_delayed_ref_head *head;
  3665. struct btrfs_delayed_ref_node *tmp;
  3666. bool pin_bytes = false;
  3667. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3668. href_node);
  3669. if (!mutex_trylock(&head->mutex)) {
  3670. atomic_inc(&head->node.refs);
  3671. spin_unlock(&delayed_refs->lock);
  3672. mutex_lock(&head->mutex);
  3673. mutex_unlock(&head->mutex);
  3674. btrfs_put_delayed_ref(&head->node);
  3675. spin_lock(&delayed_refs->lock);
  3676. continue;
  3677. }
  3678. spin_lock(&head->lock);
  3679. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3680. list) {
  3681. ref->in_tree = 0;
  3682. list_del(&ref->list);
  3683. atomic_dec(&delayed_refs->num_entries);
  3684. btrfs_put_delayed_ref(ref);
  3685. }
  3686. if (head->must_insert_reserved)
  3687. pin_bytes = true;
  3688. btrfs_free_delayed_extent_op(head->extent_op);
  3689. delayed_refs->num_heads--;
  3690. if (head->processing == 0)
  3691. delayed_refs->num_heads_ready--;
  3692. atomic_dec(&delayed_refs->num_entries);
  3693. head->node.in_tree = 0;
  3694. rb_erase(&head->href_node, &delayed_refs->href_root);
  3695. spin_unlock(&head->lock);
  3696. spin_unlock(&delayed_refs->lock);
  3697. mutex_unlock(&head->mutex);
  3698. if (pin_bytes)
  3699. btrfs_pin_extent(root, head->node.bytenr,
  3700. head->node.num_bytes, 1);
  3701. btrfs_put_delayed_ref(&head->node);
  3702. cond_resched();
  3703. spin_lock(&delayed_refs->lock);
  3704. }
  3705. spin_unlock(&delayed_refs->lock);
  3706. return ret;
  3707. }
  3708. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3709. {
  3710. struct btrfs_inode *btrfs_inode;
  3711. struct list_head splice;
  3712. INIT_LIST_HEAD(&splice);
  3713. spin_lock(&root->delalloc_lock);
  3714. list_splice_init(&root->delalloc_inodes, &splice);
  3715. while (!list_empty(&splice)) {
  3716. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3717. delalloc_inodes);
  3718. list_del_init(&btrfs_inode->delalloc_inodes);
  3719. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3720. &btrfs_inode->runtime_flags);
  3721. spin_unlock(&root->delalloc_lock);
  3722. btrfs_invalidate_inodes(btrfs_inode->root);
  3723. spin_lock(&root->delalloc_lock);
  3724. }
  3725. spin_unlock(&root->delalloc_lock);
  3726. }
  3727. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3728. {
  3729. struct btrfs_root *root;
  3730. struct list_head splice;
  3731. INIT_LIST_HEAD(&splice);
  3732. spin_lock(&fs_info->delalloc_root_lock);
  3733. list_splice_init(&fs_info->delalloc_roots, &splice);
  3734. while (!list_empty(&splice)) {
  3735. root = list_first_entry(&splice, struct btrfs_root,
  3736. delalloc_root);
  3737. list_del_init(&root->delalloc_root);
  3738. root = btrfs_grab_fs_root(root);
  3739. BUG_ON(!root);
  3740. spin_unlock(&fs_info->delalloc_root_lock);
  3741. btrfs_destroy_delalloc_inodes(root);
  3742. btrfs_put_fs_root(root);
  3743. spin_lock(&fs_info->delalloc_root_lock);
  3744. }
  3745. spin_unlock(&fs_info->delalloc_root_lock);
  3746. }
  3747. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3748. struct extent_io_tree *dirty_pages,
  3749. int mark)
  3750. {
  3751. int ret;
  3752. struct extent_buffer *eb;
  3753. u64 start = 0;
  3754. u64 end;
  3755. while (1) {
  3756. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3757. mark, NULL);
  3758. if (ret)
  3759. break;
  3760. clear_extent_bits(dirty_pages, start, end, mark);
  3761. while (start <= end) {
  3762. eb = btrfs_find_tree_block(root->fs_info, start);
  3763. start += root->nodesize;
  3764. if (!eb)
  3765. continue;
  3766. wait_on_extent_buffer_writeback(eb);
  3767. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3768. &eb->bflags))
  3769. clear_extent_buffer_dirty(eb);
  3770. free_extent_buffer_stale(eb);
  3771. }
  3772. }
  3773. return ret;
  3774. }
  3775. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3776. struct extent_io_tree *pinned_extents)
  3777. {
  3778. struct extent_io_tree *unpin;
  3779. u64 start;
  3780. u64 end;
  3781. int ret;
  3782. bool loop = true;
  3783. unpin = pinned_extents;
  3784. again:
  3785. while (1) {
  3786. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3787. EXTENT_DIRTY, NULL);
  3788. if (ret)
  3789. break;
  3790. clear_extent_dirty(unpin, start, end);
  3791. btrfs_error_unpin_extent_range(root, start, end);
  3792. cond_resched();
  3793. }
  3794. if (loop) {
  3795. if (unpin == &root->fs_info->freed_extents[0])
  3796. unpin = &root->fs_info->freed_extents[1];
  3797. else
  3798. unpin = &root->fs_info->freed_extents[0];
  3799. loop = false;
  3800. goto again;
  3801. }
  3802. return 0;
  3803. }
  3804. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3805. struct btrfs_root *root)
  3806. {
  3807. btrfs_destroy_delayed_refs(cur_trans, root);
  3808. cur_trans->state = TRANS_STATE_COMMIT_START;
  3809. wake_up(&root->fs_info->transaction_blocked_wait);
  3810. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3811. wake_up(&root->fs_info->transaction_wait);
  3812. btrfs_destroy_delayed_inodes(root);
  3813. btrfs_assert_delayed_root_empty(root);
  3814. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3815. EXTENT_DIRTY);
  3816. btrfs_destroy_pinned_extent(root,
  3817. root->fs_info->pinned_extents);
  3818. cur_trans->state =TRANS_STATE_COMPLETED;
  3819. wake_up(&cur_trans->commit_wait);
  3820. /*
  3821. memset(cur_trans, 0, sizeof(*cur_trans));
  3822. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3823. */
  3824. }
  3825. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3826. {
  3827. struct btrfs_transaction *t;
  3828. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3829. spin_lock(&root->fs_info->trans_lock);
  3830. while (!list_empty(&root->fs_info->trans_list)) {
  3831. t = list_first_entry(&root->fs_info->trans_list,
  3832. struct btrfs_transaction, list);
  3833. if (t->state >= TRANS_STATE_COMMIT_START) {
  3834. atomic_inc(&t->use_count);
  3835. spin_unlock(&root->fs_info->trans_lock);
  3836. btrfs_wait_for_commit(root, t->transid);
  3837. btrfs_put_transaction(t);
  3838. spin_lock(&root->fs_info->trans_lock);
  3839. continue;
  3840. }
  3841. if (t == root->fs_info->running_transaction) {
  3842. t->state = TRANS_STATE_COMMIT_DOING;
  3843. spin_unlock(&root->fs_info->trans_lock);
  3844. /*
  3845. * We wait for 0 num_writers since we don't hold a trans
  3846. * handle open currently for this transaction.
  3847. */
  3848. wait_event(t->writer_wait,
  3849. atomic_read(&t->num_writers) == 0);
  3850. } else {
  3851. spin_unlock(&root->fs_info->trans_lock);
  3852. }
  3853. btrfs_cleanup_one_transaction(t, root);
  3854. spin_lock(&root->fs_info->trans_lock);
  3855. if (t == root->fs_info->running_transaction)
  3856. root->fs_info->running_transaction = NULL;
  3857. list_del_init(&t->list);
  3858. spin_unlock(&root->fs_info->trans_lock);
  3859. btrfs_put_transaction(t);
  3860. trace_btrfs_transaction_commit(root);
  3861. spin_lock(&root->fs_info->trans_lock);
  3862. }
  3863. spin_unlock(&root->fs_info->trans_lock);
  3864. btrfs_destroy_all_ordered_extents(root->fs_info);
  3865. btrfs_destroy_delayed_inodes(root);
  3866. btrfs_assert_delayed_root_empty(root);
  3867. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3868. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3869. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3870. return 0;
  3871. }
  3872. static const struct extent_io_ops btree_extent_io_ops = {
  3873. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3874. .readpage_io_failed_hook = btree_io_failed_hook,
  3875. .submit_bio_hook = btree_submit_bio_hook,
  3876. /* note we're sharing with inode.c for the merge bio hook */
  3877. .merge_bio_hook = btrfs_merge_bio_hook,
  3878. };