tcp_input.c 177 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  80. int sysctl_tcp_max_reordering __read_mostly = 300;
  81. EXPORT_SYMBOL(sysctl_tcp_reordering);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 100;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_early_retrans __read_mostly = 3;
  95. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  96. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  97. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  98. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  99. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  100. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  101. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  102. #define FLAG_ECE 0x40 /* ECE in this ACK */
  103. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  104. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  105. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  106. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  107. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  108. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  109. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  110. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  111. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  112. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  113. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  114. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  115. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  116. /* Adapt the MSS value used to make delayed ack decision to the
  117. * real world.
  118. */
  119. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  120. {
  121. struct inet_connection_sock *icsk = inet_csk(sk);
  122. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  123. unsigned int len;
  124. icsk->icsk_ack.last_seg_size = 0;
  125. /* skb->len may jitter because of SACKs, even if peer
  126. * sends good full-sized frames.
  127. */
  128. len = skb_shinfo(skb)->gso_size ? : skb->len;
  129. if (len >= icsk->icsk_ack.rcv_mss) {
  130. icsk->icsk_ack.rcv_mss = len;
  131. } else {
  132. /* Otherwise, we make more careful check taking into account,
  133. * that SACKs block is variable.
  134. *
  135. * "len" is invariant segment length, including TCP header.
  136. */
  137. len += skb->data - skb_transport_header(skb);
  138. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  139. /* If PSH is not set, packet should be
  140. * full sized, provided peer TCP is not badly broken.
  141. * This observation (if it is correct 8)) allows
  142. * to handle super-low mtu links fairly.
  143. */
  144. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  145. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  146. /* Subtract also invariant (if peer is RFC compliant),
  147. * tcp header plus fixed timestamp option length.
  148. * Resulting "len" is MSS free of SACK jitter.
  149. */
  150. len -= tcp_sk(sk)->tcp_header_len;
  151. icsk->icsk_ack.last_seg_size = len;
  152. if (len == lss) {
  153. icsk->icsk_ack.rcv_mss = len;
  154. return;
  155. }
  156. }
  157. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  159. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  160. }
  161. }
  162. static void tcp_incr_quickack(struct sock *sk)
  163. {
  164. struct inet_connection_sock *icsk = inet_csk(sk);
  165. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  166. if (quickacks == 0)
  167. quickacks = 2;
  168. if (quickacks > icsk->icsk_ack.quick)
  169. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  170. }
  171. static void tcp_enter_quickack_mode(struct sock *sk)
  172. {
  173. struct inet_connection_sock *icsk = inet_csk(sk);
  174. tcp_incr_quickack(sk);
  175. icsk->icsk_ack.pingpong = 0;
  176. icsk->icsk_ack.ato = TCP_ATO_MIN;
  177. }
  178. /* Send ACKs quickly, if "quick" count is not exhausted
  179. * and the session is not interactive.
  180. */
  181. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  182. {
  183. const struct inet_connection_sock *icsk = inet_csk(sk);
  184. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  185. }
  186. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  187. {
  188. if (tp->ecn_flags & TCP_ECN_OK)
  189. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  190. }
  191. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  192. {
  193. if (tcp_hdr(skb)->cwr)
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  197. {
  198. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  199. }
  200. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  201. {
  202. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  203. case INET_ECN_NOT_ECT:
  204. /* Funny extension: if ECT is not set on a segment,
  205. * and we already seen ECT on a previous segment,
  206. * it is probably a retransmit.
  207. */
  208. if (tp->ecn_flags & TCP_ECN_SEEN)
  209. tcp_enter_quickack_mode((struct sock *)tp);
  210. break;
  211. case INET_ECN_CE:
  212. if (tcp_ca_needs_ecn((struct sock *)tp))
  213. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  214. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  215. /* Better not delay acks, sender can have a very low cwnd */
  216. tcp_enter_quickack_mode((struct sock *)tp);
  217. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  218. }
  219. tp->ecn_flags |= TCP_ECN_SEEN;
  220. break;
  221. default:
  222. if (tcp_ca_needs_ecn((struct sock *)tp))
  223. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  224. tp->ecn_flags |= TCP_ECN_SEEN;
  225. break;
  226. }
  227. }
  228. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  229. {
  230. if (tp->ecn_flags & TCP_ECN_OK)
  231. __tcp_ecn_check_ce(tp, skb);
  232. }
  233. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  234. {
  235. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  236. tp->ecn_flags &= ~TCP_ECN_OK;
  237. }
  238. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  239. {
  240. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  241. tp->ecn_flags &= ~TCP_ECN_OK;
  242. }
  243. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  244. {
  245. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  246. return true;
  247. return false;
  248. }
  249. /* Buffer size and advertised window tuning.
  250. *
  251. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  252. */
  253. static void tcp_sndbuf_expand(struct sock *sk)
  254. {
  255. const struct tcp_sock *tp = tcp_sk(sk);
  256. int sndmem, per_mss;
  257. u32 nr_segs;
  258. /* Worst case is non GSO/TSO : each frame consumes one skb
  259. * and skb->head is kmalloced using power of two area of memory
  260. */
  261. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  262. MAX_TCP_HEADER +
  263. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  264. per_mss = roundup_pow_of_two(per_mss) +
  265. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  266. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  267. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  268. /* Fast Recovery (RFC 5681 3.2) :
  269. * Cubic needs 1.7 factor, rounded to 2 to include
  270. * extra cushion (application might react slowly to POLLOUT)
  271. */
  272. sndmem = 2 * nr_segs * per_mss;
  273. if (sk->sk_sndbuf < sndmem)
  274. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  275. }
  276. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  277. *
  278. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  279. * forward and advertised in receiver window (tp->rcv_wnd) and
  280. * "application buffer", required to isolate scheduling/application
  281. * latencies from network.
  282. * window_clamp is maximal advertised window. It can be less than
  283. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  284. * is reserved for "application" buffer. The less window_clamp is
  285. * the smoother our behaviour from viewpoint of network, but the lower
  286. * throughput and the higher sensitivity of the connection to losses. 8)
  287. *
  288. * rcv_ssthresh is more strict window_clamp used at "slow start"
  289. * phase to predict further behaviour of this connection.
  290. * It is used for two goals:
  291. * - to enforce header prediction at sender, even when application
  292. * requires some significant "application buffer". It is check #1.
  293. * - to prevent pruning of receive queue because of misprediction
  294. * of receiver window. Check #2.
  295. *
  296. * The scheme does not work when sender sends good segments opening
  297. * window and then starts to feed us spaghetti. But it should work
  298. * in common situations. Otherwise, we have to rely on queue collapsing.
  299. */
  300. /* Slow part of check#2. */
  301. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  302. {
  303. struct tcp_sock *tp = tcp_sk(sk);
  304. /* Optimize this! */
  305. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  306. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  307. while (tp->rcv_ssthresh <= window) {
  308. if (truesize <= skb->len)
  309. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  310. truesize >>= 1;
  311. window >>= 1;
  312. }
  313. return 0;
  314. }
  315. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  316. {
  317. struct tcp_sock *tp = tcp_sk(sk);
  318. /* Check #1 */
  319. if (tp->rcv_ssthresh < tp->window_clamp &&
  320. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  321. !tcp_under_memory_pressure(sk)) {
  322. int incr;
  323. /* Check #2. Increase window, if skb with such overhead
  324. * will fit to rcvbuf in future.
  325. */
  326. if (tcp_win_from_space(skb->truesize) <= skb->len)
  327. incr = 2 * tp->advmss;
  328. else
  329. incr = __tcp_grow_window(sk, skb);
  330. if (incr) {
  331. incr = max_t(int, incr, 2 * skb->len);
  332. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  333. tp->window_clamp);
  334. inet_csk(sk)->icsk_ack.quick |= 1;
  335. }
  336. }
  337. }
  338. /* 3. Tuning rcvbuf, when connection enters established state. */
  339. static void tcp_fixup_rcvbuf(struct sock *sk)
  340. {
  341. u32 mss = tcp_sk(sk)->advmss;
  342. int rcvmem;
  343. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  344. tcp_default_init_rwnd(mss);
  345. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  346. * Allow enough cushion so that sender is not limited by our window
  347. */
  348. if (sysctl_tcp_moderate_rcvbuf)
  349. rcvmem <<= 2;
  350. if (sk->sk_rcvbuf < rcvmem)
  351. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  352. }
  353. /* 4. Try to fixup all. It is made immediately after connection enters
  354. * established state.
  355. */
  356. void tcp_init_buffer_space(struct sock *sk)
  357. {
  358. struct tcp_sock *tp = tcp_sk(sk);
  359. int maxwin;
  360. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  361. tcp_fixup_rcvbuf(sk);
  362. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  363. tcp_sndbuf_expand(sk);
  364. tp->rcvq_space.space = tp->rcv_wnd;
  365. tp->rcvq_space.time = tcp_time_stamp;
  366. tp->rcvq_space.seq = tp->copied_seq;
  367. maxwin = tcp_full_space(sk);
  368. if (tp->window_clamp >= maxwin) {
  369. tp->window_clamp = maxwin;
  370. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  371. tp->window_clamp = max(maxwin -
  372. (maxwin >> sysctl_tcp_app_win),
  373. 4 * tp->advmss);
  374. }
  375. /* Force reservation of one segment. */
  376. if (sysctl_tcp_app_win &&
  377. tp->window_clamp > 2 * tp->advmss &&
  378. tp->window_clamp + tp->advmss > maxwin)
  379. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  380. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  381. tp->snd_cwnd_stamp = tcp_time_stamp;
  382. }
  383. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  384. static void tcp_clamp_window(struct sock *sk)
  385. {
  386. struct tcp_sock *tp = tcp_sk(sk);
  387. struct inet_connection_sock *icsk = inet_csk(sk);
  388. icsk->icsk_ack.quick = 0;
  389. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  390. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  391. !tcp_under_memory_pressure(sk) &&
  392. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  393. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  394. sysctl_tcp_rmem[2]);
  395. }
  396. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  397. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  398. }
  399. /* Initialize RCV_MSS value.
  400. * RCV_MSS is an our guess about MSS used by the peer.
  401. * We haven't any direct information about the MSS.
  402. * It's better to underestimate the RCV_MSS rather than overestimate.
  403. * Overestimations make us ACKing less frequently than needed.
  404. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  405. */
  406. void tcp_initialize_rcv_mss(struct sock *sk)
  407. {
  408. const struct tcp_sock *tp = tcp_sk(sk);
  409. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  410. hint = min(hint, tp->rcv_wnd / 2);
  411. hint = min(hint, TCP_MSS_DEFAULT);
  412. hint = max(hint, TCP_MIN_MSS);
  413. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  414. }
  415. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  416. /* Receiver "autotuning" code.
  417. *
  418. * The algorithm for RTT estimation w/o timestamps is based on
  419. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  420. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  421. *
  422. * More detail on this code can be found at
  423. * <http://staff.psc.edu/jheffner/>,
  424. * though this reference is out of date. A new paper
  425. * is pending.
  426. */
  427. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  428. {
  429. u32 new_sample = tp->rcv_rtt_est.rtt;
  430. long m = sample;
  431. if (m == 0)
  432. m = 1;
  433. if (new_sample != 0) {
  434. /* If we sample in larger samples in the non-timestamp
  435. * case, we could grossly overestimate the RTT especially
  436. * with chatty applications or bulk transfer apps which
  437. * are stalled on filesystem I/O.
  438. *
  439. * Also, since we are only going for a minimum in the
  440. * non-timestamp case, we do not smooth things out
  441. * else with timestamps disabled convergence takes too
  442. * long.
  443. */
  444. if (!win_dep) {
  445. m -= (new_sample >> 3);
  446. new_sample += m;
  447. } else {
  448. m <<= 3;
  449. if (m < new_sample)
  450. new_sample = m;
  451. }
  452. } else {
  453. /* No previous measure. */
  454. new_sample = m << 3;
  455. }
  456. if (tp->rcv_rtt_est.rtt != new_sample)
  457. tp->rcv_rtt_est.rtt = new_sample;
  458. }
  459. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  460. {
  461. if (tp->rcv_rtt_est.time == 0)
  462. goto new_measure;
  463. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  464. return;
  465. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  466. new_measure:
  467. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  468. tp->rcv_rtt_est.time = tcp_time_stamp;
  469. }
  470. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  471. const struct sk_buff *skb)
  472. {
  473. struct tcp_sock *tp = tcp_sk(sk);
  474. if (tp->rx_opt.rcv_tsecr &&
  475. (TCP_SKB_CB(skb)->end_seq -
  476. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  477. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  478. }
  479. /*
  480. * This function should be called every time data is copied to user space.
  481. * It calculates the appropriate TCP receive buffer space.
  482. */
  483. void tcp_rcv_space_adjust(struct sock *sk)
  484. {
  485. struct tcp_sock *tp = tcp_sk(sk);
  486. int time;
  487. int copied;
  488. time = tcp_time_stamp - tp->rcvq_space.time;
  489. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  490. return;
  491. /* Number of bytes copied to user in last RTT */
  492. copied = tp->copied_seq - tp->rcvq_space.seq;
  493. if (copied <= tp->rcvq_space.space)
  494. goto new_measure;
  495. /* A bit of theory :
  496. * copied = bytes received in previous RTT, our base window
  497. * To cope with packet losses, we need a 2x factor
  498. * To cope with slow start, and sender growing its cwin by 100 %
  499. * every RTT, we need a 4x factor, because the ACK we are sending
  500. * now is for the next RTT, not the current one :
  501. * <prev RTT . ><current RTT .. ><next RTT .... >
  502. */
  503. if (sysctl_tcp_moderate_rcvbuf &&
  504. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  505. int rcvwin, rcvmem, rcvbuf;
  506. /* minimal window to cope with packet losses, assuming
  507. * steady state. Add some cushion because of small variations.
  508. */
  509. rcvwin = (copied << 1) + 16 * tp->advmss;
  510. /* If rate increased by 25%,
  511. * assume slow start, rcvwin = 3 * copied
  512. * If rate increased by 50%,
  513. * assume sender can use 2x growth, rcvwin = 4 * copied
  514. */
  515. if (copied >=
  516. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  517. if (copied >=
  518. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  519. rcvwin <<= 1;
  520. else
  521. rcvwin += (rcvwin >> 1);
  522. }
  523. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  524. while (tcp_win_from_space(rcvmem) < tp->advmss)
  525. rcvmem += 128;
  526. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  527. if (rcvbuf > sk->sk_rcvbuf) {
  528. sk->sk_rcvbuf = rcvbuf;
  529. /* Make the window clamp follow along. */
  530. tp->window_clamp = rcvwin;
  531. }
  532. }
  533. tp->rcvq_space.space = copied;
  534. new_measure:
  535. tp->rcvq_space.seq = tp->copied_seq;
  536. tp->rcvq_space.time = tcp_time_stamp;
  537. }
  538. /* There is something which you must keep in mind when you analyze the
  539. * behavior of the tp->ato delayed ack timeout interval. When a
  540. * connection starts up, we want to ack as quickly as possible. The
  541. * problem is that "good" TCP's do slow start at the beginning of data
  542. * transmission. The means that until we send the first few ACK's the
  543. * sender will sit on his end and only queue most of his data, because
  544. * he can only send snd_cwnd unacked packets at any given time. For
  545. * each ACK we send, he increments snd_cwnd and transmits more of his
  546. * queue. -DaveM
  547. */
  548. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  549. {
  550. struct tcp_sock *tp = tcp_sk(sk);
  551. struct inet_connection_sock *icsk = inet_csk(sk);
  552. u32 now;
  553. inet_csk_schedule_ack(sk);
  554. tcp_measure_rcv_mss(sk, skb);
  555. tcp_rcv_rtt_measure(tp);
  556. now = tcp_time_stamp;
  557. if (!icsk->icsk_ack.ato) {
  558. /* The _first_ data packet received, initialize
  559. * delayed ACK engine.
  560. */
  561. tcp_incr_quickack(sk);
  562. icsk->icsk_ack.ato = TCP_ATO_MIN;
  563. } else {
  564. int m = now - icsk->icsk_ack.lrcvtime;
  565. if (m <= TCP_ATO_MIN / 2) {
  566. /* The fastest case is the first. */
  567. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  568. } else if (m < icsk->icsk_ack.ato) {
  569. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  570. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  571. icsk->icsk_ack.ato = icsk->icsk_rto;
  572. } else if (m > icsk->icsk_rto) {
  573. /* Too long gap. Apparently sender failed to
  574. * restart window, so that we send ACKs quickly.
  575. */
  576. tcp_incr_quickack(sk);
  577. sk_mem_reclaim(sk);
  578. }
  579. }
  580. icsk->icsk_ack.lrcvtime = now;
  581. tcp_ecn_check_ce(tp, skb);
  582. if (skb->len >= 128)
  583. tcp_grow_window(sk, skb);
  584. }
  585. /* Called to compute a smoothed rtt estimate. The data fed to this
  586. * routine either comes from timestamps, or from segments that were
  587. * known _not_ to have been retransmitted [see Karn/Partridge
  588. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  589. * piece by Van Jacobson.
  590. * NOTE: the next three routines used to be one big routine.
  591. * To save cycles in the RFC 1323 implementation it was better to break
  592. * it up into three procedures. -- erics
  593. */
  594. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  595. {
  596. struct tcp_sock *tp = tcp_sk(sk);
  597. long m = mrtt_us; /* RTT */
  598. u32 srtt = tp->srtt_us;
  599. /* The following amusing code comes from Jacobson's
  600. * article in SIGCOMM '88. Note that rtt and mdev
  601. * are scaled versions of rtt and mean deviation.
  602. * This is designed to be as fast as possible
  603. * m stands for "measurement".
  604. *
  605. * On a 1990 paper the rto value is changed to:
  606. * RTO = rtt + 4 * mdev
  607. *
  608. * Funny. This algorithm seems to be very broken.
  609. * These formulae increase RTO, when it should be decreased, increase
  610. * too slowly, when it should be increased quickly, decrease too quickly
  611. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  612. * does not matter how to _calculate_ it. Seems, it was trap
  613. * that VJ failed to avoid. 8)
  614. */
  615. if (srtt != 0) {
  616. m -= (srtt >> 3); /* m is now error in rtt est */
  617. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  618. if (m < 0) {
  619. m = -m; /* m is now abs(error) */
  620. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  621. /* This is similar to one of Eifel findings.
  622. * Eifel blocks mdev updates when rtt decreases.
  623. * This solution is a bit different: we use finer gain
  624. * for mdev in this case (alpha*beta).
  625. * Like Eifel it also prevents growth of rto,
  626. * but also it limits too fast rto decreases,
  627. * happening in pure Eifel.
  628. */
  629. if (m > 0)
  630. m >>= 3;
  631. } else {
  632. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  633. }
  634. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  635. if (tp->mdev_us > tp->mdev_max_us) {
  636. tp->mdev_max_us = tp->mdev_us;
  637. if (tp->mdev_max_us > tp->rttvar_us)
  638. tp->rttvar_us = tp->mdev_max_us;
  639. }
  640. if (after(tp->snd_una, tp->rtt_seq)) {
  641. if (tp->mdev_max_us < tp->rttvar_us)
  642. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  643. tp->rtt_seq = tp->snd_nxt;
  644. tp->mdev_max_us = tcp_rto_min_us(sk);
  645. }
  646. } else {
  647. /* no previous measure. */
  648. srtt = m << 3; /* take the measured time to be rtt */
  649. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  650. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  651. tp->mdev_max_us = tp->rttvar_us;
  652. tp->rtt_seq = tp->snd_nxt;
  653. }
  654. tp->srtt_us = max(1U, srtt);
  655. }
  656. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  657. * Note: TCP stack does not yet implement pacing.
  658. * FQ packet scheduler can be used to implement cheap but effective
  659. * TCP pacing, to smooth the burst on large writes when packets
  660. * in flight is significantly lower than cwnd (or rwin)
  661. */
  662. static void tcp_update_pacing_rate(struct sock *sk)
  663. {
  664. const struct tcp_sock *tp = tcp_sk(sk);
  665. u64 rate;
  666. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  667. rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
  668. rate *= max(tp->snd_cwnd, tp->packets_out);
  669. if (likely(tp->srtt_us))
  670. do_div(rate, tp->srtt_us);
  671. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  672. * without any lock. We want to make sure compiler wont store
  673. * intermediate values in this location.
  674. */
  675. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  676. sk->sk_max_pacing_rate);
  677. }
  678. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  679. * routine referred to above.
  680. */
  681. static void tcp_set_rto(struct sock *sk)
  682. {
  683. const struct tcp_sock *tp = tcp_sk(sk);
  684. /* Old crap is replaced with new one. 8)
  685. *
  686. * More seriously:
  687. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  688. * It cannot be less due to utterly erratic ACK generation made
  689. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  690. * to do with delayed acks, because at cwnd>2 true delack timeout
  691. * is invisible. Actually, Linux-2.4 also generates erratic
  692. * ACKs in some circumstances.
  693. */
  694. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  695. /* 2. Fixups made earlier cannot be right.
  696. * If we do not estimate RTO correctly without them,
  697. * all the algo is pure shit and should be replaced
  698. * with correct one. It is exactly, which we pretend to do.
  699. */
  700. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  701. * guarantees that rto is higher.
  702. */
  703. tcp_bound_rto(sk);
  704. }
  705. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  706. {
  707. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  708. if (!cwnd)
  709. cwnd = TCP_INIT_CWND;
  710. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  711. }
  712. /*
  713. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  714. * disables it when reordering is detected
  715. */
  716. void tcp_disable_fack(struct tcp_sock *tp)
  717. {
  718. /* RFC3517 uses different metric in lost marker => reset on change */
  719. if (tcp_is_fack(tp))
  720. tp->lost_skb_hint = NULL;
  721. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  722. }
  723. /* Take a notice that peer is sending D-SACKs */
  724. static void tcp_dsack_seen(struct tcp_sock *tp)
  725. {
  726. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  727. }
  728. static void tcp_update_reordering(struct sock *sk, const int metric,
  729. const int ts)
  730. {
  731. struct tcp_sock *tp = tcp_sk(sk);
  732. if (metric > tp->reordering) {
  733. int mib_idx;
  734. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  735. /* This exciting event is worth to be remembered. 8) */
  736. if (ts)
  737. mib_idx = LINUX_MIB_TCPTSREORDER;
  738. else if (tcp_is_reno(tp))
  739. mib_idx = LINUX_MIB_TCPRENOREORDER;
  740. else if (tcp_is_fack(tp))
  741. mib_idx = LINUX_MIB_TCPFACKREORDER;
  742. else
  743. mib_idx = LINUX_MIB_TCPSACKREORDER;
  744. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  745. #if FASTRETRANS_DEBUG > 1
  746. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  747. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  748. tp->reordering,
  749. tp->fackets_out,
  750. tp->sacked_out,
  751. tp->undo_marker ? tp->undo_retrans : 0);
  752. #endif
  753. tcp_disable_fack(tp);
  754. }
  755. if (metric > 0)
  756. tcp_disable_early_retrans(tp);
  757. }
  758. /* This must be called before lost_out is incremented */
  759. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  760. {
  761. if (!tp->retransmit_skb_hint ||
  762. before(TCP_SKB_CB(skb)->seq,
  763. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  764. tp->retransmit_skb_hint = skb;
  765. if (!tp->lost_out ||
  766. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  767. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  768. }
  769. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  770. {
  771. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  772. tcp_verify_retransmit_hint(tp, skb);
  773. tp->lost_out += tcp_skb_pcount(skb);
  774. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  775. }
  776. }
  777. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  778. struct sk_buff *skb)
  779. {
  780. tcp_verify_retransmit_hint(tp, skb);
  781. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  782. tp->lost_out += tcp_skb_pcount(skb);
  783. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  784. }
  785. }
  786. /* This procedure tags the retransmission queue when SACKs arrive.
  787. *
  788. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  789. * Packets in queue with these bits set are counted in variables
  790. * sacked_out, retrans_out and lost_out, correspondingly.
  791. *
  792. * Valid combinations are:
  793. * Tag InFlight Description
  794. * 0 1 - orig segment is in flight.
  795. * S 0 - nothing flies, orig reached receiver.
  796. * L 0 - nothing flies, orig lost by net.
  797. * R 2 - both orig and retransmit are in flight.
  798. * L|R 1 - orig is lost, retransmit is in flight.
  799. * S|R 1 - orig reached receiver, retrans is still in flight.
  800. * (L|S|R is logically valid, it could occur when L|R is sacked,
  801. * but it is equivalent to plain S and code short-curcuits it to S.
  802. * L|S is logically invalid, it would mean -1 packet in flight 8))
  803. *
  804. * These 6 states form finite state machine, controlled by the following events:
  805. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  806. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  807. * 3. Loss detection event of two flavors:
  808. * A. Scoreboard estimator decided the packet is lost.
  809. * A'. Reno "three dupacks" marks head of queue lost.
  810. * A''. Its FACK modification, head until snd.fack is lost.
  811. * B. SACK arrives sacking SND.NXT at the moment, when the
  812. * segment was retransmitted.
  813. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  814. *
  815. * It is pleasant to note, that state diagram turns out to be commutative,
  816. * so that we are allowed not to be bothered by order of our actions,
  817. * when multiple events arrive simultaneously. (see the function below).
  818. *
  819. * Reordering detection.
  820. * --------------------
  821. * Reordering metric is maximal distance, which a packet can be displaced
  822. * in packet stream. With SACKs we can estimate it:
  823. *
  824. * 1. SACK fills old hole and the corresponding segment was not
  825. * ever retransmitted -> reordering. Alas, we cannot use it
  826. * when segment was retransmitted.
  827. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  828. * for retransmitted and already SACKed segment -> reordering..
  829. * Both of these heuristics are not used in Loss state, when we cannot
  830. * account for retransmits accurately.
  831. *
  832. * SACK block validation.
  833. * ----------------------
  834. *
  835. * SACK block range validation checks that the received SACK block fits to
  836. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  837. * Note that SND.UNA is not included to the range though being valid because
  838. * it means that the receiver is rather inconsistent with itself reporting
  839. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  840. * perfectly valid, however, in light of RFC2018 which explicitly states
  841. * that "SACK block MUST reflect the newest segment. Even if the newest
  842. * segment is going to be discarded ...", not that it looks very clever
  843. * in case of head skb. Due to potentional receiver driven attacks, we
  844. * choose to avoid immediate execution of a walk in write queue due to
  845. * reneging and defer head skb's loss recovery to standard loss recovery
  846. * procedure that will eventually trigger (nothing forbids us doing this).
  847. *
  848. * Implements also blockage to start_seq wrap-around. Problem lies in the
  849. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  850. * there's no guarantee that it will be before snd_nxt (n). The problem
  851. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  852. * wrap (s_w):
  853. *
  854. * <- outs wnd -> <- wrapzone ->
  855. * u e n u_w e_w s n_w
  856. * | | | | | | |
  857. * |<------------+------+----- TCP seqno space --------------+---------->|
  858. * ...-- <2^31 ->| |<--------...
  859. * ...---- >2^31 ------>| |<--------...
  860. *
  861. * Current code wouldn't be vulnerable but it's better still to discard such
  862. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  863. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  864. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  865. * equal to the ideal case (infinite seqno space without wrap caused issues).
  866. *
  867. * With D-SACK the lower bound is extended to cover sequence space below
  868. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  869. * again, D-SACK block must not to go across snd_una (for the same reason as
  870. * for the normal SACK blocks, explained above). But there all simplicity
  871. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  872. * fully below undo_marker they do not affect behavior in anyway and can
  873. * therefore be safely ignored. In rare cases (which are more or less
  874. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  875. * fragmentation and packet reordering past skb's retransmission. To consider
  876. * them correctly, the acceptable range must be extended even more though
  877. * the exact amount is rather hard to quantify. However, tp->max_window can
  878. * be used as an exaggerated estimate.
  879. */
  880. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  881. u32 start_seq, u32 end_seq)
  882. {
  883. /* Too far in future, or reversed (interpretation is ambiguous) */
  884. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  885. return false;
  886. /* Nasty start_seq wrap-around check (see comments above) */
  887. if (!before(start_seq, tp->snd_nxt))
  888. return false;
  889. /* In outstanding window? ...This is valid exit for D-SACKs too.
  890. * start_seq == snd_una is non-sensical (see comments above)
  891. */
  892. if (after(start_seq, tp->snd_una))
  893. return true;
  894. if (!is_dsack || !tp->undo_marker)
  895. return false;
  896. /* ...Then it's D-SACK, and must reside below snd_una completely */
  897. if (after(end_seq, tp->snd_una))
  898. return false;
  899. if (!before(start_seq, tp->undo_marker))
  900. return true;
  901. /* Too old */
  902. if (!after(end_seq, tp->undo_marker))
  903. return false;
  904. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  905. * start_seq < undo_marker and end_seq >= undo_marker.
  906. */
  907. return !before(start_seq, end_seq - tp->max_window);
  908. }
  909. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  910. * Event "B". Later note: FACK people cheated me again 8), we have to account
  911. * for reordering! Ugly, but should help.
  912. *
  913. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  914. * less than what is now known to be received by the other end (derived from
  915. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  916. * retransmitted skbs to avoid some costly processing per ACKs.
  917. */
  918. static void tcp_mark_lost_retrans(struct sock *sk, int *flag)
  919. {
  920. const struct inet_connection_sock *icsk = inet_csk(sk);
  921. struct tcp_sock *tp = tcp_sk(sk);
  922. struct sk_buff *skb;
  923. int cnt = 0;
  924. u32 new_low_seq = tp->snd_nxt;
  925. u32 received_upto = tcp_highest_sack_seq(tp);
  926. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  927. !after(received_upto, tp->lost_retrans_low) ||
  928. icsk->icsk_ca_state != TCP_CA_Recovery)
  929. return;
  930. tcp_for_write_queue(skb, sk) {
  931. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  932. if (skb == tcp_send_head(sk))
  933. break;
  934. if (cnt == tp->retrans_out)
  935. break;
  936. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  937. continue;
  938. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  939. continue;
  940. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  941. * constraint here (see above) but figuring out that at
  942. * least tp->reordering SACK blocks reside between ack_seq
  943. * and received_upto is not easy task to do cheaply with
  944. * the available datastructures.
  945. *
  946. * Whether FACK should check here for tp->reordering segs
  947. * in-between one could argue for either way (it would be
  948. * rather simple to implement as we could count fack_count
  949. * during the walk and do tp->fackets_out - fack_count).
  950. */
  951. if (after(received_upto, ack_seq)) {
  952. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  953. tp->retrans_out -= tcp_skb_pcount(skb);
  954. *flag |= FLAG_LOST_RETRANS;
  955. tcp_skb_mark_lost_uncond_verify(tp, skb);
  956. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  957. } else {
  958. if (before(ack_seq, new_low_seq))
  959. new_low_seq = ack_seq;
  960. cnt += tcp_skb_pcount(skb);
  961. }
  962. }
  963. if (tp->retrans_out)
  964. tp->lost_retrans_low = new_low_seq;
  965. }
  966. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  967. struct tcp_sack_block_wire *sp, int num_sacks,
  968. u32 prior_snd_una)
  969. {
  970. struct tcp_sock *tp = tcp_sk(sk);
  971. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  972. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  973. bool dup_sack = false;
  974. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  975. dup_sack = true;
  976. tcp_dsack_seen(tp);
  977. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  978. } else if (num_sacks > 1) {
  979. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  980. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  981. if (!after(end_seq_0, end_seq_1) &&
  982. !before(start_seq_0, start_seq_1)) {
  983. dup_sack = true;
  984. tcp_dsack_seen(tp);
  985. NET_INC_STATS_BH(sock_net(sk),
  986. LINUX_MIB_TCPDSACKOFORECV);
  987. }
  988. }
  989. /* D-SACK for already forgotten data... Do dumb counting. */
  990. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  991. !after(end_seq_0, prior_snd_una) &&
  992. after(end_seq_0, tp->undo_marker))
  993. tp->undo_retrans--;
  994. return dup_sack;
  995. }
  996. struct tcp_sacktag_state {
  997. int reord;
  998. int fack_count;
  999. /* Timestamps for earliest and latest never-retransmitted segment
  1000. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1001. * but congestion control should still get an accurate delay signal.
  1002. */
  1003. struct skb_mstamp first_sackt;
  1004. struct skb_mstamp last_sackt;
  1005. int flag;
  1006. };
  1007. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1008. * the incoming SACK may not exactly match but we can find smaller MSS
  1009. * aligned portion of it that matches. Therefore we might need to fragment
  1010. * which may fail and creates some hassle (caller must handle error case
  1011. * returns).
  1012. *
  1013. * FIXME: this could be merged to shift decision code
  1014. */
  1015. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1016. u32 start_seq, u32 end_seq)
  1017. {
  1018. int err;
  1019. bool in_sack;
  1020. unsigned int pkt_len;
  1021. unsigned int mss;
  1022. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1023. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1024. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1025. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1026. mss = tcp_skb_mss(skb);
  1027. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1028. if (!in_sack) {
  1029. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1030. if (pkt_len < mss)
  1031. pkt_len = mss;
  1032. } else {
  1033. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1034. if (pkt_len < mss)
  1035. return -EINVAL;
  1036. }
  1037. /* Round if necessary so that SACKs cover only full MSSes
  1038. * and/or the remaining small portion (if present)
  1039. */
  1040. if (pkt_len > mss) {
  1041. unsigned int new_len = (pkt_len / mss) * mss;
  1042. if (!in_sack && new_len < pkt_len) {
  1043. new_len += mss;
  1044. if (new_len >= skb->len)
  1045. return 0;
  1046. }
  1047. pkt_len = new_len;
  1048. }
  1049. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1050. if (err < 0)
  1051. return err;
  1052. }
  1053. return in_sack;
  1054. }
  1055. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1056. static u8 tcp_sacktag_one(struct sock *sk,
  1057. struct tcp_sacktag_state *state, u8 sacked,
  1058. u32 start_seq, u32 end_seq,
  1059. int dup_sack, int pcount,
  1060. const struct skb_mstamp *xmit_time)
  1061. {
  1062. struct tcp_sock *tp = tcp_sk(sk);
  1063. int fack_count = state->fack_count;
  1064. /* Account D-SACK for retransmitted packet. */
  1065. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1066. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1067. after(end_seq, tp->undo_marker))
  1068. tp->undo_retrans--;
  1069. if (sacked & TCPCB_SACKED_ACKED)
  1070. state->reord = min(fack_count, state->reord);
  1071. }
  1072. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1073. if (!after(end_seq, tp->snd_una))
  1074. return sacked;
  1075. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1076. if (sacked & TCPCB_SACKED_RETRANS) {
  1077. /* If the segment is not tagged as lost,
  1078. * we do not clear RETRANS, believing
  1079. * that retransmission is still in flight.
  1080. */
  1081. if (sacked & TCPCB_LOST) {
  1082. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1083. tp->lost_out -= pcount;
  1084. tp->retrans_out -= pcount;
  1085. }
  1086. } else {
  1087. if (!(sacked & TCPCB_RETRANS)) {
  1088. /* New sack for not retransmitted frame,
  1089. * which was in hole. It is reordering.
  1090. */
  1091. if (before(start_seq,
  1092. tcp_highest_sack_seq(tp)))
  1093. state->reord = min(fack_count,
  1094. state->reord);
  1095. if (!after(end_seq, tp->high_seq))
  1096. state->flag |= FLAG_ORIG_SACK_ACKED;
  1097. if (state->first_sackt.v64 == 0)
  1098. state->first_sackt = *xmit_time;
  1099. state->last_sackt = *xmit_time;
  1100. }
  1101. if (sacked & TCPCB_LOST) {
  1102. sacked &= ~TCPCB_LOST;
  1103. tp->lost_out -= pcount;
  1104. }
  1105. }
  1106. sacked |= TCPCB_SACKED_ACKED;
  1107. state->flag |= FLAG_DATA_SACKED;
  1108. tp->sacked_out += pcount;
  1109. fack_count += pcount;
  1110. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1111. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1112. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1113. tp->lost_cnt_hint += pcount;
  1114. if (fack_count > tp->fackets_out)
  1115. tp->fackets_out = fack_count;
  1116. }
  1117. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1118. * frames and clear it. undo_retrans is decreased above, L|R frames
  1119. * are accounted above as well.
  1120. */
  1121. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1122. sacked &= ~TCPCB_SACKED_RETRANS;
  1123. tp->retrans_out -= pcount;
  1124. }
  1125. return sacked;
  1126. }
  1127. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1128. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1129. */
  1130. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1131. struct tcp_sacktag_state *state,
  1132. unsigned int pcount, int shifted, int mss,
  1133. bool dup_sack)
  1134. {
  1135. struct tcp_sock *tp = tcp_sk(sk);
  1136. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1137. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1138. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1139. BUG_ON(!pcount);
  1140. /* Adjust counters and hints for the newly sacked sequence
  1141. * range but discard the return value since prev is already
  1142. * marked. We must tag the range first because the seq
  1143. * advancement below implicitly advances
  1144. * tcp_highest_sack_seq() when skb is highest_sack.
  1145. */
  1146. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1147. start_seq, end_seq, dup_sack, pcount,
  1148. &skb->skb_mstamp);
  1149. if (skb == tp->lost_skb_hint)
  1150. tp->lost_cnt_hint += pcount;
  1151. TCP_SKB_CB(prev)->end_seq += shifted;
  1152. TCP_SKB_CB(skb)->seq += shifted;
  1153. tcp_skb_pcount_add(prev, pcount);
  1154. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1155. tcp_skb_pcount_add(skb, -pcount);
  1156. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1157. * in theory this shouldn't be necessary but as long as DSACK
  1158. * code can come after this skb later on it's better to keep
  1159. * setting gso_size to something.
  1160. */
  1161. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1162. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1163. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1164. if (tcp_skb_pcount(skb) <= 1)
  1165. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1166. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1167. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1168. if (skb->len > 0) {
  1169. BUG_ON(!tcp_skb_pcount(skb));
  1170. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1171. return false;
  1172. }
  1173. /* Whole SKB was eaten :-) */
  1174. if (skb == tp->retransmit_skb_hint)
  1175. tp->retransmit_skb_hint = prev;
  1176. if (skb == tp->lost_skb_hint) {
  1177. tp->lost_skb_hint = prev;
  1178. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1179. }
  1180. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1181. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1182. TCP_SKB_CB(prev)->end_seq++;
  1183. if (skb == tcp_highest_sack(sk))
  1184. tcp_advance_highest_sack(sk, skb);
  1185. tcp_unlink_write_queue(skb, sk);
  1186. sk_wmem_free_skb(sk, skb);
  1187. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1188. return true;
  1189. }
  1190. /* I wish gso_size would have a bit more sane initialization than
  1191. * something-or-zero which complicates things
  1192. */
  1193. static int tcp_skb_seglen(const struct sk_buff *skb)
  1194. {
  1195. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1196. }
  1197. /* Shifting pages past head area doesn't work */
  1198. static int skb_can_shift(const struct sk_buff *skb)
  1199. {
  1200. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1201. }
  1202. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1203. * skb.
  1204. */
  1205. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1206. struct tcp_sacktag_state *state,
  1207. u32 start_seq, u32 end_seq,
  1208. bool dup_sack)
  1209. {
  1210. struct tcp_sock *tp = tcp_sk(sk);
  1211. struct sk_buff *prev;
  1212. int mss;
  1213. int pcount = 0;
  1214. int len;
  1215. int in_sack;
  1216. if (!sk_can_gso(sk))
  1217. goto fallback;
  1218. /* Normally R but no L won't result in plain S */
  1219. if (!dup_sack &&
  1220. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1221. goto fallback;
  1222. if (!skb_can_shift(skb))
  1223. goto fallback;
  1224. /* This frame is about to be dropped (was ACKed). */
  1225. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1226. goto fallback;
  1227. /* Can only happen with delayed DSACK + discard craziness */
  1228. if (unlikely(skb == tcp_write_queue_head(sk)))
  1229. goto fallback;
  1230. prev = tcp_write_queue_prev(sk, skb);
  1231. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1232. goto fallback;
  1233. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1234. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1235. if (in_sack) {
  1236. len = skb->len;
  1237. pcount = tcp_skb_pcount(skb);
  1238. mss = tcp_skb_seglen(skb);
  1239. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1240. * drop this restriction as unnecessary
  1241. */
  1242. if (mss != tcp_skb_seglen(prev))
  1243. goto fallback;
  1244. } else {
  1245. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1246. goto noop;
  1247. /* CHECKME: This is non-MSS split case only?, this will
  1248. * cause skipped skbs due to advancing loop btw, original
  1249. * has that feature too
  1250. */
  1251. if (tcp_skb_pcount(skb) <= 1)
  1252. goto noop;
  1253. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1254. if (!in_sack) {
  1255. /* TODO: head merge to next could be attempted here
  1256. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1257. * though it might not be worth of the additional hassle
  1258. *
  1259. * ...we can probably just fallback to what was done
  1260. * previously. We could try merging non-SACKed ones
  1261. * as well but it probably isn't going to buy off
  1262. * because later SACKs might again split them, and
  1263. * it would make skb timestamp tracking considerably
  1264. * harder problem.
  1265. */
  1266. goto fallback;
  1267. }
  1268. len = end_seq - TCP_SKB_CB(skb)->seq;
  1269. BUG_ON(len < 0);
  1270. BUG_ON(len > skb->len);
  1271. /* MSS boundaries should be honoured or else pcount will
  1272. * severely break even though it makes things bit trickier.
  1273. * Optimize common case to avoid most of the divides
  1274. */
  1275. mss = tcp_skb_mss(skb);
  1276. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1277. * drop this restriction as unnecessary
  1278. */
  1279. if (mss != tcp_skb_seglen(prev))
  1280. goto fallback;
  1281. if (len == mss) {
  1282. pcount = 1;
  1283. } else if (len < mss) {
  1284. goto noop;
  1285. } else {
  1286. pcount = len / mss;
  1287. len = pcount * mss;
  1288. }
  1289. }
  1290. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1291. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1292. goto fallback;
  1293. if (!skb_shift(prev, skb, len))
  1294. goto fallback;
  1295. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1296. goto out;
  1297. /* Hole filled allows collapsing with the next as well, this is very
  1298. * useful when hole on every nth skb pattern happens
  1299. */
  1300. if (prev == tcp_write_queue_tail(sk))
  1301. goto out;
  1302. skb = tcp_write_queue_next(sk, prev);
  1303. if (!skb_can_shift(skb) ||
  1304. (skb == tcp_send_head(sk)) ||
  1305. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1306. (mss != tcp_skb_seglen(skb)))
  1307. goto out;
  1308. len = skb->len;
  1309. if (skb_shift(prev, skb, len)) {
  1310. pcount += tcp_skb_pcount(skb);
  1311. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1312. }
  1313. out:
  1314. state->fack_count += pcount;
  1315. return prev;
  1316. noop:
  1317. return skb;
  1318. fallback:
  1319. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1320. return NULL;
  1321. }
  1322. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1323. struct tcp_sack_block *next_dup,
  1324. struct tcp_sacktag_state *state,
  1325. u32 start_seq, u32 end_seq,
  1326. bool dup_sack_in)
  1327. {
  1328. struct tcp_sock *tp = tcp_sk(sk);
  1329. struct sk_buff *tmp;
  1330. tcp_for_write_queue_from(skb, sk) {
  1331. int in_sack = 0;
  1332. bool dup_sack = dup_sack_in;
  1333. if (skb == tcp_send_head(sk))
  1334. break;
  1335. /* queue is in-order => we can short-circuit the walk early */
  1336. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1337. break;
  1338. if (next_dup &&
  1339. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1340. in_sack = tcp_match_skb_to_sack(sk, skb,
  1341. next_dup->start_seq,
  1342. next_dup->end_seq);
  1343. if (in_sack > 0)
  1344. dup_sack = true;
  1345. }
  1346. /* skb reference here is a bit tricky to get right, since
  1347. * shifting can eat and free both this skb and the next,
  1348. * so not even _safe variant of the loop is enough.
  1349. */
  1350. if (in_sack <= 0) {
  1351. tmp = tcp_shift_skb_data(sk, skb, state,
  1352. start_seq, end_seq, dup_sack);
  1353. if (tmp) {
  1354. if (tmp != skb) {
  1355. skb = tmp;
  1356. continue;
  1357. }
  1358. in_sack = 0;
  1359. } else {
  1360. in_sack = tcp_match_skb_to_sack(sk, skb,
  1361. start_seq,
  1362. end_seq);
  1363. }
  1364. }
  1365. if (unlikely(in_sack < 0))
  1366. break;
  1367. if (in_sack) {
  1368. TCP_SKB_CB(skb)->sacked =
  1369. tcp_sacktag_one(sk,
  1370. state,
  1371. TCP_SKB_CB(skb)->sacked,
  1372. TCP_SKB_CB(skb)->seq,
  1373. TCP_SKB_CB(skb)->end_seq,
  1374. dup_sack,
  1375. tcp_skb_pcount(skb),
  1376. &skb->skb_mstamp);
  1377. if (!before(TCP_SKB_CB(skb)->seq,
  1378. tcp_highest_sack_seq(tp)))
  1379. tcp_advance_highest_sack(sk, skb);
  1380. }
  1381. state->fack_count += tcp_skb_pcount(skb);
  1382. }
  1383. return skb;
  1384. }
  1385. /* Avoid all extra work that is being done by sacktag while walking in
  1386. * a normal way
  1387. */
  1388. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1389. struct tcp_sacktag_state *state,
  1390. u32 skip_to_seq)
  1391. {
  1392. tcp_for_write_queue_from(skb, sk) {
  1393. if (skb == tcp_send_head(sk))
  1394. break;
  1395. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1396. break;
  1397. state->fack_count += tcp_skb_pcount(skb);
  1398. }
  1399. return skb;
  1400. }
  1401. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1402. struct sock *sk,
  1403. struct tcp_sack_block *next_dup,
  1404. struct tcp_sacktag_state *state,
  1405. u32 skip_to_seq)
  1406. {
  1407. if (!next_dup)
  1408. return skb;
  1409. if (before(next_dup->start_seq, skip_to_seq)) {
  1410. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1411. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1412. next_dup->start_seq, next_dup->end_seq,
  1413. 1);
  1414. }
  1415. return skb;
  1416. }
  1417. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1418. {
  1419. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1420. }
  1421. static int
  1422. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1423. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1424. {
  1425. struct tcp_sock *tp = tcp_sk(sk);
  1426. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1427. TCP_SKB_CB(ack_skb)->sacked);
  1428. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1429. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1430. struct tcp_sack_block *cache;
  1431. struct sk_buff *skb;
  1432. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1433. int used_sacks;
  1434. bool found_dup_sack = false;
  1435. int i, j;
  1436. int first_sack_index;
  1437. state->flag = 0;
  1438. state->reord = tp->packets_out;
  1439. if (!tp->sacked_out) {
  1440. if (WARN_ON(tp->fackets_out))
  1441. tp->fackets_out = 0;
  1442. tcp_highest_sack_reset(sk);
  1443. }
  1444. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1445. num_sacks, prior_snd_una);
  1446. if (found_dup_sack)
  1447. state->flag |= FLAG_DSACKING_ACK;
  1448. /* Eliminate too old ACKs, but take into
  1449. * account more or less fresh ones, they can
  1450. * contain valid SACK info.
  1451. */
  1452. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1453. return 0;
  1454. if (!tp->packets_out)
  1455. goto out;
  1456. used_sacks = 0;
  1457. first_sack_index = 0;
  1458. for (i = 0; i < num_sacks; i++) {
  1459. bool dup_sack = !i && found_dup_sack;
  1460. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1461. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1462. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1463. sp[used_sacks].start_seq,
  1464. sp[used_sacks].end_seq)) {
  1465. int mib_idx;
  1466. if (dup_sack) {
  1467. if (!tp->undo_marker)
  1468. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1469. else
  1470. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1471. } else {
  1472. /* Don't count olds caused by ACK reordering */
  1473. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1474. !after(sp[used_sacks].end_seq, tp->snd_una))
  1475. continue;
  1476. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1477. }
  1478. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1479. if (i == 0)
  1480. first_sack_index = -1;
  1481. continue;
  1482. }
  1483. /* Ignore very old stuff early */
  1484. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1485. continue;
  1486. used_sacks++;
  1487. }
  1488. /* order SACK blocks to allow in order walk of the retrans queue */
  1489. for (i = used_sacks - 1; i > 0; i--) {
  1490. for (j = 0; j < i; j++) {
  1491. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1492. swap(sp[j], sp[j + 1]);
  1493. /* Track where the first SACK block goes to */
  1494. if (j == first_sack_index)
  1495. first_sack_index = j + 1;
  1496. }
  1497. }
  1498. }
  1499. skb = tcp_write_queue_head(sk);
  1500. state->fack_count = 0;
  1501. i = 0;
  1502. if (!tp->sacked_out) {
  1503. /* It's already past, so skip checking against it */
  1504. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1505. } else {
  1506. cache = tp->recv_sack_cache;
  1507. /* Skip empty blocks in at head of the cache */
  1508. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1509. !cache->end_seq)
  1510. cache++;
  1511. }
  1512. while (i < used_sacks) {
  1513. u32 start_seq = sp[i].start_seq;
  1514. u32 end_seq = sp[i].end_seq;
  1515. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1516. struct tcp_sack_block *next_dup = NULL;
  1517. if (found_dup_sack && ((i + 1) == first_sack_index))
  1518. next_dup = &sp[i + 1];
  1519. /* Skip too early cached blocks */
  1520. while (tcp_sack_cache_ok(tp, cache) &&
  1521. !before(start_seq, cache->end_seq))
  1522. cache++;
  1523. /* Can skip some work by looking recv_sack_cache? */
  1524. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1525. after(end_seq, cache->start_seq)) {
  1526. /* Head todo? */
  1527. if (before(start_seq, cache->start_seq)) {
  1528. skb = tcp_sacktag_skip(skb, sk, state,
  1529. start_seq);
  1530. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1531. state,
  1532. start_seq,
  1533. cache->start_seq,
  1534. dup_sack);
  1535. }
  1536. /* Rest of the block already fully processed? */
  1537. if (!after(end_seq, cache->end_seq))
  1538. goto advance_sp;
  1539. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1540. state,
  1541. cache->end_seq);
  1542. /* ...tail remains todo... */
  1543. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1544. /* ...but better entrypoint exists! */
  1545. skb = tcp_highest_sack(sk);
  1546. if (!skb)
  1547. break;
  1548. state->fack_count = tp->fackets_out;
  1549. cache++;
  1550. goto walk;
  1551. }
  1552. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1553. /* Check overlap against next cached too (past this one already) */
  1554. cache++;
  1555. continue;
  1556. }
  1557. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1558. skb = tcp_highest_sack(sk);
  1559. if (!skb)
  1560. break;
  1561. state->fack_count = tp->fackets_out;
  1562. }
  1563. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1564. walk:
  1565. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1566. start_seq, end_seq, dup_sack);
  1567. advance_sp:
  1568. i++;
  1569. }
  1570. /* Clear the head of the cache sack blocks so we can skip it next time */
  1571. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1572. tp->recv_sack_cache[i].start_seq = 0;
  1573. tp->recv_sack_cache[i].end_seq = 0;
  1574. }
  1575. for (j = 0; j < used_sacks; j++)
  1576. tp->recv_sack_cache[i++] = sp[j];
  1577. if ((state->reord < tp->fackets_out) &&
  1578. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1579. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1580. tcp_mark_lost_retrans(sk, &state->flag);
  1581. tcp_verify_left_out(tp);
  1582. out:
  1583. #if FASTRETRANS_DEBUG > 0
  1584. WARN_ON((int)tp->sacked_out < 0);
  1585. WARN_ON((int)tp->lost_out < 0);
  1586. WARN_ON((int)tp->retrans_out < 0);
  1587. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1588. #endif
  1589. return state->flag;
  1590. }
  1591. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1592. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1593. */
  1594. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1595. {
  1596. u32 holes;
  1597. holes = max(tp->lost_out, 1U);
  1598. holes = min(holes, tp->packets_out);
  1599. if ((tp->sacked_out + holes) > tp->packets_out) {
  1600. tp->sacked_out = tp->packets_out - holes;
  1601. return true;
  1602. }
  1603. return false;
  1604. }
  1605. /* If we receive more dupacks than we expected counting segments
  1606. * in assumption of absent reordering, interpret this as reordering.
  1607. * The only another reason could be bug in receiver TCP.
  1608. */
  1609. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1610. {
  1611. struct tcp_sock *tp = tcp_sk(sk);
  1612. if (tcp_limit_reno_sacked(tp))
  1613. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1614. }
  1615. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1616. static void tcp_add_reno_sack(struct sock *sk)
  1617. {
  1618. struct tcp_sock *tp = tcp_sk(sk);
  1619. tp->sacked_out++;
  1620. tcp_check_reno_reordering(sk, 0);
  1621. tcp_verify_left_out(tp);
  1622. }
  1623. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1624. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1625. {
  1626. struct tcp_sock *tp = tcp_sk(sk);
  1627. if (acked > 0) {
  1628. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1629. if (acked - 1 >= tp->sacked_out)
  1630. tp->sacked_out = 0;
  1631. else
  1632. tp->sacked_out -= acked - 1;
  1633. }
  1634. tcp_check_reno_reordering(sk, acked);
  1635. tcp_verify_left_out(tp);
  1636. }
  1637. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1638. {
  1639. tp->sacked_out = 0;
  1640. }
  1641. void tcp_clear_retrans(struct tcp_sock *tp)
  1642. {
  1643. tp->retrans_out = 0;
  1644. tp->lost_out = 0;
  1645. tp->undo_marker = 0;
  1646. tp->undo_retrans = -1;
  1647. tp->fackets_out = 0;
  1648. tp->sacked_out = 0;
  1649. }
  1650. static inline void tcp_init_undo(struct tcp_sock *tp)
  1651. {
  1652. tp->undo_marker = tp->snd_una;
  1653. /* Retransmission still in flight may cause DSACKs later. */
  1654. tp->undo_retrans = tp->retrans_out ? : -1;
  1655. }
  1656. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1657. * and reset tags completely, otherwise preserve SACKs. If receiver
  1658. * dropped its ofo queue, we will know this due to reneging detection.
  1659. */
  1660. void tcp_enter_loss(struct sock *sk)
  1661. {
  1662. const struct inet_connection_sock *icsk = inet_csk(sk);
  1663. struct tcp_sock *tp = tcp_sk(sk);
  1664. struct sk_buff *skb;
  1665. bool new_recovery = false;
  1666. bool is_reneg; /* is receiver reneging on SACKs? */
  1667. /* Reduce ssthresh if it has not yet been made inside this window. */
  1668. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1669. !after(tp->high_seq, tp->snd_una) ||
  1670. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1671. new_recovery = true;
  1672. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1673. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1674. tcp_ca_event(sk, CA_EVENT_LOSS);
  1675. tcp_init_undo(tp);
  1676. }
  1677. tp->snd_cwnd = 1;
  1678. tp->snd_cwnd_cnt = 0;
  1679. tp->snd_cwnd_stamp = tcp_time_stamp;
  1680. tp->retrans_out = 0;
  1681. tp->lost_out = 0;
  1682. if (tcp_is_reno(tp))
  1683. tcp_reset_reno_sack(tp);
  1684. skb = tcp_write_queue_head(sk);
  1685. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1686. if (is_reneg) {
  1687. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1688. tp->sacked_out = 0;
  1689. tp->fackets_out = 0;
  1690. }
  1691. tcp_clear_all_retrans_hints(tp);
  1692. tcp_for_write_queue(skb, sk) {
  1693. if (skb == tcp_send_head(sk))
  1694. break;
  1695. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1696. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1697. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1698. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1699. tp->lost_out += tcp_skb_pcount(skb);
  1700. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1701. }
  1702. }
  1703. tcp_verify_left_out(tp);
  1704. /* Timeout in disordered state after receiving substantial DUPACKs
  1705. * suggests that the degree of reordering is over-estimated.
  1706. */
  1707. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1708. tp->sacked_out >= sysctl_tcp_reordering)
  1709. tp->reordering = min_t(unsigned int, tp->reordering,
  1710. sysctl_tcp_reordering);
  1711. tcp_set_ca_state(sk, TCP_CA_Loss);
  1712. tp->high_seq = tp->snd_nxt;
  1713. tcp_ecn_queue_cwr(tp);
  1714. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1715. * loss recovery is underway except recurring timeout(s) on
  1716. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1717. */
  1718. tp->frto = sysctl_tcp_frto &&
  1719. (new_recovery || icsk->icsk_retransmits) &&
  1720. !inet_csk(sk)->icsk_mtup.probe_size;
  1721. }
  1722. /* If ACK arrived pointing to a remembered SACK, it means that our
  1723. * remembered SACKs do not reflect real state of receiver i.e.
  1724. * receiver _host_ is heavily congested (or buggy).
  1725. *
  1726. * To avoid big spurious retransmission bursts due to transient SACK
  1727. * scoreboard oddities that look like reneging, we give the receiver a
  1728. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1729. * restore sanity to the SACK scoreboard. If the apparent reneging
  1730. * persists until this RTO then we'll clear the SACK scoreboard.
  1731. */
  1732. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1733. {
  1734. if (flag & FLAG_SACK_RENEGING) {
  1735. struct tcp_sock *tp = tcp_sk(sk);
  1736. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1737. msecs_to_jiffies(10));
  1738. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1739. delay, TCP_RTO_MAX);
  1740. return true;
  1741. }
  1742. return false;
  1743. }
  1744. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1745. {
  1746. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1747. }
  1748. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1749. * counter when SACK is enabled (without SACK, sacked_out is used for
  1750. * that purpose).
  1751. *
  1752. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1753. * segments up to the highest received SACK block so far and holes in
  1754. * between them.
  1755. *
  1756. * With reordering, holes may still be in flight, so RFC3517 recovery
  1757. * uses pure sacked_out (total number of SACKed segments) even though
  1758. * it violates the RFC that uses duplicate ACKs, often these are equal
  1759. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1760. * they differ. Since neither occurs due to loss, TCP should really
  1761. * ignore them.
  1762. */
  1763. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1764. {
  1765. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1766. }
  1767. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1768. {
  1769. struct tcp_sock *tp = tcp_sk(sk);
  1770. unsigned long delay;
  1771. /* Delay early retransmit and entering fast recovery for
  1772. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1773. * available, or RTO is scheduled to fire first.
  1774. */
  1775. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1776. (flag & FLAG_ECE) || !tp->srtt_us)
  1777. return false;
  1778. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1779. msecs_to_jiffies(2));
  1780. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1781. return false;
  1782. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1783. TCP_RTO_MAX);
  1784. return true;
  1785. }
  1786. /* Linux NewReno/SACK/FACK/ECN state machine.
  1787. * --------------------------------------
  1788. *
  1789. * "Open" Normal state, no dubious events, fast path.
  1790. * "Disorder" In all the respects it is "Open",
  1791. * but requires a bit more attention. It is entered when
  1792. * we see some SACKs or dupacks. It is split of "Open"
  1793. * mainly to move some processing from fast path to slow one.
  1794. * "CWR" CWND was reduced due to some Congestion Notification event.
  1795. * It can be ECN, ICMP source quench, local device congestion.
  1796. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1797. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1798. *
  1799. * tcp_fastretrans_alert() is entered:
  1800. * - each incoming ACK, if state is not "Open"
  1801. * - when arrived ACK is unusual, namely:
  1802. * * SACK
  1803. * * Duplicate ACK.
  1804. * * ECN ECE.
  1805. *
  1806. * Counting packets in flight is pretty simple.
  1807. *
  1808. * in_flight = packets_out - left_out + retrans_out
  1809. *
  1810. * packets_out is SND.NXT-SND.UNA counted in packets.
  1811. *
  1812. * retrans_out is number of retransmitted segments.
  1813. *
  1814. * left_out is number of segments left network, but not ACKed yet.
  1815. *
  1816. * left_out = sacked_out + lost_out
  1817. *
  1818. * sacked_out: Packets, which arrived to receiver out of order
  1819. * and hence not ACKed. With SACKs this number is simply
  1820. * amount of SACKed data. Even without SACKs
  1821. * it is easy to give pretty reliable estimate of this number,
  1822. * counting duplicate ACKs.
  1823. *
  1824. * lost_out: Packets lost by network. TCP has no explicit
  1825. * "loss notification" feedback from network (for now).
  1826. * It means that this number can be only _guessed_.
  1827. * Actually, it is the heuristics to predict lossage that
  1828. * distinguishes different algorithms.
  1829. *
  1830. * F.e. after RTO, when all the queue is considered as lost,
  1831. * lost_out = packets_out and in_flight = retrans_out.
  1832. *
  1833. * Essentially, we have now two algorithms counting
  1834. * lost packets.
  1835. *
  1836. * FACK: It is the simplest heuristics. As soon as we decided
  1837. * that something is lost, we decide that _all_ not SACKed
  1838. * packets until the most forward SACK are lost. I.e.
  1839. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1840. * It is absolutely correct estimate, if network does not reorder
  1841. * packets. And it loses any connection to reality when reordering
  1842. * takes place. We use FACK by default until reordering
  1843. * is suspected on the path to this destination.
  1844. *
  1845. * NewReno: when Recovery is entered, we assume that one segment
  1846. * is lost (classic Reno). While we are in Recovery and
  1847. * a partial ACK arrives, we assume that one more packet
  1848. * is lost (NewReno). This heuristics are the same in NewReno
  1849. * and SACK.
  1850. *
  1851. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1852. * deflation etc. CWND is real congestion window, never inflated, changes
  1853. * only according to classic VJ rules.
  1854. *
  1855. * Really tricky (and requiring careful tuning) part of algorithm
  1856. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1857. * The first determines the moment _when_ we should reduce CWND and,
  1858. * hence, slow down forward transmission. In fact, it determines the moment
  1859. * when we decide that hole is caused by loss, rather than by a reorder.
  1860. *
  1861. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1862. * holes, caused by lost packets.
  1863. *
  1864. * And the most logically complicated part of algorithm is undo
  1865. * heuristics. We detect false retransmits due to both too early
  1866. * fast retransmit (reordering) and underestimated RTO, analyzing
  1867. * timestamps and D-SACKs. When we detect that some segments were
  1868. * retransmitted by mistake and CWND reduction was wrong, we undo
  1869. * window reduction and abort recovery phase. This logic is hidden
  1870. * inside several functions named tcp_try_undo_<something>.
  1871. */
  1872. /* This function decides, when we should leave Disordered state
  1873. * and enter Recovery phase, reducing congestion window.
  1874. *
  1875. * Main question: may we further continue forward transmission
  1876. * with the same cwnd?
  1877. */
  1878. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1879. {
  1880. struct tcp_sock *tp = tcp_sk(sk);
  1881. __u32 packets_out;
  1882. /* Trick#1: The loss is proven. */
  1883. if (tp->lost_out)
  1884. return true;
  1885. /* Not-A-Trick#2 : Classic rule... */
  1886. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1887. return true;
  1888. /* Trick#4: It is still not OK... But will it be useful to delay
  1889. * recovery more?
  1890. */
  1891. packets_out = tp->packets_out;
  1892. if (packets_out <= tp->reordering &&
  1893. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1894. !tcp_may_send_now(sk)) {
  1895. /* We have nothing to send. This connection is limited
  1896. * either by receiver window or by application.
  1897. */
  1898. return true;
  1899. }
  1900. /* If a thin stream is detected, retransmit after first
  1901. * received dupack. Employ only if SACK is supported in order
  1902. * to avoid possible corner-case series of spurious retransmissions
  1903. * Use only if there are no unsent data.
  1904. */
  1905. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1906. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1907. tcp_is_sack(tp) && !tcp_send_head(sk))
  1908. return true;
  1909. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1910. * retransmissions due to small network reorderings, we implement
  1911. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1912. * interval if appropriate.
  1913. */
  1914. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1915. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1916. !tcp_may_send_now(sk))
  1917. return !tcp_pause_early_retransmit(sk, flag);
  1918. return false;
  1919. }
  1920. /* Detect loss in event "A" above by marking head of queue up as lost.
  1921. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1922. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1923. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1924. * the maximum SACKed segments to pass before reaching this limit.
  1925. */
  1926. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1927. {
  1928. struct tcp_sock *tp = tcp_sk(sk);
  1929. struct sk_buff *skb;
  1930. int cnt, oldcnt;
  1931. int err;
  1932. unsigned int mss;
  1933. /* Use SACK to deduce losses of new sequences sent during recovery */
  1934. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1935. WARN_ON(packets > tp->packets_out);
  1936. if (tp->lost_skb_hint) {
  1937. skb = tp->lost_skb_hint;
  1938. cnt = tp->lost_cnt_hint;
  1939. /* Head already handled? */
  1940. if (mark_head && skb != tcp_write_queue_head(sk))
  1941. return;
  1942. } else {
  1943. skb = tcp_write_queue_head(sk);
  1944. cnt = 0;
  1945. }
  1946. tcp_for_write_queue_from(skb, sk) {
  1947. if (skb == tcp_send_head(sk))
  1948. break;
  1949. /* TODO: do this better */
  1950. /* this is not the most efficient way to do this... */
  1951. tp->lost_skb_hint = skb;
  1952. tp->lost_cnt_hint = cnt;
  1953. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1954. break;
  1955. oldcnt = cnt;
  1956. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1957. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1958. cnt += tcp_skb_pcount(skb);
  1959. if (cnt > packets) {
  1960. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1961. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1962. (oldcnt >= packets))
  1963. break;
  1964. mss = tcp_skb_mss(skb);
  1965. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
  1966. mss, GFP_ATOMIC);
  1967. if (err < 0)
  1968. break;
  1969. cnt = packets;
  1970. }
  1971. tcp_skb_mark_lost(tp, skb);
  1972. if (mark_head)
  1973. break;
  1974. }
  1975. tcp_verify_left_out(tp);
  1976. }
  1977. /* Account newly detected lost packet(s) */
  1978. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1979. {
  1980. struct tcp_sock *tp = tcp_sk(sk);
  1981. if (tcp_is_reno(tp)) {
  1982. tcp_mark_head_lost(sk, 1, 1);
  1983. } else if (tcp_is_fack(tp)) {
  1984. int lost = tp->fackets_out - tp->reordering;
  1985. if (lost <= 0)
  1986. lost = 1;
  1987. tcp_mark_head_lost(sk, lost, 0);
  1988. } else {
  1989. int sacked_upto = tp->sacked_out - tp->reordering;
  1990. if (sacked_upto >= 0)
  1991. tcp_mark_head_lost(sk, sacked_upto, 0);
  1992. else if (fast_rexmit)
  1993. tcp_mark_head_lost(sk, 1, 1);
  1994. }
  1995. }
  1996. /* CWND moderation, preventing bursts due to too big ACKs
  1997. * in dubious situations.
  1998. */
  1999. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2000. {
  2001. tp->snd_cwnd = min(tp->snd_cwnd,
  2002. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2003. tp->snd_cwnd_stamp = tcp_time_stamp;
  2004. }
  2005. /* Nothing was retransmitted or returned timestamp is less
  2006. * than timestamp of the first retransmission.
  2007. */
  2008. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2009. {
  2010. return !tp->retrans_stamp ||
  2011. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2012. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2013. }
  2014. /* Undo procedures. */
  2015. /* We can clear retrans_stamp when there are no retransmissions in the
  2016. * window. It would seem that it is trivially available for us in
  2017. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2018. * what will happen if errors occur when sending retransmission for the
  2019. * second time. ...It could the that such segment has only
  2020. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2021. * the head skb is enough except for some reneging corner cases that
  2022. * are not worth the effort.
  2023. *
  2024. * Main reason for all this complexity is the fact that connection dying
  2025. * time now depends on the validity of the retrans_stamp, in particular,
  2026. * that successive retransmissions of a segment must not advance
  2027. * retrans_stamp under any conditions.
  2028. */
  2029. static bool tcp_any_retrans_done(const struct sock *sk)
  2030. {
  2031. const struct tcp_sock *tp = tcp_sk(sk);
  2032. struct sk_buff *skb;
  2033. if (tp->retrans_out)
  2034. return true;
  2035. skb = tcp_write_queue_head(sk);
  2036. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2037. return true;
  2038. return false;
  2039. }
  2040. #if FASTRETRANS_DEBUG > 1
  2041. static void DBGUNDO(struct sock *sk, const char *msg)
  2042. {
  2043. struct tcp_sock *tp = tcp_sk(sk);
  2044. struct inet_sock *inet = inet_sk(sk);
  2045. if (sk->sk_family == AF_INET) {
  2046. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2047. msg,
  2048. &inet->inet_daddr, ntohs(inet->inet_dport),
  2049. tp->snd_cwnd, tcp_left_out(tp),
  2050. tp->snd_ssthresh, tp->prior_ssthresh,
  2051. tp->packets_out);
  2052. }
  2053. #if IS_ENABLED(CONFIG_IPV6)
  2054. else if (sk->sk_family == AF_INET6) {
  2055. struct ipv6_pinfo *np = inet6_sk(sk);
  2056. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2057. msg,
  2058. &np->daddr, ntohs(inet->inet_dport),
  2059. tp->snd_cwnd, tcp_left_out(tp),
  2060. tp->snd_ssthresh, tp->prior_ssthresh,
  2061. tp->packets_out);
  2062. }
  2063. #endif
  2064. }
  2065. #else
  2066. #define DBGUNDO(x...) do { } while (0)
  2067. #endif
  2068. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2069. {
  2070. struct tcp_sock *tp = tcp_sk(sk);
  2071. if (unmark_loss) {
  2072. struct sk_buff *skb;
  2073. tcp_for_write_queue(skb, sk) {
  2074. if (skb == tcp_send_head(sk))
  2075. break;
  2076. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2077. }
  2078. tp->lost_out = 0;
  2079. tcp_clear_all_retrans_hints(tp);
  2080. }
  2081. if (tp->prior_ssthresh) {
  2082. const struct inet_connection_sock *icsk = inet_csk(sk);
  2083. if (icsk->icsk_ca_ops->undo_cwnd)
  2084. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2085. else
  2086. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2087. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2088. tp->snd_ssthresh = tp->prior_ssthresh;
  2089. tcp_ecn_withdraw_cwr(tp);
  2090. }
  2091. } else {
  2092. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2093. }
  2094. tp->snd_cwnd_stamp = tcp_time_stamp;
  2095. tp->undo_marker = 0;
  2096. }
  2097. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2098. {
  2099. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2100. }
  2101. /* People celebrate: "We love our President!" */
  2102. static bool tcp_try_undo_recovery(struct sock *sk)
  2103. {
  2104. struct tcp_sock *tp = tcp_sk(sk);
  2105. if (tcp_may_undo(tp)) {
  2106. int mib_idx;
  2107. /* Happy end! We did not retransmit anything
  2108. * or our original transmission succeeded.
  2109. */
  2110. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2111. tcp_undo_cwnd_reduction(sk, false);
  2112. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2113. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2114. else
  2115. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2116. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2117. }
  2118. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2119. /* Hold old state until something *above* high_seq
  2120. * is ACKed. For Reno it is MUST to prevent false
  2121. * fast retransmits (RFC2582). SACK TCP is safe. */
  2122. tcp_moderate_cwnd(tp);
  2123. if (!tcp_any_retrans_done(sk))
  2124. tp->retrans_stamp = 0;
  2125. return true;
  2126. }
  2127. tcp_set_ca_state(sk, TCP_CA_Open);
  2128. return false;
  2129. }
  2130. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2131. static bool tcp_try_undo_dsack(struct sock *sk)
  2132. {
  2133. struct tcp_sock *tp = tcp_sk(sk);
  2134. if (tp->undo_marker && !tp->undo_retrans) {
  2135. DBGUNDO(sk, "D-SACK");
  2136. tcp_undo_cwnd_reduction(sk, false);
  2137. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2138. return true;
  2139. }
  2140. return false;
  2141. }
  2142. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2143. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2144. {
  2145. struct tcp_sock *tp = tcp_sk(sk);
  2146. if (frto_undo || tcp_may_undo(tp)) {
  2147. tcp_undo_cwnd_reduction(sk, true);
  2148. DBGUNDO(sk, "partial loss");
  2149. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2150. if (frto_undo)
  2151. NET_INC_STATS_BH(sock_net(sk),
  2152. LINUX_MIB_TCPSPURIOUSRTOS);
  2153. inet_csk(sk)->icsk_retransmits = 0;
  2154. if (frto_undo || tcp_is_sack(tp))
  2155. tcp_set_ca_state(sk, TCP_CA_Open);
  2156. return true;
  2157. }
  2158. return false;
  2159. }
  2160. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2161. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2162. * It computes the number of packets to send (sndcnt) based on packets newly
  2163. * delivered:
  2164. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2165. * cwnd reductions across a full RTT.
  2166. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2167. * losses and/or application stalls), do not perform any further cwnd
  2168. * reductions, but instead slow start up to ssthresh.
  2169. */
  2170. static void tcp_init_cwnd_reduction(struct sock *sk)
  2171. {
  2172. struct tcp_sock *tp = tcp_sk(sk);
  2173. tp->high_seq = tp->snd_nxt;
  2174. tp->tlp_high_seq = 0;
  2175. tp->snd_cwnd_cnt = 0;
  2176. tp->prior_cwnd = tp->snd_cwnd;
  2177. tp->prr_delivered = 0;
  2178. tp->prr_out = 0;
  2179. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2180. tcp_ecn_queue_cwr(tp);
  2181. }
  2182. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2183. int fast_rexmit)
  2184. {
  2185. struct tcp_sock *tp = tcp_sk(sk);
  2186. int sndcnt = 0;
  2187. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2188. int newly_acked_sacked = prior_unsacked -
  2189. (tp->packets_out - tp->sacked_out);
  2190. tp->prr_delivered += newly_acked_sacked;
  2191. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2192. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2193. tp->prior_cwnd - 1;
  2194. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2195. } else {
  2196. sndcnt = min_t(int, delta,
  2197. max_t(int, tp->prr_delivered - tp->prr_out,
  2198. newly_acked_sacked) + 1);
  2199. }
  2200. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2201. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2202. }
  2203. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2204. {
  2205. struct tcp_sock *tp = tcp_sk(sk);
  2206. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2207. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2208. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2209. tp->snd_cwnd = tp->snd_ssthresh;
  2210. tp->snd_cwnd_stamp = tcp_time_stamp;
  2211. }
  2212. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2213. }
  2214. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2215. void tcp_enter_cwr(struct sock *sk)
  2216. {
  2217. struct tcp_sock *tp = tcp_sk(sk);
  2218. tp->prior_ssthresh = 0;
  2219. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2220. tp->undo_marker = 0;
  2221. tcp_init_cwnd_reduction(sk);
  2222. tcp_set_ca_state(sk, TCP_CA_CWR);
  2223. }
  2224. }
  2225. EXPORT_SYMBOL(tcp_enter_cwr);
  2226. static void tcp_try_keep_open(struct sock *sk)
  2227. {
  2228. struct tcp_sock *tp = tcp_sk(sk);
  2229. int state = TCP_CA_Open;
  2230. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2231. state = TCP_CA_Disorder;
  2232. if (inet_csk(sk)->icsk_ca_state != state) {
  2233. tcp_set_ca_state(sk, state);
  2234. tp->high_seq = tp->snd_nxt;
  2235. }
  2236. }
  2237. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2238. {
  2239. struct tcp_sock *tp = tcp_sk(sk);
  2240. tcp_verify_left_out(tp);
  2241. if (!tcp_any_retrans_done(sk))
  2242. tp->retrans_stamp = 0;
  2243. if (flag & FLAG_ECE)
  2244. tcp_enter_cwr(sk);
  2245. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2246. tcp_try_keep_open(sk);
  2247. } else {
  2248. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2249. }
  2250. }
  2251. static void tcp_mtup_probe_failed(struct sock *sk)
  2252. {
  2253. struct inet_connection_sock *icsk = inet_csk(sk);
  2254. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2255. icsk->icsk_mtup.probe_size = 0;
  2256. }
  2257. static void tcp_mtup_probe_success(struct sock *sk)
  2258. {
  2259. struct tcp_sock *tp = tcp_sk(sk);
  2260. struct inet_connection_sock *icsk = inet_csk(sk);
  2261. /* FIXME: breaks with very large cwnd */
  2262. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2263. tp->snd_cwnd = tp->snd_cwnd *
  2264. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2265. icsk->icsk_mtup.probe_size;
  2266. tp->snd_cwnd_cnt = 0;
  2267. tp->snd_cwnd_stamp = tcp_time_stamp;
  2268. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2269. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2270. icsk->icsk_mtup.probe_size = 0;
  2271. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2272. }
  2273. /* Do a simple retransmit without using the backoff mechanisms in
  2274. * tcp_timer. This is used for path mtu discovery.
  2275. * The socket is already locked here.
  2276. */
  2277. void tcp_simple_retransmit(struct sock *sk)
  2278. {
  2279. const struct inet_connection_sock *icsk = inet_csk(sk);
  2280. struct tcp_sock *tp = tcp_sk(sk);
  2281. struct sk_buff *skb;
  2282. unsigned int mss = tcp_current_mss(sk);
  2283. u32 prior_lost = tp->lost_out;
  2284. tcp_for_write_queue(skb, sk) {
  2285. if (skb == tcp_send_head(sk))
  2286. break;
  2287. if (tcp_skb_seglen(skb) > mss &&
  2288. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2289. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2290. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2291. tp->retrans_out -= tcp_skb_pcount(skb);
  2292. }
  2293. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2294. }
  2295. }
  2296. tcp_clear_retrans_hints_partial(tp);
  2297. if (prior_lost == tp->lost_out)
  2298. return;
  2299. if (tcp_is_reno(tp))
  2300. tcp_limit_reno_sacked(tp);
  2301. tcp_verify_left_out(tp);
  2302. /* Don't muck with the congestion window here.
  2303. * Reason is that we do not increase amount of _data_
  2304. * in network, but units changed and effective
  2305. * cwnd/ssthresh really reduced now.
  2306. */
  2307. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2308. tp->high_seq = tp->snd_nxt;
  2309. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2310. tp->prior_ssthresh = 0;
  2311. tp->undo_marker = 0;
  2312. tcp_set_ca_state(sk, TCP_CA_Loss);
  2313. }
  2314. tcp_xmit_retransmit_queue(sk);
  2315. }
  2316. EXPORT_SYMBOL(tcp_simple_retransmit);
  2317. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2318. {
  2319. struct tcp_sock *tp = tcp_sk(sk);
  2320. int mib_idx;
  2321. if (tcp_is_reno(tp))
  2322. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2323. else
  2324. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2325. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2326. tp->prior_ssthresh = 0;
  2327. tcp_init_undo(tp);
  2328. if (!tcp_in_cwnd_reduction(sk)) {
  2329. if (!ece_ack)
  2330. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2331. tcp_init_cwnd_reduction(sk);
  2332. }
  2333. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2334. }
  2335. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2336. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2337. */
  2338. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2339. {
  2340. struct tcp_sock *tp = tcp_sk(sk);
  2341. bool recovered = !before(tp->snd_una, tp->high_seq);
  2342. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2343. tcp_try_undo_loss(sk, false))
  2344. return;
  2345. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2346. /* Step 3.b. A timeout is spurious if not all data are
  2347. * lost, i.e., never-retransmitted data are (s)acked.
  2348. */
  2349. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2350. tcp_try_undo_loss(sk, true))
  2351. return;
  2352. if (after(tp->snd_nxt, tp->high_seq)) {
  2353. if (flag & FLAG_DATA_SACKED || is_dupack)
  2354. tp->frto = 0; /* Step 3.a. loss was real */
  2355. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2356. tp->high_seq = tp->snd_nxt;
  2357. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2358. TCP_NAGLE_OFF);
  2359. if (after(tp->snd_nxt, tp->high_seq))
  2360. return; /* Step 2.b */
  2361. tp->frto = 0;
  2362. }
  2363. }
  2364. if (recovered) {
  2365. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2366. tcp_try_undo_recovery(sk);
  2367. return;
  2368. }
  2369. if (tcp_is_reno(tp)) {
  2370. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2371. * delivered. Lower inflight to clock out (re)tranmissions.
  2372. */
  2373. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2374. tcp_add_reno_sack(sk);
  2375. else if (flag & FLAG_SND_UNA_ADVANCED)
  2376. tcp_reset_reno_sack(tp);
  2377. }
  2378. tcp_xmit_retransmit_queue(sk);
  2379. }
  2380. /* Undo during fast recovery after partial ACK. */
  2381. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2382. const int prior_unsacked)
  2383. {
  2384. struct tcp_sock *tp = tcp_sk(sk);
  2385. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2386. /* Plain luck! Hole if filled with delayed
  2387. * packet, rather than with a retransmit.
  2388. */
  2389. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2390. /* We are getting evidence that the reordering degree is higher
  2391. * than we realized. If there are no retransmits out then we
  2392. * can undo. Otherwise we clock out new packets but do not
  2393. * mark more packets lost or retransmit more.
  2394. */
  2395. if (tp->retrans_out) {
  2396. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2397. return true;
  2398. }
  2399. if (!tcp_any_retrans_done(sk))
  2400. tp->retrans_stamp = 0;
  2401. DBGUNDO(sk, "partial recovery");
  2402. tcp_undo_cwnd_reduction(sk, true);
  2403. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2404. tcp_try_keep_open(sk);
  2405. return true;
  2406. }
  2407. return false;
  2408. }
  2409. /* Process an event, which can update packets-in-flight not trivially.
  2410. * Main goal of this function is to calculate new estimate for left_out,
  2411. * taking into account both packets sitting in receiver's buffer and
  2412. * packets lost by network.
  2413. *
  2414. * Besides that it does CWND reduction, when packet loss is detected
  2415. * and changes state of machine.
  2416. *
  2417. * It does _not_ decide what to send, it is made in function
  2418. * tcp_xmit_retransmit_queue().
  2419. */
  2420. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2421. const int prior_unsacked,
  2422. bool is_dupack, int flag)
  2423. {
  2424. struct inet_connection_sock *icsk = inet_csk(sk);
  2425. struct tcp_sock *tp = tcp_sk(sk);
  2426. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2427. (tcp_fackets_out(tp) > tp->reordering));
  2428. int fast_rexmit = 0;
  2429. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2430. tp->sacked_out = 0;
  2431. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2432. tp->fackets_out = 0;
  2433. /* Now state machine starts.
  2434. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2435. if (flag & FLAG_ECE)
  2436. tp->prior_ssthresh = 0;
  2437. /* B. In all the states check for reneging SACKs. */
  2438. if (tcp_check_sack_reneging(sk, flag))
  2439. return;
  2440. /* C. Check consistency of the current state. */
  2441. tcp_verify_left_out(tp);
  2442. /* D. Check state exit conditions. State can be terminated
  2443. * when high_seq is ACKed. */
  2444. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2445. WARN_ON(tp->retrans_out != 0);
  2446. tp->retrans_stamp = 0;
  2447. } else if (!before(tp->snd_una, tp->high_seq)) {
  2448. switch (icsk->icsk_ca_state) {
  2449. case TCP_CA_CWR:
  2450. /* CWR is to be held something *above* high_seq
  2451. * is ACKed for CWR bit to reach receiver. */
  2452. if (tp->snd_una != tp->high_seq) {
  2453. tcp_end_cwnd_reduction(sk);
  2454. tcp_set_ca_state(sk, TCP_CA_Open);
  2455. }
  2456. break;
  2457. case TCP_CA_Recovery:
  2458. if (tcp_is_reno(tp))
  2459. tcp_reset_reno_sack(tp);
  2460. if (tcp_try_undo_recovery(sk))
  2461. return;
  2462. tcp_end_cwnd_reduction(sk);
  2463. break;
  2464. }
  2465. }
  2466. /* E. Process state. */
  2467. switch (icsk->icsk_ca_state) {
  2468. case TCP_CA_Recovery:
  2469. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2470. if (tcp_is_reno(tp) && is_dupack)
  2471. tcp_add_reno_sack(sk);
  2472. } else {
  2473. if (tcp_try_undo_partial(sk, acked, prior_unsacked))
  2474. return;
  2475. /* Partial ACK arrived. Force fast retransmit. */
  2476. do_lost = tcp_is_reno(tp) ||
  2477. tcp_fackets_out(tp) > tp->reordering;
  2478. }
  2479. if (tcp_try_undo_dsack(sk)) {
  2480. tcp_try_keep_open(sk);
  2481. return;
  2482. }
  2483. break;
  2484. case TCP_CA_Loss:
  2485. tcp_process_loss(sk, flag, is_dupack);
  2486. if (icsk->icsk_ca_state != TCP_CA_Open &&
  2487. !(flag & FLAG_LOST_RETRANS))
  2488. return;
  2489. /* Change state if cwnd is undone or retransmits are lost */
  2490. default:
  2491. if (tcp_is_reno(tp)) {
  2492. if (flag & FLAG_SND_UNA_ADVANCED)
  2493. tcp_reset_reno_sack(tp);
  2494. if (is_dupack)
  2495. tcp_add_reno_sack(sk);
  2496. }
  2497. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2498. tcp_try_undo_dsack(sk);
  2499. if (!tcp_time_to_recover(sk, flag)) {
  2500. tcp_try_to_open(sk, flag, prior_unsacked);
  2501. return;
  2502. }
  2503. /* MTU probe failure: don't reduce cwnd */
  2504. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2505. icsk->icsk_mtup.probe_size &&
  2506. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2507. tcp_mtup_probe_failed(sk);
  2508. /* Restores the reduction we did in tcp_mtup_probe() */
  2509. tp->snd_cwnd++;
  2510. tcp_simple_retransmit(sk);
  2511. return;
  2512. }
  2513. /* Otherwise enter Recovery state */
  2514. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2515. fast_rexmit = 1;
  2516. }
  2517. if (do_lost)
  2518. tcp_update_scoreboard(sk, fast_rexmit);
  2519. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
  2520. tcp_xmit_retransmit_queue(sk);
  2521. }
  2522. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2523. long seq_rtt_us, long sack_rtt_us)
  2524. {
  2525. const struct tcp_sock *tp = tcp_sk(sk);
  2526. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2527. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2528. * Karn's algorithm forbids taking RTT if some retransmitted data
  2529. * is acked (RFC6298).
  2530. */
  2531. if (flag & FLAG_RETRANS_DATA_ACKED)
  2532. seq_rtt_us = -1L;
  2533. if (seq_rtt_us < 0)
  2534. seq_rtt_us = sack_rtt_us;
  2535. /* RTTM Rule: A TSecr value received in a segment is used to
  2536. * update the averaged RTT measurement only if the segment
  2537. * acknowledges some new data, i.e., only if it advances the
  2538. * left edge of the send window.
  2539. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2540. */
  2541. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2542. flag & FLAG_ACKED)
  2543. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2544. if (seq_rtt_us < 0)
  2545. return false;
  2546. tcp_rtt_estimator(sk, seq_rtt_us);
  2547. tcp_set_rto(sk);
  2548. /* RFC6298: only reset backoff on valid RTT measurement. */
  2549. inet_csk(sk)->icsk_backoff = 0;
  2550. return true;
  2551. }
  2552. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2553. static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
  2554. {
  2555. struct tcp_sock *tp = tcp_sk(sk);
  2556. long seq_rtt_us = -1L;
  2557. if (synack_stamp && !tp->total_retrans)
  2558. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
  2559. /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
  2560. * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
  2561. */
  2562. if (!tp->srtt_us)
  2563. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
  2564. }
  2565. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2566. {
  2567. const struct inet_connection_sock *icsk = inet_csk(sk);
  2568. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2569. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2570. }
  2571. /* Restart timer after forward progress on connection.
  2572. * RFC2988 recommends to restart timer to now+rto.
  2573. */
  2574. void tcp_rearm_rto(struct sock *sk)
  2575. {
  2576. const struct inet_connection_sock *icsk = inet_csk(sk);
  2577. struct tcp_sock *tp = tcp_sk(sk);
  2578. /* If the retrans timer is currently being used by Fast Open
  2579. * for SYN-ACK retrans purpose, stay put.
  2580. */
  2581. if (tp->fastopen_rsk)
  2582. return;
  2583. if (!tp->packets_out) {
  2584. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2585. } else {
  2586. u32 rto = inet_csk(sk)->icsk_rto;
  2587. /* Offset the time elapsed after installing regular RTO */
  2588. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2589. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2590. struct sk_buff *skb = tcp_write_queue_head(sk);
  2591. const u32 rto_time_stamp =
  2592. tcp_skb_timestamp(skb) + rto;
  2593. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2594. /* delta may not be positive if the socket is locked
  2595. * when the retrans timer fires and is rescheduled.
  2596. */
  2597. if (delta > 0)
  2598. rto = delta;
  2599. }
  2600. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2601. TCP_RTO_MAX);
  2602. }
  2603. }
  2604. /* This function is called when the delayed ER timer fires. TCP enters
  2605. * fast recovery and performs fast-retransmit.
  2606. */
  2607. void tcp_resume_early_retransmit(struct sock *sk)
  2608. {
  2609. struct tcp_sock *tp = tcp_sk(sk);
  2610. tcp_rearm_rto(sk);
  2611. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2612. if (!tp->do_early_retrans)
  2613. return;
  2614. tcp_enter_recovery(sk, false);
  2615. tcp_update_scoreboard(sk, 1);
  2616. tcp_xmit_retransmit_queue(sk);
  2617. }
  2618. /* If we get here, the whole TSO packet has not been acked. */
  2619. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2620. {
  2621. struct tcp_sock *tp = tcp_sk(sk);
  2622. u32 packets_acked;
  2623. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2624. packets_acked = tcp_skb_pcount(skb);
  2625. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2626. return 0;
  2627. packets_acked -= tcp_skb_pcount(skb);
  2628. if (packets_acked) {
  2629. BUG_ON(tcp_skb_pcount(skb) == 0);
  2630. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2631. }
  2632. return packets_acked;
  2633. }
  2634. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2635. u32 prior_snd_una)
  2636. {
  2637. const struct skb_shared_info *shinfo;
  2638. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2639. if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
  2640. return;
  2641. shinfo = skb_shinfo(skb);
  2642. if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
  2643. between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
  2644. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2645. }
  2646. /* Remove acknowledged frames from the retransmission queue. If our packet
  2647. * is before the ack sequence we can discard it as it's confirmed to have
  2648. * arrived at the other end.
  2649. */
  2650. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2651. u32 prior_snd_una,
  2652. struct tcp_sacktag_state *sack)
  2653. {
  2654. const struct inet_connection_sock *icsk = inet_csk(sk);
  2655. struct skb_mstamp first_ackt, last_ackt, now;
  2656. struct tcp_sock *tp = tcp_sk(sk);
  2657. u32 prior_sacked = tp->sacked_out;
  2658. u32 reord = tp->packets_out;
  2659. bool fully_acked = true;
  2660. long sack_rtt_us = -1L;
  2661. long seq_rtt_us = -1L;
  2662. long ca_rtt_us = -1L;
  2663. struct sk_buff *skb;
  2664. u32 pkts_acked = 0;
  2665. bool rtt_update;
  2666. int flag = 0;
  2667. first_ackt.v64 = 0;
  2668. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2669. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2670. u8 sacked = scb->sacked;
  2671. u32 acked_pcount;
  2672. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2673. /* Determine how many packets and what bytes were acked, tso and else */
  2674. if (after(scb->end_seq, tp->snd_una)) {
  2675. if (tcp_skb_pcount(skb) == 1 ||
  2676. !after(tp->snd_una, scb->seq))
  2677. break;
  2678. acked_pcount = tcp_tso_acked(sk, skb);
  2679. if (!acked_pcount)
  2680. break;
  2681. fully_acked = false;
  2682. } else {
  2683. /* Speedup tcp_unlink_write_queue() and next loop */
  2684. prefetchw(skb->next);
  2685. acked_pcount = tcp_skb_pcount(skb);
  2686. }
  2687. if (unlikely(sacked & TCPCB_RETRANS)) {
  2688. if (sacked & TCPCB_SACKED_RETRANS)
  2689. tp->retrans_out -= acked_pcount;
  2690. flag |= FLAG_RETRANS_DATA_ACKED;
  2691. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2692. last_ackt = skb->skb_mstamp;
  2693. WARN_ON_ONCE(last_ackt.v64 == 0);
  2694. if (!first_ackt.v64)
  2695. first_ackt = last_ackt;
  2696. reord = min(pkts_acked, reord);
  2697. if (!after(scb->end_seq, tp->high_seq))
  2698. flag |= FLAG_ORIG_SACK_ACKED;
  2699. }
  2700. if (sacked & TCPCB_SACKED_ACKED)
  2701. tp->sacked_out -= acked_pcount;
  2702. if (sacked & TCPCB_LOST)
  2703. tp->lost_out -= acked_pcount;
  2704. tp->packets_out -= acked_pcount;
  2705. pkts_acked += acked_pcount;
  2706. /* Initial outgoing SYN's get put onto the write_queue
  2707. * just like anything else we transmit. It is not
  2708. * true data, and if we misinform our callers that
  2709. * this ACK acks real data, we will erroneously exit
  2710. * connection startup slow start one packet too
  2711. * quickly. This is severely frowned upon behavior.
  2712. */
  2713. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2714. flag |= FLAG_DATA_ACKED;
  2715. } else {
  2716. flag |= FLAG_SYN_ACKED;
  2717. tp->retrans_stamp = 0;
  2718. }
  2719. if (!fully_acked)
  2720. break;
  2721. tcp_unlink_write_queue(skb, sk);
  2722. sk_wmem_free_skb(sk, skb);
  2723. if (unlikely(skb == tp->retransmit_skb_hint))
  2724. tp->retransmit_skb_hint = NULL;
  2725. if (unlikely(skb == tp->lost_skb_hint))
  2726. tp->lost_skb_hint = NULL;
  2727. }
  2728. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2729. tp->snd_up = tp->snd_una;
  2730. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2731. flag |= FLAG_SACK_RENEGING;
  2732. skb_mstamp_get(&now);
  2733. if (likely(first_ackt.v64)) {
  2734. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2735. ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2736. }
  2737. if (sack->first_sackt.v64) {
  2738. sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
  2739. ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
  2740. }
  2741. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
  2742. if (flag & FLAG_ACKED) {
  2743. tcp_rearm_rto(sk);
  2744. if (unlikely(icsk->icsk_mtup.probe_size &&
  2745. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2746. tcp_mtup_probe_success(sk);
  2747. }
  2748. if (tcp_is_reno(tp)) {
  2749. tcp_remove_reno_sacks(sk, pkts_acked);
  2750. } else {
  2751. int delta;
  2752. /* Non-retransmitted hole got filled? That's reordering */
  2753. if (reord < prior_fackets)
  2754. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2755. delta = tcp_is_fack(tp) ? pkts_acked :
  2756. prior_sacked - tp->sacked_out;
  2757. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2758. }
  2759. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2760. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2761. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2762. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2763. * after when the head was last (re)transmitted. Otherwise the
  2764. * timeout may continue to extend in loss recovery.
  2765. */
  2766. tcp_rearm_rto(sk);
  2767. }
  2768. if (icsk->icsk_ca_ops->pkts_acked)
  2769. icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
  2770. #if FASTRETRANS_DEBUG > 0
  2771. WARN_ON((int)tp->sacked_out < 0);
  2772. WARN_ON((int)tp->lost_out < 0);
  2773. WARN_ON((int)tp->retrans_out < 0);
  2774. if (!tp->packets_out && tcp_is_sack(tp)) {
  2775. icsk = inet_csk(sk);
  2776. if (tp->lost_out) {
  2777. pr_debug("Leak l=%u %d\n",
  2778. tp->lost_out, icsk->icsk_ca_state);
  2779. tp->lost_out = 0;
  2780. }
  2781. if (tp->sacked_out) {
  2782. pr_debug("Leak s=%u %d\n",
  2783. tp->sacked_out, icsk->icsk_ca_state);
  2784. tp->sacked_out = 0;
  2785. }
  2786. if (tp->retrans_out) {
  2787. pr_debug("Leak r=%u %d\n",
  2788. tp->retrans_out, icsk->icsk_ca_state);
  2789. tp->retrans_out = 0;
  2790. }
  2791. }
  2792. #endif
  2793. return flag;
  2794. }
  2795. static void tcp_ack_probe(struct sock *sk)
  2796. {
  2797. const struct tcp_sock *tp = tcp_sk(sk);
  2798. struct inet_connection_sock *icsk = inet_csk(sk);
  2799. /* Was it a usable window open? */
  2800. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2801. icsk->icsk_backoff = 0;
  2802. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2803. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2804. * This function is not for random using!
  2805. */
  2806. } else {
  2807. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2808. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2809. when, TCP_RTO_MAX);
  2810. }
  2811. }
  2812. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2813. {
  2814. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2815. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2816. }
  2817. /* Decide wheather to run the increase function of congestion control. */
  2818. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2819. {
  2820. if (tcp_in_cwnd_reduction(sk))
  2821. return false;
  2822. /* If reordering is high then always grow cwnd whenever data is
  2823. * delivered regardless of its ordering. Otherwise stay conservative
  2824. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2825. * new SACK or ECE mark may first advance cwnd here and later reduce
  2826. * cwnd in tcp_fastretrans_alert() based on more states.
  2827. */
  2828. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2829. return flag & FLAG_FORWARD_PROGRESS;
  2830. return flag & FLAG_DATA_ACKED;
  2831. }
  2832. /* Check that window update is acceptable.
  2833. * The function assumes that snd_una<=ack<=snd_next.
  2834. */
  2835. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2836. const u32 ack, const u32 ack_seq,
  2837. const u32 nwin)
  2838. {
  2839. return after(ack, tp->snd_una) ||
  2840. after(ack_seq, tp->snd_wl1) ||
  2841. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2842. }
  2843. /* If we update tp->snd_una, also update tp->bytes_acked */
  2844. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2845. {
  2846. u32 delta = ack - tp->snd_una;
  2847. u64_stats_update_begin(&tp->syncp);
  2848. tp->bytes_acked += delta;
  2849. u64_stats_update_end(&tp->syncp);
  2850. tp->snd_una = ack;
  2851. }
  2852. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2853. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2854. {
  2855. u32 delta = seq - tp->rcv_nxt;
  2856. u64_stats_update_begin(&tp->syncp);
  2857. tp->bytes_received += delta;
  2858. u64_stats_update_end(&tp->syncp);
  2859. tp->rcv_nxt = seq;
  2860. }
  2861. /* Update our send window.
  2862. *
  2863. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2864. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2865. */
  2866. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2867. u32 ack_seq)
  2868. {
  2869. struct tcp_sock *tp = tcp_sk(sk);
  2870. int flag = 0;
  2871. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2872. if (likely(!tcp_hdr(skb)->syn))
  2873. nwin <<= tp->rx_opt.snd_wscale;
  2874. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2875. flag |= FLAG_WIN_UPDATE;
  2876. tcp_update_wl(tp, ack_seq);
  2877. if (tp->snd_wnd != nwin) {
  2878. tp->snd_wnd = nwin;
  2879. /* Note, it is the only place, where
  2880. * fast path is recovered for sending TCP.
  2881. */
  2882. tp->pred_flags = 0;
  2883. tcp_fast_path_check(sk);
  2884. if (nwin > tp->max_window) {
  2885. tp->max_window = nwin;
  2886. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2887. }
  2888. }
  2889. }
  2890. tcp_snd_una_update(tp, ack);
  2891. return flag;
  2892. }
  2893. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2894. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2895. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2896. * attacks that send repeated SYNs or ACKs for the same connection. To
  2897. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2898. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2899. */
  2900. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2901. int mib_idx, u32 *last_oow_ack_time)
  2902. {
  2903. /* Data packets without SYNs are not likely part of an ACK loop. */
  2904. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2905. !tcp_hdr(skb)->syn)
  2906. goto not_rate_limited;
  2907. if (*last_oow_ack_time) {
  2908. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2909. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2910. NET_INC_STATS_BH(net, mib_idx);
  2911. return true; /* rate-limited: don't send yet! */
  2912. }
  2913. }
  2914. *last_oow_ack_time = tcp_time_stamp;
  2915. not_rate_limited:
  2916. return false; /* not rate-limited: go ahead, send dupack now! */
  2917. }
  2918. /* RFC 5961 7 [ACK Throttling] */
  2919. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2920. {
  2921. /* unprotected vars, we dont care of overwrites */
  2922. static u32 challenge_timestamp;
  2923. static unsigned int challenge_count;
  2924. struct tcp_sock *tp = tcp_sk(sk);
  2925. u32 now;
  2926. /* First check our per-socket dupack rate limit. */
  2927. if (tcp_oow_rate_limited(sock_net(sk), skb,
  2928. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2929. &tp->last_oow_ack_time))
  2930. return;
  2931. /* Then check the check host-wide RFC 5961 rate limit. */
  2932. now = jiffies / HZ;
  2933. if (now != challenge_timestamp) {
  2934. challenge_timestamp = now;
  2935. challenge_count = 0;
  2936. }
  2937. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2938. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2939. tcp_send_ack(sk);
  2940. }
  2941. }
  2942. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2943. {
  2944. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2945. tp->rx_opt.ts_recent_stamp = get_seconds();
  2946. }
  2947. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2948. {
  2949. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2950. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2951. * extra check below makes sure this can only happen
  2952. * for pure ACK frames. -DaveM
  2953. *
  2954. * Not only, also it occurs for expired timestamps.
  2955. */
  2956. if (tcp_paws_check(&tp->rx_opt, 0))
  2957. tcp_store_ts_recent(tp);
  2958. }
  2959. }
  2960. /* This routine deals with acks during a TLP episode.
  2961. * We mark the end of a TLP episode on receiving TLP dupack or when
  2962. * ack is after tlp_high_seq.
  2963. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2964. */
  2965. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2966. {
  2967. struct tcp_sock *tp = tcp_sk(sk);
  2968. if (before(ack, tp->tlp_high_seq))
  2969. return;
  2970. if (flag & FLAG_DSACKING_ACK) {
  2971. /* This DSACK means original and TLP probe arrived; no loss */
  2972. tp->tlp_high_seq = 0;
  2973. } else if (after(ack, tp->tlp_high_seq)) {
  2974. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2975. * tlp_high_seq in tcp_init_cwnd_reduction()
  2976. */
  2977. tcp_init_cwnd_reduction(sk);
  2978. tcp_set_ca_state(sk, TCP_CA_CWR);
  2979. tcp_end_cwnd_reduction(sk);
  2980. tcp_try_keep_open(sk);
  2981. NET_INC_STATS_BH(sock_net(sk),
  2982. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2983. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  2984. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  2985. /* Pure dupack: original and TLP probe arrived; no loss */
  2986. tp->tlp_high_seq = 0;
  2987. }
  2988. }
  2989. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  2990. {
  2991. const struct inet_connection_sock *icsk = inet_csk(sk);
  2992. if (icsk->icsk_ca_ops->in_ack_event)
  2993. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  2994. }
  2995. /* This routine deals with incoming acks, but not outgoing ones. */
  2996. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2997. {
  2998. struct inet_connection_sock *icsk = inet_csk(sk);
  2999. struct tcp_sock *tp = tcp_sk(sk);
  3000. struct tcp_sacktag_state sack_state;
  3001. u32 prior_snd_una = tp->snd_una;
  3002. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3003. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3004. bool is_dupack = false;
  3005. u32 prior_fackets;
  3006. int prior_packets = tp->packets_out;
  3007. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  3008. int acked = 0; /* Number of packets newly acked */
  3009. sack_state.first_sackt.v64 = 0;
  3010. /* We very likely will need to access write queue head. */
  3011. prefetchw(sk->sk_write_queue.next);
  3012. /* If the ack is older than previous acks
  3013. * then we can probably ignore it.
  3014. */
  3015. if (before(ack, prior_snd_una)) {
  3016. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3017. if (before(ack, prior_snd_una - tp->max_window)) {
  3018. tcp_send_challenge_ack(sk, skb);
  3019. return -1;
  3020. }
  3021. goto old_ack;
  3022. }
  3023. /* If the ack includes data we haven't sent yet, discard
  3024. * this segment (RFC793 Section 3.9).
  3025. */
  3026. if (after(ack, tp->snd_nxt))
  3027. goto invalid_ack;
  3028. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3029. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3030. tcp_rearm_rto(sk);
  3031. if (after(ack, prior_snd_una)) {
  3032. flag |= FLAG_SND_UNA_ADVANCED;
  3033. icsk->icsk_retransmits = 0;
  3034. }
  3035. prior_fackets = tp->fackets_out;
  3036. /* ts_recent update must be made after we are sure that the packet
  3037. * is in window.
  3038. */
  3039. if (flag & FLAG_UPDATE_TS_RECENT)
  3040. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3041. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3042. /* Window is constant, pure forward advance.
  3043. * No more checks are required.
  3044. * Note, we use the fact that SND.UNA>=SND.WL2.
  3045. */
  3046. tcp_update_wl(tp, ack_seq);
  3047. tcp_snd_una_update(tp, ack);
  3048. flag |= FLAG_WIN_UPDATE;
  3049. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3050. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3051. } else {
  3052. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3053. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3054. flag |= FLAG_DATA;
  3055. else
  3056. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3057. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3058. if (TCP_SKB_CB(skb)->sacked)
  3059. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3060. &sack_state);
  3061. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3062. flag |= FLAG_ECE;
  3063. ack_ev_flags |= CA_ACK_ECE;
  3064. }
  3065. if (flag & FLAG_WIN_UPDATE)
  3066. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3067. tcp_in_ack_event(sk, ack_ev_flags);
  3068. }
  3069. /* We passed data and got it acked, remove any soft error
  3070. * log. Something worked...
  3071. */
  3072. sk->sk_err_soft = 0;
  3073. icsk->icsk_probes_out = 0;
  3074. tp->rcv_tstamp = tcp_time_stamp;
  3075. if (!prior_packets)
  3076. goto no_queue;
  3077. /* See if we can take anything off of the retransmit queue. */
  3078. acked = tp->packets_out;
  3079. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  3080. &sack_state);
  3081. acked -= tp->packets_out;
  3082. /* Advance cwnd if state allows */
  3083. if (tcp_may_raise_cwnd(sk, flag))
  3084. tcp_cong_avoid(sk, ack, acked);
  3085. if (tcp_ack_is_dubious(sk, flag)) {
  3086. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3087. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3088. is_dupack, flag);
  3089. }
  3090. if (tp->tlp_high_seq)
  3091. tcp_process_tlp_ack(sk, ack, flag);
  3092. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3093. struct dst_entry *dst = __sk_dst_get(sk);
  3094. if (dst)
  3095. dst_confirm(dst);
  3096. }
  3097. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3098. tcp_schedule_loss_probe(sk);
  3099. tcp_update_pacing_rate(sk);
  3100. return 1;
  3101. no_queue:
  3102. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3103. if (flag & FLAG_DSACKING_ACK)
  3104. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3105. is_dupack, flag);
  3106. /* If this ack opens up a zero window, clear backoff. It was
  3107. * being used to time the probes, and is probably far higher than
  3108. * it needs to be for normal retransmission.
  3109. */
  3110. if (tcp_send_head(sk))
  3111. tcp_ack_probe(sk);
  3112. if (tp->tlp_high_seq)
  3113. tcp_process_tlp_ack(sk, ack, flag);
  3114. return 1;
  3115. invalid_ack:
  3116. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3117. return -1;
  3118. old_ack:
  3119. /* If data was SACKed, tag it and see if we should send more data.
  3120. * If data was DSACKed, see if we can undo a cwnd reduction.
  3121. */
  3122. if (TCP_SKB_CB(skb)->sacked) {
  3123. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3124. &sack_state);
  3125. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3126. is_dupack, flag);
  3127. }
  3128. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3129. return 0;
  3130. }
  3131. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3132. bool syn, struct tcp_fastopen_cookie *foc,
  3133. bool exp_opt)
  3134. {
  3135. /* Valid only in SYN or SYN-ACK with an even length. */
  3136. if (!foc || !syn || len < 0 || (len & 1))
  3137. return;
  3138. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3139. len <= TCP_FASTOPEN_COOKIE_MAX)
  3140. memcpy(foc->val, cookie, len);
  3141. else if (len != 0)
  3142. len = -1;
  3143. foc->len = len;
  3144. foc->exp = exp_opt;
  3145. }
  3146. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3147. * But, this can also be called on packets in the established flow when
  3148. * the fast version below fails.
  3149. */
  3150. void tcp_parse_options(const struct sk_buff *skb,
  3151. struct tcp_options_received *opt_rx, int estab,
  3152. struct tcp_fastopen_cookie *foc)
  3153. {
  3154. const unsigned char *ptr;
  3155. const struct tcphdr *th = tcp_hdr(skb);
  3156. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3157. ptr = (const unsigned char *)(th + 1);
  3158. opt_rx->saw_tstamp = 0;
  3159. while (length > 0) {
  3160. int opcode = *ptr++;
  3161. int opsize;
  3162. switch (opcode) {
  3163. case TCPOPT_EOL:
  3164. return;
  3165. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3166. length--;
  3167. continue;
  3168. default:
  3169. opsize = *ptr++;
  3170. if (opsize < 2) /* "silly options" */
  3171. return;
  3172. if (opsize > length)
  3173. return; /* don't parse partial options */
  3174. switch (opcode) {
  3175. case TCPOPT_MSS:
  3176. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3177. u16 in_mss = get_unaligned_be16(ptr);
  3178. if (in_mss) {
  3179. if (opt_rx->user_mss &&
  3180. opt_rx->user_mss < in_mss)
  3181. in_mss = opt_rx->user_mss;
  3182. opt_rx->mss_clamp = in_mss;
  3183. }
  3184. }
  3185. break;
  3186. case TCPOPT_WINDOW:
  3187. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3188. !estab && sysctl_tcp_window_scaling) {
  3189. __u8 snd_wscale = *(__u8 *)ptr;
  3190. opt_rx->wscale_ok = 1;
  3191. if (snd_wscale > 14) {
  3192. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3193. __func__,
  3194. snd_wscale);
  3195. snd_wscale = 14;
  3196. }
  3197. opt_rx->snd_wscale = snd_wscale;
  3198. }
  3199. break;
  3200. case TCPOPT_TIMESTAMP:
  3201. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3202. ((estab && opt_rx->tstamp_ok) ||
  3203. (!estab && sysctl_tcp_timestamps))) {
  3204. opt_rx->saw_tstamp = 1;
  3205. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3206. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3207. }
  3208. break;
  3209. case TCPOPT_SACK_PERM:
  3210. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3211. !estab && sysctl_tcp_sack) {
  3212. opt_rx->sack_ok = TCP_SACK_SEEN;
  3213. tcp_sack_reset(opt_rx);
  3214. }
  3215. break;
  3216. case TCPOPT_SACK:
  3217. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3218. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3219. opt_rx->sack_ok) {
  3220. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3221. }
  3222. break;
  3223. #ifdef CONFIG_TCP_MD5SIG
  3224. case TCPOPT_MD5SIG:
  3225. /*
  3226. * The MD5 Hash has already been
  3227. * checked (see tcp_v{4,6}_do_rcv()).
  3228. */
  3229. break;
  3230. #endif
  3231. case TCPOPT_FASTOPEN:
  3232. tcp_parse_fastopen_option(
  3233. opsize - TCPOLEN_FASTOPEN_BASE,
  3234. ptr, th->syn, foc, false);
  3235. break;
  3236. case TCPOPT_EXP:
  3237. /* Fast Open option shares code 254 using a
  3238. * 16 bits magic number.
  3239. */
  3240. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3241. get_unaligned_be16(ptr) ==
  3242. TCPOPT_FASTOPEN_MAGIC)
  3243. tcp_parse_fastopen_option(opsize -
  3244. TCPOLEN_EXP_FASTOPEN_BASE,
  3245. ptr + 2, th->syn, foc, true);
  3246. break;
  3247. }
  3248. ptr += opsize-2;
  3249. length -= opsize;
  3250. }
  3251. }
  3252. }
  3253. EXPORT_SYMBOL(tcp_parse_options);
  3254. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3255. {
  3256. const __be32 *ptr = (const __be32 *)(th + 1);
  3257. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3258. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3259. tp->rx_opt.saw_tstamp = 1;
  3260. ++ptr;
  3261. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3262. ++ptr;
  3263. if (*ptr)
  3264. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3265. else
  3266. tp->rx_opt.rcv_tsecr = 0;
  3267. return true;
  3268. }
  3269. return false;
  3270. }
  3271. /* Fast parse options. This hopes to only see timestamps.
  3272. * If it is wrong it falls back on tcp_parse_options().
  3273. */
  3274. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3275. const struct tcphdr *th, struct tcp_sock *tp)
  3276. {
  3277. /* In the spirit of fast parsing, compare doff directly to constant
  3278. * values. Because equality is used, short doff can be ignored here.
  3279. */
  3280. if (th->doff == (sizeof(*th) / 4)) {
  3281. tp->rx_opt.saw_tstamp = 0;
  3282. return false;
  3283. } else if (tp->rx_opt.tstamp_ok &&
  3284. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3285. if (tcp_parse_aligned_timestamp(tp, th))
  3286. return true;
  3287. }
  3288. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3289. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3290. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3291. return true;
  3292. }
  3293. #ifdef CONFIG_TCP_MD5SIG
  3294. /*
  3295. * Parse MD5 Signature option
  3296. */
  3297. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3298. {
  3299. int length = (th->doff << 2) - sizeof(*th);
  3300. const u8 *ptr = (const u8 *)(th + 1);
  3301. /* If the TCP option is too short, we can short cut */
  3302. if (length < TCPOLEN_MD5SIG)
  3303. return NULL;
  3304. while (length > 0) {
  3305. int opcode = *ptr++;
  3306. int opsize;
  3307. switch (opcode) {
  3308. case TCPOPT_EOL:
  3309. return NULL;
  3310. case TCPOPT_NOP:
  3311. length--;
  3312. continue;
  3313. default:
  3314. opsize = *ptr++;
  3315. if (opsize < 2 || opsize > length)
  3316. return NULL;
  3317. if (opcode == TCPOPT_MD5SIG)
  3318. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3319. }
  3320. ptr += opsize - 2;
  3321. length -= opsize;
  3322. }
  3323. return NULL;
  3324. }
  3325. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3326. #endif
  3327. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3328. *
  3329. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3330. * it can pass through stack. So, the following predicate verifies that
  3331. * this segment is not used for anything but congestion avoidance or
  3332. * fast retransmit. Moreover, we even are able to eliminate most of such
  3333. * second order effects, if we apply some small "replay" window (~RTO)
  3334. * to timestamp space.
  3335. *
  3336. * All these measures still do not guarantee that we reject wrapped ACKs
  3337. * on networks with high bandwidth, when sequence space is recycled fastly,
  3338. * but it guarantees that such events will be very rare and do not affect
  3339. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3340. * buggy extension.
  3341. *
  3342. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3343. * states that events when retransmit arrives after original data are rare.
  3344. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3345. * the biggest problem on large power networks even with minor reordering.
  3346. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3347. * up to bandwidth of 18Gigabit/sec. 8) ]
  3348. */
  3349. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3350. {
  3351. const struct tcp_sock *tp = tcp_sk(sk);
  3352. const struct tcphdr *th = tcp_hdr(skb);
  3353. u32 seq = TCP_SKB_CB(skb)->seq;
  3354. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3355. return (/* 1. Pure ACK with correct sequence number. */
  3356. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3357. /* 2. ... and duplicate ACK. */
  3358. ack == tp->snd_una &&
  3359. /* 3. ... and does not update window. */
  3360. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3361. /* 4. ... and sits in replay window. */
  3362. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3363. }
  3364. static inline bool tcp_paws_discard(const struct sock *sk,
  3365. const struct sk_buff *skb)
  3366. {
  3367. const struct tcp_sock *tp = tcp_sk(sk);
  3368. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3369. !tcp_disordered_ack(sk, skb);
  3370. }
  3371. /* Check segment sequence number for validity.
  3372. *
  3373. * Segment controls are considered valid, if the segment
  3374. * fits to the window after truncation to the window. Acceptability
  3375. * of data (and SYN, FIN, of course) is checked separately.
  3376. * See tcp_data_queue(), for example.
  3377. *
  3378. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3379. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3380. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3381. * (borrowed from freebsd)
  3382. */
  3383. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3384. {
  3385. return !before(end_seq, tp->rcv_wup) &&
  3386. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3387. }
  3388. /* When we get a reset we do this. */
  3389. void tcp_reset(struct sock *sk)
  3390. {
  3391. /* We want the right error as BSD sees it (and indeed as we do). */
  3392. switch (sk->sk_state) {
  3393. case TCP_SYN_SENT:
  3394. sk->sk_err = ECONNREFUSED;
  3395. break;
  3396. case TCP_CLOSE_WAIT:
  3397. sk->sk_err = EPIPE;
  3398. break;
  3399. case TCP_CLOSE:
  3400. return;
  3401. default:
  3402. sk->sk_err = ECONNRESET;
  3403. }
  3404. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3405. smp_wmb();
  3406. if (!sock_flag(sk, SOCK_DEAD))
  3407. sk->sk_error_report(sk);
  3408. tcp_done(sk);
  3409. }
  3410. /*
  3411. * Process the FIN bit. This now behaves as it is supposed to work
  3412. * and the FIN takes effect when it is validly part of sequence
  3413. * space. Not before when we get holes.
  3414. *
  3415. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3416. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3417. * TIME-WAIT)
  3418. *
  3419. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3420. * close and we go into CLOSING (and later onto TIME-WAIT)
  3421. *
  3422. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3423. */
  3424. static void tcp_fin(struct sock *sk)
  3425. {
  3426. struct tcp_sock *tp = tcp_sk(sk);
  3427. const struct dst_entry *dst;
  3428. inet_csk_schedule_ack(sk);
  3429. sk->sk_shutdown |= RCV_SHUTDOWN;
  3430. sock_set_flag(sk, SOCK_DONE);
  3431. switch (sk->sk_state) {
  3432. case TCP_SYN_RECV:
  3433. case TCP_ESTABLISHED:
  3434. /* Move to CLOSE_WAIT */
  3435. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3436. dst = __sk_dst_get(sk);
  3437. if (!dst || !dst_metric(dst, RTAX_QUICKACK))
  3438. inet_csk(sk)->icsk_ack.pingpong = 1;
  3439. break;
  3440. case TCP_CLOSE_WAIT:
  3441. case TCP_CLOSING:
  3442. /* Received a retransmission of the FIN, do
  3443. * nothing.
  3444. */
  3445. break;
  3446. case TCP_LAST_ACK:
  3447. /* RFC793: Remain in the LAST-ACK state. */
  3448. break;
  3449. case TCP_FIN_WAIT1:
  3450. /* This case occurs when a simultaneous close
  3451. * happens, we must ack the received FIN and
  3452. * enter the CLOSING state.
  3453. */
  3454. tcp_send_ack(sk);
  3455. tcp_set_state(sk, TCP_CLOSING);
  3456. break;
  3457. case TCP_FIN_WAIT2:
  3458. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3459. tcp_send_ack(sk);
  3460. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3461. break;
  3462. default:
  3463. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3464. * cases we should never reach this piece of code.
  3465. */
  3466. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3467. __func__, sk->sk_state);
  3468. break;
  3469. }
  3470. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3471. * Probably, we should reset in this case. For now drop them.
  3472. */
  3473. __skb_queue_purge(&tp->out_of_order_queue);
  3474. if (tcp_is_sack(tp))
  3475. tcp_sack_reset(&tp->rx_opt);
  3476. sk_mem_reclaim(sk);
  3477. if (!sock_flag(sk, SOCK_DEAD)) {
  3478. sk->sk_state_change(sk);
  3479. /* Do not send POLL_HUP for half duplex close. */
  3480. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3481. sk->sk_state == TCP_CLOSE)
  3482. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3483. else
  3484. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3485. }
  3486. }
  3487. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3488. u32 end_seq)
  3489. {
  3490. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3491. if (before(seq, sp->start_seq))
  3492. sp->start_seq = seq;
  3493. if (after(end_seq, sp->end_seq))
  3494. sp->end_seq = end_seq;
  3495. return true;
  3496. }
  3497. return false;
  3498. }
  3499. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3500. {
  3501. struct tcp_sock *tp = tcp_sk(sk);
  3502. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3503. int mib_idx;
  3504. if (before(seq, tp->rcv_nxt))
  3505. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3506. else
  3507. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3508. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3509. tp->rx_opt.dsack = 1;
  3510. tp->duplicate_sack[0].start_seq = seq;
  3511. tp->duplicate_sack[0].end_seq = end_seq;
  3512. }
  3513. }
  3514. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3515. {
  3516. struct tcp_sock *tp = tcp_sk(sk);
  3517. if (!tp->rx_opt.dsack)
  3518. tcp_dsack_set(sk, seq, end_seq);
  3519. else
  3520. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3521. }
  3522. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3523. {
  3524. struct tcp_sock *tp = tcp_sk(sk);
  3525. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3526. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3527. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3528. tcp_enter_quickack_mode(sk);
  3529. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3530. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3531. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3532. end_seq = tp->rcv_nxt;
  3533. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3534. }
  3535. }
  3536. tcp_send_ack(sk);
  3537. }
  3538. /* These routines update the SACK block as out-of-order packets arrive or
  3539. * in-order packets close up the sequence space.
  3540. */
  3541. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3542. {
  3543. int this_sack;
  3544. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3545. struct tcp_sack_block *swalk = sp + 1;
  3546. /* See if the recent change to the first SACK eats into
  3547. * or hits the sequence space of other SACK blocks, if so coalesce.
  3548. */
  3549. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3550. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3551. int i;
  3552. /* Zap SWALK, by moving every further SACK up by one slot.
  3553. * Decrease num_sacks.
  3554. */
  3555. tp->rx_opt.num_sacks--;
  3556. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3557. sp[i] = sp[i + 1];
  3558. continue;
  3559. }
  3560. this_sack++, swalk++;
  3561. }
  3562. }
  3563. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3564. {
  3565. struct tcp_sock *tp = tcp_sk(sk);
  3566. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3567. int cur_sacks = tp->rx_opt.num_sacks;
  3568. int this_sack;
  3569. if (!cur_sacks)
  3570. goto new_sack;
  3571. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3572. if (tcp_sack_extend(sp, seq, end_seq)) {
  3573. /* Rotate this_sack to the first one. */
  3574. for (; this_sack > 0; this_sack--, sp--)
  3575. swap(*sp, *(sp - 1));
  3576. if (cur_sacks > 1)
  3577. tcp_sack_maybe_coalesce(tp);
  3578. return;
  3579. }
  3580. }
  3581. /* Could not find an adjacent existing SACK, build a new one,
  3582. * put it at the front, and shift everyone else down. We
  3583. * always know there is at least one SACK present already here.
  3584. *
  3585. * If the sack array is full, forget about the last one.
  3586. */
  3587. if (this_sack >= TCP_NUM_SACKS) {
  3588. this_sack--;
  3589. tp->rx_opt.num_sacks--;
  3590. sp--;
  3591. }
  3592. for (; this_sack > 0; this_sack--, sp--)
  3593. *sp = *(sp - 1);
  3594. new_sack:
  3595. /* Build the new head SACK, and we're done. */
  3596. sp->start_seq = seq;
  3597. sp->end_seq = end_seq;
  3598. tp->rx_opt.num_sacks++;
  3599. }
  3600. /* RCV.NXT advances, some SACKs should be eaten. */
  3601. static void tcp_sack_remove(struct tcp_sock *tp)
  3602. {
  3603. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3604. int num_sacks = tp->rx_opt.num_sacks;
  3605. int this_sack;
  3606. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3607. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3608. tp->rx_opt.num_sacks = 0;
  3609. return;
  3610. }
  3611. for (this_sack = 0; this_sack < num_sacks;) {
  3612. /* Check if the start of the sack is covered by RCV.NXT. */
  3613. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3614. int i;
  3615. /* RCV.NXT must cover all the block! */
  3616. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3617. /* Zap this SACK, by moving forward any other SACKS. */
  3618. for (i = this_sack+1; i < num_sacks; i++)
  3619. tp->selective_acks[i-1] = tp->selective_acks[i];
  3620. num_sacks--;
  3621. continue;
  3622. }
  3623. this_sack++;
  3624. sp++;
  3625. }
  3626. tp->rx_opt.num_sacks = num_sacks;
  3627. }
  3628. /**
  3629. * tcp_try_coalesce - try to merge skb to prior one
  3630. * @sk: socket
  3631. * @to: prior buffer
  3632. * @from: buffer to add in queue
  3633. * @fragstolen: pointer to boolean
  3634. *
  3635. * Before queueing skb @from after @to, try to merge them
  3636. * to reduce overall memory use and queue lengths, if cost is small.
  3637. * Packets in ofo or receive queues can stay a long time.
  3638. * Better try to coalesce them right now to avoid future collapses.
  3639. * Returns true if caller should free @from instead of queueing it
  3640. */
  3641. static bool tcp_try_coalesce(struct sock *sk,
  3642. struct sk_buff *to,
  3643. struct sk_buff *from,
  3644. bool *fragstolen)
  3645. {
  3646. int delta;
  3647. *fragstolen = false;
  3648. /* Its possible this segment overlaps with prior segment in queue */
  3649. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3650. return false;
  3651. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3652. return false;
  3653. atomic_add(delta, &sk->sk_rmem_alloc);
  3654. sk_mem_charge(sk, delta);
  3655. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3656. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3657. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3658. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3659. return true;
  3660. }
  3661. /* This one checks to see if we can put data from the
  3662. * out_of_order queue into the receive_queue.
  3663. */
  3664. static void tcp_ofo_queue(struct sock *sk)
  3665. {
  3666. struct tcp_sock *tp = tcp_sk(sk);
  3667. __u32 dsack_high = tp->rcv_nxt;
  3668. struct sk_buff *skb, *tail;
  3669. bool fragstolen, eaten;
  3670. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3671. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3672. break;
  3673. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3674. __u32 dsack = dsack_high;
  3675. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3676. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3677. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3678. }
  3679. __skb_unlink(skb, &tp->out_of_order_queue);
  3680. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3681. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3682. __kfree_skb(skb);
  3683. continue;
  3684. }
  3685. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3686. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3687. TCP_SKB_CB(skb)->end_seq);
  3688. tail = skb_peek_tail(&sk->sk_receive_queue);
  3689. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3690. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3691. if (!eaten)
  3692. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3693. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3694. tcp_fin(sk);
  3695. if (eaten)
  3696. kfree_skb_partial(skb, fragstolen);
  3697. }
  3698. }
  3699. static bool tcp_prune_ofo_queue(struct sock *sk);
  3700. static int tcp_prune_queue(struct sock *sk);
  3701. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3702. unsigned int size)
  3703. {
  3704. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3705. !sk_rmem_schedule(sk, skb, size)) {
  3706. if (tcp_prune_queue(sk) < 0)
  3707. return -1;
  3708. if (!sk_rmem_schedule(sk, skb, size)) {
  3709. if (!tcp_prune_ofo_queue(sk))
  3710. return -1;
  3711. if (!sk_rmem_schedule(sk, skb, size))
  3712. return -1;
  3713. }
  3714. }
  3715. return 0;
  3716. }
  3717. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3718. {
  3719. struct tcp_sock *tp = tcp_sk(sk);
  3720. struct sk_buff *skb1;
  3721. u32 seq, end_seq;
  3722. tcp_ecn_check_ce(tp, skb);
  3723. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3724. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3725. __kfree_skb(skb);
  3726. return;
  3727. }
  3728. /* Disable header prediction. */
  3729. tp->pred_flags = 0;
  3730. inet_csk_schedule_ack(sk);
  3731. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3732. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3733. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3734. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3735. if (!skb1) {
  3736. /* Initial out of order segment, build 1 SACK. */
  3737. if (tcp_is_sack(tp)) {
  3738. tp->rx_opt.num_sacks = 1;
  3739. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3740. tp->selective_acks[0].end_seq =
  3741. TCP_SKB_CB(skb)->end_seq;
  3742. }
  3743. __skb_queue_head(&tp->out_of_order_queue, skb);
  3744. goto end;
  3745. }
  3746. seq = TCP_SKB_CB(skb)->seq;
  3747. end_seq = TCP_SKB_CB(skb)->end_seq;
  3748. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3749. bool fragstolen;
  3750. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3751. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3752. } else {
  3753. tcp_grow_window(sk, skb);
  3754. kfree_skb_partial(skb, fragstolen);
  3755. skb = NULL;
  3756. }
  3757. if (!tp->rx_opt.num_sacks ||
  3758. tp->selective_acks[0].end_seq != seq)
  3759. goto add_sack;
  3760. /* Common case: data arrive in order after hole. */
  3761. tp->selective_acks[0].end_seq = end_seq;
  3762. goto end;
  3763. }
  3764. /* Find place to insert this segment. */
  3765. while (1) {
  3766. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3767. break;
  3768. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3769. skb1 = NULL;
  3770. break;
  3771. }
  3772. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3773. }
  3774. /* Do skb overlap to previous one? */
  3775. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3776. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3777. /* All the bits are present. Drop. */
  3778. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3779. __kfree_skb(skb);
  3780. skb = NULL;
  3781. tcp_dsack_set(sk, seq, end_seq);
  3782. goto add_sack;
  3783. }
  3784. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3785. /* Partial overlap. */
  3786. tcp_dsack_set(sk, seq,
  3787. TCP_SKB_CB(skb1)->end_seq);
  3788. } else {
  3789. if (skb_queue_is_first(&tp->out_of_order_queue,
  3790. skb1))
  3791. skb1 = NULL;
  3792. else
  3793. skb1 = skb_queue_prev(
  3794. &tp->out_of_order_queue,
  3795. skb1);
  3796. }
  3797. }
  3798. if (!skb1)
  3799. __skb_queue_head(&tp->out_of_order_queue, skb);
  3800. else
  3801. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3802. /* And clean segments covered by new one as whole. */
  3803. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3804. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3805. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3806. break;
  3807. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3808. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3809. end_seq);
  3810. break;
  3811. }
  3812. __skb_unlink(skb1, &tp->out_of_order_queue);
  3813. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3814. TCP_SKB_CB(skb1)->end_seq);
  3815. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3816. __kfree_skb(skb1);
  3817. }
  3818. add_sack:
  3819. if (tcp_is_sack(tp))
  3820. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3821. end:
  3822. if (skb) {
  3823. tcp_grow_window(sk, skb);
  3824. skb_set_owner_r(skb, sk);
  3825. }
  3826. }
  3827. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3828. bool *fragstolen)
  3829. {
  3830. int eaten;
  3831. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3832. __skb_pull(skb, hdrlen);
  3833. eaten = (tail &&
  3834. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3835. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3836. if (!eaten) {
  3837. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3838. skb_set_owner_r(skb, sk);
  3839. }
  3840. return eaten;
  3841. }
  3842. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3843. {
  3844. struct sk_buff *skb;
  3845. bool fragstolen;
  3846. if (size == 0)
  3847. return 0;
  3848. skb = alloc_skb(size, sk->sk_allocation);
  3849. if (!skb)
  3850. goto err;
  3851. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3852. goto err_free;
  3853. if (memcpy_from_msg(skb_put(skb, size), msg, size))
  3854. goto err_free;
  3855. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3856. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3857. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3858. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3859. WARN_ON_ONCE(fragstolen); /* should not happen */
  3860. __kfree_skb(skb);
  3861. }
  3862. return size;
  3863. err_free:
  3864. kfree_skb(skb);
  3865. err:
  3866. return -ENOMEM;
  3867. }
  3868. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3869. {
  3870. struct tcp_sock *tp = tcp_sk(sk);
  3871. int eaten = -1;
  3872. bool fragstolen = false;
  3873. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3874. goto drop;
  3875. skb_dst_drop(skb);
  3876. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3877. tcp_ecn_accept_cwr(tp, skb);
  3878. tp->rx_opt.dsack = 0;
  3879. /* Queue data for delivery to the user.
  3880. * Packets in sequence go to the receive queue.
  3881. * Out of sequence packets to the out_of_order_queue.
  3882. */
  3883. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3884. if (tcp_receive_window(tp) == 0)
  3885. goto out_of_window;
  3886. /* Ok. In sequence. In window. */
  3887. if (tp->ucopy.task == current &&
  3888. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3889. sock_owned_by_user(sk) && !tp->urg_data) {
  3890. int chunk = min_t(unsigned int, skb->len,
  3891. tp->ucopy.len);
  3892. __set_current_state(TASK_RUNNING);
  3893. local_bh_enable();
  3894. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  3895. tp->ucopy.len -= chunk;
  3896. tp->copied_seq += chunk;
  3897. eaten = (chunk == skb->len);
  3898. tcp_rcv_space_adjust(sk);
  3899. }
  3900. local_bh_disable();
  3901. }
  3902. if (eaten <= 0) {
  3903. queue_and_out:
  3904. if (eaten < 0) {
  3905. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  3906. sk_forced_mem_schedule(sk, skb->truesize);
  3907. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3908. goto drop;
  3909. }
  3910. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3911. }
  3912. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3913. if (skb->len)
  3914. tcp_event_data_recv(sk, skb);
  3915. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3916. tcp_fin(sk);
  3917. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3918. tcp_ofo_queue(sk);
  3919. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3920. * gap in queue is filled.
  3921. */
  3922. if (skb_queue_empty(&tp->out_of_order_queue))
  3923. inet_csk(sk)->icsk_ack.pingpong = 0;
  3924. }
  3925. if (tp->rx_opt.num_sacks)
  3926. tcp_sack_remove(tp);
  3927. tcp_fast_path_check(sk);
  3928. if (eaten > 0)
  3929. kfree_skb_partial(skb, fragstolen);
  3930. if (!sock_flag(sk, SOCK_DEAD))
  3931. sk->sk_data_ready(sk);
  3932. return;
  3933. }
  3934. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3935. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3936. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3937. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3938. out_of_window:
  3939. tcp_enter_quickack_mode(sk);
  3940. inet_csk_schedule_ack(sk);
  3941. drop:
  3942. __kfree_skb(skb);
  3943. return;
  3944. }
  3945. /* Out of window. F.e. zero window probe. */
  3946. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3947. goto out_of_window;
  3948. tcp_enter_quickack_mode(sk);
  3949. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3950. /* Partial packet, seq < rcv_next < end_seq */
  3951. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3952. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3953. TCP_SKB_CB(skb)->end_seq);
  3954. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3955. /* If window is closed, drop tail of packet. But after
  3956. * remembering D-SACK for its head made in previous line.
  3957. */
  3958. if (!tcp_receive_window(tp))
  3959. goto out_of_window;
  3960. goto queue_and_out;
  3961. }
  3962. tcp_data_queue_ofo(sk, skb);
  3963. }
  3964. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3965. struct sk_buff_head *list)
  3966. {
  3967. struct sk_buff *next = NULL;
  3968. if (!skb_queue_is_last(list, skb))
  3969. next = skb_queue_next(list, skb);
  3970. __skb_unlink(skb, list);
  3971. __kfree_skb(skb);
  3972. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3973. return next;
  3974. }
  3975. /* Collapse contiguous sequence of skbs head..tail with
  3976. * sequence numbers start..end.
  3977. *
  3978. * If tail is NULL, this means until the end of the list.
  3979. *
  3980. * Segments with FIN/SYN are not collapsed (only because this
  3981. * simplifies code)
  3982. */
  3983. static void
  3984. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3985. struct sk_buff *head, struct sk_buff *tail,
  3986. u32 start, u32 end)
  3987. {
  3988. struct sk_buff *skb, *n;
  3989. bool end_of_skbs;
  3990. /* First, check that queue is collapsible and find
  3991. * the point where collapsing can be useful. */
  3992. skb = head;
  3993. restart:
  3994. end_of_skbs = true;
  3995. skb_queue_walk_from_safe(list, skb, n) {
  3996. if (skb == tail)
  3997. break;
  3998. /* No new bits? It is possible on ofo queue. */
  3999. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4000. skb = tcp_collapse_one(sk, skb, list);
  4001. if (!skb)
  4002. break;
  4003. goto restart;
  4004. }
  4005. /* The first skb to collapse is:
  4006. * - not SYN/FIN and
  4007. * - bloated or contains data before "start" or
  4008. * overlaps to the next one.
  4009. */
  4010. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4011. (tcp_win_from_space(skb->truesize) > skb->len ||
  4012. before(TCP_SKB_CB(skb)->seq, start))) {
  4013. end_of_skbs = false;
  4014. break;
  4015. }
  4016. if (!skb_queue_is_last(list, skb)) {
  4017. struct sk_buff *next = skb_queue_next(list, skb);
  4018. if (next != tail &&
  4019. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4020. end_of_skbs = false;
  4021. break;
  4022. }
  4023. }
  4024. /* Decided to skip this, advance start seq. */
  4025. start = TCP_SKB_CB(skb)->end_seq;
  4026. }
  4027. if (end_of_skbs ||
  4028. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4029. return;
  4030. while (before(start, end)) {
  4031. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4032. struct sk_buff *nskb;
  4033. nskb = alloc_skb(copy, GFP_ATOMIC);
  4034. if (!nskb)
  4035. return;
  4036. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4037. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4038. __skb_queue_before(list, skb, nskb);
  4039. skb_set_owner_r(nskb, sk);
  4040. /* Copy data, releasing collapsed skbs. */
  4041. while (copy > 0) {
  4042. int offset = start - TCP_SKB_CB(skb)->seq;
  4043. int size = TCP_SKB_CB(skb)->end_seq - start;
  4044. BUG_ON(offset < 0);
  4045. if (size > 0) {
  4046. size = min(copy, size);
  4047. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4048. BUG();
  4049. TCP_SKB_CB(nskb)->end_seq += size;
  4050. copy -= size;
  4051. start += size;
  4052. }
  4053. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4054. skb = tcp_collapse_one(sk, skb, list);
  4055. if (!skb ||
  4056. skb == tail ||
  4057. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4058. return;
  4059. }
  4060. }
  4061. }
  4062. }
  4063. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4064. * and tcp_collapse() them until all the queue is collapsed.
  4065. */
  4066. static void tcp_collapse_ofo_queue(struct sock *sk)
  4067. {
  4068. struct tcp_sock *tp = tcp_sk(sk);
  4069. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4070. struct sk_buff *head;
  4071. u32 start, end;
  4072. if (!skb)
  4073. return;
  4074. start = TCP_SKB_CB(skb)->seq;
  4075. end = TCP_SKB_CB(skb)->end_seq;
  4076. head = skb;
  4077. for (;;) {
  4078. struct sk_buff *next = NULL;
  4079. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4080. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4081. skb = next;
  4082. /* Segment is terminated when we see gap or when
  4083. * we are at the end of all the queue. */
  4084. if (!skb ||
  4085. after(TCP_SKB_CB(skb)->seq, end) ||
  4086. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4087. tcp_collapse(sk, &tp->out_of_order_queue,
  4088. head, skb, start, end);
  4089. head = skb;
  4090. if (!skb)
  4091. break;
  4092. /* Start new segment */
  4093. start = TCP_SKB_CB(skb)->seq;
  4094. end = TCP_SKB_CB(skb)->end_seq;
  4095. } else {
  4096. if (before(TCP_SKB_CB(skb)->seq, start))
  4097. start = TCP_SKB_CB(skb)->seq;
  4098. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4099. end = TCP_SKB_CB(skb)->end_seq;
  4100. }
  4101. }
  4102. }
  4103. /*
  4104. * Purge the out-of-order queue.
  4105. * Return true if queue was pruned.
  4106. */
  4107. static bool tcp_prune_ofo_queue(struct sock *sk)
  4108. {
  4109. struct tcp_sock *tp = tcp_sk(sk);
  4110. bool res = false;
  4111. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4112. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4113. __skb_queue_purge(&tp->out_of_order_queue);
  4114. /* Reset SACK state. A conforming SACK implementation will
  4115. * do the same at a timeout based retransmit. When a connection
  4116. * is in a sad state like this, we care only about integrity
  4117. * of the connection not performance.
  4118. */
  4119. if (tp->rx_opt.sack_ok)
  4120. tcp_sack_reset(&tp->rx_opt);
  4121. sk_mem_reclaim(sk);
  4122. res = true;
  4123. }
  4124. return res;
  4125. }
  4126. /* Reduce allocated memory if we can, trying to get
  4127. * the socket within its memory limits again.
  4128. *
  4129. * Return less than zero if we should start dropping frames
  4130. * until the socket owning process reads some of the data
  4131. * to stabilize the situation.
  4132. */
  4133. static int tcp_prune_queue(struct sock *sk)
  4134. {
  4135. struct tcp_sock *tp = tcp_sk(sk);
  4136. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4137. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4138. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4139. tcp_clamp_window(sk);
  4140. else if (tcp_under_memory_pressure(sk))
  4141. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4142. tcp_collapse_ofo_queue(sk);
  4143. if (!skb_queue_empty(&sk->sk_receive_queue))
  4144. tcp_collapse(sk, &sk->sk_receive_queue,
  4145. skb_peek(&sk->sk_receive_queue),
  4146. NULL,
  4147. tp->copied_seq, tp->rcv_nxt);
  4148. sk_mem_reclaim(sk);
  4149. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4150. return 0;
  4151. /* Collapsing did not help, destructive actions follow.
  4152. * This must not ever occur. */
  4153. tcp_prune_ofo_queue(sk);
  4154. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4155. return 0;
  4156. /* If we are really being abused, tell the caller to silently
  4157. * drop receive data on the floor. It will get retransmitted
  4158. * and hopefully then we'll have sufficient space.
  4159. */
  4160. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4161. /* Massive buffer overcommit. */
  4162. tp->pred_flags = 0;
  4163. return -1;
  4164. }
  4165. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4166. {
  4167. const struct tcp_sock *tp = tcp_sk(sk);
  4168. /* If the user specified a specific send buffer setting, do
  4169. * not modify it.
  4170. */
  4171. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4172. return false;
  4173. /* If we are under global TCP memory pressure, do not expand. */
  4174. if (tcp_under_memory_pressure(sk))
  4175. return false;
  4176. /* If we are under soft global TCP memory pressure, do not expand. */
  4177. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4178. return false;
  4179. /* If we filled the congestion window, do not expand. */
  4180. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4181. return false;
  4182. return true;
  4183. }
  4184. /* When incoming ACK allowed to free some skb from write_queue,
  4185. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4186. * on the exit from tcp input handler.
  4187. *
  4188. * PROBLEM: sndbuf expansion does not work well with largesend.
  4189. */
  4190. static void tcp_new_space(struct sock *sk)
  4191. {
  4192. struct tcp_sock *tp = tcp_sk(sk);
  4193. if (tcp_should_expand_sndbuf(sk)) {
  4194. tcp_sndbuf_expand(sk);
  4195. tp->snd_cwnd_stamp = tcp_time_stamp;
  4196. }
  4197. sk->sk_write_space(sk);
  4198. }
  4199. static void tcp_check_space(struct sock *sk)
  4200. {
  4201. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4202. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4203. /* pairs with tcp_poll() */
  4204. smp_mb__after_atomic();
  4205. if (sk->sk_socket &&
  4206. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4207. tcp_new_space(sk);
  4208. }
  4209. }
  4210. static inline void tcp_data_snd_check(struct sock *sk)
  4211. {
  4212. tcp_push_pending_frames(sk);
  4213. tcp_check_space(sk);
  4214. }
  4215. /*
  4216. * Check if sending an ack is needed.
  4217. */
  4218. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4219. {
  4220. struct tcp_sock *tp = tcp_sk(sk);
  4221. /* More than one full frame received... */
  4222. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4223. /* ... and right edge of window advances far enough.
  4224. * (tcp_recvmsg() will send ACK otherwise). Or...
  4225. */
  4226. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4227. /* We ACK each frame or... */
  4228. tcp_in_quickack_mode(sk) ||
  4229. /* We have out of order data. */
  4230. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4231. /* Then ack it now */
  4232. tcp_send_ack(sk);
  4233. } else {
  4234. /* Else, send delayed ack. */
  4235. tcp_send_delayed_ack(sk);
  4236. }
  4237. }
  4238. static inline void tcp_ack_snd_check(struct sock *sk)
  4239. {
  4240. if (!inet_csk_ack_scheduled(sk)) {
  4241. /* We sent a data segment already. */
  4242. return;
  4243. }
  4244. __tcp_ack_snd_check(sk, 1);
  4245. }
  4246. /*
  4247. * This routine is only called when we have urgent data
  4248. * signaled. Its the 'slow' part of tcp_urg. It could be
  4249. * moved inline now as tcp_urg is only called from one
  4250. * place. We handle URGent data wrong. We have to - as
  4251. * BSD still doesn't use the correction from RFC961.
  4252. * For 1003.1g we should support a new option TCP_STDURG to permit
  4253. * either form (or just set the sysctl tcp_stdurg).
  4254. */
  4255. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4256. {
  4257. struct tcp_sock *tp = tcp_sk(sk);
  4258. u32 ptr = ntohs(th->urg_ptr);
  4259. if (ptr && !sysctl_tcp_stdurg)
  4260. ptr--;
  4261. ptr += ntohl(th->seq);
  4262. /* Ignore urgent data that we've already seen and read. */
  4263. if (after(tp->copied_seq, ptr))
  4264. return;
  4265. /* Do not replay urg ptr.
  4266. *
  4267. * NOTE: interesting situation not covered by specs.
  4268. * Misbehaving sender may send urg ptr, pointing to segment,
  4269. * which we already have in ofo queue. We are not able to fetch
  4270. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4271. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4272. * situations. But it is worth to think about possibility of some
  4273. * DoSes using some hypothetical application level deadlock.
  4274. */
  4275. if (before(ptr, tp->rcv_nxt))
  4276. return;
  4277. /* Do we already have a newer (or duplicate) urgent pointer? */
  4278. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4279. return;
  4280. /* Tell the world about our new urgent pointer. */
  4281. sk_send_sigurg(sk);
  4282. /* We may be adding urgent data when the last byte read was
  4283. * urgent. To do this requires some care. We cannot just ignore
  4284. * tp->copied_seq since we would read the last urgent byte again
  4285. * as data, nor can we alter copied_seq until this data arrives
  4286. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4287. *
  4288. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4289. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4290. * and expect that both A and B disappear from stream. This is _wrong_.
  4291. * Though this happens in BSD with high probability, this is occasional.
  4292. * Any application relying on this is buggy. Note also, that fix "works"
  4293. * only in this artificial test. Insert some normal data between A and B and we will
  4294. * decline of BSD again. Verdict: it is better to remove to trap
  4295. * buggy users.
  4296. */
  4297. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4298. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4299. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4300. tp->copied_seq++;
  4301. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4302. __skb_unlink(skb, &sk->sk_receive_queue);
  4303. __kfree_skb(skb);
  4304. }
  4305. }
  4306. tp->urg_data = TCP_URG_NOTYET;
  4307. tp->urg_seq = ptr;
  4308. /* Disable header prediction. */
  4309. tp->pred_flags = 0;
  4310. }
  4311. /* This is the 'fast' part of urgent handling. */
  4312. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4313. {
  4314. struct tcp_sock *tp = tcp_sk(sk);
  4315. /* Check if we get a new urgent pointer - normally not. */
  4316. if (th->urg)
  4317. tcp_check_urg(sk, th);
  4318. /* Do we wait for any urgent data? - normally not... */
  4319. if (tp->urg_data == TCP_URG_NOTYET) {
  4320. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4321. th->syn;
  4322. /* Is the urgent pointer pointing into this packet? */
  4323. if (ptr < skb->len) {
  4324. u8 tmp;
  4325. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4326. BUG();
  4327. tp->urg_data = TCP_URG_VALID | tmp;
  4328. if (!sock_flag(sk, SOCK_DEAD))
  4329. sk->sk_data_ready(sk);
  4330. }
  4331. }
  4332. }
  4333. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4334. {
  4335. struct tcp_sock *tp = tcp_sk(sk);
  4336. int chunk = skb->len - hlen;
  4337. int err;
  4338. local_bh_enable();
  4339. if (skb_csum_unnecessary(skb))
  4340. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4341. else
  4342. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4343. if (!err) {
  4344. tp->ucopy.len -= chunk;
  4345. tp->copied_seq += chunk;
  4346. tcp_rcv_space_adjust(sk);
  4347. }
  4348. local_bh_disable();
  4349. return err;
  4350. }
  4351. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4352. struct sk_buff *skb)
  4353. {
  4354. __sum16 result;
  4355. if (sock_owned_by_user(sk)) {
  4356. local_bh_enable();
  4357. result = __tcp_checksum_complete(skb);
  4358. local_bh_disable();
  4359. } else {
  4360. result = __tcp_checksum_complete(skb);
  4361. }
  4362. return result;
  4363. }
  4364. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4365. struct sk_buff *skb)
  4366. {
  4367. return !skb_csum_unnecessary(skb) &&
  4368. __tcp_checksum_complete_user(sk, skb);
  4369. }
  4370. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4371. * play significant role here.
  4372. */
  4373. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4374. const struct tcphdr *th, int syn_inerr)
  4375. {
  4376. struct tcp_sock *tp = tcp_sk(sk);
  4377. /* RFC1323: H1. Apply PAWS check first. */
  4378. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4379. tcp_paws_discard(sk, skb)) {
  4380. if (!th->rst) {
  4381. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4382. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4383. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4384. &tp->last_oow_ack_time))
  4385. tcp_send_dupack(sk, skb);
  4386. goto discard;
  4387. }
  4388. /* Reset is accepted even if it did not pass PAWS. */
  4389. }
  4390. /* Step 1: check sequence number */
  4391. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4392. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4393. * (RST) segments are validated by checking their SEQ-fields."
  4394. * And page 69: "If an incoming segment is not acceptable,
  4395. * an acknowledgment should be sent in reply (unless the RST
  4396. * bit is set, if so drop the segment and return)".
  4397. */
  4398. if (!th->rst) {
  4399. if (th->syn)
  4400. goto syn_challenge;
  4401. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4402. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4403. &tp->last_oow_ack_time))
  4404. tcp_send_dupack(sk, skb);
  4405. }
  4406. goto discard;
  4407. }
  4408. /* Step 2: check RST bit */
  4409. if (th->rst) {
  4410. /* RFC 5961 3.2 :
  4411. * If sequence number exactly matches RCV.NXT, then
  4412. * RESET the connection
  4413. * else
  4414. * Send a challenge ACK
  4415. */
  4416. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4417. tcp_reset(sk);
  4418. else
  4419. tcp_send_challenge_ack(sk, skb);
  4420. goto discard;
  4421. }
  4422. /* step 3: check security and precedence [ignored] */
  4423. /* step 4: Check for a SYN
  4424. * RFC 5961 4.2 : Send a challenge ack
  4425. */
  4426. if (th->syn) {
  4427. syn_challenge:
  4428. if (syn_inerr)
  4429. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4430. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4431. tcp_send_challenge_ack(sk, skb);
  4432. goto discard;
  4433. }
  4434. return true;
  4435. discard:
  4436. __kfree_skb(skb);
  4437. return false;
  4438. }
  4439. /*
  4440. * TCP receive function for the ESTABLISHED state.
  4441. *
  4442. * It is split into a fast path and a slow path. The fast path is
  4443. * disabled when:
  4444. * - A zero window was announced from us - zero window probing
  4445. * is only handled properly in the slow path.
  4446. * - Out of order segments arrived.
  4447. * - Urgent data is expected.
  4448. * - There is no buffer space left
  4449. * - Unexpected TCP flags/window values/header lengths are received
  4450. * (detected by checking the TCP header against pred_flags)
  4451. * - Data is sent in both directions. Fast path only supports pure senders
  4452. * or pure receivers (this means either the sequence number or the ack
  4453. * value must stay constant)
  4454. * - Unexpected TCP option.
  4455. *
  4456. * When these conditions are not satisfied it drops into a standard
  4457. * receive procedure patterned after RFC793 to handle all cases.
  4458. * The first three cases are guaranteed by proper pred_flags setting,
  4459. * the rest is checked inline. Fast processing is turned on in
  4460. * tcp_data_queue when everything is OK.
  4461. */
  4462. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4463. const struct tcphdr *th, unsigned int len)
  4464. {
  4465. struct tcp_sock *tp = tcp_sk(sk);
  4466. if (unlikely(!sk->sk_rx_dst))
  4467. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4468. /*
  4469. * Header prediction.
  4470. * The code loosely follows the one in the famous
  4471. * "30 instruction TCP receive" Van Jacobson mail.
  4472. *
  4473. * Van's trick is to deposit buffers into socket queue
  4474. * on a device interrupt, to call tcp_recv function
  4475. * on the receive process context and checksum and copy
  4476. * the buffer to user space. smart...
  4477. *
  4478. * Our current scheme is not silly either but we take the
  4479. * extra cost of the net_bh soft interrupt processing...
  4480. * We do checksum and copy also but from device to kernel.
  4481. */
  4482. tp->rx_opt.saw_tstamp = 0;
  4483. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4484. * if header_prediction is to be made
  4485. * 'S' will always be tp->tcp_header_len >> 2
  4486. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4487. * turn it off (when there are holes in the receive
  4488. * space for instance)
  4489. * PSH flag is ignored.
  4490. */
  4491. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4492. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4493. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4494. int tcp_header_len = tp->tcp_header_len;
  4495. /* Timestamp header prediction: tcp_header_len
  4496. * is automatically equal to th->doff*4 due to pred_flags
  4497. * match.
  4498. */
  4499. /* Check timestamp */
  4500. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4501. /* No? Slow path! */
  4502. if (!tcp_parse_aligned_timestamp(tp, th))
  4503. goto slow_path;
  4504. /* If PAWS failed, check it more carefully in slow path */
  4505. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4506. goto slow_path;
  4507. /* DO NOT update ts_recent here, if checksum fails
  4508. * and timestamp was corrupted part, it will result
  4509. * in a hung connection since we will drop all
  4510. * future packets due to the PAWS test.
  4511. */
  4512. }
  4513. if (len <= tcp_header_len) {
  4514. /* Bulk data transfer: sender */
  4515. if (len == tcp_header_len) {
  4516. /* Predicted packet is in window by definition.
  4517. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4518. * Hence, check seq<=rcv_wup reduces to:
  4519. */
  4520. if (tcp_header_len ==
  4521. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4522. tp->rcv_nxt == tp->rcv_wup)
  4523. tcp_store_ts_recent(tp);
  4524. /* We know that such packets are checksummed
  4525. * on entry.
  4526. */
  4527. tcp_ack(sk, skb, 0);
  4528. __kfree_skb(skb);
  4529. tcp_data_snd_check(sk);
  4530. return;
  4531. } else { /* Header too small */
  4532. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4533. goto discard;
  4534. }
  4535. } else {
  4536. int eaten = 0;
  4537. bool fragstolen = false;
  4538. if (tp->ucopy.task == current &&
  4539. tp->copied_seq == tp->rcv_nxt &&
  4540. len - tcp_header_len <= tp->ucopy.len &&
  4541. sock_owned_by_user(sk)) {
  4542. __set_current_state(TASK_RUNNING);
  4543. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4544. /* Predicted packet is in window by definition.
  4545. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4546. * Hence, check seq<=rcv_wup reduces to:
  4547. */
  4548. if (tcp_header_len ==
  4549. (sizeof(struct tcphdr) +
  4550. TCPOLEN_TSTAMP_ALIGNED) &&
  4551. tp->rcv_nxt == tp->rcv_wup)
  4552. tcp_store_ts_recent(tp);
  4553. tcp_rcv_rtt_measure_ts(sk, skb);
  4554. __skb_pull(skb, tcp_header_len);
  4555. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4556. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4557. eaten = 1;
  4558. }
  4559. }
  4560. if (!eaten) {
  4561. if (tcp_checksum_complete_user(sk, skb))
  4562. goto csum_error;
  4563. if ((int)skb->truesize > sk->sk_forward_alloc)
  4564. goto step5;
  4565. /* Predicted packet is in window by definition.
  4566. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4567. * Hence, check seq<=rcv_wup reduces to:
  4568. */
  4569. if (tcp_header_len ==
  4570. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4571. tp->rcv_nxt == tp->rcv_wup)
  4572. tcp_store_ts_recent(tp);
  4573. tcp_rcv_rtt_measure_ts(sk, skb);
  4574. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4575. /* Bulk data transfer: receiver */
  4576. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4577. &fragstolen);
  4578. }
  4579. tcp_event_data_recv(sk, skb);
  4580. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4581. /* Well, only one small jumplet in fast path... */
  4582. tcp_ack(sk, skb, FLAG_DATA);
  4583. tcp_data_snd_check(sk);
  4584. if (!inet_csk_ack_scheduled(sk))
  4585. goto no_ack;
  4586. }
  4587. __tcp_ack_snd_check(sk, 0);
  4588. no_ack:
  4589. if (eaten)
  4590. kfree_skb_partial(skb, fragstolen);
  4591. sk->sk_data_ready(sk);
  4592. return;
  4593. }
  4594. }
  4595. slow_path:
  4596. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4597. goto csum_error;
  4598. if (!th->ack && !th->rst && !th->syn)
  4599. goto discard;
  4600. /*
  4601. * Standard slow path.
  4602. */
  4603. if (!tcp_validate_incoming(sk, skb, th, 1))
  4604. return;
  4605. step5:
  4606. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4607. goto discard;
  4608. tcp_rcv_rtt_measure_ts(sk, skb);
  4609. /* Process urgent data. */
  4610. tcp_urg(sk, skb, th);
  4611. /* step 7: process the segment text */
  4612. tcp_data_queue(sk, skb);
  4613. tcp_data_snd_check(sk);
  4614. tcp_ack_snd_check(sk);
  4615. return;
  4616. csum_error:
  4617. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4618. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4619. discard:
  4620. __kfree_skb(skb);
  4621. }
  4622. EXPORT_SYMBOL(tcp_rcv_established);
  4623. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4624. {
  4625. struct tcp_sock *tp = tcp_sk(sk);
  4626. struct inet_connection_sock *icsk = inet_csk(sk);
  4627. tcp_set_state(sk, TCP_ESTABLISHED);
  4628. if (skb) {
  4629. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4630. security_inet_conn_established(sk, skb);
  4631. }
  4632. /* Make sure socket is routed, for correct metrics. */
  4633. icsk->icsk_af_ops->rebuild_header(sk);
  4634. tcp_init_metrics(sk);
  4635. tcp_init_congestion_control(sk);
  4636. /* Prevent spurious tcp_cwnd_restart() on first data
  4637. * packet.
  4638. */
  4639. tp->lsndtime = tcp_time_stamp;
  4640. tcp_init_buffer_space(sk);
  4641. if (sock_flag(sk, SOCK_KEEPOPEN))
  4642. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4643. if (!tp->rx_opt.snd_wscale)
  4644. __tcp_fast_path_on(tp, tp->snd_wnd);
  4645. else
  4646. tp->pred_flags = 0;
  4647. if (!sock_flag(sk, SOCK_DEAD)) {
  4648. sk->sk_state_change(sk);
  4649. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4650. }
  4651. }
  4652. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4653. struct tcp_fastopen_cookie *cookie)
  4654. {
  4655. struct tcp_sock *tp = tcp_sk(sk);
  4656. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4657. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4658. bool syn_drop = false;
  4659. if (mss == tp->rx_opt.user_mss) {
  4660. struct tcp_options_received opt;
  4661. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4662. tcp_clear_options(&opt);
  4663. opt.user_mss = opt.mss_clamp = 0;
  4664. tcp_parse_options(synack, &opt, 0, NULL);
  4665. mss = opt.mss_clamp;
  4666. }
  4667. if (!tp->syn_fastopen) {
  4668. /* Ignore an unsolicited cookie */
  4669. cookie->len = -1;
  4670. } else if (tp->total_retrans) {
  4671. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4672. * acknowledges data. Presumably the remote received only
  4673. * the retransmitted (regular) SYNs: either the original
  4674. * SYN-data or the corresponding SYN-ACK was dropped.
  4675. */
  4676. syn_drop = (cookie->len < 0 && data);
  4677. } else if (cookie->len < 0 && !tp->syn_data) {
  4678. /* We requested a cookie but didn't get it. If we did not use
  4679. * the (old) exp opt format then try so next time (try_exp=1).
  4680. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4681. */
  4682. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4683. }
  4684. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4685. if (data) { /* Retransmit unacked data in SYN */
  4686. tcp_for_write_queue_from(data, sk) {
  4687. if (data == tcp_send_head(sk) ||
  4688. __tcp_retransmit_skb(sk, data))
  4689. break;
  4690. }
  4691. tcp_rearm_rto(sk);
  4692. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4693. return true;
  4694. }
  4695. tp->syn_data_acked = tp->syn_data;
  4696. if (tp->syn_data_acked)
  4697. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4698. return false;
  4699. }
  4700. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4701. const struct tcphdr *th, unsigned int len)
  4702. {
  4703. struct inet_connection_sock *icsk = inet_csk(sk);
  4704. struct tcp_sock *tp = tcp_sk(sk);
  4705. struct tcp_fastopen_cookie foc = { .len = -1 };
  4706. int saved_clamp = tp->rx_opt.mss_clamp;
  4707. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4708. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4709. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4710. if (th->ack) {
  4711. /* rfc793:
  4712. * "If the state is SYN-SENT then
  4713. * first check the ACK bit
  4714. * If the ACK bit is set
  4715. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4716. * a reset (unless the RST bit is set, if so drop
  4717. * the segment and return)"
  4718. */
  4719. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4720. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4721. goto reset_and_undo;
  4722. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4723. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4724. tcp_time_stamp)) {
  4725. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4726. goto reset_and_undo;
  4727. }
  4728. /* Now ACK is acceptable.
  4729. *
  4730. * "If the RST bit is set
  4731. * If the ACK was acceptable then signal the user "error:
  4732. * connection reset", drop the segment, enter CLOSED state,
  4733. * delete TCB, and return."
  4734. */
  4735. if (th->rst) {
  4736. tcp_reset(sk);
  4737. goto discard;
  4738. }
  4739. /* rfc793:
  4740. * "fifth, if neither of the SYN or RST bits is set then
  4741. * drop the segment and return."
  4742. *
  4743. * See note below!
  4744. * --ANK(990513)
  4745. */
  4746. if (!th->syn)
  4747. goto discard_and_undo;
  4748. /* rfc793:
  4749. * "If the SYN bit is on ...
  4750. * are acceptable then ...
  4751. * (our SYN has been ACKed), change the connection
  4752. * state to ESTABLISHED..."
  4753. */
  4754. tcp_ecn_rcv_synack(tp, th);
  4755. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4756. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4757. /* Ok.. it's good. Set up sequence numbers and
  4758. * move to established.
  4759. */
  4760. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4761. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4762. /* RFC1323: The window in SYN & SYN/ACK segments is
  4763. * never scaled.
  4764. */
  4765. tp->snd_wnd = ntohs(th->window);
  4766. if (!tp->rx_opt.wscale_ok) {
  4767. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4768. tp->window_clamp = min(tp->window_clamp, 65535U);
  4769. }
  4770. if (tp->rx_opt.saw_tstamp) {
  4771. tp->rx_opt.tstamp_ok = 1;
  4772. tp->tcp_header_len =
  4773. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4774. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4775. tcp_store_ts_recent(tp);
  4776. } else {
  4777. tp->tcp_header_len = sizeof(struct tcphdr);
  4778. }
  4779. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4780. tcp_enable_fack(tp);
  4781. tcp_mtup_init(sk);
  4782. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4783. tcp_initialize_rcv_mss(sk);
  4784. /* Remember, tcp_poll() does not lock socket!
  4785. * Change state from SYN-SENT only after copied_seq
  4786. * is initialized. */
  4787. tp->copied_seq = tp->rcv_nxt;
  4788. smp_mb();
  4789. tcp_finish_connect(sk, skb);
  4790. if ((tp->syn_fastopen || tp->syn_data) &&
  4791. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4792. return -1;
  4793. if (sk->sk_write_pending ||
  4794. icsk->icsk_accept_queue.rskq_defer_accept ||
  4795. icsk->icsk_ack.pingpong) {
  4796. /* Save one ACK. Data will be ready after
  4797. * several ticks, if write_pending is set.
  4798. *
  4799. * It may be deleted, but with this feature tcpdumps
  4800. * look so _wonderfully_ clever, that I was not able
  4801. * to stand against the temptation 8) --ANK
  4802. */
  4803. inet_csk_schedule_ack(sk);
  4804. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4805. tcp_enter_quickack_mode(sk);
  4806. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4807. TCP_DELACK_MAX, TCP_RTO_MAX);
  4808. discard:
  4809. __kfree_skb(skb);
  4810. return 0;
  4811. } else {
  4812. tcp_send_ack(sk);
  4813. }
  4814. return -1;
  4815. }
  4816. /* No ACK in the segment */
  4817. if (th->rst) {
  4818. /* rfc793:
  4819. * "If the RST bit is set
  4820. *
  4821. * Otherwise (no ACK) drop the segment and return."
  4822. */
  4823. goto discard_and_undo;
  4824. }
  4825. /* PAWS check. */
  4826. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4827. tcp_paws_reject(&tp->rx_opt, 0))
  4828. goto discard_and_undo;
  4829. if (th->syn) {
  4830. /* We see SYN without ACK. It is attempt of
  4831. * simultaneous connect with crossed SYNs.
  4832. * Particularly, it can be connect to self.
  4833. */
  4834. tcp_set_state(sk, TCP_SYN_RECV);
  4835. if (tp->rx_opt.saw_tstamp) {
  4836. tp->rx_opt.tstamp_ok = 1;
  4837. tcp_store_ts_recent(tp);
  4838. tp->tcp_header_len =
  4839. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4840. } else {
  4841. tp->tcp_header_len = sizeof(struct tcphdr);
  4842. }
  4843. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4844. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4845. /* RFC1323: The window in SYN & SYN/ACK segments is
  4846. * never scaled.
  4847. */
  4848. tp->snd_wnd = ntohs(th->window);
  4849. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4850. tp->max_window = tp->snd_wnd;
  4851. tcp_ecn_rcv_syn(tp, th);
  4852. tcp_mtup_init(sk);
  4853. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4854. tcp_initialize_rcv_mss(sk);
  4855. tcp_send_synack(sk);
  4856. #if 0
  4857. /* Note, we could accept data and URG from this segment.
  4858. * There are no obstacles to make this (except that we must
  4859. * either change tcp_recvmsg() to prevent it from returning data
  4860. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4861. *
  4862. * However, if we ignore data in ACKless segments sometimes,
  4863. * we have no reasons to accept it sometimes.
  4864. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4865. * is not flawless. So, discard packet for sanity.
  4866. * Uncomment this return to process the data.
  4867. */
  4868. return -1;
  4869. #else
  4870. goto discard;
  4871. #endif
  4872. }
  4873. /* "fifth, if neither of the SYN or RST bits is set then
  4874. * drop the segment and return."
  4875. */
  4876. discard_and_undo:
  4877. tcp_clear_options(&tp->rx_opt);
  4878. tp->rx_opt.mss_clamp = saved_clamp;
  4879. goto discard;
  4880. reset_and_undo:
  4881. tcp_clear_options(&tp->rx_opt);
  4882. tp->rx_opt.mss_clamp = saved_clamp;
  4883. return 1;
  4884. }
  4885. /*
  4886. * This function implements the receiving procedure of RFC 793 for
  4887. * all states except ESTABLISHED and TIME_WAIT.
  4888. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4889. * address independent.
  4890. */
  4891. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4892. const struct tcphdr *th, unsigned int len)
  4893. {
  4894. struct tcp_sock *tp = tcp_sk(sk);
  4895. struct inet_connection_sock *icsk = inet_csk(sk);
  4896. struct request_sock *req;
  4897. int queued = 0;
  4898. bool acceptable;
  4899. u32 synack_stamp;
  4900. tp->rx_opt.saw_tstamp = 0;
  4901. switch (sk->sk_state) {
  4902. case TCP_CLOSE:
  4903. goto discard;
  4904. case TCP_LISTEN:
  4905. if (th->ack)
  4906. return 1;
  4907. if (th->rst)
  4908. goto discard;
  4909. if (th->syn) {
  4910. if (th->fin)
  4911. goto discard;
  4912. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4913. return 1;
  4914. /* Now we have several options: In theory there is
  4915. * nothing else in the frame. KA9Q has an option to
  4916. * send data with the syn, BSD accepts data with the
  4917. * syn up to the [to be] advertised window and
  4918. * Solaris 2.1 gives you a protocol error. For now
  4919. * we just ignore it, that fits the spec precisely
  4920. * and avoids incompatibilities. It would be nice in
  4921. * future to drop through and process the data.
  4922. *
  4923. * Now that TTCP is starting to be used we ought to
  4924. * queue this data.
  4925. * But, this leaves one open to an easy denial of
  4926. * service attack, and SYN cookies can't defend
  4927. * against this problem. So, we drop the data
  4928. * in the interest of security over speed unless
  4929. * it's still in use.
  4930. */
  4931. kfree_skb(skb);
  4932. return 0;
  4933. }
  4934. goto discard;
  4935. case TCP_SYN_SENT:
  4936. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4937. if (queued >= 0)
  4938. return queued;
  4939. /* Do step6 onward by hand. */
  4940. tcp_urg(sk, skb, th);
  4941. __kfree_skb(skb);
  4942. tcp_data_snd_check(sk);
  4943. return 0;
  4944. }
  4945. req = tp->fastopen_rsk;
  4946. if (req) {
  4947. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4948. sk->sk_state != TCP_FIN_WAIT1);
  4949. if (!tcp_check_req(sk, skb, req, true))
  4950. goto discard;
  4951. }
  4952. if (!th->ack && !th->rst && !th->syn)
  4953. goto discard;
  4954. if (!tcp_validate_incoming(sk, skb, th, 0))
  4955. return 0;
  4956. /* step 5: check the ACK field */
  4957. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4958. FLAG_UPDATE_TS_RECENT) > 0;
  4959. switch (sk->sk_state) {
  4960. case TCP_SYN_RECV:
  4961. if (!acceptable)
  4962. return 1;
  4963. /* Once we leave TCP_SYN_RECV, we no longer need req
  4964. * so release it.
  4965. */
  4966. if (req) {
  4967. synack_stamp = tcp_rsk(req)->snt_synack;
  4968. tp->total_retrans = req->num_retrans;
  4969. reqsk_fastopen_remove(sk, req, false);
  4970. } else {
  4971. synack_stamp = tp->lsndtime;
  4972. /* Make sure socket is routed, for correct metrics. */
  4973. icsk->icsk_af_ops->rebuild_header(sk);
  4974. tcp_init_congestion_control(sk);
  4975. tcp_mtup_init(sk);
  4976. tp->copied_seq = tp->rcv_nxt;
  4977. tcp_init_buffer_space(sk);
  4978. }
  4979. smp_mb();
  4980. tcp_set_state(sk, TCP_ESTABLISHED);
  4981. sk->sk_state_change(sk);
  4982. /* Note, that this wakeup is only for marginal crossed SYN case.
  4983. * Passively open sockets are not waked up, because
  4984. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4985. */
  4986. if (sk->sk_socket)
  4987. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4988. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4989. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4990. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4991. tcp_synack_rtt_meas(sk, synack_stamp);
  4992. if (tp->rx_opt.tstamp_ok)
  4993. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4994. if (req) {
  4995. /* Re-arm the timer because data may have been sent out.
  4996. * This is similar to the regular data transmission case
  4997. * when new data has just been ack'ed.
  4998. *
  4999. * (TFO) - we could try to be more aggressive and
  5000. * retransmitting any data sooner based on when they
  5001. * are sent out.
  5002. */
  5003. tcp_rearm_rto(sk);
  5004. } else
  5005. tcp_init_metrics(sk);
  5006. tcp_update_pacing_rate(sk);
  5007. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5008. tp->lsndtime = tcp_time_stamp;
  5009. tcp_initialize_rcv_mss(sk);
  5010. tcp_fast_path_on(tp);
  5011. break;
  5012. case TCP_FIN_WAIT1: {
  5013. struct dst_entry *dst;
  5014. int tmo;
  5015. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5016. * Fast Open socket and this is the first acceptable
  5017. * ACK we have received, this would have acknowledged
  5018. * our SYNACK so stop the SYNACK timer.
  5019. */
  5020. if (req) {
  5021. /* Return RST if ack_seq is invalid.
  5022. * Note that RFC793 only says to generate a
  5023. * DUPACK for it but for TCP Fast Open it seems
  5024. * better to treat this case like TCP_SYN_RECV
  5025. * above.
  5026. */
  5027. if (!acceptable)
  5028. return 1;
  5029. /* We no longer need the request sock. */
  5030. reqsk_fastopen_remove(sk, req, false);
  5031. tcp_rearm_rto(sk);
  5032. }
  5033. if (tp->snd_una != tp->write_seq)
  5034. break;
  5035. tcp_set_state(sk, TCP_FIN_WAIT2);
  5036. sk->sk_shutdown |= SEND_SHUTDOWN;
  5037. dst = __sk_dst_get(sk);
  5038. if (dst)
  5039. dst_confirm(dst);
  5040. if (!sock_flag(sk, SOCK_DEAD)) {
  5041. /* Wake up lingering close() */
  5042. sk->sk_state_change(sk);
  5043. break;
  5044. }
  5045. if (tp->linger2 < 0 ||
  5046. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5047. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5048. tcp_done(sk);
  5049. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5050. return 1;
  5051. }
  5052. tmo = tcp_fin_time(sk);
  5053. if (tmo > TCP_TIMEWAIT_LEN) {
  5054. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5055. } else if (th->fin || sock_owned_by_user(sk)) {
  5056. /* Bad case. We could lose such FIN otherwise.
  5057. * It is not a big problem, but it looks confusing
  5058. * and not so rare event. We still can lose it now,
  5059. * if it spins in bh_lock_sock(), but it is really
  5060. * marginal case.
  5061. */
  5062. inet_csk_reset_keepalive_timer(sk, tmo);
  5063. } else {
  5064. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5065. goto discard;
  5066. }
  5067. break;
  5068. }
  5069. case TCP_CLOSING:
  5070. if (tp->snd_una == tp->write_seq) {
  5071. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5072. goto discard;
  5073. }
  5074. break;
  5075. case TCP_LAST_ACK:
  5076. if (tp->snd_una == tp->write_seq) {
  5077. tcp_update_metrics(sk);
  5078. tcp_done(sk);
  5079. goto discard;
  5080. }
  5081. break;
  5082. }
  5083. /* step 6: check the URG bit */
  5084. tcp_urg(sk, skb, th);
  5085. /* step 7: process the segment text */
  5086. switch (sk->sk_state) {
  5087. case TCP_CLOSE_WAIT:
  5088. case TCP_CLOSING:
  5089. case TCP_LAST_ACK:
  5090. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5091. break;
  5092. case TCP_FIN_WAIT1:
  5093. case TCP_FIN_WAIT2:
  5094. /* RFC 793 says to queue data in these states,
  5095. * RFC 1122 says we MUST send a reset.
  5096. * BSD 4.4 also does reset.
  5097. */
  5098. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5099. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5100. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5101. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5102. tcp_reset(sk);
  5103. return 1;
  5104. }
  5105. }
  5106. /* Fall through */
  5107. case TCP_ESTABLISHED:
  5108. tcp_data_queue(sk, skb);
  5109. queued = 1;
  5110. break;
  5111. }
  5112. /* tcp_data could move socket to TIME-WAIT */
  5113. if (sk->sk_state != TCP_CLOSE) {
  5114. tcp_data_snd_check(sk);
  5115. tcp_ack_snd_check(sk);
  5116. }
  5117. if (!queued) {
  5118. discard:
  5119. __kfree_skb(skb);
  5120. }
  5121. return 0;
  5122. }
  5123. EXPORT_SYMBOL(tcp_rcv_state_process);
  5124. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5125. {
  5126. struct inet_request_sock *ireq = inet_rsk(req);
  5127. if (family == AF_INET)
  5128. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5129. &ireq->ir_rmt_addr, port);
  5130. #if IS_ENABLED(CONFIG_IPV6)
  5131. else if (family == AF_INET6)
  5132. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5133. &ireq->ir_v6_rmt_addr, port);
  5134. #endif
  5135. }
  5136. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5137. *
  5138. * If we receive a SYN packet with these bits set, it means a
  5139. * network is playing bad games with TOS bits. In order to
  5140. * avoid possible false congestion notifications, we disable
  5141. * TCP ECN negotiation.
  5142. *
  5143. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5144. * congestion control: Linux DCTCP asserts ECT on all packets,
  5145. * including SYN, which is most optimal solution; however,
  5146. * others, such as FreeBSD do not.
  5147. */
  5148. static void tcp_ecn_create_request(struct request_sock *req,
  5149. const struct sk_buff *skb,
  5150. const struct sock *listen_sk,
  5151. const struct dst_entry *dst)
  5152. {
  5153. const struct tcphdr *th = tcp_hdr(skb);
  5154. const struct net *net = sock_net(listen_sk);
  5155. bool th_ecn = th->ece && th->cwr;
  5156. bool ect, ecn_ok;
  5157. if (!th_ecn)
  5158. return;
  5159. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5160. ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
  5161. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
  5162. inet_rsk(req)->ecn_ok = 1;
  5163. }
  5164. static void tcp_openreq_init(struct request_sock *req,
  5165. const struct tcp_options_received *rx_opt,
  5166. struct sk_buff *skb, const struct sock *sk)
  5167. {
  5168. struct inet_request_sock *ireq = inet_rsk(req);
  5169. req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5170. req->cookie_ts = 0;
  5171. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5172. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5173. tcp_rsk(req)->snt_synack = tcp_time_stamp;
  5174. tcp_rsk(req)->last_oow_ack_time = 0;
  5175. req->mss = rx_opt->mss_clamp;
  5176. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5177. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5178. ireq->sack_ok = rx_opt->sack_ok;
  5179. ireq->snd_wscale = rx_opt->snd_wscale;
  5180. ireq->wscale_ok = rx_opt->wscale_ok;
  5181. ireq->acked = 0;
  5182. ireq->ecn_ok = 0;
  5183. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5184. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5185. ireq->ir_mark = inet_request_mark(sk, skb);
  5186. }
  5187. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5188. struct sock *sk_listener)
  5189. {
  5190. struct request_sock *req = reqsk_alloc(ops, sk_listener);
  5191. if (req) {
  5192. struct inet_request_sock *ireq = inet_rsk(req);
  5193. kmemcheck_annotate_bitfield(ireq, flags);
  5194. ireq->opt = NULL;
  5195. atomic64_set(&ireq->ir_cookie, 0);
  5196. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5197. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5198. ireq->ireq_family = sk_listener->sk_family;
  5199. }
  5200. return req;
  5201. }
  5202. EXPORT_SYMBOL(inet_reqsk_alloc);
  5203. /*
  5204. * Return true if a syncookie should be sent
  5205. */
  5206. static bool tcp_syn_flood_action(struct sock *sk,
  5207. const struct sk_buff *skb,
  5208. const char *proto)
  5209. {
  5210. const char *msg = "Dropping request";
  5211. bool want_cookie = false;
  5212. struct listen_sock *lopt;
  5213. #ifdef CONFIG_SYN_COOKIES
  5214. if (sysctl_tcp_syncookies) {
  5215. msg = "Sending cookies";
  5216. want_cookie = true;
  5217. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5218. } else
  5219. #endif
  5220. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5221. lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
  5222. if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
  5223. lopt->synflood_warned = 1;
  5224. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5225. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5226. }
  5227. return want_cookie;
  5228. }
  5229. static void tcp_reqsk_record_syn(const struct sock *sk,
  5230. struct request_sock *req,
  5231. const struct sk_buff *skb)
  5232. {
  5233. if (tcp_sk(sk)->save_syn) {
  5234. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5235. u32 *copy;
  5236. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5237. if (copy) {
  5238. copy[0] = len;
  5239. memcpy(&copy[1], skb_network_header(skb), len);
  5240. req->saved_syn = copy;
  5241. }
  5242. }
  5243. }
  5244. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5245. const struct tcp_request_sock_ops *af_ops,
  5246. struct sock *sk, struct sk_buff *skb)
  5247. {
  5248. struct tcp_options_received tmp_opt;
  5249. struct request_sock *req;
  5250. struct tcp_sock *tp = tcp_sk(sk);
  5251. struct dst_entry *dst = NULL;
  5252. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5253. bool want_cookie = false, fastopen;
  5254. struct flowi fl;
  5255. struct tcp_fastopen_cookie foc = { .len = -1 };
  5256. int err;
  5257. /* TW buckets are converted to open requests without
  5258. * limitations, they conserve resources and peer is
  5259. * evidently real one.
  5260. */
  5261. if ((sysctl_tcp_syncookies == 2 ||
  5262. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5263. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5264. if (!want_cookie)
  5265. goto drop;
  5266. }
  5267. /* Accept backlog is full. If we have already queued enough
  5268. * of warm entries in syn queue, drop request. It is better than
  5269. * clogging syn queue with openreqs with exponentially increasing
  5270. * timeout.
  5271. */
  5272. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5273. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5274. goto drop;
  5275. }
  5276. req = inet_reqsk_alloc(rsk_ops, sk);
  5277. if (!req)
  5278. goto drop;
  5279. tcp_rsk(req)->af_specific = af_ops;
  5280. tcp_clear_options(&tmp_opt);
  5281. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5282. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5283. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5284. if (want_cookie && !tmp_opt.saw_tstamp)
  5285. tcp_clear_options(&tmp_opt);
  5286. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5287. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5288. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5289. inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
  5290. af_ops->init_req(req, sk, skb);
  5291. if (security_inet_conn_request(sk, skb, req))
  5292. goto drop_and_free;
  5293. if (!want_cookie && !isn) {
  5294. /* VJ's idea. We save last timestamp seen
  5295. * from the destination in peer table, when entering
  5296. * state TIME-WAIT, and check against it before
  5297. * accepting new connection request.
  5298. *
  5299. * If "isn" is not zero, this request hit alive
  5300. * timewait bucket, so that all the necessary checks
  5301. * are made in the function processing timewait state.
  5302. */
  5303. if (tcp_death_row.sysctl_tw_recycle) {
  5304. bool strict;
  5305. dst = af_ops->route_req(sk, &fl, req, &strict);
  5306. if (dst && strict &&
  5307. !tcp_peer_is_proven(req, dst, true,
  5308. tmp_opt.saw_tstamp)) {
  5309. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5310. goto drop_and_release;
  5311. }
  5312. }
  5313. /* Kill the following clause, if you dislike this way. */
  5314. else if (!sysctl_tcp_syncookies &&
  5315. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5316. (sysctl_max_syn_backlog >> 2)) &&
  5317. !tcp_peer_is_proven(req, dst, false,
  5318. tmp_opt.saw_tstamp)) {
  5319. /* Without syncookies last quarter of
  5320. * backlog is filled with destinations,
  5321. * proven to be alive.
  5322. * It means that we continue to communicate
  5323. * to destinations, already remembered
  5324. * to the moment of synflood.
  5325. */
  5326. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5327. rsk_ops->family);
  5328. goto drop_and_release;
  5329. }
  5330. isn = af_ops->init_seq(skb);
  5331. }
  5332. if (!dst) {
  5333. dst = af_ops->route_req(sk, &fl, req, NULL);
  5334. if (!dst)
  5335. goto drop_and_free;
  5336. }
  5337. tcp_ecn_create_request(req, skb, sk, dst);
  5338. if (want_cookie) {
  5339. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5340. req->cookie_ts = tmp_opt.tstamp_ok;
  5341. if (!tmp_opt.tstamp_ok)
  5342. inet_rsk(req)->ecn_ok = 0;
  5343. }
  5344. tcp_rsk(req)->snt_isn = isn;
  5345. tcp_openreq_init_rwin(req, sk, dst);
  5346. fastopen = !want_cookie &&
  5347. tcp_try_fastopen(sk, skb, req, &foc, dst);
  5348. err = af_ops->send_synack(sk, dst, &fl, req,
  5349. skb_get_queue_mapping(skb), &foc);
  5350. if (!fastopen) {
  5351. if (err || want_cookie)
  5352. goto drop_and_free;
  5353. tcp_rsk(req)->tfo_listener = false;
  5354. af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5355. }
  5356. tcp_reqsk_record_syn(sk, req, skb);
  5357. return 0;
  5358. drop_and_release:
  5359. dst_release(dst);
  5360. drop_and_free:
  5361. reqsk_free(req);
  5362. drop:
  5363. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
  5364. return 0;
  5365. }
  5366. EXPORT_SYMBOL(tcp_conn_request);