intel_ringbuffer.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #define I915_CMD_HASH_ORDER 9
  7. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  8. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  9. * to give some inclination as to some of the magic values used in the various
  10. * workarounds!
  11. */
  12. #define CACHELINE_BYTES 64
  13. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  14. /*
  15. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  16. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  17. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  18. *
  19. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  20. * cacheline, the Head Pointer must not be greater than the Tail
  21. * Pointer."
  22. */
  23. #define I915_RING_FREE_SPACE 64
  24. struct intel_hw_status_page {
  25. struct i915_vma *vma;
  26. u32 *page_addr;
  27. u32 ggtt_offset;
  28. };
  29. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  30. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  31. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  32. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  33. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  34. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  35. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  36. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  37. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  38. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  39. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  40. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  41. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  42. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  43. */
  44. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  45. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  46. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  47. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  48. (dev_priv->semaphore->node.start + \
  49. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  50. #define GEN8_WAIT_OFFSET(__ring, from) \
  51. (dev_priv->semaphore->node.start + \
  52. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  53. enum intel_engine_hangcheck_action {
  54. HANGCHECK_IDLE = 0,
  55. HANGCHECK_WAIT,
  56. HANGCHECK_ACTIVE,
  57. HANGCHECK_KICK,
  58. HANGCHECK_HUNG,
  59. };
  60. #define HANGCHECK_SCORE_RING_HUNG 31
  61. struct intel_engine_hangcheck {
  62. u64 acthd;
  63. u32 seqno;
  64. int score;
  65. enum intel_engine_hangcheck_action action;
  66. int deadlock;
  67. u32 instdone[I915_NUM_INSTDONE_REG];
  68. };
  69. struct intel_ring {
  70. struct i915_vma *vma;
  71. void *vaddr;
  72. struct intel_engine_cs *engine;
  73. struct list_head request_list;
  74. u32 head;
  75. u32 tail;
  76. int space;
  77. int size;
  78. int effective_size;
  79. /** We track the position of the requests in the ring buffer, and
  80. * when each is retired we increment last_retired_head as the GPU
  81. * must have finished processing the request and so we know we
  82. * can advance the ringbuffer up to that position.
  83. *
  84. * last_retired_head is set to -1 after the value is consumed so
  85. * we can detect new retirements.
  86. */
  87. u32 last_retired_head;
  88. };
  89. struct i915_gem_context;
  90. struct drm_i915_reg_table;
  91. /*
  92. * we use a single page to load ctx workarounds so all of these
  93. * values are referred in terms of dwords
  94. *
  95. * struct i915_wa_ctx_bb:
  96. * offset: specifies batch starting position, also helpful in case
  97. * if we want to have multiple batches at different offsets based on
  98. * some criteria. It is not a requirement at the moment but provides
  99. * an option for future use.
  100. * size: size of the batch in DWORDS
  101. */
  102. struct i915_ctx_workarounds {
  103. struct i915_wa_ctx_bb {
  104. u32 offset;
  105. u32 size;
  106. } indirect_ctx, per_ctx;
  107. struct i915_vma *vma;
  108. };
  109. struct drm_i915_gem_request;
  110. struct intel_engine_cs {
  111. struct drm_i915_private *i915;
  112. const char *name;
  113. enum intel_engine_id {
  114. RCS = 0,
  115. BCS,
  116. VCS,
  117. VCS2, /* Keep instances of the same type engine together. */
  118. VECS
  119. } id;
  120. #define I915_NUM_ENGINES 5
  121. #define _VCS(n) (VCS + (n))
  122. unsigned int exec_id;
  123. enum intel_engine_hw_id {
  124. RCS_HW = 0,
  125. VCS_HW,
  126. BCS_HW,
  127. VECS_HW,
  128. VCS2_HW
  129. } hw_id;
  130. enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
  131. u64 fence_context;
  132. u32 mmio_base;
  133. unsigned int irq_shift;
  134. struct intel_ring *buffer;
  135. /* Rather than have every client wait upon all user interrupts,
  136. * with the herd waking after every interrupt and each doing the
  137. * heavyweight seqno dance, we delegate the task (of being the
  138. * bottom-half of the user interrupt) to the first client. After
  139. * every interrupt, we wake up one client, who does the heavyweight
  140. * coherent seqno read and either goes back to sleep (if incomplete),
  141. * or wakes up all the completed clients in parallel, before then
  142. * transferring the bottom-half status to the next client in the queue.
  143. *
  144. * Compared to walking the entire list of waiters in a single dedicated
  145. * bottom-half, we reduce the latency of the first waiter by avoiding
  146. * a context switch, but incur additional coherent seqno reads when
  147. * following the chain of request breadcrumbs. Since it is most likely
  148. * that we have a single client waiting on each seqno, then reducing
  149. * the overhead of waking that client is much preferred.
  150. */
  151. struct intel_breadcrumbs {
  152. struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
  153. bool irq_posted;
  154. spinlock_t lock; /* protects the lists of requests */
  155. struct rb_root waiters; /* sorted by retirement, priority */
  156. struct rb_root signals; /* sorted by retirement */
  157. struct intel_wait *first_wait; /* oldest waiter by retirement */
  158. struct task_struct *signaler; /* used for fence signalling */
  159. struct drm_i915_gem_request *first_signal;
  160. struct timer_list fake_irq; /* used after a missed interrupt */
  161. struct timer_list hangcheck; /* detect missed interrupts */
  162. unsigned long timeout;
  163. bool irq_enabled : 1;
  164. bool rpm_wakelock : 1;
  165. } breadcrumbs;
  166. /*
  167. * A pool of objects to use as shadow copies of client batch buffers
  168. * when the command parser is enabled. Prevents the client from
  169. * modifying the batch contents after software parsing.
  170. */
  171. struct i915_gem_batch_pool batch_pool;
  172. struct intel_hw_status_page status_page;
  173. struct i915_ctx_workarounds wa_ctx;
  174. struct i915_vma *scratch;
  175. u32 irq_keep_mask; /* always keep these interrupts */
  176. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  177. void (*irq_enable)(struct intel_engine_cs *engine);
  178. void (*irq_disable)(struct intel_engine_cs *engine);
  179. int (*init_hw)(struct intel_engine_cs *engine);
  180. void (*reset_hw)(struct intel_engine_cs *engine,
  181. struct drm_i915_gem_request *req);
  182. int (*init_context)(struct drm_i915_gem_request *req);
  183. int (*emit_flush)(struct drm_i915_gem_request *request,
  184. u32 mode);
  185. #define EMIT_INVALIDATE BIT(0)
  186. #define EMIT_FLUSH BIT(1)
  187. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  188. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  189. u64 offset, u32 length,
  190. unsigned int dispatch_flags);
  191. #define I915_DISPATCH_SECURE BIT(0)
  192. #define I915_DISPATCH_PINNED BIT(1)
  193. #define I915_DISPATCH_RS BIT(2)
  194. int (*emit_request)(struct drm_i915_gem_request *req);
  195. /* Pass the request to the hardware queue (e.g. directly into
  196. * the legacy ringbuffer or to the end of an execlist).
  197. *
  198. * This is called from an atomic context with irqs disabled; must
  199. * be irq safe.
  200. */
  201. void (*submit_request)(struct drm_i915_gem_request *req);
  202. /* Some chipsets are not quite as coherent as advertised and need
  203. * an expensive kick to force a true read of the up-to-date seqno.
  204. * However, the up-to-date seqno is not always required and the last
  205. * seen value is good enough. Note that the seqno will always be
  206. * monotonic, even if not coherent.
  207. */
  208. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  209. void (*cleanup)(struct intel_engine_cs *engine);
  210. /* GEN8 signal/wait table - never trust comments!
  211. * signal to signal to signal to signal to signal to
  212. * RCS VCS BCS VECS VCS2
  213. * --------------------------------------------------------------------
  214. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  215. * |-------------------------------------------------------------------
  216. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  217. * |-------------------------------------------------------------------
  218. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  219. * |-------------------------------------------------------------------
  220. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  221. * |-------------------------------------------------------------------
  222. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  223. * |-------------------------------------------------------------------
  224. *
  225. * Generalization:
  226. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  227. * ie. transpose of g(x, y)
  228. *
  229. * sync from sync from sync from sync from sync from
  230. * RCS VCS BCS VECS VCS2
  231. * --------------------------------------------------------------------
  232. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  233. * |-------------------------------------------------------------------
  234. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  235. * |-------------------------------------------------------------------
  236. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  237. * |-------------------------------------------------------------------
  238. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  239. * |-------------------------------------------------------------------
  240. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  241. * |-------------------------------------------------------------------
  242. *
  243. * Generalization:
  244. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  245. * ie. transpose of f(x, y)
  246. */
  247. struct {
  248. u32 sync_seqno[I915_NUM_ENGINES-1];
  249. union {
  250. #define GEN6_SEMAPHORE_LAST VECS_HW
  251. #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
  252. #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
  253. struct {
  254. /* our mbox written by others */
  255. u32 wait[GEN6_NUM_SEMAPHORES];
  256. /* mboxes this ring signals to */
  257. i915_reg_t signal[GEN6_NUM_SEMAPHORES];
  258. } mbox;
  259. u64 signal_ggtt[I915_NUM_ENGINES];
  260. };
  261. /* AKA wait() */
  262. int (*sync_to)(struct drm_i915_gem_request *req,
  263. struct drm_i915_gem_request *signal);
  264. int (*signal)(struct drm_i915_gem_request *req);
  265. } semaphore;
  266. /* Execlists */
  267. struct tasklet_struct irq_tasklet;
  268. spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
  269. struct execlist_port {
  270. struct drm_i915_gem_request *request;
  271. unsigned int count;
  272. } execlist_port[2];
  273. struct list_head execlist_queue;
  274. unsigned int fw_domains;
  275. bool disable_lite_restore_wa;
  276. bool preempt_wa;
  277. u32 ctx_desc_template;
  278. /**
  279. * List of breadcrumbs associated with GPU requests currently
  280. * outstanding.
  281. */
  282. struct list_head request_list;
  283. /**
  284. * Seqno of request most recently submitted to request_list.
  285. * Used exclusively by hang checker to avoid grabbing lock while
  286. * inspecting request list.
  287. */
  288. u32 last_submitted_seqno;
  289. u32 last_pending_seqno;
  290. /* An RCU guarded pointer to the last request. No reference is
  291. * held to the request, users must carefully acquire a reference to
  292. * the request using i915_gem_active_get_rcu(), or hold the
  293. * struct_mutex.
  294. */
  295. struct i915_gem_active last_request;
  296. struct i915_gem_context *last_context;
  297. struct intel_engine_hangcheck hangcheck;
  298. bool needs_cmd_parser;
  299. /*
  300. * Table of commands the command parser needs to know about
  301. * for this engine.
  302. */
  303. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  304. /*
  305. * Table of registers allowed in commands that read/write registers.
  306. */
  307. const struct drm_i915_reg_table *reg_tables;
  308. int reg_table_count;
  309. /*
  310. * Returns the bitmask for the length field of the specified command.
  311. * Return 0 for an unrecognized/invalid command.
  312. *
  313. * If the command parser finds an entry for a command in the engine's
  314. * cmd_tables, it gets the command's length based on the table entry.
  315. * If not, it calls this function to determine the per-engine length
  316. * field encoding for the command (i.e. different opcode ranges use
  317. * certain bits to encode the command length in the header).
  318. */
  319. u32 (*get_cmd_length_mask)(u32 cmd_header);
  320. };
  321. static inline bool
  322. intel_engine_initialized(const struct intel_engine_cs *engine)
  323. {
  324. return engine->i915 != NULL;
  325. }
  326. static inline unsigned
  327. intel_engine_flag(const struct intel_engine_cs *engine)
  328. {
  329. return 1 << engine->id;
  330. }
  331. static inline u32
  332. intel_engine_sync_index(struct intel_engine_cs *engine,
  333. struct intel_engine_cs *other)
  334. {
  335. int idx;
  336. /*
  337. * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
  338. * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
  339. * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
  340. * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
  341. * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
  342. */
  343. idx = (other - engine) - 1;
  344. if (idx < 0)
  345. idx += I915_NUM_ENGINES;
  346. return idx;
  347. }
  348. static inline void
  349. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  350. {
  351. mb();
  352. clflush(&engine->status_page.page_addr[reg]);
  353. mb();
  354. }
  355. static inline u32
  356. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  357. {
  358. /* Ensure that the compiler doesn't optimize away the load. */
  359. return READ_ONCE(engine->status_page.page_addr[reg]);
  360. }
  361. static inline void
  362. intel_write_status_page(struct intel_engine_cs *engine,
  363. int reg, u32 value)
  364. {
  365. engine->status_page.page_addr[reg] = value;
  366. }
  367. /*
  368. * Reads a dword out of the status page, which is written to from the command
  369. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  370. * MI_STORE_DATA_IMM.
  371. *
  372. * The following dwords have a reserved meaning:
  373. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  374. * 0x04: ring 0 head pointer
  375. * 0x05: ring 1 head pointer (915-class)
  376. * 0x06: ring 2 head pointer (915-class)
  377. * 0x10-0x1b: Context status DWords (GM45)
  378. * 0x1f: Last written status offset. (GM45)
  379. * 0x20-0x2f: Reserved (Gen6+)
  380. *
  381. * The area from dword 0x30 to 0x3ff is available for driver usage.
  382. */
  383. #define I915_GEM_HWS_INDEX 0x30
  384. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  385. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  386. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  387. struct intel_ring *
  388. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  389. int intel_ring_pin(struct intel_ring *ring);
  390. void intel_ring_unpin(struct intel_ring *ring);
  391. void intel_ring_free(struct intel_ring *ring);
  392. void intel_engine_stop(struct intel_engine_cs *engine);
  393. void intel_engine_cleanup(struct intel_engine_cs *engine);
  394. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
  395. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  396. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  397. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  398. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  399. {
  400. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  401. ring->tail += 4;
  402. }
  403. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  404. {
  405. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  406. }
  407. static inline void intel_ring_advance(struct intel_ring *ring)
  408. {
  409. /* Dummy function.
  410. *
  411. * This serves as a placeholder in the code so that the reader
  412. * can compare against the preceding intel_ring_begin() and
  413. * check that the number of dwords emitted matches the space
  414. * reserved for the command packet (i.e. the value passed to
  415. * intel_ring_begin()).
  416. */
  417. }
  418. static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
  419. {
  420. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  421. return value & (ring->size - 1);
  422. }
  423. int __intel_ring_space(int head, int tail, int size);
  424. void intel_ring_update_space(struct intel_ring *ring);
  425. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
  426. void intel_engine_setup_common(struct intel_engine_cs *engine);
  427. int intel_engine_init_common(struct intel_engine_cs *engine);
  428. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  429. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  430. static inline int intel_engine_idle(struct intel_engine_cs *engine,
  431. unsigned int flags)
  432. {
  433. /* Wait upon the last request to be completed */
  434. return i915_gem_active_wait_unlocked(&engine->last_request,
  435. flags, NULL, NULL);
  436. }
  437. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  438. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  439. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  440. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  441. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  442. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  443. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  444. {
  445. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  446. }
  447. int init_workarounds_ring(struct intel_engine_cs *engine);
  448. /*
  449. * Arbitrary size for largest possible 'add request' sequence. The code paths
  450. * are complex and variable. Empirical measurement shows that the worst case
  451. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  452. * we need to allocate double the largest single packet within that emission
  453. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  454. */
  455. #define MIN_SPACE_FOR_ADD_REQUEST 336
  456. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  457. {
  458. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  459. }
  460. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  461. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  462. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  463. {
  464. wait->tsk = current;
  465. wait->seqno = seqno;
  466. }
  467. static inline bool intel_wait_complete(const struct intel_wait *wait)
  468. {
  469. return RB_EMPTY_NODE(&wait->node);
  470. }
  471. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  472. struct intel_wait *wait);
  473. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  474. struct intel_wait *wait);
  475. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  476. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  477. {
  478. return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
  479. }
  480. static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
  481. {
  482. bool wakeup = false;
  483. /* Note that for this not to dangerously chase a dangling pointer,
  484. * we must hold the rcu_read_lock here.
  485. *
  486. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  487. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  488. * is unlikely to be beneficial.
  489. */
  490. if (intel_engine_has_waiter(engine)) {
  491. struct task_struct *tsk;
  492. rcu_read_lock();
  493. tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
  494. if (tsk)
  495. wakeup = wake_up_process(tsk);
  496. rcu_read_unlock();
  497. }
  498. return wakeup;
  499. }
  500. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
  501. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  502. unsigned int intel_kick_waiters(struct drm_i915_private *i915);
  503. unsigned int intel_kick_signalers(struct drm_i915_private *i915);
  504. static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
  505. {
  506. return i915_gem_active_isset(&engine->last_request);
  507. }
  508. #endif /* _INTEL_RINGBUFFER_H_ */