sdma_v4_0.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "sdma0/sdma0_4_0_offset.h"
  29. #include "sdma0/sdma0_4_0_sh_mask.h"
  30. #include "sdma1/sdma1_4_0_offset.h"
  31. #include "sdma1/sdma1_4_0_sh_mask.h"
  32. #include "hdp/hdp_4_0_offset.h"
  33. #include "sdma0/sdma0_4_1_default.h"
  34. #include "soc15_common.h"
  35. #include "soc15.h"
  36. #include "vega10_sdma_pkt_open.h"
  37. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  38. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  39. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  40. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  41. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  42. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  43. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  44. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  45. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  46. static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  47. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  48. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  49. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  50. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  51. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  52. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  53. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  54. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  55. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  56. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  57. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  58. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  59. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
  60. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  61. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  62. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  63. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  64. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  65. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
  66. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  67. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  68. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  69. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  70. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  71. };
  72. static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
  73. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  74. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
  75. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  76. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
  77. };
  78. static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
  79. {
  80. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  81. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  82. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
  83. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  84. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
  85. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
  86. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  87. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
  88. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  89. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  90. };
  91. static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
  92. {
  93. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
  94. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
  95. };
  96. static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
  97. u32 instance, u32 offset)
  98. {
  99. return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
  100. (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
  101. }
  102. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  103. {
  104. switch (adev->asic_type) {
  105. case CHIP_VEGA10:
  106. soc15_program_register_sequence(adev,
  107. golden_settings_sdma_4,
  108. ARRAY_SIZE(golden_settings_sdma_4));
  109. soc15_program_register_sequence(adev,
  110. golden_settings_sdma_vg10,
  111. ARRAY_SIZE(golden_settings_sdma_vg10));
  112. break;
  113. case CHIP_RAVEN:
  114. soc15_program_register_sequence(adev,
  115. golden_settings_sdma_4_1,
  116. ARRAY_SIZE(golden_settings_sdma_4_1));
  117. soc15_program_register_sequence(adev,
  118. golden_settings_sdma_rv1,
  119. ARRAY_SIZE(golden_settings_sdma_rv1));
  120. break;
  121. default:
  122. break;
  123. }
  124. }
  125. /**
  126. * sdma_v4_0_init_microcode - load ucode images from disk
  127. *
  128. * @adev: amdgpu_device pointer
  129. *
  130. * Use the firmware interface to load the ucode images into
  131. * the driver (not loaded into hw).
  132. * Returns 0 on success, error on failure.
  133. */
  134. // emulation only, won't work on real chip
  135. // vega10 real chip need to use PSP to load firmware
  136. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  137. {
  138. const char *chip_name;
  139. char fw_name[30];
  140. int err = 0, i;
  141. struct amdgpu_firmware_info *info = NULL;
  142. const struct common_firmware_header *header = NULL;
  143. const struct sdma_firmware_header_v1_0 *hdr;
  144. DRM_DEBUG("\n");
  145. switch (adev->asic_type) {
  146. case CHIP_VEGA10:
  147. chip_name = "vega10";
  148. break;
  149. case CHIP_RAVEN:
  150. chip_name = "raven";
  151. break;
  152. default:
  153. BUG();
  154. }
  155. for (i = 0; i < adev->sdma.num_instances; i++) {
  156. if (i == 0)
  157. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  158. else
  159. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  160. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  161. if (err)
  162. goto out;
  163. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  164. if (err)
  165. goto out;
  166. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  167. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  168. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  169. if (adev->sdma.instance[i].feature_version >= 20)
  170. adev->sdma.instance[i].burst_nop = true;
  171. DRM_DEBUG("psp_load == '%s'\n",
  172. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  173. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  174. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  175. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  176. info->fw = adev->sdma.instance[i].fw;
  177. header = (const struct common_firmware_header *)info->fw->data;
  178. adev->firmware.fw_size +=
  179. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  180. }
  181. }
  182. out:
  183. if (err) {
  184. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  185. for (i = 0; i < adev->sdma.num_instances; i++) {
  186. release_firmware(adev->sdma.instance[i].fw);
  187. adev->sdma.instance[i].fw = NULL;
  188. }
  189. }
  190. return err;
  191. }
  192. /**
  193. * sdma_v4_0_ring_get_rptr - get the current read pointer
  194. *
  195. * @ring: amdgpu ring pointer
  196. *
  197. * Get the current rptr from the hardware (VEGA10+).
  198. */
  199. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  200. {
  201. u64 *rptr;
  202. /* XXX check if swapping is necessary on BE */
  203. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  204. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  205. return ((*rptr) >> 2);
  206. }
  207. /**
  208. * sdma_v4_0_ring_get_wptr - get the current write pointer
  209. *
  210. * @ring: amdgpu ring pointer
  211. *
  212. * Get the current wptr from the hardware (VEGA10+).
  213. */
  214. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  215. {
  216. struct amdgpu_device *adev = ring->adev;
  217. u64 wptr;
  218. if (ring->use_doorbell) {
  219. /* XXX check if swapping is necessary on BE */
  220. wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
  221. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
  222. } else {
  223. u32 lowbit, highbit;
  224. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  225. lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  226. highbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  227. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  228. me, highbit, lowbit);
  229. wptr = highbit;
  230. wptr = wptr << 32;
  231. wptr |= lowbit;
  232. }
  233. return wptr >> 2;
  234. }
  235. /**
  236. * sdma_v4_0_ring_set_wptr - commit the write pointer
  237. *
  238. * @ring: amdgpu ring pointer
  239. *
  240. * Write the wptr back to the hardware (VEGA10+).
  241. */
  242. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  243. {
  244. struct amdgpu_device *adev = ring->adev;
  245. DRM_DEBUG("Setting write pointer\n");
  246. if (ring->use_doorbell) {
  247. u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
  248. DRM_DEBUG("Using doorbell -- "
  249. "wptr_offs == 0x%08x "
  250. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  251. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  252. ring->wptr_offs,
  253. lower_32_bits(ring->wptr << 2),
  254. upper_32_bits(ring->wptr << 2));
  255. /* XXX check if swapping is necessary on BE */
  256. WRITE_ONCE(*wb, (ring->wptr << 2));
  257. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  258. ring->doorbell_index, ring->wptr << 2);
  259. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  260. } else {
  261. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  262. DRM_DEBUG("Not using doorbell -- "
  263. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  264. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  265. me,
  266. lower_32_bits(ring->wptr << 2),
  267. me,
  268. upper_32_bits(ring->wptr << 2));
  269. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  270. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  271. }
  272. }
  273. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  274. {
  275. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  276. int i;
  277. for (i = 0; i < count; i++)
  278. if (sdma && sdma->burst_nop && (i == 0))
  279. amdgpu_ring_write(ring, ring->funcs->nop |
  280. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  281. else
  282. amdgpu_ring_write(ring, ring->funcs->nop);
  283. }
  284. /**
  285. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  286. *
  287. * @ring: amdgpu ring pointer
  288. * @ib: IB object to schedule
  289. *
  290. * Schedule an IB in the DMA ring (VEGA10).
  291. */
  292. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  293. struct amdgpu_ib *ib,
  294. unsigned vmid, bool ctx_switch)
  295. {
  296. /* IB packet must end on a 8 DW boundary */
  297. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  298. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  299. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  300. /* base must be 32 byte aligned */
  301. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  302. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  303. amdgpu_ring_write(ring, ib->length_dw);
  304. amdgpu_ring_write(ring, 0);
  305. amdgpu_ring_write(ring, 0);
  306. }
  307. /**
  308. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  309. *
  310. * @ring: amdgpu ring pointer
  311. *
  312. * Emit an hdp flush packet on the requested DMA ring.
  313. */
  314. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  315. {
  316. struct amdgpu_device *adev = ring->adev;
  317. u32 ref_and_mask = 0;
  318. const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
  319. if (ring == &ring->adev->sdma.instance[0].ring)
  320. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  321. else
  322. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  323. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  324. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  325. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  326. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_done_offset(adev)) << 2);
  327. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_req_offset(adev)) << 2);
  328. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  329. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  330. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  331. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  332. }
  333. /**
  334. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  335. *
  336. * @ring: amdgpu ring pointer
  337. * @fence: amdgpu fence object
  338. *
  339. * Add a DMA fence packet to the ring to write
  340. * the fence seq number and DMA trap packet to generate
  341. * an interrupt if needed (VEGA10).
  342. */
  343. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  344. unsigned flags)
  345. {
  346. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  347. /* write the fence */
  348. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  349. /* zero in first two bits */
  350. BUG_ON(addr & 0x3);
  351. amdgpu_ring_write(ring, lower_32_bits(addr));
  352. amdgpu_ring_write(ring, upper_32_bits(addr));
  353. amdgpu_ring_write(ring, lower_32_bits(seq));
  354. /* optionally write high bits as well */
  355. if (write64bit) {
  356. addr += 4;
  357. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  358. /* zero in first two bits */
  359. BUG_ON(addr & 0x3);
  360. amdgpu_ring_write(ring, lower_32_bits(addr));
  361. amdgpu_ring_write(ring, upper_32_bits(addr));
  362. amdgpu_ring_write(ring, upper_32_bits(seq));
  363. }
  364. /* generate an interrupt */
  365. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  366. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  367. }
  368. /**
  369. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  370. *
  371. * @adev: amdgpu_device pointer
  372. *
  373. * Stop the gfx async dma ring buffers (VEGA10).
  374. */
  375. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  376. {
  377. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  378. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  379. u32 rb_cntl, ib_cntl;
  380. int i;
  381. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  382. (adev->mman.buffer_funcs_ring == sdma1))
  383. amdgpu_ttm_set_buffer_funcs_status(adev, false);
  384. for (i = 0; i < adev->sdma.num_instances; i++) {
  385. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  386. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  387. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  388. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  389. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  390. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  391. }
  392. sdma0->ready = false;
  393. sdma1->ready = false;
  394. }
  395. /**
  396. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  397. *
  398. * @adev: amdgpu_device pointer
  399. *
  400. * Stop the compute async dma queues (VEGA10).
  401. */
  402. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  403. {
  404. /* XXX todo */
  405. }
  406. /**
  407. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  408. *
  409. * @adev: amdgpu_device pointer
  410. * @enable: enable/disable the DMA MEs context switch.
  411. *
  412. * Halt or unhalt the async dma engines context switch (VEGA10).
  413. */
  414. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  415. {
  416. u32 f32_cntl, phase_quantum = 0;
  417. int i;
  418. if (amdgpu_sdma_phase_quantum) {
  419. unsigned value = amdgpu_sdma_phase_quantum;
  420. unsigned unit = 0;
  421. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  422. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  423. value = (value + 1) >> 1;
  424. unit++;
  425. }
  426. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  427. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  428. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  429. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  430. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  431. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  432. WARN_ONCE(1,
  433. "clamping sdma_phase_quantum to %uK clock cycles\n",
  434. value << unit);
  435. }
  436. phase_quantum =
  437. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  438. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  439. }
  440. for (i = 0; i < adev->sdma.num_instances; i++) {
  441. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  442. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  443. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  444. if (enable && amdgpu_sdma_phase_quantum) {
  445. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
  446. phase_quantum);
  447. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
  448. phase_quantum);
  449. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
  450. phase_quantum);
  451. }
  452. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
  453. }
  454. }
  455. /**
  456. * sdma_v4_0_enable - stop the async dma engines
  457. *
  458. * @adev: amdgpu_device pointer
  459. * @enable: enable/disable the DMA MEs.
  460. *
  461. * Halt or unhalt the async dma engines (VEGA10).
  462. */
  463. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  464. {
  465. u32 f32_cntl;
  466. int i;
  467. if (enable == false) {
  468. sdma_v4_0_gfx_stop(adev);
  469. sdma_v4_0_rlc_stop(adev);
  470. }
  471. for (i = 0; i < adev->sdma.num_instances; i++) {
  472. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  473. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  474. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
  475. }
  476. }
  477. /**
  478. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  479. *
  480. * @adev: amdgpu_device pointer
  481. *
  482. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  483. * Returns 0 for success, error for failure.
  484. */
  485. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  486. {
  487. struct amdgpu_ring *ring;
  488. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  489. u32 rb_bufsz;
  490. u32 wb_offset;
  491. u32 doorbell;
  492. u32 doorbell_offset;
  493. u32 temp;
  494. u64 wptr_gpu_addr;
  495. int i, r;
  496. for (i = 0; i < adev->sdma.num_instances; i++) {
  497. ring = &adev->sdma.instance[i].ring;
  498. wb_offset = (ring->rptr_offs * 4);
  499. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  500. /* Set ring buffer size in dwords */
  501. rb_bufsz = order_base_2(ring->ring_size / 4);
  502. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  503. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  504. #ifdef __BIG_ENDIAN
  505. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  506. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  507. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  508. #endif
  509. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  510. /* Initialize the ring buffer's read and write pointers */
  511. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
  512. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  513. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
  514. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  515. /* set the wb address whether it's enabled or not */
  516. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  517. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  518. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  519. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  520. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  521. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  522. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  523. ring->wptr = 0;
  524. /* before programing wptr to a less value, need set minor_ptr_update first */
  525. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  526. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  527. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  528. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  529. }
  530. doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
  531. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
  532. if (ring->use_doorbell) {
  533. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  534. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  535. OFFSET, ring->doorbell_index);
  536. } else {
  537. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  538. }
  539. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
  540. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  541. adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
  542. ring->doorbell_index);
  543. if (amdgpu_sriov_vf(adev))
  544. sdma_v4_0_ring_set_wptr(ring);
  545. /* set minor_ptr_update to 0 after wptr programed */
  546. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  547. /* set utc l1 enable flag always to 1 */
  548. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  549. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  550. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
  551. if (!amdgpu_sriov_vf(adev)) {
  552. /* unhalt engine */
  553. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  554. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  555. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
  556. }
  557. /* setup the wptr shadow polling */
  558. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  559. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
  560. lower_32_bits(wptr_gpu_addr));
  561. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
  562. upper_32_bits(wptr_gpu_addr));
  563. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  564. if (amdgpu_sriov_vf(adev))
  565. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  566. else
  567. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  568. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  569. /* enable DMA RB */
  570. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  571. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  572. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  573. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  574. #ifdef __BIG_ENDIAN
  575. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  576. #endif
  577. /* enable DMA IBs */
  578. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  579. ring->ready = true;
  580. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  581. sdma_v4_0_ctx_switch_enable(adev, true);
  582. sdma_v4_0_enable(adev, true);
  583. }
  584. r = amdgpu_ring_test_ring(ring);
  585. if (r) {
  586. ring->ready = false;
  587. return r;
  588. }
  589. if (adev->mman.buffer_funcs_ring == ring)
  590. amdgpu_ttm_set_buffer_funcs_status(adev, true);
  591. }
  592. return 0;
  593. }
  594. static void
  595. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  596. {
  597. uint32_t def, data;
  598. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  599. /* disable idle interrupt */
  600. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  601. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  602. if (data != def)
  603. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  604. } else {
  605. /* disable idle interrupt */
  606. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  607. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  608. if (data != def)
  609. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  610. }
  611. }
  612. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  613. {
  614. uint32_t def, data;
  615. /* Enable HW based PG. */
  616. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  617. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  618. if (data != def)
  619. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  620. /* enable interrupt */
  621. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  622. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  623. if (data != def)
  624. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  625. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  626. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  627. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  628. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  629. /* Configure switch time for hysteresis purpose. Use default right now */
  630. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  631. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  632. if(data != def)
  633. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  634. }
  635. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  636. {
  637. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  638. return;
  639. switch (adev->asic_type) {
  640. case CHIP_RAVEN:
  641. sdma_v4_1_init_power_gating(adev);
  642. sdma_v4_1_update_power_gating(adev, true);
  643. break;
  644. default:
  645. break;
  646. }
  647. }
  648. /**
  649. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  650. *
  651. * @adev: amdgpu_device pointer
  652. *
  653. * Set up the compute DMA queues and enable them (VEGA10).
  654. * Returns 0 for success, error for failure.
  655. */
  656. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  657. {
  658. sdma_v4_0_init_pg(adev);
  659. return 0;
  660. }
  661. /**
  662. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  663. *
  664. * @adev: amdgpu_device pointer
  665. *
  666. * Loads the sDMA0/1 ucode.
  667. * Returns 0 for success, -EINVAL if the ucode is not available.
  668. */
  669. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  670. {
  671. const struct sdma_firmware_header_v1_0 *hdr;
  672. const __le32 *fw_data;
  673. u32 fw_size;
  674. int i, j;
  675. /* halt the MEs */
  676. sdma_v4_0_enable(adev, false);
  677. for (i = 0; i < adev->sdma.num_instances; i++) {
  678. if (!adev->sdma.instance[i].fw)
  679. return -EINVAL;
  680. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  681. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  682. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  683. fw_data = (const __le32 *)
  684. (adev->sdma.instance[i].fw->data +
  685. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  686. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
  687. for (j = 0; j < fw_size; j++)
  688. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  689. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  690. }
  691. return 0;
  692. }
  693. /**
  694. * sdma_v4_0_start - setup and start the async dma engines
  695. *
  696. * @adev: amdgpu_device pointer
  697. *
  698. * Set up the DMA engines and enable them (VEGA10).
  699. * Returns 0 for success, error for failure.
  700. */
  701. static int sdma_v4_0_start(struct amdgpu_device *adev)
  702. {
  703. int r = 0;
  704. if (amdgpu_sriov_vf(adev)) {
  705. sdma_v4_0_ctx_switch_enable(adev, false);
  706. sdma_v4_0_enable(adev, false);
  707. /* set RB registers */
  708. r = sdma_v4_0_gfx_resume(adev);
  709. return r;
  710. }
  711. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  712. r = sdma_v4_0_load_microcode(adev);
  713. if (r)
  714. return r;
  715. }
  716. /* unhalt the MEs */
  717. sdma_v4_0_enable(adev, true);
  718. /* enable sdma ring preemption */
  719. sdma_v4_0_ctx_switch_enable(adev, true);
  720. /* start the gfx rings and rlc compute queues */
  721. r = sdma_v4_0_gfx_resume(adev);
  722. if (r)
  723. return r;
  724. r = sdma_v4_0_rlc_resume(adev);
  725. return r;
  726. }
  727. /**
  728. * sdma_v4_0_ring_test_ring - simple async dma engine test
  729. *
  730. * @ring: amdgpu_ring structure holding ring information
  731. *
  732. * Test the DMA engine by writing using it to write an
  733. * value to memory. (VEGA10).
  734. * Returns 0 for success, error for failure.
  735. */
  736. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  737. {
  738. struct amdgpu_device *adev = ring->adev;
  739. unsigned i;
  740. unsigned index;
  741. int r;
  742. u32 tmp;
  743. u64 gpu_addr;
  744. r = amdgpu_device_wb_get(adev, &index);
  745. if (r) {
  746. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  747. return r;
  748. }
  749. gpu_addr = adev->wb.gpu_addr + (index * 4);
  750. tmp = 0xCAFEDEAD;
  751. adev->wb.wb[index] = cpu_to_le32(tmp);
  752. r = amdgpu_ring_alloc(ring, 5);
  753. if (r) {
  754. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  755. amdgpu_device_wb_free(adev, index);
  756. return r;
  757. }
  758. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  759. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  760. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  761. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  762. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  763. amdgpu_ring_write(ring, 0xDEADBEEF);
  764. amdgpu_ring_commit(ring);
  765. for (i = 0; i < adev->usec_timeout; i++) {
  766. tmp = le32_to_cpu(adev->wb.wb[index]);
  767. if (tmp == 0xDEADBEEF)
  768. break;
  769. DRM_UDELAY(1);
  770. }
  771. if (i < adev->usec_timeout) {
  772. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  773. } else {
  774. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  775. ring->idx, tmp);
  776. r = -EINVAL;
  777. }
  778. amdgpu_device_wb_free(adev, index);
  779. return r;
  780. }
  781. /**
  782. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  783. *
  784. * @ring: amdgpu_ring structure holding ring information
  785. *
  786. * Test a simple IB in the DMA ring (VEGA10).
  787. * Returns 0 on success, error on failure.
  788. */
  789. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  790. {
  791. struct amdgpu_device *adev = ring->adev;
  792. struct amdgpu_ib ib;
  793. struct dma_fence *f = NULL;
  794. unsigned index;
  795. long r;
  796. u32 tmp = 0;
  797. u64 gpu_addr;
  798. r = amdgpu_device_wb_get(adev, &index);
  799. if (r) {
  800. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  801. return r;
  802. }
  803. gpu_addr = adev->wb.gpu_addr + (index * 4);
  804. tmp = 0xCAFEDEAD;
  805. adev->wb.wb[index] = cpu_to_le32(tmp);
  806. memset(&ib, 0, sizeof(ib));
  807. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  808. if (r) {
  809. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  810. goto err0;
  811. }
  812. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  813. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  814. ib.ptr[1] = lower_32_bits(gpu_addr);
  815. ib.ptr[2] = upper_32_bits(gpu_addr);
  816. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  817. ib.ptr[4] = 0xDEADBEEF;
  818. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  819. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  820. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  821. ib.length_dw = 8;
  822. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  823. if (r)
  824. goto err1;
  825. r = dma_fence_wait_timeout(f, false, timeout);
  826. if (r == 0) {
  827. DRM_ERROR("amdgpu: IB test timed out\n");
  828. r = -ETIMEDOUT;
  829. goto err1;
  830. } else if (r < 0) {
  831. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  832. goto err1;
  833. }
  834. tmp = le32_to_cpu(adev->wb.wb[index]);
  835. if (tmp == 0xDEADBEEF) {
  836. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  837. r = 0;
  838. } else {
  839. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  840. r = -EINVAL;
  841. }
  842. err1:
  843. amdgpu_ib_free(adev, &ib, NULL);
  844. dma_fence_put(f);
  845. err0:
  846. amdgpu_device_wb_free(adev, index);
  847. return r;
  848. }
  849. /**
  850. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  851. *
  852. * @ib: indirect buffer to fill with commands
  853. * @pe: addr of the page entry
  854. * @src: src addr to copy from
  855. * @count: number of page entries to update
  856. *
  857. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  858. */
  859. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  860. uint64_t pe, uint64_t src,
  861. unsigned count)
  862. {
  863. unsigned bytes = count * 8;
  864. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  865. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  866. ib->ptr[ib->length_dw++] = bytes - 1;
  867. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  868. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  869. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  870. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  871. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  872. }
  873. /**
  874. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  875. *
  876. * @ib: indirect buffer to fill with commands
  877. * @pe: addr of the page entry
  878. * @addr: dst addr to write into pe
  879. * @count: number of page entries to update
  880. * @incr: increase next addr by incr bytes
  881. * @flags: access flags
  882. *
  883. * Update PTEs by writing them manually using sDMA (VEGA10).
  884. */
  885. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  886. uint64_t value, unsigned count,
  887. uint32_t incr)
  888. {
  889. unsigned ndw = count * 2;
  890. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  891. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  892. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  893. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  894. ib->ptr[ib->length_dw++] = ndw - 1;
  895. for (; ndw > 0; ndw -= 2) {
  896. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  897. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  898. value += incr;
  899. }
  900. }
  901. /**
  902. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  903. *
  904. * @ib: indirect buffer to fill with commands
  905. * @pe: addr of the page entry
  906. * @addr: dst addr to write into pe
  907. * @count: number of page entries to update
  908. * @incr: increase next addr by incr bytes
  909. * @flags: access flags
  910. *
  911. * Update the page tables using sDMA (VEGA10).
  912. */
  913. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  914. uint64_t pe,
  915. uint64_t addr, unsigned count,
  916. uint32_t incr, uint64_t flags)
  917. {
  918. /* for physically contiguous pages (vram) */
  919. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  920. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  921. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  922. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  923. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  924. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  925. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  926. ib->ptr[ib->length_dw++] = incr; /* increment size */
  927. ib->ptr[ib->length_dw++] = 0;
  928. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  929. }
  930. /**
  931. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  932. *
  933. * @ib: indirect buffer to fill with padding
  934. *
  935. */
  936. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  937. {
  938. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  939. u32 pad_count;
  940. int i;
  941. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  942. for (i = 0; i < pad_count; i++)
  943. if (sdma && sdma->burst_nop && (i == 0))
  944. ib->ptr[ib->length_dw++] =
  945. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  946. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  947. else
  948. ib->ptr[ib->length_dw++] =
  949. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  950. }
  951. /**
  952. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  953. *
  954. * @ring: amdgpu_ring pointer
  955. *
  956. * Make sure all previous operations are completed (CIK).
  957. */
  958. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  959. {
  960. uint32_t seq = ring->fence_drv.sync_seq;
  961. uint64_t addr = ring->fence_drv.gpu_addr;
  962. /* wait for idle */
  963. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  964. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  965. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  966. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  967. amdgpu_ring_write(ring, addr & 0xfffffffc);
  968. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  969. amdgpu_ring_write(ring, seq); /* reference */
  970. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  971. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  972. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  973. }
  974. /**
  975. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  976. *
  977. * @ring: amdgpu_ring pointer
  978. * @vm: amdgpu_vm pointer
  979. *
  980. * Update the page table base and flush the VM TLB
  981. * using sDMA (VEGA10).
  982. */
  983. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  984. unsigned vmid, uint64_t pd_addr)
  985. {
  986. amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
  987. }
  988. static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
  989. uint32_t reg, uint32_t val)
  990. {
  991. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  992. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  993. amdgpu_ring_write(ring, reg);
  994. amdgpu_ring_write(ring, val);
  995. }
  996. static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
  997. uint32_t val, uint32_t mask)
  998. {
  999. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1000. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1001. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  1002. amdgpu_ring_write(ring, reg << 2);
  1003. amdgpu_ring_write(ring, 0);
  1004. amdgpu_ring_write(ring, val); /* reference */
  1005. amdgpu_ring_write(ring, mask); /* mask */
  1006. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1007. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  1008. }
  1009. static int sdma_v4_0_early_init(void *handle)
  1010. {
  1011. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1012. if (adev->asic_type == CHIP_RAVEN)
  1013. adev->sdma.num_instances = 1;
  1014. else
  1015. adev->sdma.num_instances = 2;
  1016. sdma_v4_0_set_ring_funcs(adev);
  1017. sdma_v4_0_set_buffer_funcs(adev);
  1018. sdma_v4_0_set_vm_pte_funcs(adev);
  1019. sdma_v4_0_set_irq_funcs(adev);
  1020. return 0;
  1021. }
  1022. static int sdma_v4_0_sw_init(void *handle)
  1023. {
  1024. struct amdgpu_ring *ring;
  1025. int r, i;
  1026. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1027. /* SDMA trap event */
  1028. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, 224,
  1029. &adev->sdma.trap_irq);
  1030. if (r)
  1031. return r;
  1032. /* SDMA trap event */
  1033. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, 224,
  1034. &adev->sdma.trap_irq);
  1035. if (r)
  1036. return r;
  1037. r = sdma_v4_0_init_microcode(adev);
  1038. if (r) {
  1039. DRM_ERROR("Failed to load sdma firmware!\n");
  1040. return r;
  1041. }
  1042. for (i = 0; i < adev->sdma.num_instances; i++) {
  1043. ring = &adev->sdma.instance[i].ring;
  1044. ring->ring_obj = NULL;
  1045. ring->use_doorbell = true;
  1046. DRM_INFO("use_doorbell being set to: [%s]\n",
  1047. ring->use_doorbell?"true":"false");
  1048. ring->doorbell_index = (i == 0) ?
  1049. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1050. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1051. sprintf(ring->name, "sdma%d", i);
  1052. r = amdgpu_ring_init(adev, ring, 1024,
  1053. &adev->sdma.trap_irq,
  1054. (i == 0) ?
  1055. AMDGPU_SDMA_IRQ_TRAP0 :
  1056. AMDGPU_SDMA_IRQ_TRAP1);
  1057. if (r)
  1058. return r;
  1059. }
  1060. return r;
  1061. }
  1062. static int sdma_v4_0_sw_fini(void *handle)
  1063. {
  1064. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1065. int i;
  1066. for (i = 0; i < adev->sdma.num_instances; i++)
  1067. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1068. for (i = 0; i < adev->sdma.num_instances; i++) {
  1069. release_firmware(adev->sdma.instance[i].fw);
  1070. adev->sdma.instance[i].fw = NULL;
  1071. }
  1072. return 0;
  1073. }
  1074. static int sdma_v4_0_hw_init(void *handle)
  1075. {
  1076. int r;
  1077. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1078. sdma_v4_0_init_golden_registers(adev);
  1079. r = sdma_v4_0_start(adev);
  1080. return r;
  1081. }
  1082. static int sdma_v4_0_hw_fini(void *handle)
  1083. {
  1084. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1085. if (amdgpu_sriov_vf(adev))
  1086. return 0;
  1087. sdma_v4_0_ctx_switch_enable(adev, false);
  1088. sdma_v4_0_enable(adev, false);
  1089. return 0;
  1090. }
  1091. static int sdma_v4_0_suspend(void *handle)
  1092. {
  1093. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1094. return sdma_v4_0_hw_fini(adev);
  1095. }
  1096. static int sdma_v4_0_resume(void *handle)
  1097. {
  1098. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1099. return sdma_v4_0_hw_init(adev);
  1100. }
  1101. static bool sdma_v4_0_is_idle(void *handle)
  1102. {
  1103. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1104. u32 i;
  1105. for (i = 0; i < adev->sdma.num_instances; i++) {
  1106. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
  1107. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1108. return false;
  1109. }
  1110. return true;
  1111. }
  1112. static int sdma_v4_0_wait_for_idle(void *handle)
  1113. {
  1114. unsigned i;
  1115. u32 sdma0, sdma1;
  1116. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1117. for (i = 0; i < adev->usec_timeout; i++) {
  1118. sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
  1119. sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
  1120. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1121. return 0;
  1122. udelay(1);
  1123. }
  1124. return -ETIMEDOUT;
  1125. }
  1126. static int sdma_v4_0_soft_reset(void *handle)
  1127. {
  1128. /* todo */
  1129. return 0;
  1130. }
  1131. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1132. struct amdgpu_irq_src *source,
  1133. unsigned type,
  1134. enum amdgpu_interrupt_state state)
  1135. {
  1136. u32 sdma_cntl;
  1137. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1138. sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
  1139. sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
  1140. sdma_cntl = RREG32(reg_offset);
  1141. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1142. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1143. WREG32(reg_offset, sdma_cntl);
  1144. return 0;
  1145. }
  1146. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1147. struct amdgpu_irq_src *source,
  1148. struct amdgpu_iv_entry *entry)
  1149. {
  1150. DRM_DEBUG("IH: SDMA trap\n");
  1151. switch (entry->client_id) {
  1152. case SOC15_IH_CLIENTID_SDMA0:
  1153. switch (entry->ring_id) {
  1154. case 0:
  1155. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1156. break;
  1157. case 1:
  1158. /* XXX compute */
  1159. break;
  1160. case 2:
  1161. /* XXX compute */
  1162. break;
  1163. case 3:
  1164. /* XXX page queue*/
  1165. break;
  1166. }
  1167. break;
  1168. case SOC15_IH_CLIENTID_SDMA1:
  1169. switch (entry->ring_id) {
  1170. case 0:
  1171. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1172. break;
  1173. case 1:
  1174. /* XXX compute */
  1175. break;
  1176. case 2:
  1177. /* XXX compute */
  1178. break;
  1179. case 3:
  1180. /* XXX page queue*/
  1181. break;
  1182. }
  1183. break;
  1184. }
  1185. return 0;
  1186. }
  1187. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1188. struct amdgpu_irq_src *source,
  1189. struct amdgpu_iv_entry *entry)
  1190. {
  1191. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1192. schedule_work(&adev->reset_work);
  1193. return 0;
  1194. }
  1195. static void sdma_v4_0_update_medium_grain_clock_gating(
  1196. struct amdgpu_device *adev,
  1197. bool enable)
  1198. {
  1199. uint32_t data, def;
  1200. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1201. /* enable sdma0 clock gating */
  1202. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1203. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1204. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1205. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1206. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1207. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1208. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1209. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1210. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1211. if (def != data)
  1212. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1213. if (adev->sdma.num_instances > 1) {
  1214. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1215. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1216. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1217. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1218. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1219. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1220. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1221. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1222. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1223. if (def != data)
  1224. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1225. }
  1226. } else {
  1227. /* disable sdma0 clock gating */
  1228. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1229. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1230. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1231. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1232. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1233. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1234. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1235. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1236. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1237. if (def != data)
  1238. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1239. if (adev->sdma.num_instances > 1) {
  1240. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1241. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1242. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1243. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1244. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1245. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1246. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1247. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1248. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1249. if (def != data)
  1250. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1251. }
  1252. }
  1253. }
  1254. static void sdma_v4_0_update_medium_grain_light_sleep(
  1255. struct amdgpu_device *adev,
  1256. bool enable)
  1257. {
  1258. uint32_t data, def;
  1259. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1260. /* 1-not override: enable sdma0 mem light sleep */
  1261. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1262. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1263. if (def != data)
  1264. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1265. /* 1-not override: enable sdma1 mem light sleep */
  1266. if (adev->sdma.num_instances > 1) {
  1267. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1268. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1269. if (def != data)
  1270. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1271. }
  1272. } else {
  1273. /* 0-override:disable sdma0 mem light sleep */
  1274. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1275. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1276. if (def != data)
  1277. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1278. /* 0-override:disable sdma1 mem light sleep */
  1279. if (adev->sdma.num_instances > 1) {
  1280. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1281. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1282. if (def != data)
  1283. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1284. }
  1285. }
  1286. }
  1287. static int sdma_v4_0_set_clockgating_state(void *handle,
  1288. enum amd_clockgating_state state)
  1289. {
  1290. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1291. if (amdgpu_sriov_vf(adev))
  1292. return 0;
  1293. switch (adev->asic_type) {
  1294. case CHIP_VEGA10:
  1295. case CHIP_RAVEN:
  1296. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1297. state == AMD_CG_STATE_GATE ? true : false);
  1298. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1299. state == AMD_CG_STATE_GATE ? true : false);
  1300. break;
  1301. default:
  1302. break;
  1303. }
  1304. return 0;
  1305. }
  1306. static int sdma_v4_0_set_powergating_state(void *handle,
  1307. enum amd_powergating_state state)
  1308. {
  1309. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1310. switch (adev->asic_type) {
  1311. case CHIP_RAVEN:
  1312. sdma_v4_1_update_power_gating(adev,
  1313. state == AMD_PG_STATE_GATE ? true : false);
  1314. break;
  1315. default:
  1316. break;
  1317. }
  1318. return 0;
  1319. }
  1320. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1321. {
  1322. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1323. int data;
  1324. if (amdgpu_sriov_vf(adev))
  1325. *flags = 0;
  1326. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1327. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1328. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1329. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1330. /* AMD_CG_SUPPORT_SDMA_LS */
  1331. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1332. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1333. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1334. }
  1335. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1336. .name = "sdma_v4_0",
  1337. .early_init = sdma_v4_0_early_init,
  1338. .late_init = NULL,
  1339. .sw_init = sdma_v4_0_sw_init,
  1340. .sw_fini = sdma_v4_0_sw_fini,
  1341. .hw_init = sdma_v4_0_hw_init,
  1342. .hw_fini = sdma_v4_0_hw_fini,
  1343. .suspend = sdma_v4_0_suspend,
  1344. .resume = sdma_v4_0_resume,
  1345. .is_idle = sdma_v4_0_is_idle,
  1346. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1347. .soft_reset = sdma_v4_0_soft_reset,
  1348. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1349. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1350. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1351. };
  1352. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1353. .type = AMDGPU_RING_TYPE_SDMA,
  1354. .align_mask = 0xf,
  1355. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1356. .support_64bit_ptrs = true,
  1357. .vmhub = AMDGPU_MMHUB,
  1358. .get_rptr = sdma_v4_0_ring_get_rptr,
  1359. .get_wptr = sdma_v4_0_ring_get_wptr,
  1360. .set_wptr = sdma_v4_0_ring_set_wptr,
  1361. .emit_frame_size =
  1362. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1363. 3 + /* hdp invalidate */
  1364. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1365. /* sdma_v4_0_ring_emit_vm_flush */
  1366. SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
  1367. SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
  1368. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1369. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1370. .emit_ib = sdma_v4_0_ring_emit_ib,
  1371. .emit_fence = sdma_v4_0_ring_emit_fence,
  1372. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1373. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1374. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1375. .test_ring = sdma_v4_0_ring_test_ring,
  1376. .test_ib = sdma_v4_0_ring_test_ib,
  1377. .insert_nop = sdma_v4_0_ring_insert_nop,
  1378. .pad_ib = sdma_v4_0_ring_pad_ib,
  1379. .emit_wreg = sdma_v4_0_ring_emit_wreg,
  1380. .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
  1381. };
  1382. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1383. {
  1384. int i;
  1385. for (i = 0; i < adev->sdma.num_instances; i++)
  1386. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1387. }
  1388. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1389. .set = sdma_v4_0_set_trap_irq_state,
  1390. .process = sdma_v4_0_process_trap_irq,
  1391. };
  1392. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1393. .process = sdma_v4_0_process_illegal_inst_irq,
  1394. };
  1395. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1396. {
  1397. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1398. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1399. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1400. }
  1401. /**
  1402. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1403. *
  1404. * @ring: amdgpu_ring structure holding ring information
  1405. * @src_offset: src GPU address
  1406. * @dst_offset: dst GPU address
  1407. * @byte_count: number of bytes to xfer
  1408. *
  1409. * Copy GPU buffers using the DMA engine (VEGA10).
  1410. * Used by the amdgpu ttm implementation to move pages if
  1411. * registered as the asic copy callback.
  1412. */
  1413. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1414. uint64_t src_offset,
  1415. uint64_t dst_offset,
  1416. uint32_t byte_count)
  1417. {
  1418. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1419. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1420. ib->ptr[ib->length_dw++] = byte_count - 1;
  1421. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1422. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1423. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1424. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1425. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1426. }
  1427. /**
  1428. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1429. *
  1430. * @ring: amdgpu_ring structure holding ring information
  1431. * @src_data: value to write to buffer
  1432. * @dst_offset: dst GPU address
  1433. * @byte_count: number of bytes to xfer
  1434. *
  1435. * Fill GPU buffers using the DMA engine (VEGA10).
  1436. */
  1437. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1438. uint32_t src_data,
  1439. uint64_t dst_offset,
  1440. uint32_t byte_count)
  1441. {
  1442. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1443. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1444. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1445. ib->ptr[ib->length_dw++] = src_data;
  1446. ib->ptr[ib->length_dw++] = byte_count - 1;
  1447. }
  1448. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1449. .copy_max_bytes = 0x400000,
  1450. .copy_num_dw = 7,
  1451. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1452. .fill_max_bytes = 0x400000,
  1453. .fill_num_dw = 5,
  1454. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1455. };
  1456. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1457. {
  1458. if (adev->mman.buffer_funcs == NULL) {
  1459. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1460. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1461. }
  1462. }
  1463. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1464. .copy_pte_num_dw = 7,
  1465. .copy_pte = sdma_v4_0_vm_copy_pte,
  1466. .write_pte = sdma_v4_0_vm_write_pte,
  1467. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1468. };
  1469. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1470. {
  1471. unsigned i;
  1472. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1473. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1474. for (i = 0; i < adev->sdma.num_instances; i++)
  1475. adev->vm_manager.vm_pte_rings[i] =
  1476. &adev->sdma.instance[i].ring;
  1477. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1478. }
  1479. }
  1480. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1481. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1482. .major = 4,
  1483. .minor = 0,
  1484. .rev = 0,
  1485. .funcs = &sdma_v4_0_ip_funcs,
  1486. };