exit.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched/autogroup.h>
  9. #include <linux/sched/mm.h>
  10. #include <linux/sched/stat.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/sched/task_stack.h>
  13. #include <linux/sched/cputime.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/module.h>
  16. #include <linux/capability.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/tty.h>
  20. #include <linux/iocontext.h>
  21. #include <linux/key.h>
  22. #include <linux/cpu.h>
  23. #include <linux/acct.h>
  24. #include <linux/tsacct_kern.h>
  25. #include <linux/file.h>
  26. #include <linux/fdtable.h>
  27. #include <linux/freezer.h>
  28. #include <linux/binfmts.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/pid_namespace.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/profile.h>
  33. #include <linux/mount.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/kthread.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/taskstats_kern.h>
  38. #include <linux/delayacct.h>
  39. #include <linux/cgroup.h>
  40. #include <linux/syscalls.h>
  41. #include <linux/signal.h>
  42. #include <linux/posix-timers.h>
  43. #include <linux/cn_proc.h>
  44. #include <linux/mutex.h>
  45. #include <linux/futex.h>
  46. #include <linux/pipe_fs_i.h>
  47. #include <linux/audit.h> /* for audit_free() */
  48. #include <linux/resource.h>
  49. #include <linux/blkdev.h>
  50. #include <linux/task_io_accounting_ops.h>
  51. #include <linux/tracehook.h>
  52. #include <linux/fs_struct.h>
  53. #include <linux/userfaultfd_k.h>
  54. #include <linux/init_task.h>
  55. #include <linux/perf_event.h>
  56. #include <trace/events/sched.h>
  57. #include <linux/hw_breakpoint.h>
  58. #include <linux/oom.h>
  59. #include <linux/writeback.h>
  60. #include <linux/shm.h>
  61. #include <linux/kcov.h>
  62. #include <linux/random.h>
  63. #include <linux/rcuwait.h>
  64. #include <linux/uaccess.h>
  65. #include <asm/unistd.h>
  66. #include <asm/pgtable.h>
  67. #include <asm/mmu_context.h>
  68. static void __unhash_process(struct task_struct *p, bool group_dead)
  69. {
  70. nr_threads--;
  71. detach_pid(p, PIDTYPE_PID);
  72. if (group_dead) {
  73. detach_pid(p, PIDTYPE_PGID);
  74. detach_pid(p, PIDTYPE_SID);
  75. list_del_rcu(&p->tasks);
  76. list_del_init(&p->sibling);
  77. __this_cpu_dec(process_counts);
  78. }
  79. list_del_rcu(&p->thread_group);
  80. list_del_rcu(&p->thread_node);
  81. }
  82. /*
  83. * This function expects the tasklist_lock write-locked.
  84. */
  85. static void __exit_signal(struct task_struct *tsk)
  86. {
  87. struct signal_struct *sig = tsk->signal;
  88. bool group_dead = thread_group_leader(tsk);
  89. struct sighand_struct *sighand;
  90. struct tty_struct *uninitialized_var(tty);
  91. u64 utime, stime;
  92. sighand = rcu_dereference_check(tsk->sighand,
  93. lockdep_tasklist_lock_is_held());
  94. spin_lock(&sighand->siglock);
  95. #ifdef CONFIG_POSIX_TIMERS
  96. posix_cpu_timers_exit(tsk);
  97. if (group_dead) {
  98. posix_cpu_timers_exit_group(tsk);
  99. } else {
  100. /*
  101. * This can only happen if the caller is de_thread().
  102. * FIXME: this is the temporary hack, we should teach
  103. * posix-cpu-timers to handle this case correctly.
  104. */
  105. if (unlikely(has_group_leader_pid(tsk)))
  106. posix_cpu_timers_exit_group(tsk);
  107. }
  108. #endif
  109. if (group_dead) {
  110. tty = sig->tty;
  111. sig->tty = NULL;
  112. } else {
  113. /*
  114. * If there is any task waiting for the group exit
  115. * then notify it:
  116. */
  117. if (sig->notify_count > 0 && !--sig->notify_count)
  118. wake_up_process(sig->group_exit_task);
  119. if (tsk == sig->curr_target)
  120. sig->curr_target = next_thread(tsk);
  121. }
  122. add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
  123. sizeof(unsigned long long));
  124. /*
  125. * Accumulate here the counters for all threads as they die. We could
  126. * skip the group leader because it is the last user of signal_struct,
  127. * but we want to avoid the race with thread_group_cputime() which can
  128. * see the empty ->thread_head list.
  129. */
  130. task_cputime(tsk, &utime, &stime);
  131. write_seqlock(&sig->stats_lock);
  132. sig->utime += utime;
  133. sig->stime += stime;
  134. sig->gtime += task_gtime(tsk);
  135. sig->min_flt += tsk->min_flt;
  136. sig->maj_flt += tsk->maj_flt;
  137. sig->nvcsw += tsk->nvcsw;
  138. sig->nivcsw += tsk->nivcsw;
  139. sig->inblock += task_io_get_inblock(tsk);
  140. sig->oublock += task_io_get_oublock(tsk);
  141. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  142. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  143. sig->nr_threads--;
  144. __unhash_process(tsk, group_dead);
  145. write_sequnlock(&sig->stats_lock);
  146. /*
  147. * Do this under ->siglock, we can race with another thread
  148. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  149. */
  150. flush_sigqueue(&tsk->pending);
  151. tsk->sighand = NULL;
  152. spin_unlock(&sighand->siglock);
  153. __cleanup_sighand(sighand);
  154. clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
  155. if (group_dead) {
  156. flush_sigqueue(&sig->shared_pending);
  157. tty_kref_put(tty);
  158. }
  159. }
  160. static void delayed_put_task_struct(struct rcu_head *rhp)
  161. {
  162. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  163. perf_event_delayed_put(tsk);
  164. trace_sched_process_free(tsk);
  165. put_task_struct(tsk);
  166. }
  167. void release_task(struct task_struct *p)
  168. {
  169. struct task_struct *leader;
  170. int zap_leader;
  171. repeat:
  172. /* don't need to get the RCU readlock here - the process is dead and
  173. * can't be modifying its own credentials. But shut RCU-lockdep up */
  174. rcu_read_lock();
  175. atomic_dec(&__task_cred(p)->user->processes);
  176. rcu_read_unlock();
  177. proc_flush_task(p);
  178. write_lock_irq(&tasklist_lock);
  179. ptrace_release_task(p);
  180. __exit_signal(p);
  181. /*
  182. * If we are the last non-leader member of the thread
  183. * group, and the leader is zombie, then notify the
  184. * group leader's parent process. (if it wants notification.)
  185. */
  186. zap_leader = 0;
  187. leader = p->group_leader;
  188. if (leader != p && thread_group_empty(leader)
  189. && leader->exit_state == EXIT_ZOMBIE) {
  190. /*
  191. * If we were the last child thread and the leader has
  192. * exited already, and the leader's parent ignores SIGCHLD,
  193. * then we are the one who should release the leader.
  194. */
  195. zap_leader = do_notify_parent(leader, leader->exit_signal);
  196. if (zap_leader)
  197. leader->exit_state = EXIT_DEAD;
  198. }
  199. write_unlock_irq(&tasklist_lock);
  200. release_thread(p);
  201. call_rcu(&p->rcu, delayed_put_task_struct);
  202. p = leader;
  203. if (unlikely(zap_leader))
  204. goto repeat;
  205. }
  206. /*
  207. * Note that if this function returns a valid task_struct pointer (!NULL)
  208. * task->usage must remain >0 for the duration of the RCU critical section.
  209. */
  210. struct task_struct *task_rcu_dereference(struct task_struct **ptask)
  211. {
  212. struct sighand_struct *sighand;
  213. struct task_struct *task;
  214. /*
  215. * We need to verify that release_task() was not called and thus
  216. * delayed_put_task_struct() can't run and drop the last reference
  217. * before rcu_read_unlock(). We check task->sighand != NULL,
  218. * but we can read the already freed and reused memory.
  219. */
  220. retry:
  221. task = rcu_dereference(*ptask);
  222. if (!task)
  223. return NULL;
  224. probe_kernel_address(&task->sighand, sighand);
  225. /*
  226. * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
  227. * was already freed we can not miss the preceding update of this
  228. * pointer.
  229. */
  230. smp_rmb();
  231. if (unlikely(task != READ_ONCE(*ptask)))
  232. goto retry;
  233. /*
  234. * We've re-checked that "task == *ptask", now we have two different
  235. * cases:
  236. *
  237. * 1. This is actually the same task/task_struct. In this case
  238. * sighand != NULL tells us it is still alive.
  239. *
  240. * 2. This is another task which got the same memory for task_struct.
  241. * We can't know this of course, and we can not trust
  242. * sighand != NULL.
  243. *
  244. * In this case we actually return a random value, but this is
  245. * correct.
  246. *
  247. * If we return NULL - we can pretend that we actually noticed that
  248. * *ptask was updated when the previous task has exited. Or pretend
  249. * that probe_slab_address(&sighand) reads NULL.
  250. *
  251. * If we return the new task (because sighand is not NULL for any
  252. * reason) - this is fine too. This (new) task can't go away before
  253. * another gp pass.
  254. *
  255. * And note: We could even eliminate the false positive if re-read
  256. * task->sighand once again to avoid the falsely NULL. But this case
  257. * is very unlikely so we don't care.
  258. */
  259. if (!sighand)
  260. return NULL;
  261. return task;
  262. }
  263. void rcuwait_wake_up(struct rcuwait *w)
  264. {
  265. struct task_struct *task;
  266. rcu_read_lock();
  267. /*
  268. * Order condition vs @task, such that everything prior to the load
  269. * of @task is visible. This is the condition as to why the user called
  270. * rcuwait_trywake() in the first place. Pairs with set_current_state()
  271. * barrier (A) in rcuwait_wait_event().
  272. *
  273. * WAIT WAKE
  274. * [S] tsk = current [S] cond = true
  275. * MB (A) MB (B)
  276. * [L] cond [L] tsk
  277. */
  278. smp_rmb(); /* (B) */
  279. /*
  280. * Avoid using task_rcu_dereference() magic as long as we are careful,
  281. * see comment in rcuwait_wait_event() regarding ->exit_state.
  282. */
  283. task = rcu_dereference(w->task);
  284. if (task)
  285. wake_up_process(task);
  286. rcu_read_unlock();
  287. }
  288. struct task_struct *try_get_task_struct(struct task_struct **ptask)
  289. {
  290. struct task_struct *task;
  291. rcu_read_lock();
  292. task = task_rcu_dereference(ptask);
  293. if (task)
  294. get_task_struct(task);
  295. rcu_read_unlock();
  296. return task;
  297. }
  298. /*
  299. * Determine if a process group is "orphaned", according to the POSIX
  300. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  301. * by terminal-generated stop signals. Newly orphaned process groups are
  302. * to receive a SIGHUP and a SIGCONT.
  303. *
  304. * "I ask you, have you ever known what it is to be an orphan?"
  305. */
  306. static int will_become_orphaned_pgrp(struct pid *pgrp,
  307. struct task_struct *ignored_task)
  308. {
  309. struct task_struct *p;
  310. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  311. if ((p == ignored_task) ||
  312. (p->exit_state && thread_group_empty(p)) ||
  313. is_global_init(p->real_parent))
  314. continue;
  315. if (task_pgrp(p->real_parent) != pgrp &&
  316. task_session(p->real_parent) == task_session(p))
  317. return 0;
  318. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  319. return 1;
  320. }
  321. int is_current_pgrp_orphaned(void)
  322. {
  323. int retval;
  324. read_lock(&tasklist_lock);
  325. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  326. read_unlock(&tasklist_lock);
  327. return retval;
  328. }
  329. static bool has_stopped_jobs(struct pid *pgrp)
  330. {
  331. struct task_struct *p;
  332. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  333. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  334. return true;
  335. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  336. return false;
  337. }
  338. /*
  339. * Check to see if any process groups have become orphaned as
  340. * a result of our exiting, and if they have any stopped jobs,
  341. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  342. */
  343. static void
  344. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  345. {
  346. struct pid *pgrp = task_pgrp(tsk);
  347. struct task_struct *ignored_task = tsk;
  348. if (!parent)
  349. /* exit: our father is in a different pgrp than
  350. * we are and we were the only connection outside.
  351. */
  352. parent = tsk->real_parent;
  353. else
  354. /* reparent: our child is in a different pgrp than
  355. * we are, and it was the only connection outside.
  356. */
  357. ignored_task = NULL;
  358. if (task_pgrp(parent) != pgrp &&
  359. task_session(parent) == task_session(tsk) &&
  360. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  361. has_stopped_jobs(pgrp)) {
  362. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  363. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  364. }
  365. }
  366. #ifdef CONFIG_MEMCG
  367. /*
  368. * A task is exiting. If it owned this mm, find a new owner for the mm.
  369. */
  370. void mm_update_next_owner(struct mm_struct *mm)
  371. {
  372. struct task_struct *c, *g, *p = current;
  373. retry:
  374. /*
  375. * If the exiting or execing task is not the owner, it's
  376. * someone else's problem.
  377. */
  378. if (mm->owner != p)
  379. return;
  380. /*
  381. * The current owner is exiting/execing and there are no other
  382. * candidates. Do not leave the mm pointing to a possibly
  383. * freed task structure.
  384. */
  385. if (atomic_read(&mm->mm_users) <= 1) {
  386. mm->owner = NULL;
  387. return;
  388. }
  389. read_lock(&tasklist_lock);
  390. /*
  391. * Search in the children
  392. */
  393. list_for_each_entry(c, &p->children, sibling) {
  394. if (c->mm == mm)
  395. goto assign_new_owner;
  396. }
  397. /*
  398. * Search in the siblings
  399. */
  400. list_for_each_entry(c, &p->real_parent->children, sibling) {
  401. if (c->mm == mm)
  402. goto assign_new_owner;
  403. }
  404. /*
  405. * Search through everything else, we should not get here often.
  406. */
  407. for_each_process(g) {
  408. if (g->flags & PF_KTHREAD)
  409. continue;
  410. for_each_thread(g, c) {
  411. if (c->mm == mm)
  412. goto assign_new_owner;
  413. if (c->mm)
  414. break;
  415. }
  416. }
  417. read_unlock(&tasklist_lock);
  418. /*
  419. * We found no owner yet mm_users > 1: this implies that we are
  420. * most likely racing with swapoff (try_to_unuse()) or /proc or
  421. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  422. */
  423. mm->owner = NULL;
  424. return;
  425. assign_new_owner:
  426. BUG_ON(c == p);
  427. get_task_struct(c);
  428. /*
  429. * The task_lock protects c->mm from changing.
  430. * We always want mm->owner->mm == mm
  431. */
  432. task_lock(c);
  433. /*
  434. * Delay read_unlock() till we have the task_lock()
  435. * to ensure that c does not slip away underneath us
  436. */
  437. read_unlock(&tasklist_lock);
  438. if (c->mm != mm) {
  439. task_unlock(c);
  440. put_task_struct(c);
  441. goto retry;
  442. }
  443. mm->owner = c;
  444. task_unlock(c);
  445. put_task_struct(c);
  446. }
  447. #endif /* CONFIG_MEMCG */
  448. /*
  449. * Turn us into a lazy TLB process if we
  450. * aren't already..
  451. */
  452. static void exit_mm(void)
  453. {
  454. struct mm_struct *mm = current->mm;
  455. struct core_state *core_state;
  456. mm_release(current, mm);
  457. if (!mm)
  458. return;
  459. sync_mm_rss(mm);
  460. /*
  461. * Serialize with any possible pending coredump.
  462. * We must hold mmap_sem around checking core_state
  463. * and clearing tsk->mm. The core-inducing thread
  464. * will increment ->nr_threads for each thread in the
  465. * group with ->mm != NULL.
  466. */
  467. down_read(&mm->mmap_sem);
  468. core_state = mm->core_state;
  469. if (core_state) {
  470. struct core_thread self;
  471. up_read(&mm->mmap_sem);
  472. self.task = current;
  473. self.next = xchg(&core_state->dumper.next, &self);
  474. /*
  475. * Implies mb(), the result of xchg() must be visible
  476. * to core_state->dumper.
  477. */
  478. if (atomic_dec_and_test(&core_state->nr_threads))
  479. complete(&core_state->startup);
  480. for (;;) {
  481. set_current_state(TASK_UNINTERRUPTIBLE);
  482. if (!self.task) /* see coredump_finish() */
  483. break;
  484. freezable_schedule();
  485. }
  486. __set_current_state(TASK_RUNNING);
  487. down_read(&mm->mmap_sem);
  488. }
  489. mmgrab(mm);
  490. BUG_ON(mm != current->active_mm);
  491. /* more a memory barrier than a real lock */
  492. task_lock(current);
  493. current->mm = NULL;
  494. up_read(&mm->mmap_sem);
  495. enter_lazy_tlb(mm, current);
  496. task_unlock(current);
  497. mm_update_next_owner(mm);
  498. mmput(mm);
  499. if (test_thread_flag(TIF_MEMDIE))
  500. exit_oom_victim();
  501. }
  502. static struct task_struct *find_alive_thread(struct task_struct *p)
  503. {
  504. struct task_struct *t;
  505. for_each_thread(p, t) {
  506. if (!(t->flags & PF_EXITING))
  507. return t;
  508. }
  509. return NULL;
  510. }
  511. static struct task_struct *find_child_reaper(struct task_struct *father)
  512. __releases(&tasklist_lock)
  513. __acquires(&tasklist_lock)
  514. {
  515. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  516. struct task_struct *reaper = pid_ns->child_reaper;
  517. if (likely(reaper != father))
  518. return reaper;
  519. reaper = find_alive_thread(father);
  520. if (reaper) {
  521. pid_ns->child_reaper = reaper;
  522. return reaper;
  523. }
  524. write_unlock_irq(&tasklist_lock);
  525. if (unlikely(pid_ns == &init_pid_ns)) {
  526. panic("Attempted to kill init! exitcode=0x%08x\n",
  527. father->signal->group_exit_code ?: father->exit_code);
  528. }
  529. zap_pid_ns_processes(pid_ns);
  530. write_lock_irq(&tasklist_lock);
  531. return father;
  532. }
  533. /*
  534. * When we die, we re-parent all our children, and try to:
  535. * 1. give them to another thread in our thread group, if such a member exists
  536. * 2. give it to the first ancestor process which prctl'd itself as a
  537. * child_subreaper for its children (like a service manager)
  538. * 3. give it to the init process (PID 1) in our pid namespace
  539. */
  540. static struct task_struct *find_new_reaper(struct task_struct *father,
  541. struct task_struct *child_reaper)
  542. {
  543. struct task_struct *thread, *reaper;
  544. thread = find_alive_thread(father);
  545. if (thread)
  546. return thread;
  547. if (father->signal->has_child_subreaper) {
  548. unsigned int ns_level = task_pid(father)->level;
  549. /*
  550. * Find the first ->is_child_subreaper ancestor in our pid_ns.
  551. * We can't check reaper != child_reaper to ensure we do not
  552. * cross the namespaces, the exiting parent could be injected
  553. * by setns() + fork().
  554. * We check pid->level, this is slightly more efficient than
  555. * task_active_pid_ns(reaper) != task_active_pid_ns(father).
  556. */
  557. for (reaper = father->real_parent;
  558. task_pid(reaper)->level == ns_level;
  559. reaper = reaper->real_parent) {
  560. if (reaper == &init_task)
  561. break;
  562. if (!reaper->signal->is_child_subreaper)
  563. continue;
  564. thread = find_alive_thread(reaper);
  565. if (thread)
  566. return thread;
  567. }
  568. }
  569. return child_reaper;
  570. }
  571. /*
  572. * Any that need to be release_task'd are put on the @dead list.
  573. */
  574. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  575. struct list_head *dead)
  576. {
  577. if (unlikely(p->exit_state == EXIT_DEAD))
  578. return;
  579. /* We don't want people slaying init. */
  580. p->exit_signal = SIGCHLD;
  581. /* If it has exited notify the new parent about this child's death. */
  582. if (!p->ptrace &&
  583. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  584. if (do_notify_parent(p, p->exit_signal)) {
  585. p->exit_state = EXIT_DEAD;
  586. list_add(&p->ptrace_entry, dead);
  587. }
  588. }
  589. kill_orphaned_pgrp(p, father);
  590. }
  591. /*
  592. * This does two things:
  593. *
  594. * A. Make init inherit all the child processes
  595. * B. Check to see if any process groups have become orphaned
  596. * as a result of our exiting, and if they have any stopped
  597. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  598. */
  599. static void forget_original_parent(struct task_struct *father,
  600. struct list_head *dead)
  601. {
  602. struct task_struct *p, *t, *reaper;
  603. if (unlikely(!list_empty(&father->ptraced)))
  604. exit_ptrace(father, dead);
  605. /* Can drop and reacquire tasklist_lock */
  606. reaper = find_child_reaper(father);
  607. if (list_empty(&father->children))
  608. return;
  609. reaper = find_new_reaper(father, reaper);
  610. list_for_each_entry(p, &father->children, sibling) {
  611. for_each_thread(p, t) {
  612. t->real_parent = reaper;
  613. BUG_ON((!t->ptrace) != (t->parent == father));
  614. if (likely(!t->ptrace))
  615. t->parent = t->real_parent;
  616. if (t->pdeath_signal)
  617. group_send_sig_info(t->pdeath_signal,
  618. SEND_SIG_NOINFO, t);
  619. }
  620. /*
  621. * If this is a threaded reparent there is no need to
  622. * notify anyone anything has happened.
  623. */
  624. if (!same_thread_group(reaper, father))
  625. reparent_leader(father, p, dead);
  626. }
  627. list_splice_tail_init(&father->children, &reaper->children);
  628. }
  629. /*
  630. * Send signals to all our closest relatives so that they know
  631. * to properly mourn us..
  632. */
  633. static void exit_notify(struct task_struct *tsk, int group_dead)
  634. {
  635. bool autoreap;
  636. struct task_struct *p, *n;
  637. LIST_HEAD(dead);
  638. write_lock_irq(&tasklist_lock);
  639. forget_original_parent(tsk, &dead);
  640. if (group_dead)
  641. kill_orphaned_pgrp(tsk->group_leader, NULL);
  642. if (unlikely(tsk->ptrace)) {
  643. int sig = thread_group_leader(tsk) &&
  644. thread_group_empty(tsk) &&
  645. !ptrace_reparented(tsk) ?
  646. tsk->exit_signal : SIGCHLD;
  647. autoreap = do_notify_parent(tsk, sig);
  648. } else if (thread_group_leader(tsk)) {
  649. autoreap = thread_group_empty(tsk) &&
  650. do_notify_parent(tsk, tsk->exit_signal);
  651. } else {
  652. autoreap = true;
  653. }
  654. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  655. if (tsk->exit_state == EXIT_DEAD)
  656. list_add(&tsk->ptrace_entry, &dead);
  657. /* mt-exec, de_thread() is waiting for group leader */
  658. if (unlikely(tsk->signal->notify_count < 0))
  659. wake_up_process(tsk->signal->group_exit_task);
  660. write_unlock_irq(&tasklist_lock);
  661. list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
  662. list_del_init(&p->ptrace_entry);
  663. release_task(p);
  664. }
  665. }
  666. #ifdef CONFIG_DEBUG_STACK_USAGE
  667. static void check_stack_usage(void)
  668. {
  669. static DEFINE_SPINLOCK(low_water_lock);
  670. static int lowest_to_date = THREAD_SIZE;
  671. unsigned long free;
  672. free = stack_not_used(current);
  673. if (free >= lowest_to_date)
  674. return;
  675. spin_lock(&low_water_lock);
  676. if (free < lowest_to_date) {
  677. pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
  678. current->comm, task_pid_nr(current), free);
  679. lowest_to_date = free;
  680. }
  681. spin_unlock(&low_water_lock);
  682. }
  683. #else
  684. static inline void check_stack_usage(void) {}
  685. #endif
  686. void __noreturn do_exit(long code)
  687. {
  688. struct task_struct *tsk = current;
  689. int group_dead;
  690. TASKS_RCU(int tasks_rcu_i);
  691. profile_task_exit(tsk);
  692. kcov_task_exit(tsk);
  693. WARN_ON(blk_needs_flush_plug(tsk));
  694. if (unlikely(in_interrupt()))
  695. panic("Aiee, killing interrupt handler!");
  696. if (unlikely(!tsk->pid))
  697. panic("Attempted to kill the idle task!");
  698. /*
  699. * If do_exit is called because this processes oopsed, it's possible
  700. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  701. * continuing. Amongst other possible reasons, this is to prevent
  702. * mm_release()->clear_child_tid() from writing to a user-controlled
  703. * kernel address.
  704. */
  705. set_fs(USER_DS);
  706. ptrace_event(PTRACE_EVENT_EXIT, code);
  707. validate_creds_for_do_exit(tsk);
  708. /*
  709. * We're taking recursive faults here in do_exit. Safest is to just
  710. * leave this task alone and wait for reboot.
  711. */
  712. if (unlikely(tsk->flags & PF_EXITING)) {
  713. pr_alert("Fixing recursive fault but reboot is needed!\n");
  714. /*
  715. * We can do this unlocked here. The futex code uses
  716. * this flag just to verify whether the pi state
  717. * cleanup has been done or not. In the worst case it
  718. * loops once more. We pretend that the cleanup was
  719. * done as there is no way to return. Either the
  720. * OWNER_DIED bit is set by now or we push the blocked
  721. * task into the wait for ever nirwana as well.
  722. */
  723. tsk->flags |= PF_EXITPIDONE;
  724. set_current_state(TASK_UNINTERRUPTIBLE);
  725. schedule();
  726. }
  727. exit_signals(tsk); /* sets PF_EXITING */
  728. /*
  729. * Ensure that all new tsk->pi_lock acquisitions must observe
  730. * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
  731. */
  732. smp_mb();
  733. /*
  734. * Ensure that we must observe the pi_state in exit_mm() ->
  735. * mm_release() -> exit_pi_state_list().
  736. */
  737. raw_spin_unlock_wait(&tsk->pi_lock);
  738. if (unlikely(in_atomic())) {
  739. pr_info("note: %s[%d] exited with preempt_count %d\n",
  740. current->comm, task_pid_nr(current),
  741. preempt_count());
  742. preempt_count_set(PREEMPT_ENABLED);
  743. }
  744. /* sync mm's RSS info before statistics gathering */
  745. if (tsk->mm)
  746. sync_mm_rss(tsk->mm);
  747. acct_update_integrals(tsk);
  748. group_dead = atomic_dec_and_test(&tsk->signal->live);
  749. if (group_dead) {
  750. #ifdef CONFIG_POSIX_TIMERS
  751. hrtimer_cancel(&tsk->signal->real_timer);
  752. exit_itimers(tsk->signal);
  753. #endif
  754. if (tsk->mm)
  755. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  756. }
  757. acct_collect(code, group_dead);
  758. if (group_dead)
  759. tty_audit_exit();
  760. audit_free(tsk);
  761. tsk->exit_code = code;
  762. taskstats_exit(tsk, group_dead);
  763. exit_mm();
  764. if (group_dead)
  765. acct_process();
  766. trace_sched_process_exit(tsk);
  767. exit_sem(tsk);
  768. exit_shm(tsk);
  769. exit_files(tsk);
  770. exit_fs(tsk);
  771. if (group_dead)
  772. disassociate_ctty(1);
  773. exit_task_namespaces(tsk);
  774. exit_task_work(tsk);
  775. exit_thread(tsk);
  776. /*
  777. * Flush inherited counters to the parent - before the parent
  778. * gets woken up by child-exit notifications.
  779. *
  780. * because of cgroup mode, must be called before cgroup_exit()
  781. */
  782. perf_event_exit_task(tsk);
  783. sched_autogroup_exit_task(tsk);
  784. cgroup_exit(tsk);
  785. /*
  786. * FIXME: do that only when needed, using sched_exit tracepoint
  787. */
  788. flush_ptrace_hw_breakpoint(tsk);
  789. TASKS_RCU(preempt_disable());
  790. TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
  791. TASKS_RCU(preempt_enable());
  792. exit_notify(tsk, group_dead);
  793. proc_exit_connector(tsk);
  794. mpol_put_task_policy(tsk);
  795. #ifdef CONFIG_FUTEX
  796. if (unlikely(current->pi_state_cache))
  797. kfree(current->pi_state_cache);
  798. #endif
  799. /*
  800. * Make sure we are holding no locks:
  801. */
  802. debug_check_no_locks_held();
  803. /*
  804. * We can do this unlocked here. The futex code uses this flag
  805. * just to verify whether the pi state cleanup has been done
  806. * or not. In the worst case it loops once more.
  807. */
  808. tsk->flags |= PF_EXITPIDONE;
  809. if (tsk->io_context)
  810. exit_io_context(tsk);
  811. if (tsk->splice_pipe)
  812. free_pipe_info(tsk->splice_pipe);
  813. if (tsk->task_frag.page)
  814. put_page(tsk->task_frag.page);
  815. validate_creds_for_do_exit(tsk);
  816. check_stack_usage();
  817. preempt_disable();
  818. if (tsk->nr_dirtied)
  819. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  820. exit_rcu();
  821. TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
  822. do_task_dead();
  823. }
  824. EXPORT_SYMBOL_GPL(do_exit);
  825. void complete_and_exit(struct completion *comp, long code)
  826. {
  827. if (comp)
  828. complete(comp);
  829. do_exit(code);
  830. }
  831. EXPORT_SYMBOL(complete_and_exit);
  832. SYSCALL_DEFINE1(exit, int, error_code)
  833. {
  834. do_exit((error_code&0xff)<<8);
  835. }
  836. /*
  837. * Take down every thread in the group. This is called by fatal signals
  838. * as well as by sys_exit_group (below).
  839. */
  840. void
  841. do_group_exit(int exit_code)
  842. {
  843. struct signal_struct *sig = current->signal;
  844. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  845. if (signal_group_exit(sig))
  846. exit_code = sig->group_exit_code;
  847. else if (!thread_group_empty(current)) {
  848. struct sighand_struct *const sighand = current->sighand;
  849. spin_lock_irq(&sighand->siglock);
  850. if (signal_group_exit(sig))
  851. /* Another thread got here before we took the lock. */
  852. exit_code = sig->group_exit_code;
  853. else {
  854. sig->group_exit_code = exit_code;
  855. sig->flags = SIGNAL_GROUP_EXIT;
  856. zap_other_threads(current);
  857. }
  858. spin_unlock_irq(&sighand->siglock);
  859. }
  860. do_exit(exit_code);
  861. /* NOTREACHED */
  862. }
  863. /*
  864. * this kills every thread in the thread group. Note that any externally
  865. * wait4()-ing process will get the correct exit code - even if this
  866. * thread is not the thread group leader.
  867. */
  868. SYSCALL_DEFINE1(exit_group, int, error_code)
  869. {
  870. do_group_exit((error_code & 0xff) << 8);
  871. /* NOTREACHED */
  872. return 0;
  873. }
  874. struct wait_opts {
  875. enum pid_type wo_type;
  876. int wo_flags;
  877. struct pid *wo_pid;
  878. struct siginfo __user *wo_info;
  879. int __user *wo_stat;
  880. struct rusage __user *wo_rusage;
  881. wait_queue_t child_wait;
  882. int notask_error;
  883. };
  884. static inline
  885. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  886. {
  887. if (type != PIDTYPE_PID)
  888. task = task->group_leader;
  889. return task->pids[type].pid;
  890. }
  891. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  892. {
  893. return wo->wo_type == PIDTYPE_MAX ||
  894. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  895. }
  896. static int
  897. eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
  898. {
  899. if (!eligible_pid(wo, p))
  900. return 0;
  901. /*
  902. * Wait for all children (clone and not) if __WALL is set or
  903. * if it is traced by us.
  904. */
  905. if (ptrace || (wo->wo_flags & __WALL))
  906. return 1;
  907. /*
  908. * Otherwise, wait for clone children *only* if __WCLONE is set;
  909. * otherwise, wait for non-clone children *only*.
  910. *
  911. * Note: a "clone" child here is one that reports to its parent
  912. * using a signal other than SIGCHLD, or a non-leader thread which
  913. * we can only see if it is traced by us.
  914. */
  915. if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  916. return 0;
  917. return 1;
  918. }
  919. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  920. pid_t pid, uid_t uid, int why, int status)
  921. {
  922. struct siginfo __user *infop;
  923. int retval = wo->wo_rusage
  924. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  925. put_task_struct(p);
  926. infop = wo->wo_info;
  927. if (infop) {
  928. if (!retval)
  929. retval = put_user(SIGCHLD, &infop->si_signo);
  930. if (!retval)
  931. retval = put_user(0, &infop->si_errno);
  932. if (!retval)
  933. retval = put_user((short)why, &infop->si_code);
  934. if (!retval)
  935. retval = put_user(pid, &infop->si_pid);
  936. if (!retval)
  937. retval = put_user(uid, &infop->si_uid);
  938. if (!retval)
  939. retval = put_user(status, &infop->si_status);
  940. }
  941. if (!retval)
  942. retval = pid;
  943. return retval;
  944. }
  945. /*
  946. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  947. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  948. * the lock and this task is uninteresting. If we return nonzero, we have
  949. * released the lock and the system call should return.
  950. */
  951. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  952. {
  953. int state, retval, status;
  954. pid_t pid = task_pid_vnr(p);
  955. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  956. struct siginfo __user *infop;
  957. if (!likely(wo->wo_flags & WEXITED))
  958. return 0;
  959. if (unlikely(wo->wo_flags & WNOWAIT)) {
  960. int exit_code = p->exit_code;
  961. int why;
  962. get_task_struct(p);
  963. read_unlock(&tasklist_lock);
  964. sched_annotate_sleep();
  965. if ((exit_code & 0x7f) == 0) {
  966. why = CLD_EXITED;
  967. status = exit_code >> 8;
  968. } else {
  969. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  970. status = exit_code & 0x7f;
  971. }
  972. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  973. }
  974. /*
  975. * Move the task's state to DEAD/TRACE, only one thread can do this.
  976. */
  977. state = (ptrace_reparented(p) && thread_group_leader(p)) ?
  978. EXIT_TRACE : EXIT_DEAD;
  979. if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
  980. return 0;
  981. /*
  982. * We own this thread, nobody else can reap it.
  983. */
  984. read_unlock(&tasklist_lock);
  985. sched_annotate_sleep();
  986. /*
  987. * Check thread_group_leader() to exclude the traced sub-threads.
  988. */
  989. if (state == EXIT_DEAD && thread_group_leader(p)) {
  990. struct signal_struct *sig = p->signal;
  991. struct signal_struct *psig = current->signal;
  992. unsigned long maxrss;
  993. u64 tgutime, tgstime;
  994. /*
  995. * The resource counters for the group leader are in its
  996. * own task_struct. Those for dead threads in the group
  997. * are in its signal_struct, as are those for the child
  998. * processes it has previously reaped. All these
  999. * accumulate in the parent's signal_struct c* fields.
  1000. *
  1001. * We don't bother to take a lock here to protect these
  1002. * p->signal fields because the whole thread group is dead
  1003. * and nobody can change them.
  1004. *
  1005. * psig->stats_lock also protects us from our sub-theads
  1006. * which can reap other children at the same time. Until
  1007. * we change k_getrusage()-like users to rely on this lock
  1008. * we have to take ->siglock as well.
  1009. *
  1010. * We use thread_group_cputime_adjusted() to get times for
  1011. * the thread group, which consolidates times for all threads
  1012. * in the group including the group leader.
  1013. */
  1014. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  1015. spin_lock_irq(&current->sighand->siglock);
  1016. write_seqlock(&psig->stats_lock);
  1017. psig->cutime += tgutime + sig->cutime;
  1018. psig->cstime += tgstime + sig->cstime;
  1019. psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
  1020. psig->cmin_flt +=
  1021. p->min_flt + sig->min_flt + sig->cmin_flt;
  1022. psig->cmaj_flt +=
  1023. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1024. psig->cnvcsw +=
  1025. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1026. psig->cnivcsw +=
  1027. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1028. psig->cinblock +=
  1029. task_io_get_inblock(p) +
  1030. sig->inblock + sig->cinblock;
  1031. psig->coublock +=
  1032. task_io_get_oublock(p) +
  1033. sig->oublock + sig->coublock;
  1034. maxrss = max(sig->maxrss, sig->cmaxrss);
  1035. if (psig->cmaxrss < maxrss)
  1036. psig->cmaxrss = maxrss;
  1037. task_io_accounting_add(&psig->ioac, &p->ioac);
  1038. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1039. write_sequnlock(&psig->stats_lock);
  1040. spin_unlock_irq(&current->sighand->siglock);
  1041. }
  1042. retval = wo->wo_rusage
  1043. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1044. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1045. ? p->signal->group_exit_code : p->exit_code;
  1046. if (!retval && wo->wo_stat)
  1047. retval = put_user(status, wo->wo_stat);
  1048. infop = wo->wo_info;
  1049. if (!retval && infop)
  1050. retval = put_user(SIGCHLD, &infop->si_signo);
  1051. if (!retval && infop)
  1052. retval = put_user(0, &infop->si_errno);
  1053. if (!retval && infop) {
  1054. int why;
  1055. if ((status & 0x7f) == 0) {
  1056. why = CLD_EXITED;
  1057. status >>= 8;
  1058. } else {
  1059. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1060. status &= 0x7f;
  1061. }
  1062. retval = put_user((short)why, &infop->si_code);
  1063. if (!retval)
  1064. retval = put_user(status, &infop->si_status);
  1065. }
  1066. if (!retval && infop)
  1067. retval = put_user(pid, &infop->si_pid);
  1068. if (!retval && infop)
  1069. retval = put_user(uid, &infop->si_uid);
  1070. if (!retval)
  1071. retval = pid;
  1072. if (state == EXIT_TRACE) {
  1073. write_lock_irq(&tasklist_lock);
  1074. /* We dropped tasklist, ptracer could die and untrace */
  1075. ptrace_unlink(p);
  1076. /* If parent wants a zombie, don't release it now */
  1077. state = EXIT_ZOMBIE;
  1078. if (do_notify_parent(p, p->exit_signal))
  1079. state = EXIT_DEAD;
  1080. p->exit_state = state;
  1081. write_unlock_irq(&tasklist_lock);
  1082. }
  1083. if (state == EXIT_DEAD)
  1084. release_task(p);
  1085. return retval;
  1086. }
  1087. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1088. {
  1089. if (ptrace) {
  1090. if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
  1091. return &p->exit_code;
  1092. } else {
  1093. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1094. return &p->signal->group_exit_code;
  1095. }
  1096. return NULL;
  1097. }
  1098. /**
  1099. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1100. * @wo: wait options
  1101. * @ptrace: is the wait for ptrace
  1102. * @p: task to wait for
  1103. *
  1104. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1105. *
  1106. * CONTEXT:
  1107. * read_lock(&tasklist_lock), which is released if return value is
  1108. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1109. *
  1110. * RETURNS:
  1111. * 0 if wait condition didn't exist and search for other wait conditions
  1112. * should continue. Non-zero return, -errno on failure and @p's pid on
  1113. * success, implies that tasklist_lock is released and wait condition
  1114. * search should terminate.
  1115. */
  1116. static int wait_task_stopped(struct wait_opts *wo,
  1117. int ptrace, struct task_struct *p)
  1118. {
  1119. struct siginfo __user *infop;
  1120. int retval, exit_code, *p_code, why;
  1121. uid_t uid = 0; /* unneeded, required by compiler */
  1122. pid_t pid;
  1123. /*
  1124. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1125. */
  1126. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1127. return 0;
  1128. if (!task_stopped_code(p, ptrace))
  1129. return 0;
  1130. exit_code = 0;
  1131. spin_lock_irq(&p->sighand->siglock);
  1132. p_code = task_stopped_code(p, ptrace);
  1133. if (unlikely(!p_code))
  1134. goto unlock_sig;
  1135. exit_code = *p_code;
  1136. if (!exit_code)
  1137. goto unlock_sig;
  1138. if (!unlikely(wo->wo_flags & WNOWAIT))
  1139. *p_code = 0;
  1140. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1141. unlock_sig:
  1142. spin_unlock_irq(&p->sighand->siglock);
  1143. if (!exit_code)
  1144. return 0;
  1145. /*
  1146. * Now we are pretty sure this task is interesting.
  1147. * Make sure it doesn't get reaped out from under us while we
  1148. * give up the lock and then examine it below. We don't want to
  1149. * keep holding onto the tasklist_lock while we call getrusage and
  1150. * possibly take page faults for user memory.
  1151. */
  1152. get_task_struct(p);
  1153. pid = task_pid_vnr(p);
  1154. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1155. read_unlock(&tasklist_lock);
  1156. sched_annotate_sleep();
  1157. if (unlikely(wo->wo_flags & WNOWAIT))
  1158. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1159. retval = wo->wo_rusage
  1160. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1161. if (!retval && wo->wo_stat)
  1162. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1163. infop = wo->wo_info;
  1164. if (!retval && infop)
  1165. retval = put_user(SIGCHLD, &infop->si_signo);
  1166. if (!retval && infop)
  1167. retval = put_user(0, &infop->si_errno);
  1168. if (!retval && infop)
  1169. retval = put_user((short)why, &infop->si_code);
  1170. if (!retval && infop)
  1171. retval = put_user(exit_code, &infop->si_status);
  1172. if (!retval && infop)
  1173. retval = put_user(pid, &infop->si_pid);
  1174. if (!retval && infop)
  1175. retval = put_user(uid, &infop->si_uid);
  1176. if (!retval)
  1177. retval = pid;
  1178. put_task_struct(p);
  1179. BUG_ON(!retval);
  1180. return retval;
  1181. }
  1182. /*
  1183. * Handle do_wait work for one task in a live, non-stopped state.
  1184. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1185. * the lock and this task is uninteresting. If we return nonzero, we have
  1186. * released the lock and the system call should return.
  1187. */
  1188. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1189. {
  1190. int retval;
  1191. pid_t pid;
  1192. uid_t uid;
  1193. if (!unlikely(wo->wo_flags & WCONTINUED))
  1194. return 0;
  1195. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1196. return 0;
  1197. spin_lock_irq(&p->sighand->siglock);
  1198. /* Re-check with the lock held. */
  1199. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1200. spin_unlock_irq(&p->sighand->siglock);
  1201. return 0;
  1202. }
  1203. if (!unlikely(wo->wo_flags & WNOWAIT))
  1204. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1205. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1206. spin_unlock_irq(&p->sighand->siglock);
  1207. pid = task_pid_vnr(p);
  1208. get_task_struct(p);
  1209. read_unlock(&tasklist_lock);
  1210. sched_annotate_sleep();
  1211. if (!wo->wo_info) {
  1212. retval = wo->wo_rusage
  1213. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1214. put_task_struct(p);
  1215. if (!retval && wo->wo_stat)
  1216. retval = put_user(0xffff, wo->wo_stat);
  1217. if (!retval)
  1218. retval = pid;
  1219. } else {
  1220. retval = wait_noreap_copyout(wo, p, pid, uid,
  1221. CLD_CONTINUED, SIGCONT);
  1222. BUG_ON(retval == 0);
  1223. }
  1224. return retval;
  1225. }
  1226. /*
  1227. * Consider @p for a wait by @parent.
  1228. *
  1229. * -ECHILD should be in ->notask_error before the first call.
  1230. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1231. * Returns zero if the search for a child should continue;
  1232. * then ->notask_error is 0 if @p is an eligible child,
  1233. * or still -ECHILD.
  1234. */
  1235. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1236. struct task_struct *p)
  1237. {
  1238. /*
  1239. * We can race with wait_task_zombie() from another thread.
  1240. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
  1241. * can't confuse the checks below.
  1242. */
  1243. int exit_state = ACCESS_ONCE(p->exit_state);
  1244. int ret;
  1245. if (unlikely(exit_state == EXIT_DEAD))
  1246. return 0;
  1247. ret = eligible_child(wo, ptrace, p);
  1248. if (!ret)
  1249. return ret;
  1250. if (unlikely(exit_state == EXIT_TRACE)) {
  1251. /*
  1252. * ptrace == 0 means we are the natural parent. In this case
  1253. * we should clear notask_error, debugger will notify us.
  1254. */
  1255. if (likely(!ptrace))
  1256. wo->notask_error = 0;
  1257. return 0;
  1258. }
  1259. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1260. /*
  1261. * If it is traced by its real parent's group, just pretend
  1262. * the caller is ptrace_do_wait() and reap this child if it
  1263. * is zombie.
  1264. *
  1265. * This also hides group stop state from real parent; otherwise
  1266. * a single stop can be reported twice as group and ptrace stop.
  1267. * If a ptracer wants to distinguish these two events for its
  1268. * own children it should create a separate process which takes
  1269. * the role of real parent.
  1270. */
  1271. if (!ptrace_reparented(p))
  1272. ptrace = 1;
  1273. }
  1274. /* slay zombie? */
  1275. if (exit_state == EXIT_ZOMBIE) {
  1276. /* we don't reap group leaders with subthreads */
  1277. if (!delay_group_leader(p)) {
  1278. /*
  1279. * A zombie ptracee is only visible to its ptracer.
  1280. * Notification and reaping will be cascaded to the
  1281. * real parent when the ptracer detaches.
  1282. */
  1283. if (unlikely(ptrace) || likely(!p->ptrace))
  1284. return wait_task_zombie(wo, p);
  1285. }
  1286. /*
  1287. * Allow access to stopped/continued state via zombie by
  1288. * falling through. Clearing of notask_error is complex.
  1289. *
  1290. * When !@ptrace:
  1291. *
  1292. * If WEXITED is set, notask_error should naturally be
  1293. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1294. * so, if there are live subthreads, there are events to
  1295. * wait for. If all subthreads are dead, it's still safe
  1296. * to clear - this function will be called again in finite
  1297. * amount time once all the subthreads are released and
  1298. * will then return without clearing.
  1299. *
  1300. * When @ptrace:
  1301. *
  1302. * Stopped state is per-task and thus can't change once the
  1303. * target task dies. Only continued and exited can happen.
  1304. * Clear notask_error if WCONTINUED | WEXITED.
  1305. */
  1306. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1307. wo->notask_error = 0;
  1308. } else {
  1309. /*
  1310. * @p is alive and it's gonna stop, continue or exit, so
  1311. * there always is something to wait for.
  1312. */
  1313. wo->notask_error = 0;
  1314. }
  1315. /*
  1316. * Wait for stopped. Depending on @ptrace, different stopped state
  1317. * is used and the two don't interact with each other.
  1318. */
  1319. ret = wait_task_stopped(wo, ptrace, p);
  1320. if (ret)
  1321. return ret;
  1322. /*
  1323. * Wait for continued. There's only one continued state and the
  1324. * ptracer can consume it which can confuse the real parent. Don't
  1325. * use WCONTINUED from ptracer. You don't need or want it.
  1326. */
  1327. return wait_task_continued(wo, p);
  1328. }
  1329. /*
  1330. * Do the work of do_wait() for one thread in the group, @tsk.
  1331. *
  1332. * -ECHILD should be in ->notask_error before the first call.
  1333. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1334. * Returns zero if the search for a child should continue; then
  1335. * ->notask_error is 0 if there were any eligible children,
  1336. * or still -ECHILD.
  1337. */
  1338. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1339. {
  1340. struct task_struct *p;
  1341. list_for_each_entry(p, &tsk->children, sibling) {
  1342. int ret = wait_consider_task(wo, 0, p);
  1343. if (ret)
  1344. return ret;
  1345. }
  1346. return 0;
  1347. }
  1348. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1349. {
  1350. struct task_struct *p;
  1351. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1352. int ret = wait_consider_task(wo, 1, p);
  1353. if (ret)
  1354. return ret;
  1355. }
  1356. return 0;
  1357. }
  1358. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1359. int sync, void *key)
  1360. {
  1361. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1362. child_wait);
  1363. struct task_struct *p = key;
  1364. if (!eligible_pid(wo, p))
  1365. return 0;
  1366. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1367. return 0;
  1368. return default_wake_function(wait, mode, sync, key);
  1369. }
  1370. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1371. {
  1372. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1373. TASK_INTERRUPTIBLE, 1, p);
  1374. }
  1375. static long do_wait(struct wait_opts *wo)
  1376. {
  1377. struct task_struct *tsk;
  1378. int retval;
  1379. trace_sched_process_wait(wo->wo_pid);
  1380. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1381. wo->child_wait.private = current;
  1382. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1383. repeat:
  1384. /*
  1385. * If there is nothing that can match our criteria, just get out.
  1386. * We will clear ->notask_error to zero if we see any child that
  1387. * might later match our criteria, even if we are not able to reap
  1388. * it yet.
  1389. */
  1390. wo->notask_error = -ECHILD;
  1391. if ((wo->wo_type < PIDTYPE_MAX) &&
  1392. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1393. goto notask;
  1394. set_current_state(TASK_INTERRUPTIBLE);
  1395. read_lock(&tasklist_lock);
  1396. tsk = current;
  1397. do {
  1398. retval = do_wait_thread(wo, tsk);
  1399. if (retval)
  1400. goto end;
  1401. retval = ptrace_do_wait(wo, tsk);
  1402. if (retval)
  1403. goto end;
  1404. if (wo->wo_flags & __WNOTHREAD)
  1405. break;
  1406. } while_each_thread(current, tsk);
  1407. read_unlock(&tasklist_lock);
  1408. notask:
  1409. retval = wo->notask_error;
  1410. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1411. retval = -ERESTARTSYS;
  1412. if (!signal_pending(current)) {
  1413. schedule();
  1414. goto repeat;
  1415. }
  1416. }
  1417. end:
  1418. __set_current_state(TASK_RUNNING);
  1419. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1420. return retval;
  1421. }
  1422. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1423. infop, int, options, struct rusage __user *, ru)
  1424. {
  1425. struct wait_opts wo;
  1426. struct pid *pid = NULL;
  1427. enum pid_type type;
  1428. long ret;
  1429. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
  1430. __WNOTHREAD|__WCLONE|__WALL))
  1431. return -EINVAL;
  1432. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1433. return -EINVAL;
  1434. switch (which) {
  1435. case P_ALL:
  1436. type = PIDTYPE_MAX;
  1437. break;
  1438. case P_PID:
  1439. type = PIDTYPE_PID;
  1440. if (upid <= 0)
  1441. return -EINVAL;
  1442. break;
  1443. case P_PGID:
  1444. type = PIDTYPE_PGID;
  1445. if (upid <= 0)
  1446. return -EINVAL;
  1447. break;
  1448. default:
  1449. return -EINVAL;
  1450. }
  1451. if (type < PIDTYPE_MAX)
  1452. pid = find_get_pid(upid);
  1453. wo.wo_type = type;
  1454. wo.wo_pid = pid;
  1455. wo.wo_flags = options;
  1456. wo.wo_info = infop;
  1457. wo.wo_stat = NULL;
  1458. wo.wo_rusage = ru;
  1459. ret = do_wait(&wo);
  1460. if (ret > 0) {
  1461. ret = 0;
  1462. } else if (infop) {
  1463. /*
  1464. * For a WNOHANG return, clear out all the fields
  1465. * we would set so the user can easily tell the
  1466. * difference.
  1467. */
  1468. if (!ret)
  1469. ret = put_user(0, &infop->si_signo);
  1470. if (!ret)
  1471. ret = put_user(0, &infop->si_errno);
  1472. if (!ret)
  1473. ret = put_user(0, &infop->si_code);
  1474. if (!ret)
  1475. ret = put_user(0, &infop->si_pid);
  1476. if (!ret)
  1477. ret = put_user(0, &infop->si_uid);
  1478. if (!ret)
  1479. ret = put_user(0, &infop->si_status);
  1480. }
  1481. put_pid(pid);
  1482. return ret;
  1483. }
  1484. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1485. int, options, struct rusage __user *, ru)
  1486. {
  1487. struct wait_opts wo;
  1488. struct pid *pid = NULL;
  1489. enum pid_type type;
  1490. long ret;
  1491. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1492. __WNOTHREAD|__WCLONE|__WALL))
  1493. return -EINVAL;
  1494. if (upid == -1)
  1495. type = PIDTYPE_MAX;
  1496. else if (upid < 0) {
  1497. type = PIDTYPE_PGID;
  1498. pid = find_get_pid(-upid);
  1499. } else if (upid == 0) {
  1500. type = PIDTYPE_PGID;
  1501. pid = get_task_pid(current, PIDTYPE_PGID);
  1502. } else /* upid > 0 */ {
  1503. type = PIDTYPE_PID;
  1504. pid = find_get_pid(upid);
  1505. }
  1506. wo.wo_type = type;
  1507. wo.wo_pid = pid;
  1508. wo.wo_flags = options | WEXITED;
  1509. wo.wo_info = NULL;
  1510. wo.wo_stat = stat_addr;
  1511. wo.wo_rusage = ru;
  1512. ret = do_wait(&wo);
  1513. put_pid(pid);
  1514. return ret;
  1515. }
  1516. #ifdef __ARCH_WANT_SYS_WAITPID
  1517. /*
  1518. * sys_waitpid() remains for compatibility. waitpid() should be
  1519. * implemented by calling sys_wait4() from libc.a.
  1520. */
  1521. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1522. {
  1523. return sys_wait4(pid, stat_addr, options, NULL);
  1524. }
  1525. #endif