i40e_txrx.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
  4. * Copyright(c) 2013 - 2014 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40evf.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. /**
  41. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  42. * @ring: the ring that owns the buffer
  43. * @tx_buffer: the buffer to free
  44. **/
  45. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  46. struct i40e_tx_buffer *tx_buffer)
  47. {
  48. if (tx_buffer->skb) {
  49. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  50. kfree(tx_buffer->raw_buf);
  51. else
  52. dev_kfree_skb_any(tx_buffer->skb);
  53. if (dma_unmap_len(tx_buffer, len))
  54. dma_unmap_single(ring->dev,
  55. dma_unmap_addr(tx_buffer, dma),
  56. dma_unmap_len(tx_buffer, len),
  57. DMA_TO_DEVICE);
  58. } else if (dma_unmap_len(tx_buffer, len)) {
  59. dma_unmap_page(ring->dev,
  60. dma_unmap_addr(tx_buffer, dma),
  61. dma_unmap_len(tx_buffer, len),
  62. DMA_TO_DEVICE);
  63. }
  64. tx_buffer->next_to_watch = NULL;
  65. tx_buffer->skb = NULL;
  66. dma_unmap_len_set(tx_buffer, len, 0);
  67. /* tx_buffer must be completely set up in the transmit path */
  68. }
  69. /**
  70. * i40evf_clean_tx_ring - Free any empty Tx buffers
  71. * @tx_ring: ring to be cleaned
  72. **/
  73. void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  74. {
  75. unsigned long bi_size;
  76. u16 i;
  77. /* ring already cleared, nothing to do */
  78. if (!tx_ring->tx_bi)
  79. return;
  80. /* Free all the Tx ring sk_buffs */
  81. for (i = 0; i < tx_ring->count; i++)
  82. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  83. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  84. memset(tx_ring->tx_bi, 0, bi_size);
  85. /* Zero out the descriptor ring */
  86. memset(tx_ring->desc, 0, tx_ring->size);
  87. tx_ring->next_to_use = 0;
  88. tx_ring->next_to_clean = 0;
  89. if (!tx_ring->netdev)
  90. return;
  91. /* cleanup Tx queue statistics */
  92. netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
  93. tx_ring->queue_index));
  94. }
  95. /**
  96. * i40evf_free_tx_resources - Free Tx resources per queue
  97. * @tx_ring: Tx descriptor ring for a specific queue
  98. *
  99. * Free all transmit software resources
  100. **/
  101. void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
  102. {
  103. i40evf_clean_tx_ring(tx_ring);
  104. kfree(tx_ring->tx_bi);
  105. tx_ring->tx_bi = NULL;
  106. if (tx_ring->desc) {
  107. dma_free_coherent(tx_ring->dev, tx_ring->size,
  108. tx_ring->desc, tx_ring->dma);
  109. tx_ring->desc = NULL;
  110. }
  111. }
  112. /**
  113. * i40e_get_head - Retrieve head from head writeback
  114. * @tx_ring: tx ring to fetch head of
  115. *
  116. * Returns value of Tx ring head based on value stored
  117. * in head write-back location
  118. **/
  119. static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
  120. {
  121. void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
  122. return le32_to_cpu(*(volatile __le32 *)head);
  123. }
  124. #define WB_STRIDE 0x3
  125. /**
  126. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  127. * @tx_ring: tx ring to clean
  128. * @budget: how many cleans we're allowed
  129. *
  130. * Returns true if there's any budget left (e.g. the clean is finished)
  131. **/
  132. static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
  133. {
  134. u16 i = tx_ring->next_to_clean;
  135. struct i40e_tx_buffer *tx_buf;
  136. struct i40e_tx_desc *tx_head;
  137. struct i40e_tx_desc *tx_desc;
  138. unsigned int total_packets = 0;
  139. unsigned int total_bytes = 0;
  140. tx_buf = &tx_ring->tx_bi[i];
  141. tx_desc = I40E_TX_DESC(tx_ring, i);
  142. i -= tx_ring->count;
  143. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  144. do {
  145. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  146. /* if next_to_watch is not set then there is no work pending */
  147. if (!eop_desc)
  148. break;
  149. /* prevent any other reads prior to eop_desc */
  150. read_barrier_depends();
  151. /* we have caught up to head, no work left to do */
  152. if (tx_head == tx_desc)
  153. break;
  154. /* clear next_to_watch to prevent false hangs */
  155. tx_buf->next_to_watch = NULL;
  156. /* update the statistics for this packet */
  157. total_bytes += tx_buf->bytecount;
  158. total_packets += tx_buf->gso_segs;
  159. /* free the skb */
  160. dev_kfree_skb_any(tx_buf->skb);
  161. /* unmap skb header data */
  162. dma_unmap_single(tx_ring->dev,
  163. dma_unmap_addr(tx_buf, dma),
  164. dma_unmap_len(tx_buf, len),
  165. DMA_TO_DEVICE);
  166. /* clear tx_buffer data */
  167. tx_buf->skb = NULL;
  168. dma_unmap_len_set(tx_buf, len, 0);
  169. /* unmap remaining buffers */
  170. while (tx_desc != eop_desc) {
  171. tx_buf++;
  172. tx_desc++;
  173. i++;
  174. if (unlikely(!i)) {
  175. i -= tx_ring->count;
  176. tx_buf = tx_ring->tx_bi;
  177. tx_desc = I40E_TX_DESC(tx_ring, 0);
  178. }
  179. /* unmap any remaining paged data */
  180. if (dma_unmap_len(tx_buf, len)) {
  181. dma_unmap_page(tx_ring->dev,
  182. dma_unmap_addr(tx_buf, dma),
  183. dma_unmap_len(tx_buf, len),
  184. DMA_TO_DEVICE);
  185. dma_unmap_len_set(tx_buf, len, 0);
  186. }
  187. }
  188. /* move us one more past the eop_desc for start of next pkt */
  189. tx_buf++;
  190. tx_desc++;
  191. i++;
  192. if (unlikely(!i)) {
  193. i -= tx_ring->count;
  194. tx_buf = tx_ring->tx_bi;
  195. tx_desc = I40E_TX_DESC(tx_ring, 0);
  196. }
  197. prefetch(tx_desc);
  198. /* update budget accounting */
  199. budget--;
  200. } while (likely(budget));
  201. i += tx_ring->count;
  202. tx_ring->next_to_clean = i;
  203. u64_stats_update_begin(&tx_ring->syncp);
  204. tx_ring->stats.bytes += total_bytes;
  205. tx_ring->stats.packets += total_packets;
  206. u64_stats_update_end(&tx_ring->syncp);
  207. tx_ring->q_vector->tx.total_bytes += total_bytes;
  208. tx_ring->q_vector->tx.total_packets += total_packets;
  209. /* check to see if there are any non-cache aligned descriptors
  210. * waiting to be written back, and kick the hardware to force
  211. * them to be written back in case of napi polling
  212. */
  213. if (budget &&
  214. !((i & WB_STRIDE) == WB_STRIDE) &&
  215. !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
  216. (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
  217. tx_ring->arm_wb = true;
  218. netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
  219. tx_ring->queue_index),
  220. total_packets, total_bytes);
  221. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  222. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  223. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  224. /* Make sure that anybody stopping the queue after this
  225. * sees the new next_to_clean.
  226. */
  227. smp_mb();
  228. if (__netif_subqueue_stopped(tx_ring->netdev,
  229. tx_ring->queue_index) &&
  230. !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
  231. netif_wake_subqueue(tx_ring->netdev,
  232. tx_ring->queue_index);
  233. ++tx_ring->tx_stats.restart_queue;
  234. }
  235. }
  236. return !!budget;
  237. }
  238. /**
  239. * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
  240. * @vsi: the VSI we care about
  241. * @q_vector: the vector on which to force writeback
  242. *
  243. **/
  244. static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  245. {
  246. u16 flags = q_vector->tx.ring[0].flags;
  247. if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  248. u32 val;
  249. if (q_vector->arm_wb_state)
  250. return;
  251. val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;
  252. wr32(&vsi->back->hw,
  253. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  254. vsi->base_vector - 1),
  255. val);
  256. q_vector->arm_wb_state = true;
  257. } else {
  258. u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  259. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
  260. I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
  261. I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
  262. /* allow 00 to be written to the index */
  263. wr32(&vsi->back->hw,
  264. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  265. vsi->base_vector - 1), val);
  266. }
  267. }
  268. /**
  269. * i40e_set_new_dynamic_itr - Find new ITR level
  270. * @rc: structure containing ring performance data
  271. *
  272. * Returns true if ITR changed, false if not
  273. *
  274. * Stores a new ITR value based on packets and byte counts during
  275. * the last interrupt. The advantage of per interrupt computation
  276. * is faster updates and more accurate ITR for the current traffic
  277. * pattern. Constants in this function were computed based on
  278. * theoretical maximum wire speed and thresholds were set based on
  279. * testing data as well as attempting to minimize response time
  280. * while increasing bulk throughput.
  281. **/
  282. static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  283. {
  284. enum i40e_latency_range new_latency_range = rc->latency_range;
  285. struct i40e_q_vector *qv = rc->ring->q_vector;
  286. u32 new_itr = rc->itr;
  287. int bytes_per_int;
  288. int usecs;
  289. if (rc->total_packets == 0 || !rc->itr)
  290. return false;
  291. /* simple throttlerate management
  292. * 0-10MB/s lowest (50000 ints/s)
  293. * 10-20MB/s low (20000 ints/s)
  294. * 20-1249MB/s bulk (18000 ints/s)
  295. * > 40000 Rx packets per second (8000 ints/s)
  296. *
  297. * The math works out because the divisor is in 10^(-6) which
  298. * turns the bytes/us input value into MB/s values, but
  299. * make sure to use usecs, as the register values written
  300. * are in 2 usec increments in the ITR registers, and make sure
  301. * to use the smoothed values that the countdown timer gives us.
  302. */
  303. usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
  304. bytes_per_int = rc->total_bytes / usecs;
  305. switch (new_latency_range) {
  306. case I40E_LOWEST_LATENCY:
  307. if (bytes_per_int > 10)
  308. new_latency_range = I40E_LOW_LATENCY;
  309. break;
  310. case I40E_LOW_LATENCY:
  311. if (bytes_per_int > 20)
  312. new_latency_range = I40E_BULK_LATENCY;
  313. else if (bytes_per_int <= 10)
  314. new_latency_range = I40E_LOWEST_LATENCY;
  315. break;
  316. case I40E_BULK_LATENCY:
  317. case I40E_ULTRA_LATENCY:
  318. default:
  319. if (bytes_per_int <= 20)
  320. new_latency_range = I40E_LOW_LATENCY;
  321. break;
  322. }
  323. /* this is to adjust RX more aggressively when streaming small
  324. * packets. The value of 40000 was picked as it is just beyond
  325. * what the hardware can receive per second if in low latency
  326. * mode.
  327. */
  328. #define RX_ULTRA_PACKET_RATE 40000
  329. if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
  330. (&qv->rx == rc))
  331. new_latency_range = I40E_ULTRA_LATENCY;
  332. rc->latency_range = new_latency_range;
  333. switch (new_latency_range) {
  334. case I40E_LOWEST_LATENCY:
  335. new_itr = I40E_ITR_50K;
  336. break;
  337. case I40E_LOW_LATENCY:
  338. new_itr = I40E_ITR_20K;
  339. break;
  340. case I40E_BULK_LATENCY:
  341. new_itr = I40E_ITR_18K;
  342. break;
  343. case I40E_ULTRA_LATENCY:
  344. new_itr = I40E_ITR_8K;
  345. break;
  346. default:
  347. break;
  348. }
  349. rc->total_bytes = 0;
  350. rc->total_packets = 0;
  351. if (new_itr != rc->itr) {
  352. rc->itr = new_itr;
  353. return true;
  354. }
  355. return false;
  356. }
  357. /*
  358. * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
  359. * @tx_ring: the tx ring to set up
  360. *
  361. * Return 0 on success, negative on error
  362. **/
  363. int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
  364. {
  365. struct device *dev = tx_ring->dev;
  366. int bi_size;
  367. if (!dev)
  368. return -ENOMEM;
  369. /* warn if we are about to overwrite the pointer */
  370. WARN_ON(tx_ring->tx_bi);
  371. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  372. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  373. if (!tx_ring->tx_bi)
  374. goto err;
  375. /* round up to nearest 4K */
  376. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  377. /* add u32 for head writeback, align after this takes care of
  378. * guaranteeing this is at least one cache line in size
  379. */
  380. tx_ring->size += sizeof(u32);
  381. tx_ring->size = ALIGN(tx_ring->size, 4096);
  382. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  383. &tx_ring->dma, GFP_KERNEL);
  384. if (!tx_ring->desc) {
  385. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  386. tx_ring->size);
  387. goto err;
  388. }
  389. tx_ring->next_to_use = 0;
  390. tx_ring->next_to_clean = 0;
  391. return 0;
  392. err:
  393. kfree(tx_ring->tx_bi);
  394. tx_ring->tx_bi = NULL;
  395. return -ENOMEM;
  396. }
  397. /**
  398. * i40evf_clean_rx_ring - Free Rx buffers
  399. * @rx_ring: ring to be cleaned
  400. **/
  401. void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
  402. {
  403. struct device *dev = rx_ring->dev;
  404. struct i40e_rx_buffer *rx_bi;
  405. unsigned long bi_size;
  406. u16 i;
  407. /* ring already cleared, nothing to do */
  408. if (!rx_ring->rx_bi)
  409. return;
  410. if (ring_is_ps_enabled(rx_ring)) {
  411. int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
  412. rx_bi = &rx_ring->rx_bi[0];
  413. if (rx_bi->hdr_buf) {
  414. dma_free_coherent(dev,
  415. bufsz,
  416. rx_bi->hdr_buf,
  417. rx_bi->dma);
  418. for (i = 0; i < rx_ring->count; i++) {
  419. rx_bi = &rx_ring->rx_bi[i];
  420. rx_bi->dma = 0;
  421. rx_bi->hdr_buf = NULL;
  422. }
  423. }
  424. }
  425. /* Free all the Rx ring sk_buffs */
  426. for (i = 0; i < rx_ring->count; i++) {
  427. rx_bi = &rx_ring->rx_bi[i];
  428. if (rx_bi->dma) {
  429. dma_unmap_single(dev,
  430. rx_bi->dma,
  431. rx_ring->rx_buf_len,
  432. DMA_FROM_DEVICE);
  433. rx_bi->dma = 0;
  434. }
  435. if (rx_bi->skb) {
  436. dev_kfree_skb(rx_bi->skb);
  437. rx_bi->skb = NULL;
  438. }
  439. if (rx_bi->page) {
  440. if (rx_bi->page_dma) {
  441. dma_unmap_page(dev,
  442. rx_bi->page_dma,
  443. PAGE_SIZE / 2,
  444. DMA_FROM_DEVICE);
  445. rx_bi->page_dma = 0;
  446. }
  447. __free_page(rx_bi->page);
  448. rx_bi->page = NULL;
  449. rx_bi->page_offset = 0;
  450. }
  451. }
  452. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  453. memset(rx_ring->rx_bi, 0, bi_size);
  454. /* Zero out the descriptor ring */
  455. memset(rx_ring->desc, 0, rx_ring->size);
  456. rx_ring->next_to_clean = 0;
  457. rx_ring->next_to_use = 0;
  458. }
  459. /**
  460. * i40evf_free_rx_resources - Free Rx resources
  461. * @rx_ring: ring to clean the resources from
  462. *
  463. * Free all receive software resources
  464. **/
  465. void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
  466. {
  467. i40evf_clean_rx_ring(rx_ring);
  468. kfree(rx_ring->rx_bi);
  469. rx_ring->rx_bi = NULL;
  470. if (rx_ring->desc) {
  471. dma_free_coherent(rx_ring->dev, rx_ring->size,
  472. rx_ring->desc, rx_ring->dma);
  473. rx_ring->desc = NULL;
  474. }
  475. }
  476. /**
  477. * i40evf_alloc_rx_headers - allocate rx header buffers
  478. * @rx_ring: ring to alloc buffers
  479. *
  480. * Allocate rx header buffers for the entire ring. As these are static,
  481. * this is only called when setting up a new ring.
  482. **/
  483. void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
  484. {
  485. struct device *dev = rx_ring->dev;
  486. struct i40e_rx_buffer *rx_bi;
  487. dma_addr_t dma;
  488. void *buffer;
  489. int buf_size;
  490. int i;
  491. if (rx_ring->rx_bi[0].hdr_buf)
  492. return;
  493. /* Make sure the buffers don't cross cache line boundaries. */
  494. buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
  495. buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
  496. &dma, GFP_KERNEL);
  497. if (!buffer)
  498. return;
  499. for (i = 0; i < rx_ring->count; i++) {
  500. rx_bi = &rx_ring->rx_bi[i];
  501. rx_bi->dma = dma + (i * buf_size);
  502. rx_bi->hdr_buf = buffer + (i * buf_size);
  503. }
  504. }
  505. /**
  506. * i40evf_setup_rx_descriptors - Allocate Rx descriptors
  507. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  508. *
  509. * Returns 0 on success, negative on failure
  510. **/
  511. int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
  512. {
  513. struct device *dev = rx_ring->dev;
  514. int bi_size;
  515. /* warn if we are about to overwrite the pointer */
  516. WARN_ON(rx_ring->rx_bi);
  517. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  518. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  519. if (!rx_ring->rx_bi)
  520. goto err;
  521. u64_stats_init(&rx_ring->syncp);
  522. /* Round up to nearest 4K */
  523. rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
  524. ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
  525. : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  526. rx_ring->size = ALIGN(rx_ring->size, 4096);
  527. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  528. &rx_ring->dma, GFP_KERNEL);
  529. if (!rx_ring->desc) {
  530. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  531. rx_ring->size);
  532. goto err;
  533. }
  534. rx_ring->next_to_clean = 0;
  535. rx_ring->next_to_use = 0;
  536. return 0;
  537. err:
  538. kfree(rx_ring->rx_bi);
  539. rx_ring->rx_bi = NULL;
  540. return -ENOMEM;
  541. }
  542. /**
  543. * i40e_release_rx_desc - Store the new tail and head values
  544. * @rx_ring: ring to bump
  545. * @val: new head index
  546. **/
  547. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  548. {
  549. rx_ring->next_to_use = val;
  550. /* Force memory writes to complete before letting h/w
  551. * know there are new descriptors to fetch. (Only
  552. * applicable for weak-ordered memory model archs,
  553. * such as IA-64).
  554. */
  555. wmb();
  556. writel(val, rx_ring->tail);
  557. }
  558. /**
  559. * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  560. * @rx_ring: ring to place buffers on
  561. * @cleaned_count: number of buffers to replace
  562. **/
  563. void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
  564. {
  565. u16 i = rx_ring->next_to_use;
  566. union i40e_rx_desc *rx_desc;
  567. struct i40e_rx_buffer *bi;
  568. /* do nothing if no valid netdev defined */
  569. if (!rx_ring->netdev || !cleaned_count)
  570. return;
  571. while (cleaned_count--) {
  572. rx_desc = I40E_RX_DESC(rx_ring, i);
  573. bi = &rx_ring->rx_bi[i];
  574. if (bi->skb) /* desc is in use */
  575. goto no_buffers;
  576. if (!bi->page) {
  577. bi->page = alloc_page(GFP_ATOMIC);
  578. if (!bi->page) {
  579. rx_ring->rx_stats.alloc_page_failed++;
  580. goto no_buffers;
  581. }
  582. }
  583. if (!bi->page_dma) {
  584. /* use a half page if we're re-using */
  585. bi->page_offset ^= PAGE_SIZE / 2;
  586. bi->page_dma = dma_map_page(rx_ring->dev,
  587. bi->page,
  588. bi->page_offset,
  589. PAGE_SIZE / 2,
  590. DMA_FROM_DEVICE);
  591. if (dma_mapping_error(rx_ring->dev,
  592. bi->page_dma)) {
  593. rx_ring->rx_stats.alloc_page_failed++;
  594. bi->page_dma = 0;
  595. goto no_buffers;
  596. }
  597. }
  598. dma_sync_single_range_for_device(rx_ring->dev,
  599. bi->dma,
  600. 0,
  601. rx_ring->rx_hdr_len,
  602. DMA_FROM_DEVICE);
  603. /* Refresh the desc even if buffer_addrs didn't change
  604. * because each write-back erases this info.
  605. */
  606. rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
  607. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  608. i++;
  609. if (i == rx_ring->count)
  610. i = 0;
  611. }
  612. no_buffers:
  613. if (rx_ring->next_to_use != i)
  614. i40e_release_rx_desc(rx_ring, i);
  615. }
  616. /**
  617. * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
  618. * @rx_ring: ring to place buffers on
  619. * @cleaned_count: number of buffers to replace
  620. **/
  621. void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
  622. {
  623. u16 i = rx_ring->next_to_use;
  624. union i40e_rx_desc *rx_desc;
  625. struct i40e_rx_buffer *bi;
  626. struct sk_buff *skb;
  627. /* do nothing if no valid netdev defined */
  628. if (!rx_ring->netdev || !cleaned_count)
  629. return;
  630. while (cleaned_count--) {
  631. rx_desc = I40E_RX_DESC(rx_ring, i);
  632. bi = &rx_ring->rx_bi[i];
  633. skb = bi->skb;
  634. if (!skb) {
  635. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  636. rx_ring->rx_buf_len);
  637. if (!skb) {
  638. rx_ring->rx_stats.alloc_buff_failed++;
  639. goto no_buffers;
  640. }
  641. /* initialize queue mapping */
  642. skb_record_rx_queue(skb, rx_ring->queue_index);
  643. bi->skb = skb;
  644. }
  645. if (!bi->dma) {
  646. bi->dma = dma_map_single(rx_ring->dev,
  647. skb->data,
  648. rx_ring->rx_buf_len,
  649. DMA_FROM_DEVICE);
  650. if (dma_mapping_error(rx_ring->dev, bi->dma)) {
  651. rx_ring->rx_stats.alloc_buff_failed++;
  652. bi->dma = 0;
  653. goto no_buffers;
  654. }
  655. }
  656. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  657. rx_desc->read.hdr_addr = 0;
  658. i++;
  659. if (i == rx_ring->count)
  660. i = 0;
  661. }
  662. no_buffers:
  663. if (rx_ring->next_to_use != i)
  664. i40e_release_rx_desc(rx_ring, i);
  665. }
  666. /**
  667. * i40e_receive_skb - Send a completed packet up the stack
  668. * @rx_ring: rx ring in play
  669. * @skb: packet to send up
  670. * @vlan_tag: vlan tag for packet
  671. **/
  672. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  673. struct sk_buff *skb, u16 vlan_tag)
  674. {
  675. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  676. if (vlan_tag & VLAN_VID_MASK)
  677. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  678. napi_gro_receive(&q_vector->napi, skb);
  679. }
  680. /**
  681. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  682. * @vsi: the VSI we care about
  683. * @skb: skb currently being received and modified
  684. * @rx_status: status value of last descriptor in packet
  685. * @rx_error: error value of last descriptor in packet
  686. * @rx_ptype: ptype value of last descriptor in packet
  687. **/
  688. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  689. struct sk_buff *skb,
  690. u32 rx_status,
  691. u32 rx_error,
  692. u16 rx_ptype)
  693. {
  694. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
  695. bool ipv4 = false, ipv6 = false;
  696. bool ipv4_tunnel, ipv6_tunnel;
  697. __wsum rx_udp_csum;
  698. struct iphdr *iph;
  699. __sum16 csum;
  700. ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
  701. (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
  702. ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
  703. (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
  704. skb->ip_summed = CHECKSUM_NONE;
  705. /* Rx csum enabled and ip headers found? */
  706. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  707. return;
  708. /* did the hardware decode the packet and checksum? */
  709. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  710. return;
  711. /* both known and outer_ip must be set for the below code to work */
  712. if (!(decoded.known && decoded.outer_ip))
  713. return;
  714. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  715. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
  716. ipv4 = true;
  717. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  718. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
  719. ipv6 = true;
  720. if (ipv4 &&
  721. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  722. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  723. goto checksum_fail;
  724. /* likely incorrect csum if alternate IP extension headers found */
  725. if (ipv6 &&
  726. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  727. /* don't increment checksum err here, non-fatal err */
  728. return;
  729. /* there was some L4 error, count error and punt packet to the stack */
  730. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  731. goto checksum_fail;
  732. /* handle packets that were not able to be checksummed due
  733. * to arrival speed, in this case the stack can compute
  734. * the csum.
  735. */
  736. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  737. return;
  738. /* If VXLAN traffic has an outer UDPv4 checksum we need to check
  739. * it in the driver, hardware does not do it for us.
  740. * Since L3L4P bit was set we assume a valid IHL value (>=5)
  741. * so the total length of IPv4 header is IHL*4 bytes
  742. * The UDP_0 bit *may* bet set if the *inner* header is UDP
  743. */
  744. if (ipv4_tunnel) {
  745. skb->transport_header = skb->mac_header +
  746. sizeof(struct ethhdr) +
  747. (ip_hdr(skb)->ihl * 4);
  748. /* Add 4 bytes for VLAN tagged packets */
  749. skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
  750. skb->protocol == htons(ETH_P_8021AD))
  751. ? VLAN_HLEN : 0;
  752. if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
  753. (udp_hdr(skb)->check != 0)) {
  754. rx_udp_csum = udp_csum(skb);
  755. iph = ip_hdr(skb);
  756. csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
  757. (skb->len -
  758. skb_transport_offset(skb)),
  759. IPPROTO_UDP, rx_udp_csum);
  760. if (udp_hdr(skb)->check != csum)
  761. goto checksum_fail;
  762. } /* else its GRE and so no outer UDP header */
  763. }
  764. skb->ip_summed = CHECKSUM_UNNECESSARY;
  765. skb->csum_level = ipv4_tunnel || ipv6_tunnel;
  766. return;
  767. checksum_fail:
  768. vsi->back->hw_csum_rx_error++;
  769. }
  770. /**
  771. * i40e_rx_hash - returns the hash value from the Rx descriptor
  772. * @ring: descriptor ring
  773. * @rx_desc: specific descriptor
  774. **/
  775. static inline u32 i40e_rx_hash(struct i40e_ring *ring,
  776. union i40e_rx_desc *rx_desc)
  777. {
  778. const __le64 rss_mask =
  779. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  780. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  781. if ((ring->netdev->features & NETIF_F_RXHASH) &&
  782. (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
  783. return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  784. else
  785. return 0;
  786. }
  787. /**
  788. * i40e_ptype_to_hash - get a hash type
  789. * @ptype: the ptype value from the descriptor
  790. *
  791. * Returns a hash type to be used by skb_set_hash
  792. **/
  793. static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
  794. {
  795. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  796. if (!decoded.known)
  797. return PKT_HASH_TYPE_NONE;
  798. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  799. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  800. return PKT_HASH_TYPE_L4;
  801. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  802. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  803. return PKT_HASH_TYPE_L3;
  804. else
  805. return PKT_HASH_TYPE_L2;
  806. }
  807. /**
  808. * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
  809. * @rx_ring: rx ring to clean
  810. * @budget: how many cleans we're allowed
  811. *
  812. * Returns true if there's any budget left (e.g. the clean is finished)
  813. **/
  814. static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
  815. {
  816. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  817. u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
  818. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  819. const int current_node = numa_mem_id();
  820. struct i40e_vsi *vsi = rx_ring->vsi;
  821. u16 i = rx_ring->next_to_clean;
  822. union i40e_rx_desc *rx_desc;
  823. u32 rx_error, rx_status;
  824. u8 rx_ptype;
  825. u64 qword;
  826. do {
  827. struct i40e_rx_buffer *rx_bi;
  828. struct sk_buff *skb;
  829. u16 vlan_tag;
  830. /* return some buffers to hardware, one at a time is too slow */
  831. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  832. i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
  833. cleaned_count = 0;
  834. }
  835. i = rx_ring->next_to_clean;
  836. rx_desc = I40E_RX_DESC(rx_ring, i);
  837. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  838. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  839. I40E_RXD_QW1_STATUS_SHIFT;
  840. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  841. break;
  842. /* This memory barrier is needed to keep us from reading
  843. * any other fields out of the rx_desc until we know the
  844. * DD bit is set.
  845. */
  846. dma_rmb();
  847. rx_bi = &rx_ring->rx_bi[i];
  848. skb = rx_bi->skb;
  849. if (likely(!skb)) {
  850. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  851. rx_ring->rx_hdr_len);
  852. if (!skb) {
  853. rx_ring->rx_stats.alloc_buff_failed++;
  854. break;
  855. }
  856. /* initialize queue mapping */
  857. skb_record_rx_queue(skb, rx_ring->queue_index);
  858. /* we are reusing so sync this buffer for CPU use */
  859. dma_sync_single_range_for_cpu(rx_ring->dev,
  860. rx_bi->dma,
  861. 0,
  862. rx_ring->rx_hdr_len,
  863. DMA_FROM_DEVICE);
  864. }
  865. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  866. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  867. rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
  868. I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
  869. rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
  870. I40E_RXD_QW1_LENGTH_SPH_SHIFT;
  871. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  872. I40E_RXD_QW1_ERROR_SHIFT;
  873. rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  874. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  875. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  876. I40E_RXD_QW1_PTYPE_SHIFT;
  877. prefetch(rx_bi->page);
  878. rx_bi->skb = NULL;
  879. cleaned_count++;
  880. if (rx_hbo || rx_sph) {
  881. int len;
  882. if (rx_hbo)
  883. len = I40E_RX_HDR_SIZE;
  884. else
  885. len = rx_header_len;
  886. memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
  887. } else if (skb->len == 0) {
  888. int len;
  889. len = (rx_packet_len > skb_headlen(skb) ?
  890. skb_headlen(skb) : rx_packet_len);
  891. memcpy(__skb_put(skb, len),
  892. rx_bi->page + rx_bi->page_offset,
  893. len);
  894. rx_bi->page_offset += len;
  895. rx_packet_len -= len;
  896. }
  897. /* Get the rest of the data if this was a header split */
  898. if (rx_packet_len) {
  899. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  900. rx_bi->page,
  901. rx_bi->page_offset,
  902. rx_packet_len);
  903. skb->len += rx_packet_len;
  904. skb->data_len += rx_packet_len;
  905. skb->truesize += rx_packet_len;
  906. if ((page_count(rx_bi->page) == 1) &&
  907. (page_to_nid(rx_bi->page) == current_node))
  908. get_page(rx_bi->page);
  909. else
  910. rx_bi->page = NULL;
  911. dma_unmap_page(rx_ring->dev,
  912. rx_bi->page_dma,
  913. PAGE_SIZE / 2,
  914. DMA_FROM_DEVICE);
  915. rx_bi->page_dma = 0;
  916. }
  917. I40E_RX_INCREMENT(rx_ring, i);
  918. if (unlikely(
  919. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  920. struct i40e_rx_buffer *next_buffer;
  921. next_buffer = &rx_ring->rx_bi[i];
  922. next_buffer->skb = skb;
  923. rx_ring->rx_stats.non_eop_descs++;
  924. continue;
  925. }
  926. /* ERR_MASK will only have valid bits if EOP set */
  927. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  928. dev_kfree_skb_any(skb);
  929. continue;
  930. }
  931. skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
  932. i40e_ptype_to_hash(rx_ptype));
  933. /* probably a little skewed due to removing CRC */
  934. total_rx_bytes += skb->len;
  935. total_rx_packets++;
  936. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  937. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  938. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  939. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  940. : 0;
  941. #ifdef I40E_FCOE
  942. if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
  943. dev_kfree_skb_any(skb);
  944. continue;
  945. }
  946. #endif
  947. i40e_receive_skb(rx_ring, skb, vlan_tag);
  948. rx_desc->wb.qword1.status_error_len = 0;
  949. } while (likely(total_rx_packets < budget));
  950. u64_stats_update_begin(&rx_ring->syncp);
  951. rx_ring->stats.packets += total_rx_packets;
  952. rx_ring->stats.bytes += total_rx_bytes;
  953. u64_stats_update_end(&rx_ring->syncp);
  954. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  955. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  956. return total_rx_packets;
  957. }
  958. /**
  959. * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
  960. * @rx_ring: rx ring to clean
  961. * @budget: how many cleans we're allowed
  962. *
  963. * Returns number of packets cleaned
  964. **/
  965. static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
  966. {
  967. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  968. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  969. struct i40e_vsi *vsi = rx_ring->vsi;
  970. union i40e_rx_desc *rx_desc;
  971. u32 rx_error, rx_status;
  972. u16 rx_packet_len;
  973. u8 rx_ptype;
  974. u64 qword;
  975. u16 i;
  976. do {
  977. struct i40e_rx_buffer *rx_bi;
  978. struct sk_buff *skb;
  979. u16 vlan_tag;
  980. /* return some buffers to hardware, one at a time is too slow */
  981. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  982. i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
  983. cleaned_count = 0;
  984. }
  985. i = rx_ring->next_to_clean;
  986. rx_desc = I40E_RX_DESC(rx_ring, i);
  987. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  988. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  989. I40E_RXD_QW1_STATUS_SHIFT;
  990. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  991. break;
  992. /* This memory barrier is needed to keep us from reading
  993. * any other fields out of the rx_desc until we know the
  994. * DD bit is set.
  995. */
  996. dma_rmb();
  997. rx_bi = &rx_ring->rx_bi[i];
  998. skb = rx_bi->skb;
  999. prefetch(skb->data);
  1000. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  1001. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  1002. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  1003. I40E_RXD_QW1_ERROR_SHIFT;
  1004. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  1005. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1006. I40E_RXD_QW1_PTYPE_SHIFT;
  1007. rx_bi->skb = NULL;
  1008. cleaned_count++;
  1009. /* Get the header and possibly the whole packet
  1010. * If this is an skb from previous receive dma will be 0
  1011. */
  1012. skb_put(skb, rx_packet_len);
  1013. dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
  1014. DMA_FROM_DEVICE);
  1015. rx_bi->dma = 0;
  1016. I40E_RX_INCREMENT(rx_ring, i);
  1017. if (unlikely(
  1018. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  1019. rx_ring->rx_stats.non_eop_descs++;
  1020. continue;
  1021. }
  1022. /* ERR_MASK will only have valid bits if EOP set */
  1023. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  1024. dev_kfree_skb_any(skb);
  1025. continue;
  1026. }
  1027. skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
  1028. i40e_ptype_to_hash(rx_ptype));
  1029. /* probably a little skewed due to removing CRC */
  1030. total_rx_bytes += skb->len;
  1031. total_rx_packets++;
  1032. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1033. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1034. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1035. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1036. : 0;
  1037. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1038. rx_desc->wb.qword1.status_error_len = 0;
  1039. } while (likely(total_rx_packets < budget));
  1040. u64_stats_update_begin(&rx_ring->syncp);
  1041. rx_ring->stats.packets += total_rx_packets;
  1042. rx_ring->stats.bytes += total_rx_bytes;
  1043. u64_stats_update_end(&rx_ring->syncp);
  1044. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1045. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1046. return total_rx_packets;
  1047. }
  1048. static u32 i40e_buildreg_itr(const int type, const u16 itr)
  1049. {
  1050. u32 val;
  1051. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1052. I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
  1053. (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
  1054. (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
  1055. return val;
  1056. }
  1057. /* a small macro to shorten up some long lines */
  1058. #define INTREG I40E_VFINT_DYN_CTLN1
  1059. /**
  1060. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1061. * @vsi: the VSI we care about
  1062. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1063. *
  1064. **/
  1065. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1066. struct i40e_q_vector *q_vector)
  1067. {
  1068. struct i40e_hw *hw = &vsi->back->hw;
  1069. bool rx = false, tx = false;
  1070. u32 rxval, txval;
  1071. int vector;
  1072. vector = (q_vector->v_idx + vsi->base_vector);
  1073. /* avoid dynamic calculation if in countdown mode OR if
  1074. * all dynamic is disabled
  1075. */
  1076. rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
  1077. if (q_vector->itr_countdown > 0 ||
  1078. (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
  1079. !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
  1080. goto enable_int;
  1081. }
  1082. if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
  1083. rx = i40e_set_new_dynamic_itr(&q_vector->rx);
  1084. rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
  1085. }
  1086. if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
  1087. tx = i40e_set_new_dynamic_itr(&q_vector->tx);
  1088. txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
  1089. }
  1090. if (rx || tx) {
  1091. /* get the higher of the two ITR adjustments and
  1092. * use the same value for both ITR registers
  1093. * when in adaptive mode (Rx and/or Tx)
  1094. */
  1095. u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
  1096. q_vector->tx.itr = q_vector->rx.itr = itr;
  1097. txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
  1098. tx = true;
  1099. rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
  1100. rx = true;
  1101. }
  1102. /* only need to enable the interrupt once, but need
  1103. * to possibly update both ITR values
  1104. */
  1105. if (rx) {
  1106. /* set the INTENA_MSK_MASK so that this first write
  1107. * won't actually enable the interrupt, instead just
  1108. * updating the ITR (it's bit 31 PF and VF)
  1109. */
  1110. rxval |= BIT(31);
  1111. /* don't check _DOWN because interrupt isn't being enabled */
  1112. wr32(hw, INTREG(vector - 1), rxval);
  1113. }
  1114. enable_int:
  1115. if (!test_bit(__I40E_DOWN, &vsi->state))
  1116. wr32(hw, INTREG(vector - 1), txval);
  1117. if (q_vector->itr_countdown)
  1118. q_vector->itr_countdown--;
  1119. else
  1120. q_vector->itr_countdown = ITR_COUNTDOWN_START;
  1121. }
  1122. /**
  1123. * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
  1124. * @napi: napi struct with our devices info in it
  1125. * @budget: amount of work driver is allowed to do this pass, in packets
  1126. *
  1127. * This function will clean all queues associated with a q_vector.
  1128. *
  1129. * Returns the amount of work done
  1130. **/
  1131. int i40evf_napi_poll(struct napi_struct *napi, int budget)
  1132. {
  1133. struct i40e_q_vector *q_vector =
  1134. container_of(napi, struct i40e_q_vector, napi);
  1135. struct i40e_vsi *vsi = q_vector->vsi;
  1136. struct i40e_ring *ring;
  1137. bool clean_complete = true;
  1138. bool arm_wb = false;
  1139. int budget_per_ring;
  1140. int work_done = 0;
  1141. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1142. napi_complete(napi);
  1143. return 0;
  1144. }
  1145. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1146. * budget and be more aggressive about cleaning up the Tx descriptors.
  1147. */
  1148. i40e_for_each_ring(ring, q_vector->tx) {
  1149. clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
  1150. arm_wb |= ring->arm_wb;
  1151. ring->arm_wb = false;
  1152. }
  1153. /* Handle case where we are called by netpoll with a budget of 0 */
  1154. if (budget <= 0)
  1155. goto tx_only;
  1156. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1157. * allow the budget to go below 1 because that would exit polling early.
  1158. */
  1159. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1160. i40e_for_each_ring(ring, q_vector->rx) {
  1161. int cleaned;
  1162. if (ring_is_ps_enabled(ring))
  1163. cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
  1164. else
  1165. cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
  1166. work_done += cleaned;
  1167. /* if we didn't clean as many as budgeted, we must be done */
  1168. clean_complete &= (budget_per_ring != cleaned);
  1169. }
  1170. /* If work not completed, return budget and polling will return */
  1171. if (!clean_complete) {
  1172. tx_only:
  1173. if (arm_wb) {
  1174. q_vector->tx.ring[0].tx_stats.tx_force_wb++;
  1175. i40evf_force_wb(vsi, q_vector);
  1176. }
  1177. return budget;
  1178. }
  1179. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1180. q_vector->arm_wb_state = false;
  1181. /* Work is done so exit the polling mode and re-enable the interrupt */
  1182. napi_complete_done(napi, work_done);
  1183. i40e_update_enable_itr(vsi, q_vector);
  1184. return 0;
  1185. }
  1186. /**
  1187. * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1188. * @skb: send buffer
  1189. * @tx_ring: ring to send buffer on
  1190. * @flags: the tx flags to be set
  1191. *
  1192. * Checks the skb and set up correspondingly several generic transmit flags
  1193. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1194. *
  1195. * Returns error code indicate the frame should be dropped upon error and the
  1196. * otherwise returns 0 to indicate the flags has been set properly.
  1197. **/
  1198. static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
  1199. struct i40e_ring *tx_ring,
  1200. u32 *flags)
  1201. {
  1202. __be16 protocol = skb->protocol;
  1203. u32 tx_flags = 0;
  1204. if (protocol == htons(ETH_P_8021Q) &&
  1205. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1206. /* When HW VLAN acceleration is turned off by the user the
  1207. * stack sets the protocol to 8021q so that the driver
  1208. * can take any steps required to support the SW only
  1209. * VLAN handling. In our case the driver doesn't need
  1210. * to take any further steps so just set the protocol
  1211. * to the encapsulated ethertype.
  1212. */
  1213. skb->protocol = vlan_get_protocol(skb);
  1214. goto out;
  1215. }
  1216. /* if we have a HW VLAN tag being added, default to the HW one */
  1217. if (skb_vlan_tag_present(skb)) {
  1218. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1219. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1220. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1221. } else if (protocol == htons(ETH_P_8021Q)) {
  1222. struct vlan_hdr *vhdr, _vhdr;
  1223. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1224. if (!vhdr)
  1225. return -EINVAL;
  1226. protocol = vhdr->h_vlan_encapsulated_proto;
  1227. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1228. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1229. }
  1230. out:
  1231. *flags = tx_flags;
  1232. return 0;
  1233. }
  1234. /**
  1235. * i40e_tso - set up the tso context descriptor
  1236. * @tx_ring: ptr to the ring to send
  1237. * @skb: ptr to the skb we're sending
  1238. * @hdr_len: ptr to the size of the packet header
  1239. * @cd_type_cmd_tso_mss: Quad Word 1
  1240. *
  1241. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1242. **/
  1243. static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1244. u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
  1245. {
  1246. u32 cd_cmd, cd_tso_len, cd_mss;
  1247. struct ipv6hdr *ipv6h;
  1248. struct tcphdr *tcph;
  1249. struct iphdr *iph;
  1250. u32 l4len;
  1251. int err;
  1252. if (!skb_is_gso(skb))
  1253. return 0;
  1254. err = skb_cow_head(skb, 0);
  1255. if (err < 0)
  1256. return err;
  1257. iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
  1258. ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
  1259. if (iph->version == 4) {
  1260. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1261. iph->tot_len = 0;
  1262. iph->check = 0;
  1263. tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
  1264. 0, IPPROTO_TCP, 0);
  1265. } else if (ipv6h->version == 6) {
  1266. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1267. ipv6h->payload_len = 0;
  1268. tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
  1269. 0, IPPROTO_TCP, 0);
  1270. }
  1271. l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
  1272. *hdr_len = (skb->encapsulation
  1273. ? (skb_inner_transport_header(skb) - skb->data)
  1274. : skb_transport_offset(skb)) + l4len;
  1275. /* find the field values */
  1276. cd_cmd = I40E_TX_CTX_DESC_TSO;
  1277. cd_tso_len = skb->len - *hdr_len;
  1278. cd_mss = skb_shinfo(skb)->gso_size;
  1279. *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  1280. ((u64)cd_tso_len <<
  1281. I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  1282. ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  1283. return 1;
  1284. }
  1285. /**
  1286. * i40e_tx_enable_csum - Enable Tx checksum offloads
  1287. * @skb: send buffer
  1288. * @tx_flags: pointer to Tx flags currently set
  1289. * @td_cmd: Tx descriptor command bits to set
  1290. * @td_offset: Tx descriptor header offsets to set
  1291. * @cd_tunneling: ptr to context desc bits
  1292. **/
  1293. static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  1294. u32 *td_cmd, u32 *td_offset,
  1295. struct i40e_ring *tx_ring,
  1296. u32 *cd_tunneling)
  1297. {
  1298. struct ipv6hdr *this_ipv6_hdr;
  1299. unsigned int this_tcp_hdrlen;
  1300. struct iphdr *this_ip_hdr;
  1301. u32 network_hdr_len;
  1302. u8 l4_hdr = 0;
  1303. struct udphdr *oudph;
  1304. struct iphdr *oiph;
  1305. u32 l4_tunnel = 0;
  1306. if (skb->encapsulation) {
  1307. switch (ip_hdr(skb)->protocol) {
  1308. case IPPROTO_UDP:
  1309. oudph = udp_hdr(skb);
  1310. oiph = ip_hdr(skb);
  1311. l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
  1312. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1313. break;
  1314. default:
  1315. return;
  1316. }
  1317. network_hdr_len = skb_inner_network_header_len(skb);
  1318. this_ip_hdr = inner_ip_hdr(skb);
  1319. this_ipv6_hdr = inner_ipv6_hdr(skb);
  1320. this_tcp_hdrlen = inner_tcp_hdrlen(skb);
  1321. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1322. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  1323. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
  1324. ip_hdr(skb)->check = 0;
  1325. } else {
  1326. *cd_tunneling |=
  1327. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  1328. }
  1329. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1330. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
  1331. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1332. ip_hdr(skb)->check = 0;
  1333. }
  1334. /* Now set the ctx descriptor fields */
  1335. *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
  1336. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
  1337. l4_tunnel |
  1338. ((skb_inner_network_offset(skb) -
  1339. skb_transport_offset(skb)) >> 1) <<
  1340. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  1341. if (this_ip_hdr->version == 6) {
  1342. *tx_flags &= ~I40E_TX_FLAGS_IPV4;
  1343. *tx_flags |= I40E_TX_FLAGS_IPV6;
  1344. }
  1345. if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
  1346. (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
  1347. (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
  1348. oudph->check = ~csum_tcpudp_magic(oiph->saddr,
  1349. oiph->daddr,
  1350. (skb->len - skb_transport_offset(skb)),
  1351. IPPROTO_UDP, 0);
  1352. *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  1353. }
  1354. } else {
  1355. network_hdr_len = skb_network_header_len(skb);
  1356. this_ip_hdr = ip_hdr(skb);
  1357. this_ipv6_hdr = ipv6_hdr(skb);
  1358. this_tcp_hdrlen = tcp_hdrlen(skb);
  1359. }
  1360. /* Enable IP checksum offloads */
  1361. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1362. l4_hdr = this_ip_hdr->protocol;
  1363. /* the stack computes the IP header already, the only time we
  1364. * need the hardware to recompute it is in the case of TSO.
  1365. */
  1366. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  1367. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
  1368. this_ip_hdr->check = 0;
  1369. } else {
  1370. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
  1371. }
  1372. /* Now set the td_offset for IP header length */
  1373. *td_offset = (network_hdr_len >> 2) <<
  1374. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1375. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1376. l4_hdr = this_ipv6_hdr->nexthdr;
  1377. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  1378. /* Now set the td_offset for IP header length */
  1379. *td_offset = (network_hdr_len >> 2) <<
  1380. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1381. }
  1382. /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
  1383. *td_offset |= (skb_network_offset(skb) >> 1) <<
  1384. I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  1385. /* Enable L4 checksum offloads */
  1386. switch (l4_hdr) {
  1387. case IPPROTO_TCP:
  1388. /* enable checksum offloads */
  1389. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  1390. *td_offset |= (this_tcp_hdrlen >> 2) <<
  1391. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1392. break;
  1393. case IPPROTO_SCTP:
  1394. /* enable SCTP checksum offload */
  1395. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  1396. *td_offset |= (sizeof(struct sctphdr) >> 2) <<
  1397. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1398. break;
  1399. case IPPROTO_UDP:
  1400. /* enable UDP checksum offload */
  1401. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  1402. *td_offset |= (sizeof(struct udphdr) >> 2) <<
  1403. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1404. break;
  1405. default:
  1406. break;
  1407. }
  1408. }
  1409. /**
  1410. * i40e_create_tx_ctx Build the Tx context descriptor
  1411. * @tx_ring: ring to create the descriptor on
  1412. * @cd_type_cmd_tso_mss: Quad Word 1
  1413. * @cd_tunneling: Quad Word 0 - bits 0-31
  1414. * @cd_l2tag2: Quad Word 0 - bits 32-63
  1415. **/
  1416. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  1417. const u64 cd_type_cmd_tso_mss,
  1418. const u32 cd_tunneling, const u32 cd_l2tag2)
  1419. {
  1420. struct i40e_tx_context_desc *context_desc;
  1421. int i = tx_ring->next_to_use;
  1422. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  1423. !cd_tunneling && !cd_l2tag2)
  1424. return;
  1425. /* grab the next descriptor */
  1426. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  1427. i++;
  1428. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1429. /* cpu_to_le32 and assign to struct fields */
  1430. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  1431. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  1432. context_desc->rsvd = cpu_to_le16(0);
  1433. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  1434. }
  1435. /**
  1436. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  1437. * @skb: send buffer
  1438. * @tx_flags: collected send information
  1439. *
  1440. * Note: Our HW can't scatter-gather more than 8 fragments to build
  1441. * a packet on the wire and so we need to figure out the cases where we
  1442. * need to linearize the skb.
  1443. **/
  1444. static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
  1445. {
  1446. struct skb_frag_struct *frag;
  1447. bool linearize = false;
  1448. unsigned int size = 0;
  1449. u16 num_frags;
  1450. u16 gso_segs;
  1451. num_frags = skb_shinfo(skb)->nr_frags;
  1452. gso_segs = skb_shinfo(skb)->gso_segs;
  1453. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
  1454. u16 j = 0;
  1455. if (num_frags < (I40E_MAX_BUFFER_TXD))
  1456. goto linearize_chk_done;
  1457. /* try the simple math, if we have too many frags per segment */
  1458. if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
  1459. I40E_MAX_BUFFER_TXD) {
  1460. linearize = true;
  1461. goto linearize_chk_done;
  1462. }
  1463. frag = &skb_shinfo(skb)->frags[0];
  1464. /* we might still have more fragments per segment */
  1465. do {
  1466. size += skb_frag_size(frag);
  1467. frag++; j++;
  1468. if ((size >= skb_shinfo(skb)->gso_size) &&
  1469. (j < I40E_MAX_BUFFER_TXD)) {
  1470. size = (size % skb_shinfo(skb)->gso_size);
  1471. j = (size) ? 1 : 0;
  1472. }
  1473. if (j == I40E_MAX_BUFFER_TXD) {
  1474. linearize = true;
  1475. break;
  1476. }
  1477. num_frags--;
  1478. } while (num_frags);
  1479. } else {
  1480. if (num_frags >= I40E_MAX_BUFFER_TXD)
  1481. linearize = true;
  1482. }
  1483. linearize_chk_done:
  1484. return linearize;
  1485. }
  1486. /**
  1487. * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
  1488. * @tx_ring: the ring to be checked
  1489. * @size: the size buffer we want to assure is available
  1490. *
  1491. * Returns -EBUSY if a stop is needed, else 0
  1492. **/
  1493. static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1494. {
  1495. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1496. /* Memory barrier before checking head and tail */
  1497. smp_mb();
  1498. /* Check again in a case another CPU has just made room available. */
  1499. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  1500. return -EBUSY;
  1501. /* A reprieve! - use start_queue because it doesn't call schedule */
  1502. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1503. ++tx_ring->tx_stats.restart_queue;
  1504. return 0;
  1505. }
  1506. /**
  1507. * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
  1508. * @tx_ring: the ring to be checked
  1509. * @size: the size buffer we want to assure is available
  1510. *
  1511. * Returns 0 if stop is not needed
  1512. **/
  1513. static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1514. {
  1515. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  1516. return 0;
  1517. return __i40evf_maybe_stop_tx(tx_ring, size);
  1518. }
  1519. /**
  1520. * i40evf_tx_map - Build the Tx descriptor
  1521. * @tx_ring: ring to send buffer on
  1522. * @skb: send buffer
  1523. * @first: first buffer info buffer to use
  1524. * @tx_flags: collected send information
  1525. * @hdr_len: size of the packet header
  1526. * @td_cmd: the command field in the descriptor
  1527. * @td_offset: offset for checksum or crc
  1528. **/
  1529. static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1530. struct i40e_tx_buffer *first, u32 tx_flags,
  1531. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  1532. {
  1533. unsigned int data_len = skb->data_len;
  1534. unsigned int size = skb_headlen(skb);
  1535. struct skb_frag_struct *frag;
  1536. struct i40e_tx_buffer *tx_bi;
  1537. struct i40e_tx_desc *tx_desc;
  1538. u16 i = tx_ring->next_to_use;
  1539. u32 td_tag = 0;
  1540. dma_addr_t dma;
  1541. u16 gso_segs;
  1542. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  1543. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  1544. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  1545. I40E_TX_FLAGS_VLAN_SHIFT;
  1546. }
  1547. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  1548. gso_segs = skb_shinfo(skb)->gso_segs;
  1549. else
  1550. gso_segs = 1;
  1551. /* multiply data chunks by size of headers */
  1552. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  1553. first->gso_segs = gso_segs;
  1554. first->skb = skb;
  1555. first->tx_flags = tx_flags;
  1556. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  1557. tx_desc = I40E_TX_DESC(tx_ring, i);
  1558. tx_bi = first;
  1559. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  1560. if (dma_mapping_error(tx_ring->dev, dma))
  1561. goto dma_error;
  1562. /* record length, and DMA address */
  1563. dma_unmap_len_set(tx_bi, len, size);
  1564. dma_unmap_addr_set(tx_bi, dma, dma);
  1565. tx_desc->buffer_addr = cpu_to_le64(dma);
  1566. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  1567. tx_desc->cmd_type_offset_bsz =
  1568. build_ctob(td_cmd, td_offset,
  1569. I40E_MAX_DATA_PER_TXD, td_tag);
  1570. tx_desc++;
  1571. i++;
  1572. if (i == tx_ring->count) {
  1573. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1574. i = 0;
  1575. }
  1576. dma += I40E_MAX_DATA_PER_TXD;
  1577. size -= I40E_MAX_DATA_PER_TXD;
  1578. tx_desc->buffer_addr = cpu_to_le64(dma);
  1579. }
  1580. if (likely(!data_len))
  1581. break;
  1582. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  1583. size, td_tag);
  1584. tx_desc++;
  1585. i++;
  1586. if (i == tx_ring->count) {
  1587. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1588. i = 0;
  1589. }
  1590. size = skb_frag_size(frag);
  1591. data_len -= size;
  1592. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  1593. DMA_TO_DEVICE);
  1594. tx_bi = &tx_ring->tx_bi[i];
  1595. }
  1596. /* Place RS bit on last descriptor of any packet that spans across the
  1597. * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
  1598. */
  1599. #define WB_STRIDE 0x3
  1600. if (((i & WB_STRIDE) != WB_STRIDE) &&
  1601. (first <= &tx_ring->tx_bi[i]) &&
  1602. (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
  1603. tx_desc->cmd_type_offset_bsz =
  1604. build_ctob(td_cmd, td_offset, size, td_tag) |
  1605. cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
  1606. I40E_TXD_QW1_CMD_SHIFT);
  1607. } else {
  1608. tx_desc->cmd_type_offset_bsz =
  1609. build_ctob(td_cmd, td_offset, size, td_tag) |
  1610. cpu_to_le64((u64)I40E_TXD_CMD <<
  1611. I40E_TXD_QW1_CMD_SHIFT);
  1612. }
  1613. netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
  1614. tx_ring->queue_index),
  1615. first->bytecount);
  1616. /* Force memory writes to complete before letting h/w
  1617. * know there are new descriptors to fetch. (Only
  1618. * applicable for weak-ordered memory model archs,
  1619. * such as IA-64).
  1620. */
  1621. wmb();
  1622. /* set next_to_watch value indicating a packet is present */
  1623. first->next_to_watch = tx_desc;
  1624. i++;
  1625. if (i == tx_ring->count)
  1626. i = 0;
  1627. tx_ring->next_to_use = i;
  1628. i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
  1629. /* notify HW of packet */
  1630. if (!skb->xmit_more ||
  1631. netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1632. tx_ring->queue_index)))
  1633. writel(i, tx_ring->tail);
  1634. else
  1635. prefetchw(tx_desc + 1);
  1636. return;
  1637. dma_error:
  1638. dev_info(tx_ring->dev, "TX DMA map failed\n");
  1639. /* clear dma mappings for failed tx_bi map */
  1640. for (;;) {
  1641. tx_bi = &tx_ring->tx_bi[i];
  1642. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  1643. if (tx_bi == first)
  1644. break;
  1645. if (i == 0)
  1646. i = tx_ring->count;
  1647. i--;
  1648. }
  1649. tx_ring->next_to_use = i;
  1650. }
  1651. /**
  1652. * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
  1653. * @skb: send buffer
  1654. * @tx_ring: ring to send buffer on
  1655. *
  1656. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  1657. * there is not enough descriptors available in this ring since we need at least
  1658. * one descriptor.
  1659. **/
  1660. static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
  1661. struct i40e_ring *tx_ring)
  1662. {
  1663. unsigned int f;
  1664. int count = 0;
  1665. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  1666. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  1667. * + 4 desc gap to avoid the cache line where head is,
  1668. * + 1 desc for context descriptor,
  1669. * otherwise try next time
  1670. */
  1671. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  1672. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  1673. count += TXD_USE_COUNT(skb_headlen(skb));
  1674. if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  1675. tx_ring->tx_stats.tx_busy++;
  1676. return 0;
  1677. }
  1678. return count;
  1679. }
  1680. /**
  1681. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  1682. * @skb: send buffer
  1683. * @tx_ring: ring to send buffer on
  1684. *
  1685. * Returns NETDEV_TX_OK if sent, else an error code
  1686. **/
  1687. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  1688. struct i40e_ring *tx_ring)
  1689. {
  1690. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  1691. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  1692. struct i40e_tx_buffer *first;
  1693. u32 td_offset = 0;
  1694. u32 tx_flags = 0;
  1695. __be16 protocol;
  1696. u32 td_cmd = 0;
  1697. u8 hdr_len = 0;
  1698. int tso;
  1699. if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
  1700. return NETDEV_TX_BUSY;
  1701. /* prepare the xmit flags */
  1702. if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  1703. goto out_drop;
  1704. /* obtain protocol of skb */
  1705. protocol = vlan_get_protocol(skb);
  1706. /* record the location of the first descriptor for this packet */
  1707. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  1708. /* setup IPv4/IPv6 offloads */
  1709. if (protocol == htons(ETH_P_IP))
  1710. tx_flags |= I40E_TX_FLAGS_IPV4;
  1711. else if (protocol == htons(ETH_P_IPV6))
  1712. tx_flags |= I40E_TX_FLAGS_IPV6;
  1713. tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
  1714. if (tso < 0)
  1715. goto out_drop;
  1716. else if (tso)
  1717. tx_flags |= I40E_TX_FLAGS_TSO;
  1718. if (i40e_chk_linearize(skb, tx_flags)) {
  1719. if (skb_linearize(skb))
  1720. goto out_drop;
  1721. tx_ring->tx_stats.tx_linearize++;
  1722. }
  1723. skb_tx_timestamp(skb);
  1724. /* always enable CRC insertion offload */
  1725. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  1726. /* Always offload the checksum, since it's in the data descriptor */
  1727. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1728. tx_flags |= I40E_TX_FLAGS_CSUM;
  1729. i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  1730. tx_ring, &cd_tunneling);
  1731. }
  1732. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  1733. cd_tunneling, cd_l2tag2);
  1734. i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  1735. td_cmd, td_offset);
  1736. return NETDEV_TX_OK;
  1737. out_drop:
  1738. dev_kfree_skb_any(skb);
  1739. return NETDEV_TX_OK;
  1740. }
  1741. /**
  1742. * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  1743. * @skb: send buffer
  1744. * @netdev: network interface device structure
  1745. *
  1746. * Returns NETDEV_TX_OK if sent, else an error code
  1747. **/
  1748. netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1749. {
  1750. struct i40evf_adapter *adapter = netdev_priv(netdev);
  1751. struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
  1752. /* hardware can't handle really short frames, hardware padding works
  1753. * beyond this point
  1754. */
  1755. if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
  1756. if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
  1757. return NETDEV_TX_OK;
  1758. skb->len = I40E_MIN_TX_LEN;
  1759. skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
  1760. }
  1761. return i40e_xmit_frame_ring(skb, tx_ring);
  1762. }