igb_ethtool.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. /* ethtool support for igb */
  24. #include <linux/vmalloc.h>
  25. #include <linux/netdevice.h>
  26. #include <linux/pci.h>
  27. #include <linux/delay.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/if_ether.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/sched.h>
  32. #include <linux/slab.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/highmem.h>
  35. #include <linux/mdio.h>
  36. #include "igb.h"
  37. struct igb_stats {
  38. char stat_string[ETH_GSTRING_LEN];
  39. int sizeof_stat;
  40. int stat_offset;
  41. };
  42. #define IGB_STAT(_name, _stat) { \
  43. .stat_string = _name, \
  44. .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  45. .stat_offset = offsetof(struct igb_adapter, _stat) \
  46. }
  47. static const struct igb_stats igb_gstrings_stats[] = {
  48. IGB_STAT("rx_packets", stats.gprc),
  49. IGB_STAT("tx_packets", stats.gptc),
  50. IGB_STAT("rx_bytes", stats.gorc),
  51. IGB_STAT("tx_bytes", stats.gotc),
  52. IGB_STAT("rx_broadcast", stats.bprc),
  53. IGB_STAT("tx_broadcast", stats.bptc),
  54. IGB_STAT("rx_multicast", stats.mprc),
  55. IGB_STAT("tx_multicast", stats.mptc),
  56. IGB_STAT("multicast", stats.mprc),
  57. IGB_STAT("collisions", stats.colc),
  58. IGB_STAT("rx_crc_errors", stats.crcerrs),
  59. IGB_STAT("rx_no_buffer_count", stats.rnbc),
  60. IGB_STAT("rx_missed_errors", stats.mpc),
  61. IGB_STAT("tx_aborted_errors", stats.ecol),
  62. IGB_STAT("tx_carrier_errors", stats.tncrs),
  63. IGB_STAT("tx_window_errors", stats.latecol),
  64. IGB_STAT("tx_abort_late_coll", stats.latecol),
  65. IGB_STAT("tx_deferred_ok", stats.dc),
  66. IGB_STAT("tx_single_coll_ok", stats.scc),
  67. IGB_STAT("tx_multi_coll_ok", stats.mcc),
  68. IGB_STAT("tx_timeout_count", tx_timeout_count),
  69. IGB_STAT("rx_long_length_errors", stats.roc),
  70. IGB_STAT("rx_short_length_errors", stats.ruc),
  71. IGB_STAT("rx_align_errors", stats.algnerrc),
  72. IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  73. IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  74. IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  75. IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  76. IGB_STAT("tx_flow_control_xon", stats.xontxc),
  77. IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  78. IGB_STAT("rx_long_byte_count", stats.gorc),
  79. IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  80. IGB_STAT("tx_smbus", stats.mgptc),
  81. IGB_STAT("rx_smbus", stats.mgprc),
  82. IGB_STAT("dropped_smbus", stats.mgpdc),
  83. IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  84. IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  85. IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  86. IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  87. IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  88. IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  89. };
  90. #define IGB_NETDEV_STAT(_net_stat) { \
  91. .stat_string = __stringify(_net_stat), \
  92. .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  93. .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  94. }
  95. static const struct igb_stats igb_gstrings_net_stats[] = {
  96. IGB_NETDEV_STAT(rx_errors),
  97. IGB_NETDEV_STAT(tx_errors),
  98. IGB_NETDEV_STAT(tx_dropped),
  99. IGB_NETDEV_STAT(rx_length_errors),
  100. IGB_NETDEV_STAT(rx_over_errors),
  101. IGB_NETDEV_STAT(rx_frame_errors),
  102. IGB_NETDEV_STAT(rx_fifo_errors),
  103. IGB_NETDEV_STAT(tx_fifo_errors),
  104. IGB_NETDEV_STAT(tx_heartbeat_errors)
  105. };
  106. #define IGB_GLOBAL_STATS_LEN \
  107. (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  108. #define IGB_NETDEV_STATS_LEN \
  109. (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  110. #define IGB_RX_QUEUE_STATS_LEN \
  111. (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
  112. #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
  113. #define IGB_QUEUE_STATS_LEN \
  114. ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
  115. IGB_RX_QUEUE_STATS_LEN) + \
  116. (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
  117. IGB_TX_QUEUE_STATS_LEN))
  118. #define IGB_STATS_LEN \
  119. (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
  120. static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
  121. "Register test (offline)", "Eeprom test (offline)",
  122. "Interrupt test (offline)", "Loopback test (offline)",
  123. "Link test (on/offline)"
  124. };
  125. #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
  126. static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  127. {
  128. struct igb_adapter *adapter = netdev_priv(netdev);
  129. struct e1000_hw *hw = &adapter->hw;
  130. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  131. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  132. u32 status;
  133. u32 speed;
  134. status = rd32(E1000_STATUS);
  135. if (hw->phy.media_type == e1000_media_type_copper) {
  136. ecmd->supported = (SUPPORTED_10baseT_Half |
  137. SUPPORTED_10baseT_Full |
  138. SUPPORTED_100baseT_Half |
  139. SUPPORTED_100baseT_Full |
  140. SUPPORTED_1000baseT_Full|
  141. SUPPORTED_Autoneg |
  142. SUPPORTED_TP |
  143. SUPPORTED_Pause);
  144. ecmd->advertising = ADVERTISED_TP;
  145. if (hw->mac.autoneg == 1) {
  146. ecmd->advertising |= ADVERTISED_Autoneg;
  147. /* the e1000 autoneg seems to match ethtool nicely */
  148. ecmd->advertising |= hw->phy.autoneg_advertised;
  149. }
  150. ecmd->port = PORT_TP;
  151. ecmd->phy_address = hw->phy.addr;
  152. ecmd->transceiver = XCVR_INTERNAL;
  153. } else {
  154. ecmd->supported = (SUPPORTED_FIBRE |
  155. SUPPORTED_1000baseKX_Full |
  156. SUPPORTED_Autoneg |
  157. SUPPORTED_Pause);
  158. ecmd->advertising = (ADVERTISED_FIBRE |
  159. ADVERTISED_1000baseKX_Full);
  160. if (hw->mac.type == e1000_i354) {
  161. if ((hw->device_id ==
  162. E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
  163. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  164. ecmd->supported |= SUPPORTED_2500baseX_Full;
  165. ecmd->supported &=
  166. ~SUPPORTED_1000baseKX_Full;
  167. ecmd->advertising |= ADVERTISED_2500baseX_Full;
  168. ecmd->advertising &=
  169. ~ADVERTISED_1000baseKX_Full;
  170. }
  171. }
  172. if (eth_flags->e100_base_fx) {
  173. ecmd->supported |= SUPPORTED_100baseT_Full;
  174. ecmd->advertising |= ADVERTISED_100baseT_Full;
  175. }
  176. if (hw->mac.autoneg == 1)
  177. ecmd->advertising |= ADVERTISED_Autoneg;
  178. ecmd->port = PORT_FIBRE;
  179. ecmd->transceiver = XCVR_EXTERNAL;
  180. }
  181. if (hw->mac.autoneg != 1)
  182. ecmd->advertising &= ~(ADVERTISED_Pause |
  183. ADVERTISED_Asym_Pause);
  184. switch (hw->fc.requested_mode) {
  185. case e1000_fc_full:
  186. ecmd->advertising |= ADVERTISED_Pause;
  187. break;
  188. case e1000_fc_rx_pause:
  189. ecmd->advertising |= (ADVERTISED_Pause |
  190. ADVERTISED_Asym_Pause);
  191. break;
  192. case e1000_fc_tx_pause:
  193. ecmd->advertising |= ADVERTISED_Asym_Pause;
  194. break;
  195. default:
  196. ecmd->advertising &= ~(ADVERTISED_Pause |
  197. ADVERTISED_Asym_Pause);
  198. }
  199. if (status & E1000_STATUS_LU) {
  200. if ((status & E1000_STATUS_2P5_SKU) &&
  201. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  202. speed = SPEED_2500;
  203. } else if (status & E1000_STATUS_SPEED_1000) {
  204. speed = SPEED_1000;
  205. } else if (status & E1000_STATUS_SPEED_100) {
  206. speed = SPEED_100;
  207. } else {
  208. speed = SPEED_10;
  209. }
  210. if ((status & E1000_STATUS_FD) ||
  211. hw->phy.media_type != e1000_media_type_copper)
  212. ecmd->duplex = DUPLEX_FULL;
  213. else
  214. ecmd->duplex = DUPLEX_HALF;
  215. } else {
  216. speed = SPEED_UNKNOWN;
  217. ecmd->duplex = DUPLEX_UNKNOWN;
  218. }
  219. ethtool_cmd_speed_set(ecmd, speed);
  220. if ((hw->phy.media_type == e1000_media_type_fiber) ||
  221. hw->mac.autoneg)
  222. ecmd->autoneg = AUTONEG_ENABLE;
  223. else
  224. ecmd->autoneg = AUTONEG_DISABLE;
  225. /* MDI-X => 2; MDI =>1; Invalid =>0 */
  226. if (hw->phy.media_type == e1000_media_type_copper)
  227. ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
  228. ETH_TP_MDI;
  229. else
  230. ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
  231. if (hw->phy.mdix == AUTO_ALL_MODES)
  232. ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  233. else
  234. ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
  235. return 0;
  236. }
  237. static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  238. {
  239. struct igb_adapter *adapter = netdev_priv(netdev);
  240. struct e1000_hw *hw = &adapter->hw;
  241. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  242. * cannot be changed
  243. */
  244. if (igb_check_reset_block(hw)) {
  245. dev_err(&adapter->pdev->dev,
  246. "Cannot change link characteristics when SoL/IDER is active.\n");
  247. return -EINVAL;
  248. }
  249. /* MDI setting is only allowed when autoneg enabled because
  250. * some hardware doesn't allow MDI setting when speed or
  251. * duplex is forced.
  252. */
  253. if (ecmd->eth_tp_mdix_ctrl) {
  254. if (hw->phy.media_type != e1000_media_type_copper)
  255. return -EOPNOTSUPP;
  256. if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  257. (ecmd->autoneg != AUTONEG_ENABLE)) {
  258. dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  259. return -EINVAL;
  260. }
  261. }
  262. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  263. usleep_range(1000, 2000);
  264. if (ecmd->autoneg == AUTONEG_ENABLE) {
  265. hw->mac.autoneg = 1;
  266. if (hw->phy.media_type == e1000_media_type_fiber) {
  267. hw->phy.autoneg_advertised = ecmd->advertising |
  268. ADVERTISED_FIBRE |
  269. ADVERTISED_Autoneg;
  270. switch (adapter->link_speed) {
  271. case SPEED_2500:
  272. hw->phy.autoneg_advertised =
  273. ADVERTISED_2500baseX_Full;
  274. break;
  275. case SPEED_1000:
  276. hw->phy.autoneg_advertised =
  277. ADVERTISED_1000baseT_Full;
  278. break;
  279. case SPEED_100:
  280. hw->phy.autoneg_advertised =
  281. ADVERTISED_100baseT_Full;
  282. break;
  283. default:
  284. break;
  285. }
  286. } else {
  287. hw->phy.autoneg_advertised = ecmd->advertising |
  288. ADVERTISED_TP |
  289. ADVERTISED_Autoneg;
  290. }
  291. ecmd->advertising = hw->phy.autoneg_advertised;
  292. if (adapter->fc_autoneg)
  293. hw->fc.requested_mode = e1000_fc_default;
  294. } else {
  295. u32 speed = ethtool_cmd_speed(ecmd);
  296. /* calling this overrides forced MDI setting */
  297. if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
  298. clear_bit(__IGB_RESETTING, &adapter->state);
  299. return -EINVAL;
  300. }
  301. }
  302. /* MDI-X => 2; MDI => 1; Auto => 3 */
  303. if (ecmd->eth_tp_mdix_ctrl) {
  304. /* fix up the value for auto (3 => 0) as zero is mapped
  305. * internally to auto
  306. */
  307. if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  308. hw->phy.mdix = AUTO_ALL_MODES;
  309. else
  310. hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
  311. }
  312. /* reset the link */
  313. if (netif_running(adapter->netdev)) {
  314. igb_down(adapter);
  315. igb_up(adapter);
  316. } else
  317. igb_reset(adapter);
  318. clear_bit(__IGB_RESETTING, &adapter->state);
  319. return 0;
  320. }
  321. static u32 igb_get_link(struct net_device *netdev)
  322. {
  323. struct igb_adapter *adapter = netdev_priv(netdev);
  324. struct e1000_mac_info *mac = &adapter->hw.mac;
  325. /* If the link is not reported up to netdev, interrupts are disabled,
  326. * and so the physical link state may have changed since we last
  327. * looked. Set get_link_status to make sure that the true link
  328. * state is interrogated, rather than pulling a cached and possibly
  329. * stale link state from the driver.
  330. */
  331. if (!netif_carrier_ok(netdev))
  332. mac->get_link_status = 1;
  333. return igb_has_link(adapter);
  334. }
  335. static void igb_get_pauseparam(struct net_device *netdev,
  336. struct ethtool_pauseparam *pause)
  337. {
  338. struct igb_adapter *adapter = netdev_priv(netdev);
  339. struct e1000_hw *hw = &adapter->hw;
  340. pause->autoneg =
  341. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  342. if (hw->fc.current_mode == e1000_fc_rx_pause)
  343. pause->rx_pause = 1;
  344. else if (hw->fc.current_mode == e1000_fc_tx_pause)
  345. pause->tx_pause = 1;
  346. else if (hw->fc.current_mode == e1000_fc_full) {
  347. pause->rx_pause = 1;
  348. pause->tx_pause = 1;
  349. }
  350. }
  351. static int igb_set_pauseparam(struct net_device *netdev,
  352. struct ethtool_pauseparam *pause)
  353. {
  354. struct igb_adapter *adapter = netdev_priv(netdev);
  355. struct e1000_hw *hw = &adapter->hw;
  356. int retval = 0;
  357. /* 100basefx does not support setting link flow control */
  358. if (hw->dev_spec._82575.eth_flags.e100_base_fx)
  359. return -EINVAL;
  360. adapter->fc_autoneg = pause->autoneg;
  361. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  362. usleep_range(1000, 2000);
  363. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  364. hw->fc.requested_mode = e1000_fc_default;
  365. if (netif_running(adapter->netdev)) {
  366. igb_down(adapter);
  367. igb_up(adapter);
  368. } else {
  369. igb_reset(adapter);
  370. }
  371. } else {
  372. if (pause->rx_pause && pause->tx_pause)
  373. hw->fc.requested_mode = e1000_fc_full;
  374. else if (pause->rx_pause && !pause->tx_pause)
  375. hw->fc.requested_mode = e1000_fc_rx_pause;
  376. else if (!pause->rx_pause && pause->tx_pause)
  377. hw->fc.requested_mode = e1000_fc_tx_pause;
  378. else if (!pause->rx_pause && !pause->tx_pause)
  379. hw->fc.requested_mode = e1000_fc_none;
  380. hw->fc.current_mode = hw->fc.requested_mode;
  381. retval = ((hw->phy.media_type == e1000_media_type_copper) ?
  382. igb_force_mac_fc(hw) : igb_setup_link(hw));
  383. }
  384. clear_bit(__IGB_RESETTING, &adapter->state);
  385. return retval;
  386. }
  387. static u32 igb_get_msglevel(struct net_device *netdev)
  388. {
  389. struct igb_adapter *adapter = netdev_priv(netdev);
  390. return adapter->msg_enable;
  391. }
  392. static void igb_set_msglevel(struct net_device *netdev, u32 data)
  393. {
  394. struct igb_adapter *adapter = netdev_priv(netdev);
  395. adapter->msg_enable = data;
  396. }
  397. static int igb_get_regs_len(struct net_device *netdev)
  398. {
  399. #define IGB_REGS_LEN 739
  400. return IGB_REGS_LEN * sizeof(u32);
  401. }
  402. static void igb_get_regs(struct net_device *netdev,
  403. struct ethtool_regs *regs, void *p)
  404. {
  405. struct igb_adapter *adapter = netdev_priv(netdev);
  406. struct e1000_hw *hw = &adapter->hw;
  407. u32 *regs_buff = p;
  408. u8 i;
  409. memset(p, 0, IGB_REGS_LEN * sizeof(u32));
  410. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  411. /* General Registers */
  412. regs_buff[0] = rd32(E1000_CTRL);
  413. regs_buff[1] = rd32(E1000_STATUS);
  414. regs_buff[2] = rd32(E1000_CTRL_EXT);
  415. regs_buff[3] = rd32(E1000_MDIC);
  416. regs_buff[4] = rd32(E1000_SCTL);
  417. regs_buff[5] = rd32(E1000_CONNSW);
  418. regs_buff[6] = rd32(E1000_VET);
  419. regs_buff[7] = rd32(E1000_LEDCTL);
  420. regs_buff[8] = rd32(E1000_PBA);
  421. regs_buff[9] = rd32(E1000_PBS);
  422. regs_buff[10] = rd32(E1000_FRTIMER);
  423. regs_buff[11] = rd32(E1000_TCPTIMER);
  424. /* NVM Register */
  425. regs_buff[12] = rd32(E1000_EECD);
  426. /* Interrupt */
  427. /* Reading EICS for EICR because they read the
  428. * same but EICS does not clear on read
  429. */
  430. regs_buff[13] = rd32(E1000_EICS);
  431. regs_buff[14] = rd32(E1000_EICS);
  432. regs_buff[15] = rd32(E1000_EIMS);
  433. regs_buff[16] = rd32(E1000_EIMC);
  434. regs_buff[17] = rd32(E1000_EIAC);
  435. regs_buff[18] = rd32(E1000_EIAM);
  436. /* Reading ICS for ICR because they read the
  437. * same but ICS does not clear on read
  438. */
  439. regs_buff[19] = rd32(E1000_ICS);
  440. regs_buff[20] = rd32(E1000_ICS);
  441. regs_buff[21] = rd32(E1000_IMS);
  442. regs_buff[22] = rd32(E1000_IMC);
  443. regs_buff[23] = rd32(E1000_IAC);
  444. regs_buff[24] = rd32(E1000_IAM);
  445. regs_buff[25] = rd32(E1000_IMIRVP);
  446. /* Flow Control */
  447. regs_buff[26] = rd32(E1000_FCAL);
  448. regs_buff[27] = rd32(E1000_FCAH);
  449. regs_buff[28] = rd32(E1000_FCTTV);
  450. regs_buff[29] = rd32(E1000_FCRTL);
  451. regs_buff[30] = rd32(E1000_FCRTH);
  452. regs_buff[31] = rd32(E1000_FCRTV);
  453. /* Receive */
  454. regs_buff[32] = rd32(E1000_RCTL);
  455. regs_buff[33] = rd32(E1000_RXCSUM);
  456. regs_buff[34] = rd32(E1000_RLPML);
  457. regs_buff[35] = rd32(E1000_RFCTL);
  458. regs_buff[36] = rd32(E1000_MRQC);
  459. regs_buff[37] = rd32(E1000_VT_CTL);
  460. /* Transmit */
  461. regs_buff[38] = rd32(E1000_TCTL);
  462. regs_buff[39] = rd32(E1000_TCTL_EXT);
  463. regs_buff[40] = rd32(E1000_TIPG);
  464. regs_buff[41] = rd32(E1000_DTXCTL);
  465. /* Wake Up */
  466. regs_buff[42] = rd32(E1000_WUC);
  467. regs_buff[43] = rd32(E1000_WUFC);
  468. regs_buff[44] = rd32(E1000_WUS);
  469. regs_buff[45] = rd32(E1000_IPAV);
  470. regs_buff[46] = rd32(E1000_WUPL);
  471. /* MAC */
  472. regs_buff[47] = rd32(E1000_PCS_CFG0);
  473. regs_buff[48] = rd32(E1000_PCS_LCTL);
  474. regs_buff[49] = rd32(E1000_PCS_LSTAT);
  475. regs_buff[50] = rd32(E1000_PCS_ANADV);
  476. regs_buff[51] = rd32(E1000_PCS_LPAB);
  477. regs_buff[52] = rd32(E1000_PCS_NPTX);
  478. regs_buff[53] = rd32(E1000_PCS_LPABNP);
  479. /* Statistics */
  480. regs_buff[54] = adapter->stats.crcerrs;
  481. regs_buff[55] = adapter->stats.algnerrc;
  482. regs_buff[56] = adapter->stats.symerrs;
  483. regs_buff[57] = adapter->stats.rxerrc;
  484. regs_buff[58] = adapter->stats.mpc;
  485. regs_buff[59] = adapter->stats.scc;
  486. regs_buff[60] = adapter->stats.ecol;
  487. regs_buff[61] = adapter->stats.mcc;
  488. regs_buff[62] = adapter->stats.latecol;
  489. regs_buff[63] = adapter->stats.colc;
  490. regs_buff[64] = adapter->stats.dc;
  491. regs_buff[65] = adapter->stats.tncrs;
  492. regs_buff[66] = adapter->stats.sec;
  493. regs_buff[67] = adapter->stats.htdpmc;
  494. regs_buff[68] = adapter->stats.rlec;
  495. regs_buff[69] = adapter->stats.xonrxc;
  496. regs_buff[70] = adapter->stats.xontxc;
  497. regs_buff[71] = adapter->stats.xoffrxc;
  498. regs_buff[72] = adapter->stats.xofftxc;
  499. regs_buff[73] = adapter->stats.fcruc;
  500. regs_buff[74] = adapter->stats.prc64;
  501. regs_buff[75] = adapter->stats.prc127;
  502. regs_buff[76] = adapter->stats.prc255;
  503. regs_buff[77] = adapter->stats.prc511;
  504. regs_buff[78] = adapter->stats.prc1023;
  505. regs_buff[79] = adapter->stats.prc1522;
  506. regs_buff[80] = adapter->stats.gprc;
  507. regs_buff[81] = adapter->stats.bprc;
  508. regs_buff[82] = adapter->stats.mprc;
  509. regs_buff[83] = adapter->stats.gptc;
  510. regs_buff[84] = adapter->stats.gorc;
  511. regs_buff[86] = adapter->stats.gotc;
  512. regs_buff[88] = adapter->stats.rnbc;
  513. regs_buff[89] = adapter->stats.ruc;
  514. regs_buff[90] = adapter->stats.rfc;
  515. regs_buff[91] = adapter->stats.roc;
  516. regs_buff[92] = adapter->stats.rjc;
  517. regs_buff[93] = adapter->stats.mgprc;
  518. regs_buff[94] = adapter->stats.mgpdc;
  519. regs_buff[95] = adapter->stats.mgptc;
  520. regs_buff[96] = adapter->stats.tor;
  521. regs_buff[98] = adapter->stats.tot;
  522. regs_buff[100] = adapter->stats.tpr;
  523. regs_buff[101] = adapter->stats.tpt;
  524. regs_buff[102] = adapter->stats.ptc64;
  525. regs_buff[103] = adapter->stats.ptc127;
  526. regs_buff[104] = adapter->stats.ptc255;
  527. regs_buff[105] = adapter->stats.ptc511;
  528. regs_buff[106] = adapter->stats.ptc1023;
  529. regs_buff[107] = adapter->stats.ptc1522;
  530. regs_buff[108] = adapter->stats.mptc;
  531. regs_buff[109] = adapter->stats.bptc;
  532. regs_buff[110] = adapter->stats.tsctc;
  533. regs_buff[111] = adapter->stats.iac;
  534. regs_buff[112] = adapter->stats.rpthc;
  535. regs_buff[113] = adapter->stats.hgptc;
  536. regs_buff[114] = adapter->stats.hgorc;
  537. regs_buff[116] = adapter->stats.hgotc;
  538. regs_buff[118] = adapter->stats.lenerrs;
  539. regs_buff[119] = adapter->stats.scvpc;
  540. regs_buff[120] = adapter->stats.hrmpc;
  541. for (i = 0; i < 4; i++)
  542. regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
  543. for (i = 0; i < 4; i++)
  544. regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
  545. for (i = 0; i < 4; i++)
  546. regs_buff[129 + i] = rd32(E1000_RDBAL(i));
  547. for (i = 0; i < 4; i++)
  548. regs_buff[133 + i] = rd32(E1000_RDBAH(i));
  549. for (i = 0; i < 4; i++)
  550. regs_buff[137 + i] = rd32(E1000_RDLEN(i));
  551. for (i = 0; i < 4; i++)
  552. regs_buff[141 + i] = rd32(E1000_RDH(i));
  553. for (i = 0; i < 4; i++)
  554. regs_buff[145 + i] = rd32(E1000_RDT(i));
  555. for (i = 0; i < 4; i++)
  556. regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
  557. for (i = 0; i < 10; i++)
  558. regs_buff[153 + i] = rd32(E1000_EITR(i));
  559. for (i = 0; i < 8; i++)
  560. regs_buff[163 + i] = rd32(E1000_IMIR(i));
  561. for (i = 0; i < 8; i++)
  562. regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
  563. for (i = 0; i < 16; i++)
  564. regs_buff[179 + i] = rd32(E1000_RAL(i));
  565. for (i = 0; i < 16; i++)
  566. regs_buff[195 + i] = rd32(E1000_RAH(i));
  567. for (i = 0; i < 4; i++)
  568. regs_buff[211 + i] = rd32(E1000_TDBAL(i));
  569. for (i = 0; i < 4; i++)
  570. regs_buff[215 + i] = rd32(E1000_TDBAH(i));
  571. for (i = 0; i < 4; i++)
  572. regs_buff[219 + i] = rd32(E1000_TDLEN(i));
  573. for (i = 0; i < 4; i++)
  574. regs_buff[223 + i] = rd32(E1000_TDH(i));
  575. for (i = 0; i < 4; i++)
  576. regs_buff[227 + i] = rd32(E1000_TDT(i));
  577. for (i = 0; i < 4; i++)
  578. regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
  579. for (i = 0; i < 4; i++)
  580. regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
  581. for (i = 0; i < 4; i++)
  582. regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
  583. for (i = 0; i < 4; i++)
  584. regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
  585. for (i = 0; i < 4; i++)
  586. regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
  587. for (i = 0; i < 4; i++)
  588. regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
  589. for (i = 0; i < 32; i++)
  590. regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
  591. for (i = 0; i < 128; i++)
  592. regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
  593. for (i = 0; i < 128; i++)
  594. regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
  595. for (i = 0; i < 4; i++)
  596. regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
  597. regs_buff[547] = rd32(E1000_TDFH);
  598. regs_buff[548] = rd32(E1000_TDFT);
  599. regs_buff[549] = rd32(E1000_TDFHS);
  600. regs_buff[550] = rd32(E1000_TDFPC);
  601. if (hw->mac.type > e1000_82580) {
  602. regs_buff[551] = adapter->stats.o2bgptc;
  603. regs_buff[552] = adapter->stats.b2ospc;
  604. regs_buff[553] = adapter->stats.o2bspc;
  605. regs_buff[554] = adapter->stats.b2ogprc;
  606. }
  607. if (hw->mac.type != e1000_82576)
  608. return;
  609. for (i = 0; i < 12; i++)
  610. regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
  611. for (i = 0; i < 4; i++)
  612. regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
  613. for (i = 0; i < 12; i++)
  614. regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
  615. for (i = 0; i < 12; i++)
  616. regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
  617. for (i = 0; i < 12; i++)
  618. regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
  619. for (i = 0; i < 12; i++)
  620. regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
  621. for (i = 0; i < 12; i++)
  622. regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
  623. for (i = 0; i < 12; i++)
  624. regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
  625. for (i = 0; i < 12; i++)
  626. regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
  627. for (i = 0; i < 12; i++)
  628. regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
  629. for (i = 0; i < 12; i++)
  630. regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
  631. for (i = 0; i < 12; i++)
  632. regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
  633. for (i = 0; i < 12; i++)
  634. regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
  635. for (i = 0; i < 12; i++)
  636. regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
  637. for (i = 0; i < 12; i++)
  638. regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
  639. for (i = 0; i < 12; i++)
  640. regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
  641. }
  642. static int igb_get_eeprom_len(struct net_device *netdev)
  643. {
  644. struct igb_adapter *adapter = netdev_priv(netdev);
  645. return adapter->hw.nvm.word_size * 2;
  646. }
  647. static int igb_get_eeprom(struct net_device *netdev,
  648. struct ethtool_eeprom *eeprom, u8 *bytes)
  649. {
  650. struct igb_adapter *adapter = netdev_priv(netdev);
  651. struct e1000_hw *hw = &adapter->hw;
  652. u16 *eeprom_buff;
  653. int first_word, last_word;
  654. int ret_val = 0;
  655. u16 i;
  656. if (eeprom->len == 0)
  657. return -EINVAL;
  658. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  659. first_word = eeprom->offset >> 1;
  660. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  661. eeprom_buff = kmalloc(sizeof(u16) *
  662. (last_word - first_word + 1), GFP_KERNEL);
  663. if (!eeprom_buff)
  664. return -ENOMEM;
  665. if (hw->nvm.type == e1000_nvm_eeprom_spi)
  666. ret_val = hw->nvm.ops.read(hw, first_word,
  667. last_word - first_word + 1,
  668. eeprom_buff);
  669. else {
  670. for (i = 0; i < last_word - first_word + 1; i++) {
  671. ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
  672. &eeprom_buff[i]);
  673. if (ret_val)
  674. break;
  675. }
  676. }
  677. /* Device's eeprom is always little-endian, word addressable */
  678. for (i = 0; i < last_word - first_word + 1; i++)
  679. le16_to_cpus(&eeprom_buff[i]);
  680. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
  681. eeprom->len);
  682. kfree(eeprom_buff);
  683. return ret_val;
  684. }
  685. static int igb_set_eeprom(struct net_device *netdev,
  686. struct ethtool_eeprom *eeprom, u8 *bytes)
  687. {
  688. struct igb_adapter *adapter = netdev_priv(netdev);
  689. struct e1000_hw *hw = &adapter->hw;
  690. u16 *eeprom_buff;
  691. void *ptr;
  692. int max_len, first_word, last_word, ret_val = 0;
  693. u16 i;
  694. if (eeprom->len == 0)
  695. return -EOPNOTSUPP;
  696. if ((hw->mac.type >= e1000_i210) &&
  697. !igb_get_flash_presence_i210(hw)) {
  698. return -EOPNOTSUPP;
  699. }
  700. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  701. return -EFAULT;
  702. max_len = hw->nvm.word_size * 2;
  703. first_word = eeprom->offset >> 1;
  704. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  705. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  706. if (!eeprom_buff)
  707. return -ENOMEM;
  708. ptr = (void *)eeprom_buff;
  709. if (eeprom->offset & 1) {
  710. /* need read/modify/write of first changed EEPROM word
  711. * only the second byte of the word is being modified
  712. */
  713. ret_val = hw->nvm.ops.read(hw, first_word, 1,
  714. &eeprom_buff[0]);
  715. ptr++;
  716. }
  717. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  718. /* need read/modify/write of last changed EEPROM word
  719. * only the first byte of the word is being modified
  720. */
  721. ret_val = hw->nvm.ops.read(hw, last_word, 1,
  722. &eeprom_buff[last_word - first_word]);
  723. }
  724. /* Device's eeprom is always little-endian, word addressable */
  725. for (i = 0; i < last_word - first_word + 1; i++)
  726. le16_to_cpus(&eeprom_buff[i]);
  727. memcpy(ptr, bytes, eeprom->len);
  728. for (i = 0; i < last_word - first_word + 1; i++)
  729. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  730. ret_val = hw->nvm.ops.write(hw, first_word,
  731. last_word - first_word + 1, eeprom_buff);
  732. /* Update the checksum if nvm write succeeded */
  733. if (ret_val == 0)
  734. hw->nvm.ops.update(hw);
  735. igb_set_fw_version(adapter);
  736. kfree(eeprom_buff);
  737. return ret_val;
  738. }
  739. static void igb_get_drvinfo(struct net_device *netdev,
  740. struct ethtool_drvinfo *drvinfo)
  741. {
  742. struct igb_adapter *adapter = netdev_priv(netdev);
  743. strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
  744. strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
  745. /* EEPROM image version # is reported as firmware version # for
  746. * 82575 controllers
  747. */
  748. strlcpy(drvinfo->fw_version, adapter->fw_version,
  749. sizeof(drvinfo->fw_version));
  750. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  751. sizeof(drvinfo->bus_info));
  752. }
  753. static void igb_get_ringparam(struct net_device *netdev,
  754. struct ethtool_ringparam *ring)
  755. {
  756. struct igb_adapter *adapter = netdev_priv(netdev);
  757. ring->rx_max_pending = IGB_MAX_RXD;
  758. ring->tx_max_pending = IGB_MAX_TXD;
  759. ring->rx_pending = adapter->rx_ring_count;
  760. ring->tx_pending = adapter->tx_ring_count;
  761. }
  762. static int igb_set_ringparam(struct net_device *netdev,
  763. struct ethtool_ringparam *ring)
  764. {
  765. struct igb_adapter *adapter = netdev_priv(netdev);
  766. struct igb_ring *temp_ring;
  767. int i, err = 0;
  768. u16 new_rx_count, new_tx_count;
  769. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  770. return -EINVAL;
  771. new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
  772. new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
  773. new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
  774. new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
  775. new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
  776. new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
  777. if ((new_tx_count == adapter->tx_ring_count) &&
  778. (new_rx_count == adapter->rx_ring_count)) {
  779. /* nothing to do */
  780. return 0;
  781. }
  782. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  783. usleep_range(1000, 2000);
  784. if (!netif_running(adapter->netdev)) {
  785. for (i = 0; i < adapter->num_tx_queues; i++)
  786. adapter->tx_ring[i]->count = new_tx_count;
  787. for (i = 0; i < adapter->num_rx_queues; i++)
  788. adapter->rx_ring[i]->count = new_rx_count;
  789. adapter->tx_ring_count = new_tx_count;
  790. adapter->rx_ring_count = new_rx_count;
  791. goto clear_reset;
  792. }
  793. if (adapter->num_tx_queues > adapter->num_rx_queues)
  794. temp_ring = vmalloc(adapter->num_tx_queues *
  795. sizeof(struct igb_ring));
  796. else
  797. temp_ring = vmalloc(adapter->num_rx_queues *
  798. sizeof(struct igb_ring));
  799. if (!temp_ring) {
  800. err = -ENOMEM;
  801. goto clear_reset;
  802. }
  803. igb_down(adapter);
  804. /* We can't just free everything and then setup again,
  805. * because the ISRs in MSI-X mode get passed pointers
  806. * to the Tx and Rx ring structs.
  807. */
  808. if (new_tx_count != adapter->tx_ring_count) {
  809. for (i = 0; i < adapter->num_tx_queues; i++) {
  810. memcpy(&temp_ring[i], adapter->tx_ring[i],
  811. sizeof(struct igb_ring));
  812. temp_ring[i].count = new_tx_count;
  813. err = igb_setup_tx_resources(&temp_ring[i]);
  814. if (err) {
  815. while (i) {
  816. i--;
  817. igb_free_tx_resources(&temp_ring[i]);
  818. }
  819. goto err_setup;
  820. }
  821. }
  822. for (i = 0; i < adapter->num_tx_queues; i++) {
  823. igb_free_tx_resources(adapter->tx_ring[i]);
  824. memcpy(adapter->tx_ring[i], &temp_ring[i],
  825. sizeof(struct igb_ring));
  826. }
  827. adapter->tx_ring_count = new_tx_count;
  828. }
  829. if (new_rx_count != adapter->rx_ring_count) {
  830. for (i = 0; i < adapter->num_rx_queues; i++) {
  831. memcpy(&temp_ring[i], adapter->rx_ring[i],
  832. sizeof(struct igb_ring));
  833. temp_ring[i].count = new_rx_count;
  834. err = igb_setup_rx_resources(&temp_ring[i]);
  835. if (err) {
  836. while (i) {
  837. i--;
  838. igb_free_rx_resources(&temp_ring[i]);
  839. }
  840. goto err_setup;
  841. }
  842. }
  843. for (i = 0; i < adapter->num_rx_queues; i++) {
  844. igb_free_rx_resources(adapter->rx_ring[i]);
  845. memcpy(adapter->rx_ring[i], &temp_ring[i],
  846. sizeof(struct igb_ring));
  847. }
  848. adapter->rx_ring_count = new_rx_count;
  849. }
  850. err_setup:
  851. igb_up(adapter);
  852. vfree(temp_ring);
  853. clear_reset:
  854. clear_bit(__IGB_RESETTING, &adapter->state);
  855. return err;
  856. }
  857. /* ethtool register test data */
  858. struct igb_reg_test {
  859. u16 reg;
  860. u16 reg_offset;
  861. u16 array_len;
  862. u16 test_type;
  863. u32 mask;
  864. u32 write;
  865. };
  866. /* In the hardware, registers are laid out either singly, in arrays
  867. * spaced 0x100 bytes apart, or in contiguous tables. We assume
  868. * most tests take place on arrays or single registers (handled
  869. * as a single-element array) and special-case the tables.
  870. * Table tests are always pattern tests.
  871. *
  872. * We also make provision for some required setup steps by specifying
  873. * registers to be written without any read-back testing.
  874. */
  875. #define PATTERN_TEST 1
  876. #define SET_READ_TEST 2
  877. #define WRITE_NO_TEST 3
  878. #define TABLE32_TEST 4
  879. #define TABLE64_TEST_LO 5
  880. #define TABLE64_TEST_HI 6
  881. /* i210 reg test */
  882. static struct igb_reg_test reg_test_i210[] = {
  883. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  884. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  885. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  886. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  887. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  888. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  889. /* RDH is read-only for i210, only test RDT. */
  890. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  891. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  892. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  893. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  894. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  895. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  896. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  897. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  898. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  899. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  900. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  901. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  902. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  903. 0xFFFFFFFF, 0xFFFFFFFF },
  904. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  905. 0x900FFFFF, 0xFFFFFFFF },
  906. { E1000_MTA, 0, 128, TABLE32_TEST,
  907. 0xFFFFFFFF, 0xFFFFFFFF },
  908. { 0, 0, 0, 0, 0 }
  909. };
  910. /* i350 reg test */
  911. static struct igb_reg_test reg_test_i350[] = {
  912. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  913. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  914. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  915. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
  916. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  917. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  918. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  919. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  920. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  921. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  922. /* RDH is read-only for i350, only test RDT. */
  923. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  924. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  925. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  926. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  927. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  928. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  929. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  930. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  931. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  932. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  933. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  934. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  935. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  936. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  937. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  938. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  939. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  940. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  941. 0xFFFFFFFF, 0xFFFFFFFF },
  942. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  943. 0xC3FFFFFF, 0xFFFFFFFF },
  944. { E1000_RA2, 0, 16, TABLE64_TEST_LO,
  945. 0xFFFFFFFF, 0xFFFFFFFF },
  946. { E1000_RA2, 0, 16, TABLE64_TEST_HI,
  947. 0xC3FFFFFF, 0xFFFFFFFF },
  948. { E1000_MTA, 0, 128, TABLE32_TEST,
  949. 0xFFFFFFFF, 0xFFFFFFFF },
  950. { 0, 0, 0, 0 }
  951. };
  952. /* 82580 reg test */
  953. static struct igb_reg_test reg_test_82580[] = {
  954. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  955. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  956. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  957. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  958. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  959. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  960. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  961. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  962. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  963. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  964. /* RDH is read-only for 82580, only test RDT. */
  965. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  966. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  967. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  968. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  969. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  970. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  971. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  972. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  973. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  974. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  975. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  976. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  977. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  978. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  979. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  980. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  981. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  982. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  983. 0xFFFFFFFF, 0xFFFFFFFF },
  984. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  985. 0x83FFFFFF, 0xFFFFFFFF },
  986. { E1000_RA2, 0, 8, TABLE64_TEST_LO,
  987. 0xFFFFFFFF, 0xFFFFFFFF },
  988. { E1000_RA2, 0, 8, TABLE64_TEST_HI,
  989. 0x83FFFFFF, 0xFFFFFFFF },
  990. { E1000_MTA, 0, 128, TABLE32_TEST,
  991. 0xFFFFFFFF, 0xFFFFFFFF },
  992. { 0, 0, 0, 0 }
  993. };
  994. /* 82576 reg test */
  995. static struct igb_reg_test reg_test_82576[] = {
  996. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  997. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  998. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  999. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1000. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1001. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1002. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1003. { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1004. { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1005. { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1006. /* Enable all RX queues before testing. */
  1007. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1008. E1000_RXDCTL_QUEUE_ENABLE },
  1009. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
  1010. E1000_RXDCTL_QUEUE_ENABLE },
  1011. /* RDH is read-only for 82576, only test RDT. */
  1012. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1013. { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1014. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1015. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
  1016. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1017. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1018. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1019. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1020. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1021. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1022. { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1023. { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1024. { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1025. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1026. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1027. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1028. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1029. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1030. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1031. { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1032. { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1033. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1034. { 0, 0, 0, 0 }
  1035. };
  1036. /* 82575 register test */
  1037. static struct igb_reg_test reg_test_82575[] = {
  1038. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1039. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1040. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1041. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1042. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1043. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1044. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1045. /* Enable all four RX queues before testing. */
  1046. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1047. E1000_RXDCTL_QUEUE_ENABLE },
  1048. /* RDH is read-only for 82575, only test RDT. */
  1049. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1050. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1051. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1052. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1053. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1054. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1055. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1056. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1057. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1058. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
  1059. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
  1060. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1061. { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
  1062. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1063. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
  1064. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1065. { 0, 0, 0, 0 }
  1066. };
  1067. static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
  1068. int reg, u32 mask, u32 write)
  1069. {
  1070. struct e1000_hw *hw = &adapter->hw;
  1071. u32 pat, val;
  1072. static const u32 _test[] = {
  1073. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
  1074. for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
  1075. wr32(reg, (_test[pat] & write));
  1076. val = rd32(reg) & mask;
  1077. if (val != (_test[pat] & write & mask)) {
  1078. dev_err(&adapter->pdev->dev,
  1079. "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
  1080. reg, val, (_test[pat] & write & mask));
  1081. *data = reg;
  1082. return true;
  1083. }
  1084. }
  1085. return false;
  1086. }
  1087. static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
  1088. int reg, u32 mask, u32 write)
  1089. {
  1090. struct e1000_hw *hw = &adapter->hw;
  1091. u32 val;
  1092. wr32(reg, write & mask);
  1093. val = rd32(reg);
  1094. if ((write & mask) != (val & mask)) {
  1095. dev_err(&adapter->pdev->dev,
  1096. "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
  1097. reg, (val & mask), (write & mask));
  1098. *data = reg;
  1099. return true;
  1100. }
  1101. return false;
  1102. }
  1103. #define REG_PATTERN_TEST(reg, mask, write) \
  1104. do { \
  1105. if (reg_pattern_test(adapter, data, reg, mask, write)) \
  1106. return 1; \
  1107. } while (0)
  1108. #define REG_SET_AND_CHECK(reg, mask, write) \
  1109. do { \
  1110. if (reg_set_and_check(adapter, data, reg, mask, write)) \
  1111. return 1; \
  1112. } while (0)
  1113. static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
  1114. {
  1115. struct e1000_hw *hw = &adapter->hw;
  1116. struct igb_reg_test *test;
  1117. u32 value, before, after;
  1118. u32 i, toggle;
  1119. switch (adapter->hw.mac.type) {
  1120. case e1000_i350:
  1121. case e1000_i354:
  1122. test = reg_test_i350;
  1123. toggle = 0x7FEFF3FF;
  1124. break;
  1125. case e1000_i210:
  1126. case e1000_i211:
  1127. test = reg_test_i210;
  1128. toggle = 0x7FEFF3FF;
  1129. break;
  1130. case e1000_82580:
  1131. test = reg_test_82580;
  1132. toggle = 0x7FEFF3FF;
  1133. break;
  1134. case e1000_82576:
  1135. test = reg_test_82576;
  1136. toggle = 0x7FFFF3FF;
  1137. break;
  1138. default:
  1139. test = reg_test_82575;
  1140. toggle = 0x7FFFF3FF;
  1141. break;
  1142. }
  1143. /* Because the status register is such a special case,
  1144. * we handle it separately from the rest of the register
  1145. * tests. Some bits are read-only, some toggle, and some
  1146. * are writable on newer MACs.
  1147. */
  1148. before = rd32(E1000_STATUS);
  1149. value = (rd32(E1000_STATUS) & toggle);
  1150. wr32(E1000_STATUS, toggle);
  1151. after = rd32(E1000_STATUS) & toggle;
  1152. if (value != after) {
  1153. dev_err(&adapter->pdev->dev,
  1154. "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
  1155. after, value);
  1156. *data = 1;
  1157. return 1;
  1158. }
  1159. /* restore previous status */
  1160. wr32(E1000_STATUS, before);
  1161. /* Perform the remainder of the register test, looping through
  1162. * the test table until we either fail or reach the null entry.
  1163. */
  1164. while (test->reg) {
  1165. for (i = 0; i < test->array_len; i++) {
  1166. switch (test->test_type) {
  1167. case PATTERN_TEST:
  1168. REG_PATTERN_TEST(test->reg +
  1169. (i * test->reg_offset),
  1170. test->mask,
  1171. test->write);
  1172. break;
  1173. case SET_READ_TEST:
  1174. REG_SET_AND_CHECK(test->reg +
  1175. (i * test->reg_offset),
  1176. test->mask,
  1177. test->write);
  1178. break;
  1179. case WRITE_NO_TEST:
  1180. writel(test->write,
  1181. (adapter->hw.hw_addr + test->reg)
  1182. + (i * test->reg_offset));
  1183. break;
  1184. case TABLE32_TEST:
  1185. REG_PATTERN_TEST(test->reg + (i * 4),
  1186. test->mask,
  1187. test->write);
  1188. break;
  1189. case TABLE64_TEST_LO:
  1190. REG_PATTERN_TEST(test->reg + (i * 8),
  1191. test->mask,
  1192. test->write);
  1193. break;
  1194. case TABLE64_TEST_HI:
  1195. REG_PATTERN_TEST((test->reg + 4) + (i * 8),
  1196. test->mask,
  1197. test->write);
  1198. break;
  1199. }
  1200. }
  1201. test++;
  1202. }
  1203. *data = 0;
  1204. return 0;
  1205. }
  1206. static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
  1207. {
  1208. struct e1000_hw *hw = &adapter->hw;
  1209. *data = 0;
  1210. /* Validate eeprom on all parts but flashless */
  1211. switch (hw->mac.type) {
  1212. case e1000_i210:
  1213. case e1000_i211:
  1214. if (igb_get_flash_presence_i210(hw)) {
  1215. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1216. *data = 2;
  1217. }
  1218. break;
  1219. default:
  1220. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1221. *data = 2;
  1222. break;
  1223. }
  1224. return *data;
  1225. }
  1226. static irqreturn_t igb_test_intr(int irq, void *data)
  1227. {
  1228. struct igb_adapter *adapter = (struct igb_adapter *) data;
  1229. struct e1000_hw *hw = &adapter->hw;
  1230. adapter->test_icr |= rd32(E1000_ICR);
  1231. return IRQ_HANDLED;
  1232. }
  1233. static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
  1234. {
  1235. struct e1000_hw *hw = &adapter->hw;
  1236. struct net_device *netdev = adapter->netdev;
  1237. u32 mask, ics_mask, i = 0, shared_int = true;
  1238. u32 irq = adapter->pdev->irq;
  1239. *data = 0;
  1240. /* Hook up test interrupt handler just for this test */
  1241. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1242. if (request_irq(adapter->msix_entries[0].vector,
  1243. igb_test_intr, 0, netdev->name, adapter)) {
  1244. *data = 1;
  1245. return -1;
  1246. }
  1247. } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1248. shared_int = false;
  1249. if (request_irq(irq,
  1250. igb_test_intr, 0, netdev->name, adapter)) {
  1251. *data = 1;
  1252. return -1;
  1253. }
  1254. } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
  1255. netdev->name, adapter)) {
  1256. shared_int = false;
  1257. } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
  1258. netdev->name, adapter)) {
  1259. *data = 1;
  1260. return -1;
  1261. }
  1262. dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
  1263. (shared_int ? "shared" : "unshared"));
  1264. /* Disable all the interrupts */
  1265. wr32(E1000_IMC, ~0);
  1266. wrfl();
  1267. usleep_range(10000, 11000);
  1268. /* Define all writable bits for ICS */
  1269. switch (hw->mac.type) {
  1270. case e1000_82575:
  1271. ics_mask = 0x37F47EDD;
  1272. break;
  1273. case e1000_82576:
  1274. ics_mask = 0x77D4FBFD;
  1275. break;
  1276. case e1000_82580:
  1277. ics_mask = 0x77DCFED5;
  1278. break;
  1279. case e1000_i350:
  1280. case e1000_i354:
  1281. case e1000_i210:
  1282. case e1000_i211:
  1283. ics_mask = 0x77DCFED5;
  1284. break;
  1285. default:
  1286. ics_mask = 0x7FFFFFFF;
  1287. break;
  1288. }
  1289. /* Test each interrupt */
  1290. for (; i < 31; i++) {
  1291. /* Interrupt to test */
  1292. mask = 1 << i;
  1293. if (!(mask & ics_mask))
  1294. continue;
  1295. if (!shared_int) {
  1296. /* Disable the interrupt to be reported in
  1297. * the cause register and then force the same
  1298. * interrupt and see if one gets posted. If
  1299. * an interrupt was posted to the bus, the
  1300. * test failed.
  1301. */
  1302. adapter->test_icr = 0;
  1303. /* Flush any pending interrupts */
  1304. wr32(E1000_ICR, ~0);
  1305. wr32(E1000_IMC, mask);
  1306. wr32(E1000_ICS, mask);
  1307. wrfl();
  1308. usleep_range(10000, 11000);
  1309. if (adapter->test_icr & mask) {
  1310. *data = 3;
  1311. break;
  1312. }
  1313. }
  1314. /* Enable the interrupt to be reported in
  1315. * the cause register and then force the same
  1316. * interrupt and see if one gets posted. If
  1317. * an interrupt was not posted to the bus, the
  1318. * test failed.
  1319. */
  1320. adapter->test_icr = 0;
  1321. /* Flush any pending interrupts */
  1322. wr32(E1000_ICR, ~0);
  1323. wr32(E1000_IMS, mask);
  1324. wr32(E1000_ICS, mask);
  1325. wrfl();
  1326. usleep_range(10000, 11000);
  1327. if (!(adapter->test_icr & mask)) {
  1328. *data = 4;
  1329. break;
  1330. }
  1331. if (!shared_int) {
  1332. /* Disable the other interrupts to be reported in
  1333. * the cause register and then force the other
  1334. * interrupts and see if any get posted. If
  1335. * an interrupt was posted to the bus, the
  1336. * test failed.
  1337. */
  1338. adapter->test_icr = 0;
  1339. /* Flush any pending interrupts */
  1340. wr32(E1000_ICR, ~0);
  1341. wr32(E1000_IMC, ~mask);
  1342. wr32(E1000_ICS, ~mask);
  1343. wrfl();
  1344. usleep_range(10000, 11000);
  1345. if (adapter->test_icr & mask) {
  1346. *data = 5;
  1347. break;
  1348. }
  1349. }
  1350. }
  1351. /* Disable all the interrupts */
  1352. wr32(E1000_IMC, ~0);
  1353. wrfl();
  1354. usleep_range(10000, 11000);
  1355. /* Unhook test interrupt handler */
  1356. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1357. free_irq(adapter->msix_entries[0].vector, adapter);
  1358. else
  1359. free_irq(irq, adapter);
  1360. return *data;
  1361. }
  1362. static void igb_free_desc_rings(struct igb_adapter *adapter)
  1363. {
  1364. igb_free_tx_resources(&adapter->test_tx_ring);
  1365. igb_free_rx_resources(&adapter->test_rx_ring);
  1366. }
  1367. static int igb_setup_desc_rings(struct igb_adapter *adapter)
  1368. {
  1369. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1370. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1371. struct e1000_hw *hw = &adapter->hw;
  1372. int ret_val;
  1373. /* Setup Tx descriptor ring and Tx buffers */
  1374. tx_ring->count = IGB_DEFAULT_TXD;
  1375. tx_ring->dev = &adapter->pdev->dev;
  1376. tx_ring->netdev = adapter->netdev;
  1377. tx_ring->reg_idx = adapter->vfs_allocated_count;
  1378. if (igb_setup_tx_resources(tx_ring)) {
  1379. ret_val = 1;
  1380. goto err_nomem;
  1381. }
  1382. igb_setup_tctl(adapter);
  1383. igb_configure_tx_ring(adapter, tx_ring);
  1384. /* Setup Rx descriptor ring and Rx buffers */
  1385. rx_ring->count = IGB_DEFAULT_RXD;
  1386. rx_ring->dev = &adapter->pdev->dev;
  1387. rx_ring->netdev = adapter->netdev;
  1388. rx_ring->reg_idx = adapter->vfs_allocated_count;
  1389. if (igb_setup_rx_resources(rx_ring)) {
  1390. ret_val = 3;
  1391. goto err_nomem;
  1392. }
  1393. /* set the default queue to queue 0 of PF */
  1394. wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
  1395. /* enable receive ring */
  1396. igb_setup_rctl(adapter);
  1397. igb_configure_rx_ring(adapter, rx_ring);
  1398. igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
  1399. return 0;
  1400. err_nomem:
  1401. igb_free_desc_rings(adapter);
  1402. return ret_val;
  1403. }
  1404. static void igb_phy_disable_receiver(struct igb_adapter *adapter)
  1405. {
  1406. struct e1000_hw *hw = &adapter->hw;
  1407. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1408. igb_write_phy_reg(hw, 29, 0x001F);
  1409. igb_write_phy_reg(hw, 30, 0x8FFC);
  1410. igb_write_phy_reg(hw, 29, 0x001A);
  1411. igb_write_phy_reg(hw, 30, 0x8FF0);
  1412. }
  1413. static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
  1414. {
  1415. struct e1000_hw *hw = &adapter->hw;
  1416. u32 ctrl_reg = 0;
  1417. hw->mac.autoneg = false;
  1418. if (hw->phy.type == e1000_phy_m88) {
  1419. if (hw->phy.id != I210_I_PHY_ID) {
  1420. /* Auto-MDI/MDIX Off */
  1421. igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
  1422. /* reset to update Auto-MDI/MDIX */
  1423. igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
  1424. /* autoneg off */
  1425. igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
  1426. } else {
  1427. /* force 1000, set loopback */
  1428. igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
  1429. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1430. }
  1431. } else if (hw->phy.type == e1000_phy_82580) {
  1432. /* enable MII loopback */
  1433. igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
  1434. }
  1435. /* add small delay to avoid loopback test failure */
  1436. msleep(50);
  1437. /* force 1000, set loopback */
  1438. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1439. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1440. ctrl_reg = rd32(E1000_CTRL);
  1441. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1442. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1443. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1444. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1445. E1000_CTRL_FD | /* Force Duplex to FULL */
  1446. E1000_CTRL_SLU); /* Set link up enable bit */
  1447. if (hw->phy.type == e1000_phy_m88)
  1448. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1449. wr32(E1000_CTRL, ctrl_reg);
  1450. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1451. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1452. */
  1453. if (hw->phy.type == e1000_phy_m88)
  1454. igb_phy_disable_receiver(adapter);
  1455. mdelay(500);
  1456. return 0;
  1457. }
  1458. static int igb_set_phy_loopback(struct igb_adapter *adapter)
  1459. {
  1460. return igb_integrated_phy_loopback(adapter);
  1461. }
  1462. static int igb_setup_loopback_test(struct igb_adapter *adapter)
  1463. {
  1464. struct e1000_hw *hw = &adapter->hw;
  1465. u32 reg;
  1466. reg = rd32(E1000_CTRL_EXT);
  1467. /* use CTRL_EXT to identify link type as SGMII can appear as copper */
  1468. if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1469. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1470. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1471. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1472. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1473. (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
  1474. (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
  1475. /* Enable DH89xxCC MPHY for near end loopback */
  1476. reg = rd32(E1000_MPHY_ADDR_CTL);
  1477. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1478. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1479. wr32(E1000_MPHY_ADDR_CTL, reg);
  1480. reg = rd32(E1000_MPHY_DATA);
  1481. reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1482. wr32(E1000_MPHY_DATA, reg);
  1483. }
  1484. reg = rd32(E1000_RCTL);
  1485. reg |= E1000_RCTL_LBM_TCVR;
  1486. wr32(E1000_RCTL, reg);
  1487. wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
  1488. reg = rd32(E1000_CTRL);
  1489. reg &= ~(E1000_CTRL_RFCE |
  1490. E1000_CTRL_TFCE |
  1491. E1000_CTRL_LRST);
  1492. reg |= E1000_CTRL_SLU |
  1493. E1000_CTRL_FD;
  1494. wr32(E1000_CTRL, reg);
  1495. /* Unset switch control to serdes energy detect */
  1496. reg = rd32(E1000_CONNSW);
  1497. reg &= ~E1000_CONNSW_ENRGSRC;
  1498. wr32(E1000_CONNSW, reg);
  1499. /* Unset sigdetect for SERDES loopback on
  1500. * 82580 and newer devices.
  1501. */
  1502. if (hw->mac.type >= e1000_82580) {
  1503. reg = rd32(E1000_PCS_CFG0);
  1504. reg |= E1000_PCS_CFG_IGN_SD;
  1505. wr32(E1000_PCS_CFG0, reg);
  1506. }
  1507. /* Set PCS register for forced speed */
  1508. reg = rd32(E1000_PCS_LCTL);
  1509. reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
  1510. reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
  1511. E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
  1512. E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
  1513. E1000_PCS_LCTL_FSD | /* Force Speed */
  1514. E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
  1515. wr32(E1000_PCS_LCTL, reg);
  1516. return 0;
  1517. }
  1518. return igb_set_phy_loopback(adapter);
  1519. }
  1520. static void igb_loopback_cleanup(struct igb_adapter *adapter)
  1521. {
  1522. struct e1000_hw *hw = &adapter->hw;
  1523. u32 rctl;
  1524. u16 phy_reg;
  1525. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1526. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1527. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1528. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1529. (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
  1530. u32 reg;
  1531. /* Disable near end loopback on DH89xxCC */
  1532. reg = rd32(E1000_MPHY_ADDR_CTL);
  1533. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1534. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1535. wr32(E1000_MPHY_ADDR_CTL, reg);
  1536. reg = rd32(E1000_MPHY_DATA);
  1537. reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1538. wr32(E1000_MPHY_DATA, reg);
  1539. }
  1540. rctl = rd32(E1000_RCTL);
  1541. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1542. wr32(E1000_RCTL, rctl);
  1543. hw->mac.autoneg = true;
  1544. igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
  1545. if (phy_reg & MII_CR_LOOPBACK) {
  1546. phy_reg &= ~MII_CR_LOOPBACK;
  1547. igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
  1548. igb_phy_sw_reset(hw);
  1549. }
  1550. }
  1551. static void igb_create_lbtest_frame(struct sk_buff *skb,
  1552. unsigned int frame_size)
  1553. {
  1554. memset(skb->data, 0xFF, frame_size);
  1555. frame_size /= 2;
  1556. memset(&skb->data[frame_size], 0xAA, frame_size - 1);
  1557. memset(&skb->data[frame_size + 10], 0xBE, 1);
  1558. memset(&skb->data[frame_size + 12], 0xAF, 1);
  1559. }
  1560. static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
  1561. unsigned int frame_size)
  1562. {
  1563. unsigned char *data;
  1564. bool match = true;
  1565. frame_size >>= 1;
  1566. data = kmap(rx_buffer->page);
  1567. if (data[3] != 0xFF ||
  1568. data[frame_size + 10] != 0xBE ||
  1569. data[frame_size + 12] != 0xAF)
  1570. match = false;
  1571. kunmap(rx_buffer->page);
  1572. return match;
  1573. }
  1574. static int igb_clean_test_rings(struct igb_ring *rx_ring,
  1575. struct igb_ring *tx_ring,
  1576. unsigned int size)
  1577. {
  1578. union e1000_adv_rx_desc *rx_desc;
  1579. struct igb_rx_buffer *rx_buffer_info;
  1580. struct igb_tx_buffer *tx_buffer_info;
  1581. u16 rx_ntc, tx_ntc, count = 0;
  1582. /* initialize next to clean and descriptor values */
  1583. rx_ntc = rx_ring->next_to_clean;
  1584. tx_ntc = tx_ring->next_to_clean;
  1585. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1586. while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
  1587. /* check Rx buffer */
  1588. rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
  1589. /* sync Rx buffer for CPU read */
  1590. dma_sync_single_for_cpu(rx_ring->dev,
  1591. rx_buffer_info->dma,
  1592. IGB_RX_BUFSZ,
  1593. DMA_FROM_DEVICE);
  1594. /* verify contents of skb */
  1595. if (igb_check_lbtest_frame(rx_buffer_info, size))
  1596. count++;
  1597. /* sync Rx buffer for device write */
  1598. dma_sync_single_for_device(rx_ring->dev,
  1599. rx_buffer_info->dma,
  1600. IGB_RX_BUFSZ,
  1601. DMA_FROM_DEVICE);
  1602. /* unmap buffer on Tx side */
  1603. tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
  1604. igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
  1605. /* increment Rx/Tx next to clean counters */
  1606. rx_ntc++;
  1607. if (rx_ntc == rx_ring->count)
  1608. rx_ntc = 0;
  1609. tx_ntc++;
  1610. if (tx_ntc == tx_ring->count)
  1611. tx_ntc = 0;
  1612. /* fetch next descriptor */
  1613. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1614. }
  1615. netdev_tx_reset_queue(txring_txq(tx_ring));
  1616. /* re-map buffers to ring, store next to clean values */
  1617. igb_alloc_rx_buffers(rx_ring, count);
  1618. rx_ring->next_to_clean = rx_ntc;
  1619. tx_ring->next_to_clean = tx_ntc;
  1620. return count;
  1621. }
  1622. static int igb_run_loopback_test(struct igb_adapter *adapter)
  1623. {
  1624. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1625. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1626. u16 i, j, lc, good_cnt;
  1627. int ret_val = 0;
  1628. unsigned int size = IGB_RX_HDR_LEN;
  1629. netdev_tx_t tx_ret_val;
  1630. struct sk_buff *skb;
  1631. /* allocate test skb */
  1632. skb = alloc_skb(size, GFP_KERNEL);
  1633. if (!skb)
  1634. return 11;
  1635. /* place data into test skb */
  1636. igb_create_lbtest_frame(skb, size);
  1637. skb_put(skb, size);
  1638. /* Calculate the loop count based on the largest descriptor ring
  1639. * The idea is to wrap the largest ring a number of times using 64
  1640. * send/receive pairs during each loop
  1641. */
  1642. if (rx_ring->count <= tx_ring->count)
  1643. lc = ((tx_ring->count / 64) * 2) + 1;
  1644. else
  1645. lc = ((rx_ring->count / 64) * 2) + 1;
  1646. for (j = 0; j <= lc; j++) { /* loop count loop */
  1647. /* reset count of good packets */
  1648. good_cnt = 0;
  1649. /* place 64 packets on the transmit queue*/
  1650. for (i = 0; i < 64; i++) {
  1651. skb_get(skb);
  1652. tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
  1653. if (tx_ret_val == NETDEV_TX_OK)
  1654. good_cnt++;
  1655. }
  1656. if (good_cnt != 64) {
  1657. ret_val = 12;
  1658. break;
  1659. }
  1660. /* allow 200 milliseconds for packets to go from Tx to Rx */
  1661. msleep(200);
  1662. good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
  1663. if (good_cnt != 64) {
  1664. ret_val = 13;
  1665. break;
  1666. }
  1667. } /* end loop count loop */
  1668. /* free the original skb */
  1669. kfree_skb(skb);
  1670. return ret_val;
  1671. }
  1672. static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
  1673. {
  1674. /* PHY loopback cannot be performed if SoL/IDER
  1675. * sessions are active
  1676. */
  1677. if (igb_check_reset_block(&adapter->hw)) {
  1678. dev_err(&adapter->pdev->dev,
  1679. "Cannot do PHY loopback test when SoL/IDER is active.\n");
  1680. *data = 0;
  1681. goto out;
  1682. }
  1683. if (adapter->hw.mac.type == e1000_i354) {
  1684. dev_info(&adapter->pdev->dev,
  1685. "Loopback test not supported on i354.\n");
  1686. *data = 0;
  1687. goto out;
  1688. }
  1689. *data = igb_setup_desc_rings(adapter);
  1690. if (*data)
  1691. goto out;
  1692. *data = igb_setup_loopback_test(adapter);
  1693. if (*data)
  1694. goto err_loopback;
  1695. *data = igb_run_loopback_test(adapter);
  1696. igb_loopback_cleanup(adapter);
  1697. err_loopback:
  1698. igb_free_desc_rings(adapter);
  1699. out:
  1700. return *data;
  1701. }
  1702. static int igb_link_test(struct igb_adapter *adapter, u64 *data)
  1703. {
  1704. struct e1000_hw *hw = &adapter->hw;
  1705. *data = 0;
  1706. if (hw->phy.media_type == e1000_media_type_internal_serdes) {
  1707. int i = 0;
  1708. hw->mac.serdes_has_link = false;
  1709. /* On some blade server designs, link establishment
  1710. * could take as long as 2-3 minutes
  1711. */
  1712. do {
  1713. hw->mac.ops.check_for_link(&adapter->hw);
  1714. if (hw->mac.serdes_has_link)
  1715. return *data;
  1716. msleep(20);
  1717. } while (i++ < 3750);
  1718. *data = 1;
  1719. } else {
  1720. hw->mac.ops.check_for_link(&adapter->hw);
  1721. if (hw->mac.autoneg)
  1722. msleep(5000);
  1723. if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
  1724. *data = 1;
  1725. }
  1726. return *data;
  1727. }
  1728. static void igb_diag_test(struct net_device *netdev,
  1729. struct ethtool_test *eth_test, u64 *data)
  1730. {
  1731. struct igb_adapter *adapter = netdev_priv(netdev);
  1732. u16 autoneg_advertised;
  1733. u8 forced_speed_duplex, autoneg;
  1734. bool if_running = netif_running(netdev);
  1735. set_bit(__IGB_TESTING, &adapter->state);
  1736. /* can't do offline tests on media switching devices */
  1737. if (adapter->hw.dev_spec._82575.mas_capable)
  1738. eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
  1739. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1740. /* Offline tests */
  1741. /* save speed, duplex, autoneg settings */
  1742. autoneg_advertised = adapter->hw.phy.autoneg_advertised;
  1743. forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
  1744. autoneg = adapter->hw.mac.autoneg;
  1745. dev_info(&adapter->pdev->dev, "offline testing starting\n");
  1746. /* power up link for link test */
  1747. igb_power_up_link(adapter);
  1748. /* Link test performed before hardware reset so autoneg doesn't
  1749. * interfere with test result
  1750. */
  1751. if (igb_link_test(adapter, &data[4]))
  1752. eth_test->flags |= ETH_TEST_FL_FAILED;
  1753. if (if_running)
  1754. /* indicate we're in test mode */
  1755. dev_close(netdev);
  1756. else
  1757. igb_reset(adapter);
  1758. if (igb_reg_test(adapter, &data[0]))
  1759. eth_test->flags |= ETH_TEST_FL_FAILED;
  1760. igb_reset(adapter);
  1761. if (igb_eeprom_test(adapter, &data[1]))
  1762. eth_test->flags |= ETH_TEST_FL_FAILED;
  1763. igb_reset(adapter);
  1764. if (igb_intr_test(adapter, &data[2]))
  1765. eth_test->flags |= ETH_TEST_FL_FAILED;
  1766. igb_reset(adapter);
  1767. /* power up link for loopback test */
  1768. igb_power_up_link(adapter);
  1769. if (igb_loopback_test(adapter, &data[3]))
  1770. eth_test->flags |= ETH_TEST_FL_FAILED;
  1771. /* restore speed, duplex, autoneg settings */
  1772. adapter->hw.phy.autoneg_advertised = autoneg_advertised;
  1773. adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
  1774. adapter->hw.mac.autoneg = autoneg;
  1775. /* force this routine to wait until autoneg complete/timeout */
  1776. adapter->hw.phy.autoneg_wait_to_complete = true;
  1777. igb_reset(adapter);
  1778. adapter->hw.phy.autoneg_wait_to_complete = false;
  1779. clear_bit(__IGB_TESTING, &adapter->state);
  1780. if (if_running)
  1781. dev_open(netdev);
  1782. } else {
  1783. dev_info(&adapter->pdev->dev, "online testing starting\n");
  1784. /* PHY is powered down when interface is down */
  1785. if (if_running && igb_link_test(adapter, &data[4]))
  1786. eth_test->flags |= ETH_TEST_FL_FAILED;
  1787. else
  1788. data[4] = 0;
  1789. /* Online tests aren't run; pass by default */
  1790. data[0] = 0;
  1791. data[1] = 0;
  1792. data[2] = 0;
  1793. data[3] = 0;
  1794. clear_bit(__IGB_TESTING, &adapter->state);
  1795. }
  1796. msleep_interruptible(4 * 1000);
  1797. }
  1798. static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1799. {
  1800. struct igb_adapter *adapter = netdev_priv(netdev);
  1801. wol->wolopts = 0;
  1802. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1803. return;
  1804. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1805. WAKE_BCAST | WAKE_MAGIC |
  1806. WAKE_PHY;
  1807. /* apply any specific unsupported masks here */
  1808. switch (adapter->hw.device_id) {
  1809. default:
  1810. break;
  1811. }
  1812. if (adapter->wol & E1000_WUFC_EX)
  1813. wol->wolopts |= WAKE_UCAST;
  1814. if (adapter->wol & E1000_WUFC_MC)
  1815. wol->wolopts |= WAKE_MCAST;
  1816. if (adapter->wol & E1000_WUFC_BC)
  1817. wol->wolopts |= WAKE_BCAST;
  1818. if (adapter->wol & E1000_WUFC_MAG)
  1819. wol->wolopts |= WAKE_MAGIC;
  1820. if (adapter->wol & E1000_WUFC_LNKC)
  1821. wol->wolopts |= WAKE_PHY;
  1822. }
  1823. static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1824. {
  1825. struct igb_adapter *adapter = netdev_priv(netdev);
  1826. if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
  1827. return -EOPNOTSUPP;
  1828. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1829. return wol->wolopts ? -EOPNOTSUPP : 0;
  1830. /* these settings will always override what we currently have */
  1831. adapter->wol = 0;
  1832. if (wol->wolopts & WAKE_UCAST)
  1833. adapter->wol |= E1000_WUFC_EX;
  1834. if (wol->wolopts & WAKE_MCAST)
  1835. adapter->wol |= E1000_WUFC_MC;
  1836. if (wol->wolopts & WAKE_BCAST)
  1837. adapter->wol |= E1000_WUFC_BC;
  1838. if (wol->wolopts & WAKE_MAGIC)
  1839. adapter->wol |= E1000_WUFC_MAG;
  1840. if (wol->wolopts & WAKE_PHY)
  1841. adapter->wol |= E1000_WUFC_LNKC;
  1842. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1843. return 0;
  1844. }
  1845. /* bit defines for adapter->led_status */
  1846. #define IGB_LED_ON 0
  1847. static int igb_set_phys_id(struct net_device *netdev,
  1848. enum ethtool_phys_id_state state)
  1849. {
  1850. struct igb_adapter *adapter = netdev_priv(netdev);
  1851. struct e1000_hw *hw = &adapter->hw;
  1852. switch (state) {
  1853. case ETHTOOL_ID_ACTIVE:
  1854. igb_blink_led(hw);
  1855. return 2;
  1856. case ETHTOOL_ID_ON:
  1857. igb_blink_led(hw);
  1858. break;
  1859. case ETHTOOL_ID_OFF:
  1860. igb_led_off(hw);
  1861. break;
  1862. case ETHTOOL_ID_INACTIVE:
  1863. igb_led_off(hw);
  1864. clear_bit(IGB_LED_ON, &adapter->led_status);
  1865. igb_cleanup_led(hw);
  1866. break;
  1867. }
  1868. return 0;
  1869. }
  1870. static int igb_set_coalesce(struct net_device *netdev,
  1871. struct ethtool_coalesce *ec)
  1872. {
  1873. struct igb_adapter *adapter = netdev_priv(netdev);
  1874. int i;
  1875. if (ec->rx_max_coalesced_frames ||
  1876. ec->rx_coalesce_usecs_irq ||
  1877. ec->rx_max_coalesced_frames_irq ||
  1878. ec->tx_max_coalesced_frames ||
  1879. ec->tx_coalesce_usecs_irq ||
  1880. ec->stats_block_coalesce_usecs ||
  1881. ec->use_adaptive_rx_coalesce ||
  1882. ec->use_adaptive_tx_coalesce ||
  1883. ec->pkt_rate_low ||
  1884. ec->rx_coalesce_usecs_low ||
  1885. ec->rx_max_coalesced_frames_low ||
  1886. ec->tx_coalesce_usecs_low ||
  1887. ec->tx_max_coalesced_frames_low ||
  1888. ec->pkt_rate_high ||
  1889. ec->rx_coalesce_usecs_high ||
  1890. ec->rx_max_coalesced_frames_high ||
  1891. ec->tx_coalesce_usecs_high ||
  1892. ec->tx_max_coalesced_frames_high ||
  1893. ec->rate_sample_interval)
  1894. return -ENOTSUPP;
  1895. if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1896. ((ec->rx_coalesce_usecs > 3) &&
  1897. (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1898. (ec->rx_coalesce_usecs == 2))
  1899. return -EINVAL;
  1900. if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1901. ((ec->tx_coalesce_usecs > 3) &&
  1902. (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1903. (ec->tx_coalesce_usecs == 2))
  1904. return -EINVAL;
  1905. if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
  1906. return -EINVAL;
  1907. /* If ITR is disabled, disable DMAC */
  1908. if (ec->rx_coalesce_usecs == 0) {
  1909. if (adapter->flags & IGB_FLAG_DMAC)
  1910. adapter->flags &= ~IGB_FLAG_DMAC;
  1911. }
  1912. /* convert to rate of irq's per second */
  1913. if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
  1914. adapter->rx_itr_setting = ec->rx_coalesce_usecs;
  1915. else
  1916. adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
  1917. /* convert to rate of irq's per second */
  1918. if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
  1919. adapter->tx_itr_setting = adapter->rx_itr_setting;
  1920. else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
  1921. adapter->tx_itr_setting = ec->tx_coalesce_usecs;
  1922. else
  1923. adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
  1924. for (i = 0; i < adapter->num_q_vectors; i++) {
  1925. struct igb_q_vector *q_vector = adapter->q_vector[i];
  1926. q_vector->tx.work_limit = adapter->tx_work_limit;
  1927. if (q_vector->rx.ring)
  1928. q_vector->itr_val = adapter->rx_itr_setting;
  1929. else
  1930. q_vector->itr_val = adapter->tx_itr_setting;
  1931. if (q_vector->itr_val && q_vector->itr_val <= 3)
  1932. q_vector->itr_val = IGB_START_ITR;
  1933. q_vector->set_itr = 1;
  1934. }
  1935. return 0;
  1936. }
  1937. static int igb_get_coalesce(struct net_device *netdev,
  1938. struct ethtool_coalesce *ec)
  1939. {
  1940. struct igb_adapter *adapter = netdev_priv(netdev);
  1941. if (adapter->rx_itr_setting <= 3)
  1942. ec->rx_coalesce_usecs = adapter->rx_itr_setting;
  1943. else
  1944. ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
  1945. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
  1946. if (adapter->tx_itr_setting <= 3)
  1947. ec->tx_coalesce_usecs = adapter->tx_itr_setting;
  1948. else
  1949. ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
  1950. }
  1951. return 0;
  1952. }
  1953. static int igb_nway_reset(struct net_device *netdev)
  1954. {
  1955. struct igb_adapter *adapter = netdev_priv(netdev);
  1956. if (netif_running(netdev))
  1957. igb_reinit_locked(adapter);
  1958. return 0;
  1959. }
  1960. static int igb_get_sset_count(struct net_device *netdev, int sset)
  1961. {
  1962. switch (sset) {
  1963. case ETH_SS_STATS:
  1964. return IGB_STATS_LEN;
  1965. case ETH_SS_TEST:
  1966. return IGB_TEST_LEN;
  1967. default:
  1968. return -ENOTSUPP;
  1969. }
  1970. }
  1971. static void igb_get_ethtool_stats(struct net_device *netdev,
  1972. struct ethtool_stats *stats, u64 *data)
  1973. {
  1974. struct igb_adapter *adapter = netdev_priv(netdev);
  1975. struct rtnl_link_stats64 *net_stats = &adapter->stats64;
  1976. unsigned int start;
  1977. struct igb_ring *ring;
  1978. int i, j;
  1979. char *p;
  1980. spin_lock(&adapter->stats64_lock);
  1981. igb_update_stats(adapter, net_stats);
  1982. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  1983. p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
  1984. data[i] = (igb_gstrings_stats[i].sizeof_stat ==
  1985. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  1986. }
  1987. for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
  1988. p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
  1989. data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
  1990. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  1991. }
  1992. for (j = 0; j < adapter->num_tx_queues; j++) {
  1993. u64 restart2;
  1994. ring = adapter->tx_ring[j];
  1995. do {
  1996. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  1997. data[i] = ring->tx_stats.packets;
  1998. data[i+1] = ring->tx_stats.bytes;
  1999. data[i+2] = ring->tx_stats.restart_queue;
  2000. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  2001. do {
  2002. start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
  2003. restart2 = ring->tx_stats.restart_queue2;
  2004. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
  2005. data[i+2] += restart2;
  2006. i += IGB_TX_QUEUE_STATS_LEN;
  2007. }
  2008. for (j = 0; j < adapter->num_rx_queues; j++) {
  2009. ring = adapter->rx_ring[j];
  2010. do {
  2011. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  2012. data[i] = ring->rx_stats.packets;
  2013. data[i+1] = ring->rx_stats.bytes;
  2014. data[i+2] = ring->rx_stats.drops;
  2015. data[i+3] = ring->rx_stats.csum_err;
  2016. data[i+4] = ring->rx_stats.alloc_failed;
  2017. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  2018. i += IGB_RX_QUEUE_STATS_LEN;
  2019. }
  2020. spin_unlock(&adapter->stats64_lock);
  2021. }
  2022. static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2023. {
  2024. struct igb_adapter *adapter = netdev_priv(netdev);
  2025. u8 *p = data;
  2026. int i;
  2027. switch (stringset) {
  2028. case ETH_SS_TEST:
  2029. memcpy(data, *igb_gstrings_test,
  2030. IGB_TEST_LEN*ETH_GSTRING_LEN);
  2031. break;
  2032. case ETH_SS_STATS:
  2033. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2034. memcpy(p, igb_gstrings_stats[i].stat_string,
  2035. ETH_GSTRING_LEN);
  2036. p += ETH_GSTRING_LEN;
  2037. }
  2038. for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
  2039. memcpy(p, igb_gstrings_net_stats[i].stat_string,
  2040. ETH_GSTRING_LEN);
  2041. p += ETH_GSTRING_LEN;
  2042. }
  2043. for (i = 0; i < adapter->num_tx_queues; i++) {
  2044. sprintf(p, "tx_queue_%u_packets", i);
  2045. p += ETH_GSTRING_LEN;
  2046. sprintf(p, "tx_queue_%u_bytes", i);
  2047. p += ETH_GSTRING_LEN;
  2048. sprintf(p, "tx_queue_%u_restart", i);
  2049. p += ETH_GSTRING_LEN;
  2050. }
  2051. for (i = 0; i < adapter->num_rx_queues; i++) {
  2052. sprintf(p, "rx_queue_%u_packets", i);
  2053. p += ETH_GSTRING_LEN;
  2054. sprintf(p, "rx_queue_%u_bytes", i);
  2055. p += ETH_GSTRING_LEN;
  2056. sprintf(p, "rx_queue_%u_drops", i);
  2057. p += ETH_GSTRING_LEN;
  2058. sprintf(p, "rx_queue_%u_csum_err", i);
  2059. p += ETH_GSTRING_LEN;
  2060. sprintf(p, "rx_queue_%u_alloc_failed", i);
  2061. p += ETH_GSTRING_LEN;
  2062. }
  2063. /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
  2064. break;
  2065. }
  2066. }
  2067. static int igb_get_ts_info(struct net_device *dev,
  2068. struct ethtool_ts_info *info)
  2069. {
  2070. struct igb_adapter *adapter = netdev_priv(dev);
  2071. if (adapter->ptp_clock)
  2072. info->phc_index = ptp_clock_index(adapter->ptp_clock);
  2073. else
  2074. info->phc_index = -1;
  2075. switch (adapter->hw.mac.type) {
  2076. case e1000_82575:
  2077. info->so_timestamping =
  2078. SOF_TIMESTAMPING_TX_SOFTWARE |
  2079. SOF_TIMESTAMPING_RX_SOFTWARE |
  2080. SOF_TIMESTAMPING_SOFTWARE;
  2081. return 0;
  2082. case e1000_82576:
  2083. case e1000_82580:
  2084. case e1000_i350:
  2085. case e1000_i354:
  2086. case e1000_i210:
  2087. case e1000_i211:
  2088. info->so_timestamping =
  2089. SOF_TIMESTAMPING_TX_SOFTWARE |
  2090. SOF_TIMESTAMPING_RX_SOFTWARE |
  2091. SOF_TIMESTAMPING_SOFTWARE |
  2092. SOF_TIMESTAMPING_TX_HARDWARE |
  2093. SOF_TIMESTAMPING_RX_HARDWARE |
  2094. SOF_TIMESTAMPING_RAW_HARDWARE;
  2095. info->tx_types =
  2096. (1 << HWTSTAMP_TX_OFF) |
  2097. (1 << HWTSTAMP_TX_ON);
  2098. info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
  2099. /* 82576 does not support timestamping all packets. */
  2100. if (adapter->hw.mac.type >= e1000_82580)
  2101. info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
  2102. else
  2103. info->rx_filters |=
  2104. (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  2105. (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  2106. (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
  2107. return 0;
  2108. default:
  2109. return -EOPNOTSUPP;
  2110. }
  2111. }
  2112. static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
  2113. struct ethtool_rxnfc *cmd)
  2114. {
  2115. cmd->data = 0;
  2116. /* Report default options for RSS on igb */
  2117. switch (cmd->flow_type) {
  2118. case TCP_V4_FLOW:
  2119. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2120. /* Fall through */
  2121. case UDP_V4_FLOW:
  2122. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2123. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2124. /* Fall through */
  2125. case SCTP_V4_FLOW:
  2126. case AH_ESP_V4_FLOW:
  2127. case AH_V4_FLOW:
  2128. case ESP_V4_FLOW:
  2129. case IPV4_FLOW:
  2130. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2131. break;
  2132. case TCP_V6_FLOW:
  2133. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2134. /* Fall through */
  2135. case UDP_V6_FLOW:
  2136. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2137. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2138. /* Fall through */
  2139. case SCTP_V6_FLOW:
  2140. case AH_ESP_V6_FLOW:
  2141. case AH_V6_FLOW:
  2142. case ESP_V6_FLOW:
  2143. case IPV6_FLOW:
  2144. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2145. break;
  2146. default:
  2147. return -EINVAL;
  2148. }
  2149. return 0;
  2150. }
  2151. static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  2152. u32 *rule_locs)
  2153. {
  2154. struct igb_adapter *adapter = netdev_priv(dev);
  2155. int ret = -EOPNOTSUPP;
  2156. switch (cmd->cmd) {
  2157. case ETHTOOL_GRXRINGS:
  2158. cmd->data = adapter->num_rx_queues;
  2159. ret = 0;
  2160. break;
  2161. case ETHTOOL_GRXFH:
  2162. ret = igb_get_rss_hash_opts(adapter, cmd);
  2163. break;
  2164. default:
  2165. break;
  2166. }
  2167. return ret;
  2168. }
  2169. #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
  2170. IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2171. static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
  2172. struct ethtool_rxnfc *nfc)
  2173. {
  2174. u32 flags = adapter->flags;
  2175. /* RSS does not support anything other than hashing
  2176. * to queues on src and dst IPs and ports
  2177. */
  2178. if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
  2179. RXH_L4_B_0_1 | RXH_L4_B_2_3))
  2180. return -EINVAL;
  2181. switch (nfc->flow_type) {
  2182. case TCP_V4_FLOW:
  2183. case TCP_V6_FLOW:
  2184. if (!(nfc->data & RXH_IP_SRC) ||
  2185. !(nfc->data & RXH_IP_DST) ||
  2186. !(nfc->data & RXH_L4_B_0_1) ||
  2187. !(nfc->data & RXH_L4_B_2_3))
  2188. return -EINVAL;
  2189. break;
  2190. case UDP_V4_FLOW:
  2191. if (!(nfc->data & RXH_IP_SRC) ||
  2192. !(nfc->data & RXH_IP_DST))
  2193. return -EINVAL;
  2194. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2195. case 0:
  2196. flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2197. break;
  2198. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2199. flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2200. break;
  2201. default:
  2202. return -EINVAL;
  2203. }
  2204. break;
  2205. case UDP_V6_FLOW:
  2206. if (!(nfc->data & RXH_IP_SRC) ||
  2207. !(nfc->data & RXH_IP_DST))
  2208. return -EINVAL;
  2209. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2210. case 0:
  2211. flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2212. break;
  2213. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2214. flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2215. break;
  2216. default:
  2217. return -EINVAL;
  2218. }
  2219. break;
  2220. case AH_ESP_V4_FLOW:
  2221. case AH_V4_FLOW:
  2222. case ESP_V4_FLOW:
  2223. case SCTP_V4_FLOW:
  2224. case AH_ESP_V6_FLOW:
  2225. case AH_V6_FLOW:
  2226. case ESP_V6_FLOW:
  2227. case SCTP_V6_FLOW:
  2228. if (!(nfc->data & RXH_IP_SRC) ||
  2229. !(nfc->data & RXH_IP_DST) ||
  2230. (nfc->data & RXH_L4_B_0_1) ||
  2231. (nfc->data & RXH_L4_B_2_3))
  2232. return -EINVAL;
  2233. break;
  2234. default:
  2235. return -EINVAL;
  2236. }
  2237. /* if we changed something we need to update flags */
  2238. if (flags != adapter->flags) {
  2239. struct e1000_hw *hw = &adapter->hw;
  2240. u32 mrqc = rd32(E1000_MRQC);
  2241. if ((flags & UDP_RSS_FLAGS) &&
  2242. !(adapter->flags & UDP_RSS_FLAGS))
  2243. dev_err(&adapter->pdev->dev,
  2244. "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
  2245. adapter->flags = flags;
  2246. /* Perform hash on these packet types */
  2247. mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
  2248. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2249. E1000_MRQC_RSS_FIELD_IPV6 |
  2250. E1000_MRQC_RSS_FIELD_IPV6_TCP;
  2251. mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
  2252. E1000_MRQC_RSS_FIELD_IPV6_UDP);
  2253. if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2254. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2255. if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2256. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2257. wr32(E1000_MRQC, mrqc);
  2258. }
  2259. return 0;
  2260. }
  2261. static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  2262. {
  2263. struct igb_adapter *adapter = netdev_priv(dev);
  2264. int ret = -EOPNOTSUPP;
  2265. switch (cmd->cmd) {
  2266. case ETHTOOL_SRXFH:
  2267. ret = igb_set_rss_hash_opt(adapter, cmd);
  2268. break;
  2269. default:
  2270. break;
  2271. }
  2272. return ret;
  2273. }
  2274. static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
  2275. {
  2276. struct igb_adapter *adapter = netdev_priv(netdev);
  2277. struct e1000_hw *hw = &adapter->hw;
  2278. u32 ret_val;
  2279. u16 phy_data;
  2280. if ((hw->mac.type < e1000_i350) ||
  2281. (hw->phy.media_type != e1000_media_type_copper))
  2282. return -EOPNOTSUPP;
  2283. edata->supported = (SUPPORTED_1000baseT_Full |
  2284. SUPPORTED_100baseT_Full);
  2285. if (!hw->dev_spec._82575.eee_disable)
  2286. edata->advertised =
  2287. mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
  2288. /* The IPCNFG and EEER registers are not supported on I354. */
  2289. if (hw->mac.type == e1000_i354) {
  2290. igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
  2291. } else {
  2292. u32 eeer;
  2293. eeer = rd32(E1000_EEER);
  2294. /* EEE status on negotiated link */
  2295. if (eeer & E1000_EEER_EEE_NEG)
  2296. edata->eee_active = true;
  2297. if (eeer & E1000_EEER_TX_LPI_EN)
  2298. edata->tx_lpi_enabled = true;
  2299. }
  2300. /* EEE Link Partner Advertised */
  2301. switch (hw->mac.type) {
  2302. case e1000_i350:
  2303. ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
  2304. &phy_data);
  2305. if (ret_val)
  2306. return -ENODATA;
  2307. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2308. break;
  2309. case e1000_i354:
  2310. case e1000_i210:
  2311. case e1000_i211:
  2312. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
  2313. E1000_EEE_LP_ADV_DEV_I210,
  2314. &phy_data);
  2315. if (ret_val)
  2316. return -ENODATA;
  2317. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2318. break;
  2319. default:
  2320. break;
  2321. }
  2322. edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
  2323. if ((hw->mac.type == e1000_i354) &&
  2324. (edata->eee_enabled))
  2325. edata->tx_lpi_enabled = true;
  2326. /* Report correct negotiated EEE status for devices that
  2327. * wrongly report EEE at half-duplex
  2328. */
  2329. if (adapter->link_duplex == HALF_DUPLEX) {
  2330. edata->eee_enabled = false;
  2331. edata->eee_active = false;
  2332. edata->tx_lpi_enabled = false;
  2333. edata->advertised &= ~edata->advertised;
  2334. }
  2335. return 0;
  2336. }
  2337. static int igb_set_eee(struct net_device *netdev,
  2338. struct ethtool_eee *edata)
  2339. {
  2340. struct igb_adapter *adapter = netdev_priv(netdev);
  2341. struct e1000_hw *hw = &adapter->hw;
  2342. struct ethtool_eee eee_curr;
  2343. bool adv1g_eee = true, adv100m_eee = true;
  2344. s32 ret_val;
  2345. if ((hw->mac.type < e1000_i350) ||
  2346. (hw->phy.media_type != e1000_media_type_copper))
  2347. return -EOPNOTSUPP;
  2348. memset(&eee_curr, 0, sizeof(struct ethtool_eee));
  2349. ret_val = igb_get_eee(netdev, &eee_curr);
  2350. if (ret_val)
  2351. return ret_val;
  2352. if (eee_curr.eee_enabled) {
  2353. if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
  2354. dev_err(&adapter->pdev->dev,
  2355. "Setting EEE tx-lpi is not supported\n");
  2356. return -EINVAL;
  2357. }
  2358. /* Tx LPI timer is not implemented currently */
  2359. if (edata->tx_lpi_timer) {
  2360. dev_err(&adapter->pdev->dev,
  2361. "Setting EEE Tx LPI timer is not supported\n");
  2362. return -EINVAL;
  2363. }
  2364. if (!edata->advertised || (edata->advertised &
  2365. ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
  2366. dev_err(&adapter->pdev->dev,
  2367. "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
  2368. return -EINVAL;
  2369. }
  2370. adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
  2371. adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
  2372. } else if (!edata->eee_enabled) {
  2373. dev_err(&adapter->pdev->dev,
  2374. "Setting EEE options are not supported with EEE disabled\n");
  2375. return -EINVAL;
  2376. }
  2377. adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
  2378. if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
  2379. hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
  2380. adapter->flags |= IGB_FLAG_EEE;
  2381. /* reset link */
  2382. if (netif_running(netdev))
  2383. igb_reinit_locked(adapter);
  2384. else
  2385. igb_reset(adapter);
  2386. }
  2387. if (hw->mac.type == e1000_i354)
  2388. ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
  2389. else
  2390. ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
  2391. if (ret_val) {
  2392. dev_err(&adapter->pdev->dev,
  2393. "Problem setting EEE advertisement options\n");
  2394. return -EINVAL;
  2395. }
  2396. return 0;
  2397. }
  2398. static int igb_get_module_info(struct net_device *netdev,
  2399. struct ethtool_modinfo *modinfo)
  2400. {
  2401. struct igb_adapter *adapter = netdev_priv(netdev);
  2402. struct e1000_hw *hw = &adapter->hw;
  2403. u32 status = 0;
  2404. u16 sff8472_rev, addr_mode;
  2405. bool page_swap = false;
  2406. if ((hw->phy.media_type == e1000_media_type_copper) ||
  2407. (hw->phy.media_type == e1000_media_type_unknown))
  2408. return -EOPNOTSUPP;
  2409. /* Check whether we support SFF-8472 or not */
  2410. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
  2411. if (status)
  2412. return -EIO;
  2413. /* addressing mode is not supported */
  2414. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
  2415. if (status)
  2416. return -EIO;
  2417. /* addressing mode is not supported */
  2418. if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
  2419. hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
  2420. page_swap = true;
  2421. }
  2422. if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
  2423. /* We have an SFP, but it does not support SFF-8472 */
  2424. modinfo->type = ETH_MODULE_SFF_8079;
  2425. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  2426. } else {
  2427. /* We have an SFP which supports a revision of SFF-8472 */
  2428. modinfo->type = ETH_MODULE_SFF_8472;
  2429. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  2430. }
  2431. return 0;
  2432. }
  2433. static int igb_get_module_eeprom(struct net_device *netdev,
  2434. struct ethtool_eeprom *ee, u8 *data)
  2435. {
  2436. struct igb_adapter *adapter = netdev_priv(netdev);
  2437. struct e1000_hw *hw = &adapter->hw;
  2438. u32 status = 0;
  2439. u16 *dataword;
  2440. u16 first_word, last_word;
  2441. int i = 0;
  2442. if (ee->len == 0)
  2443. return -EINVAL;
  2444. first_word = ee->offset >> 1;
  2445. last_word = (ee->offset + ee->len - 1) >> 1;
  2446. dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
  2447. GFP_KERNEL);
  2448. if (!dataword)
  2449. return -ENOMEM;
  2450. /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
  2451. for (i = 0; i < last_word - first_word + 1; i++) {
  2452. status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
  2453. if (status) {
  2454. /* Error occurred while reading module */
  2455. kfree(dataword);
  2456. return -EIO;
  2457. }
  2458. be16_to_cpus(&dataword[i]);
  2459. }
  2460. memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
  2461. kfree(dataword);
  2462. return 0;
  2463. }
  2464. static int igb_ethtool_begin(struct net_device *netdev)
  2465. {
  2466. struct igb_adapter *adapter = netdev_priv(netdev);
  2467. pm_runtime_get_sync(&adapter->pdev->dev);
  2468. return 0;
  2469. }
  2470. static void igb_ethtool_complete(struct net_device *netdev)
  2471. {
  2472. struct igb_adapter *adapter = netdev_priv(netdev);
  2473. pm_runtime_put(&adapter->pdev->dev);
  2474. }
  2475. static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
  2476. {
  2477. return IGB_RETA_SIZE;
  2478. }
  2479. static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
  2480. u8 *hfunc)
  2481. {
  2482. struct igb_adapter *adapter = netdev_priv(netdev);
  2483. int i;
  2484. if (hfunc)
  2485. *hfunc = ETH_RSS_HASH_TOP;
  2486. if (!indir)
  2487. return 0;
  2488. for (i = 0; i < IGB_RETA_SIZE; i++)
  2489. indir[i] = adapter->rss_indir_tbl[i];
  2490. return 0;
  2491. }
  2492. void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
  2493. {
  2494. struct e1000_hw *hw = &adapter->hw;
  2495. u32 reg = E1000_RETA(0);
  2496. u32 shift = 0;
  2497. int i = 0;
  2498. switch (hw->mac.type) {
  2499. case e1000_82575:
  2500. shift = 6;
  2501. break;
  2502. case e1000_82576:
  2503. /* 82576 supports 2 RSS queues for SR-IOV */
  2504. if (adapter->vfs_allocated_count)
  2505. shift = 3;
  2506. break;
  2507. default:
  2508. break;
  2509. }
  2510. while (i < IGB_RETA_SIZE) {
  2511. u32 val = 0;
  2512. int j;
  2513. for (j = 3; j >= 0; j--) {
  2514. val <<= 8;
  2515. val |= adapter->rss_indir_tbl[i + j];
  2516. }
  2517. wr32(reg, val << shift);
  2518. reg += 4;
  2519. i += 4;
  2520. }
  2521. }
  2522. static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
  2523. const u8 *key, const u8 hfunc)
  2524. {
  2525. struct igb_adapter *adapter = netdev_priv(netdev);
  2526. struct e1000_hw *hw = &adapter->hw;
  2527. int i;
  2528. u32 num_queues;
  2529. /* We do not allow change in unsupported parameters */
  2530. if (key ||
  2531. (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
  2532. return -EOPNOTSUPP;
  2533. if (!indir)
  2534. return 0;
  2535. num_queues = adapter->rss_queues;
  2536. switch (hw->mac.type) {
  2537. case e1000_82576:
  2538. /* 82576 supports 2 RSS queues for SR-IOV */
  2539. if (adapter->vfs_allocated_count)
  2540. num_queues = 2;
  2541. break;
  2542. default:
  2543. break;
  2544. }
  2545. /* Verify user input. */
  2546. for (i = 0; i < IGB_RETA_SIZE; i++)
  2547. if (indir[i] >= num_queues)
  2548. return -EINVAL;
  2549. for (i = 0; i < IGB_RETA_SIZE; i++)
  2550. adapter->rss_indir_tbl[i] = indir[i];
  2551. igb_write_rss_indir_tbl(adapter);
  2552. return 0;
  2553. }
  2554. static unsigned int igb_max_channels(struct igb_adapter *adapter)
  2555. {
  2556. struct e1000_hw *hw = &adapter->hw;
  2557. unsigned int max_combined = 0;
  2558. switch (hw->mac.type) {
  2559. case e1000_i211:
  2560. max_combined = IGB_MAX_RX_QUEUES_I211;
  2561. break;
  2562. case e1000_82575:
  2563. case e1000_i210:
  2564. max_combined = IGB_MAX_RX_QUEUES_82575;
  2565. break;
  2566. case e1000_i350:
  2567. if (!!adapter->vfs_allocated_count) {
  2568. max_combined = 1;
  2569. break;
  2570. }
  2571. /* fall through */
  2572. case e1000_82576:
  2573. if (!!adapter->vfs_allocated_count) {
  2574. max_combined = 2;
  2575. break;
  2576. }
  2577. /* fall through */
  2578. case e1000_82580:
  2579. case e1000_i354:
  2580. default:
  2581. max_combined = IGB_MAX_RX_QUEUES;
  2582. break;
  2583. }
  2584. return max_combined;
  2585. }
  2586. static void igb_get_channels(struct net_device *netdev,
  2587. struct ethtool_channels *ch)
  2588. {
  2589. struct igb_adapter *adapter = netdev_priv(netdev);
  2590. /* Report maximum channels */
  2591. ch->max_combined = igb_max_channels(adapter);
  2592. /* Report info for other vector */
  2593. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  2594. ch->max_other = NON_Q_VECTORS;
  2595. ch->other_count = NON_Q_VECTORS;
  2596. }
  2597. ch->combined_count = adapter->rss_queues;
  2598. }
  2599. static int igb_set_channels(struct net_device *netdev,
  2600. struct ethtool_channels *ch)
  2601. {
  2602. struct igb_adapter *adapter = netdev_priv(netdev);
  2603. unsigned int count = ch->combined_count;
  2604. unsigned int max_combined = 0;
  2605. /* Verify they are not requesting separate vectors */
  2606. if (!count || ch->rx_count || ch->tx_count)
  2607. return -EINVAL;
  2608. /* Verify other_count is valid and has not been changed */
  2609. if (ch->other_count != NON_Q_VECTORS)
  2610. return -EINVAL;
  2611. /* Verify the number of channels doesn't exceed hw limits */
  2612. max_combined = igb_max_channels(adapter);
  2613. if (count > max_combined)
  2614. return -EINVAL;
  2615. if (count != adapter->rss_queues) {
  2616. adapter->rss_queues = count;
  2617. igb_set_flag_queue_pairs(adapter, max_combined);
  2618. /* Hardware has to reinitialize queues and interrupts to
  2619. * match the new configuration.
  2620. */
  2621. return igb_reinit_queues(adapter);
  2622. }
  2623. return 0;
  2624. }
  2625. static const struct ethtool_ops igb_ethtool_ops = {
  2626. .get_settings = igb_get_settings,
  2627. .set_settings = igb_set_settings,
  2628. .get_drvinfo = igb_get_drvinfo,
  2629. .get_regs_len = igb_get_regs_len,
  2630. .get_regs = igb_get_regs,
  2631. .get_wol = igb_get_wol,
  2632. .set_wol = igb_set_wol,
  2633. .get_msglevel = igb_get_msglevel,
  2634. .set_msglevel = igb_set_msglevel,
  2635. .nway_reset = igb_nway_reset,
  2636. .get_link = igb_get_link,
  2637. .get_eeprom_len = igb_get_eeprom_len,
  2638. .get_eeprom = igb_get_eeprom,
  2639. .set_eeprom = igb_set_eeprom,
  2640. .get_ringparam = igb_get_ringparam,
  2641. .set_ringparam = igb_set_ringparam,
  2642. .get_pauseparam = igb_get_pauseparam,
  2643. .set_pauseparam = igb_set_pauseparam,
  2644. .self_test = igb_diag_test,
  2645. .get_strings = igb_get_strings,
  2646. .set_phys_id = igb_set_phys_id,
  2647. .get_sset_count = igb_get_sset_count,
  2648. .get_ethtool_stats = igb_get_ethtool_stats,
  2649. .get_coalesce = igb_get_coalesce,
  2650. .set_coalesce = igb_set_coalesce,
  2651. .get_ts_info = igb_get_ts_info,
  2652. .get_rxnfc = igb_get_rxnfc,
  2653. .set_rxnfc = igb_set_rxnfc,
  2654. .get_eee = igb_get_eee,
  2655. .set_eee = igb_set_eee,
  2656. .get_module_info = igb_get_module_info,
  2657. .get_module_eeprom = igb_get_module_eeprom,
  2658. .get_rxfh_indir_size = igb_get_rxfh_indir_size,
  2659. .get_rxfh = igb_get_rxfh,
  2660. .set_rxfh = igb_set_rxfh,
  2661. .get_channels = igb_get_channels,
  2662. .set_channels = igb_set_channels,
  2663. .begin = igb_ethtool_begin,
  2664. .complete = igb_ethtool_complete,
  2665. };
  2666. void igb_set_ethtool_ops(struct net_device *netdev)
  2667. {
  2668. netdev->ethtool_ops = &igb_ethtool_ops;
  2669. }