pid_namespace.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. /*
  2. * Pid namespaces
  3. *
  4. * Authors:
  5. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7. * Many thanks to Oleg Nesterov for comments and help
  8. *
  9. */
  10. #include <linux/pid.h>
  11. #include <linux/pid_namespace.h>
  12. #include <linux/user_namespace.h>
  13. #include <linux/syscalls.h>
  14. #include <linux/cred.h>
  15. #include <linux/err.h>
  16. #include <linux/acct.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_ns.h>
  19. #include <linux/reboot.h>
  20. #include <linux/export.h>
  21. #include <linux/sched/task.h>
  22. #include <linux/sched/signal.h>
  23. struct pid_cache {
  24. int nr_ids;
  25. char name[16];
  26. struct kmem_cache *cachep;
  27. struct list_head list;
  28. };
  29. static LIST_HEAD(pid_caches_lh);
  30. static DEFINE_MUTEX(pid_caches_mutex);
  31. static struct kmem_cache *pid_ns_cachep;
  32. /*
  33. * creates the kmem cache to allocate pids from.
  34. * @nr_ids: the number of numerical ids this pid will have to carry
  35. */
  36. static struct kmem_cache *create_pid_cachep(int nr_ids)
  37. {
  38. struct pid_cache *pcache;
  39. struct kmem_cache *cachep;
  40. mutex_lock(&pid_caches_mutex);
  41. list_for_each_entry(pcache, &pid_caches_lh, list)
  42. if (pcache->nr_ids == nr_ids)
  43. goto out;
  44. pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
  45. if (pcache == NULL)
  46. goto err_alloc;
  47. snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
  48. cachep = kmem_cache_create(pcache->name,
  49. sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
  50. 0, SLAB_HWCACHE_ALIGN, NULL);
  51. if (cachep == NULL)
  52. goto err_cachep;
  53. pcache->nr_ids = nr_ids;
  54. pcache->cachep = cachep;
  55. list_add(&pcache->list, &pid_caches_lh);
  56. out:
  57. mutex_unlock(&pid_caches_mutex);
  58. return pcache->cachep;
  59. err_cachep:
  60. kfree(pcache);
  61. err_alloc:
  62. mutex_unlock(&pid_caches_mutex);
  63. return NULL;
  64. }
  65. static void proc_cleanup_work(struct work_struct *work)
  66. {
  67. struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  68. pid_ns_release_proc(ns);
  69. }
  70. /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  71. #define MAX_PID_NS_LEVEL 32
  72. static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  73. {
  74. return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  75. }
  76. static void dec_pid_namespaces(struct ucounts *ucounts)
  77. {
  78. dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  79. }
  80. static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  81. struct pid_namespace *parent_pid_ns)
  82. {
  83. struct pid_namespace *ns;
  84. unsigned int level = parent_pid_ns->level + 1;
  85. struct ucounts *ucounts;
  86. int i;
  87. int err;
  88. err = -ENOSPC;
  89. if (level > MAX_PID_NS_LEVEL)
  90. goto out;
  91. ucounts = inc_pid_namespaces(user_ns);
  92. if (!ucounts)
  93. goto out;
  94. err = -ENOMEM;
  95. ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  96. if (ns == NULL)
  97. goto out_dec;
  98. ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  99. if (!ns->pidmap[0].page)
  100. goto out_free;
  101. ns->pid_cachep = create_pid_cachep(level + 1);
  102. if (ns->pid_cachep == NULL)
  103. goto out_free_map;
  104. err = ns_alloc_inum(&ns->ns);
  105. if (err)
  106. goto out_free_map;
  107. ns->ns.ops = &pidns_operations;
  108. kref_init(&ns->kref);
  109. ns->level = level;
  110. ns->parent = get_pid_ns(parent_pid_ns);
  111. ns->user_ns = get_user_ns(user_ns);
  112. ns->ucounts = ucounts;
  113. ns->nr_hashed = PIDNS_HASH_ADDING;
  114. INIT_WORK(&ns->proc_work, proc_cleanup_work);
  115. set_bit(0, ns->pidmap[0].page);
  116. atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
  117. for (i = 1; i < PIDMAP_ENTRIES; i++)
  118. atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
  119. return ns;
  120. out_free_map:
  121. kfree(ns->pidmap[0].page);
  122. out_free:
  123. kmem_cache_free(pid_ns_cachep, ns);
  124. out_dec:
  125. dec_pid_namespaces(ucounts);
  126. out:
  127. return ERR_PTR(err);
  128. }
  129. static void delayed_free_pidns(struct rcu_head *p)
  130. {
  131. struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
  132. dec_pid_namespaces(ns->ucounts);
  133. put_user_ns(ns->user_ns);
  134. kmem_cache_free(pid_ns_cachep, ns);
  135. }
  136. static void destroy_pid_namespace(struct pid_namespace *ns)
  137. {
  138. int i;
  139. ns_free_inum(&ns->ns);
  140. for (i = 0; i < PIDMAP_ENTRIES; i++)
  141. kfree(ns->pidmap[i].page);
  142. call_rcu(&ns->rcu, delayed_free_pidns);
  143. }
  144. struct pid_namespace *copy_pid_ns(unsigned long flags,
  145. struct user_namespace *user_ns, struct pid_namespace *old_ns)
  146. {
  147. if (!(flags & CLONE_NEWPID))
  148. return get_pid_ns(old_ns);
  149. if (task_active_pid_ns(current) != old_ns)
  150. return ERR_PTR(-EINVAL);
  151. return create_pid_namespace(user_ns, old_ns);
  152. }
  153. static void free_pid_ns(struct kref *kref)
  154. {
  155. struct pid_namespace *ns;
  156. ns = container_of(kref, struct pid_namespace, kref);
  157. destroy_pid_namespace(ns);
  158. }
  159. void put_pid_ns(struct pid_namespace *ns)
  160. {
  161. struct pid_namespace *parent;
  162. while (ns != &init_pid_ns) {
  163. parent = ns->parent;
  164. if (!kref_put(&ns->kref, free_pid_ns))
  165. break;
  166. ns = parent;
  167. }
  168. }
  169. EXPORT_SYMBOL_GPL(put_pid_ns);
  170. void zap_pid_ns_processes(struct pid_namespace *pid_ns)
  171. {
  172. int nr;
  173. int rc;
  174. struct task_struct *task, *me = current;
  175. int init_pids = thread_group_leader(me) ? 1 : 2;
  176. /* Don't allow any more processes into the pid namespace */
  177. disable_pid_allocation(pid_ns);
  178. /*
  179. * Ignore SIGCHLD causing any terminated children to autoreap.
  180. * This speeds up the namespace shutdown, plus see the comment
  181. * below.
  182. */
  183. spin_lock_irq(&me->sighand->siglock);
  184. me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
  185. spin_unlock_irq(&me->sighand->siglock);
  186. /*
  187. * The last thread in the cgroup-init thread group is terminating.
  188. * Find remaining pid_ts in the namespace, signal and wait for them
  189. * to exit.
  190. *
  191. * Note: This signals each threads in the namespace - even those that
  192. * belong to the same thread group, To avoid this, we would have
  193. * to walk the entire tasklist looking a processes in this
  194. * namespace, but that could be unnecessarily expensive if the
  195. * pid namespace has just a few processes. Or we need to
  196. * maintain a tasklist for each pid namespace.
  197. *
  198. */
  199. read_lock(&tasklist_lock);
  200. nr = next_pidmap(pid_ns, 1);
  201. while (nr > 0) {
  202. rcu_read_lock();
  203. task = pid_task(find_vpid(nr), PIDTYPE_PID);
  204. if (task && !__fatal_signal_pending(task))
  205. send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
  206. rcu_read_unlock();
  207. nr = next_pidmap(pid_ns, nr);
  208. }
  209. read_unlock(&tasklist_lock);
  210. /*
  211. * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
  212. * sys_wait4() will also block until our children traced from the
  213. * parent namespace are detached and become EXIT_DEAD.
  214. */
  215. do {
  216. clear_thread_flag(TIF_SIGPENDING);
  217. rc = sys_wait4(-1, NULL, __WALL, NULL);
  218. } while (rc != -ECHILD);
  219. /*
  220. * sys_wait4() above can't reap the EXIT_DEAD children but we do not
  221. * really care, we could reparent them to the global init. We could
  222. * exit and reap ->child_reaper even if it is not the last thread in
  223. * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
  224. * pid_ns can not go away until proc_kill_sb() drops the reference.
  225. *
  226. * But this ns can also have other tasks injected by setns()+fork().
  227. * Again, ignoring the user visible semantics we do not really need
  228. * to wait until they are all reaped, but they can be reparented to
  229. * us and thus we need to ensure that pid->child_reaper stays valid
  230. * until they all go away. See free_pid()->wake_up_process().
  231. *
  232. * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
  233. * if reparented.
  234. */
  235. for (;;) {
  236. set_current_state(TASK_UNINTERRUPTIBLE);
  237. if (pid_ns->nr_hashed == init_pids)
  238. break;
  239. schedule();
  240. }
  241. __set_current_state(TASK_RUNNING);
  242. if (pid_ns->reboot)
  243. current->signal->group_exit_code = pid_ns->reboot;
  244. acct_exit_ns(pid_ns);
  245. return;
  246. }
  247. #ifdef CONFIG_CHECKPOINT_RESTORE
  248. static int pid_ns_ctl_handler(struct ctl_table *table, int write,
  249. void __user *buffer, size_t *lenp, loff_t *ppos)
  250. {
  251. struct pid_namespace *pid_ns = task_active_pid_ns(current);
  252. struct ctl_table tmp = *table;
  253. if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
  254. return -EPERM;
  255. /*
  256. * Writing directly to ns' last_pid field is OK, since this field
  257. * is volatile in a living namespace anyway and a code writing to
  258. * it should synchronize its usage with external means.
  259. */
  260. tmp.data = &pid_ns->last_pid;
  261. return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
  262. }
  263. extern int pid_max;
  264. static int zero = 0;
  265. static struct ctl_table pid_ns_ctl_table[] = {
  266. {
  267. .procname = "ns_last_pid",
  268. .maxlen = sizeof(int),
  269. .mode = 0666, /* permissions are checked in the handler */
  270. .proc_handler = pid_ns_ctl_handler,
  271. .extra1 = &zero,
  272. .extra2 = &pid_max,
  273. },
  274. { }
  275. };
  276. static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
  277. #endif /* CONFIG_CHECKPOINT_RESTORE */
  278. int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
  279. {
  280. if (pid_ns == &init_pid_ns)
  281. return 0;
  282. switch (cmd) {
  283. case LINUX_REBOOT_CMD_RESTART2:
  284. case LINUX_REBOOT_CMD_RESTART:
  285. pid_ns->reboot = SIGHUP;
  286. break;
  287. case LINUX_REBOOT_CMD_POWER_OFF:
  288. case LINUX_REBOOT_CMD_HALT:
  289. pid_ns->reboot = SIGINT;
  290. break;
  291. default:
  292. return -EINVAL;
  293. }
  294. read_lock(&tasklist_lock);
  295. force_sig(SIGKILL, pid_ns->child_reaper);
  296. read_unlock(&tasklist_lock);
  297. do_exit(0);
  298. /* Not reached */
  299. return 0;
  300. }
  301. static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
  302. {
  303. return container_of(ns, struct pid_namespace, ns);
  304. }
  305. static struct ns_common *pidns_get(struct task_struct *task)
  306. {
  307. struct pid_namespace *ns;
  308. rcu_read_lock();
  309. ns = task_active_pid_ns(task);
  310. if (ns)
  311. get_pid_ns(ns);
  312. rcu_read_unlock();
  313. return ns ? &ns->ns : NULL;
  314. }
  315. static struct ns_common *pidns_for_children_get(struct task_struct *task)
  316. {
  317. struct pid_namespace *ns = NULL;
  318. task_lock(task);
  319. if (task->nsproxy) {
  320. ns = task->nsproxy->pid_ns_for_children;
  321. get_pid_ns(ns);
  322. }
  323. task_unlock(task);
  324. if (ns) {
  325. read_lock(&tasklist_lock);
  326. if (!ns->child_reaper) {
  327. put_pid_ns(ns);
  328. ns = NULL;
  329. }
  330. read_unlock(&tasklist_lock);
  331. }
  332. return ns ? &ns->ns : NULL;
  333. }
  334. static void pidns_put(struct ns_common *ns)
  335. {
  336. put_pid_ns(to_pid_ns(ns));
  337. }
  338. static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  339. {
  340. struct pid_namespace *active = task_active_pid_ns(current);
  341. struct pid_namespace *ancestor, *new = to_pid_ns(ns);
  342. if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
  343. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  344. return -EPERM;
  345. /*
  346. * Only allow entering the current active pid namespace
  347. * or a child of the current active pid namespace.
  348. *
  349. * This is required for fork to return a usable pid value and
  350. * this maintains the property that processes and their
  351. * children can not escape their current pid namespace.
  352. */
  353. if (new->level < active->level)
  354. return -EINVAL;
  355. ancestor = new;
  356. while (ancestor->level > active->level)
  357. ancestor = ancestor->parent;
  358. if (ancestor != active)
  359. return -EINVAL;
  360. put_pid_ns(nsproxy->pid_ns_for_children);
  361. nsproxy->pid_ns_for_children = get_pid_ns(new);
  362. return 0;
  363. }
  364. static struct ns_common *pidns_get_parent(struct ns_common *ns)
  365. {
  366. struct pid_namespace *active = task_active_pid_ns(current);
  367. struct pid_namespace *pid_ns, *p;
  368. /* See if the parent is in the current namespace */
  369. pid_ns = p = to_pid_ns(ns)->parent;
  370. for (;;) {
  371. if (!p)
  372. return ERR_PTR(-EPERM);
  373. if (p == active)
  374. break;
  375. p = p->parent;
  376. }
  377. return &get_pid_ns(pid_ns)->ns;
  378. }
  379. static struct user_namespace *pidns_owner(struct ns_common *ns)
  380. {
  381. return to_pid_ns(ns)->user_ns;
  382. }
  383. const struct proc_ns_operations pidns_operations = {
  384. .name = "pid",
  385. .type = CLONE_NEWPID,
  386. .get = pidns_get,
  387. .put = pidns_put,
  388. .install = pidns_install,
  389. .owner = pidns_owner,
  390. .get_parent = pidns_get_parent,
  391. };
  392. const struct proc_ns_operations pidns_for_children_operations = {
  393. .name = "pid_for_children",
  394. .real_ns_name = "pid",
  395. .type = CLONE_NEWPID,
  396. .get = pidns_for_children_get,
  397. .put = pidns_put,
  398. .install = pidns_install,
  399. .owner = pidns_owner,
  400. .get_parent = pidns_get_parent,
  401. };
  402. static __init int pid_namespaces_init(void)
  403. {
  404. pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
  405. #ifdef CONFIG_CHECKPOINT_RESTORE
  406. register_sysctl_paths(kern_path, pid_ns_ctl_table);
  407. #endif
  408. return 0;
  409. }
  410. __initcall(pid_namespaces_init);