mm.h 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. #include <linux/overflow.h>
  26. struct mempolicy;
  27. struct anon_vma;
  28. struct anon_vma_chain;
  29. struct file_ra_state;
  30. struct user_struct;
  31. struct writeback_control;
  32. struct bdi_writeback;
  33. void init_mm_internals(void);
  34. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  35. extern unsigned long max_mapnr;
  36. static inline void set_max_mapnr(unsigned long limit)
  37. {
  38. max_mapnr = limit;
  39. }
  40. #else
  41. static inline void set_max_mapnr(unsigned long limit) { }
  42. #endif
  43. extern unsigned long totalram_pages;
  44. extern void * high_memory;
  45. extern int page_cluster;
  46. #ifdef CONFIG_SYSCTL
  47. extern int sysctl_legacy_va_layout;
  48. #else
  49. #define sysctl_legacy_va_layout 0
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  52. extern const int mmap_rnd_bits_min;
  53. extern const int mmap_rnd_bits_max;
  54. extern int mmap_rnd_bits __read_mostly;
  55. #endif
  56. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  57. extern const int mmap_rnd_compat_bits_min;
  58. extern const int mmap_rnd_compat_bits_max;
  59. extern int mmap_rnd_compat_bits __read_mostly;
  60. #endif
  61. #include <asm/page.h>
  62. #include <asm/pgtable.h>
  63. #include <asm/processor.h>
  64. #ifndef __pa_symbol
  65. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  66. #endif
  67. #ifndef page_to_virt
  68. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  69. #endif
  70. #ifndef lm_alias
  71. #define lm_alias(x) __va(__pa_symbol(x))
  72. #endif
  73. /*
  74. * To prevent common memory management code establishing
  75. * a zero page mapping on a read fault.
  76. * This macro should be defined within <asm/pgtable.h>.
  77. * s390 does this to prevent multiplexing of hardware bits
  78. * related to the physical page in case of virtualization.
  79. */
  80. #ifndef mm_forbids_zeropage
  81. #define mm_forbids_zeropage(X) (0)
  82. #endif
  83. /*
  84. * On some architectures it is expensive to call memset() for small sizes.
  85. * Those architectures should provide their own implementation of "struct page"
  86. * zeroing by defining this macro in <asm/pgtable.h>.
  87. */
  88. #ifndef mm_zero_struct_page
  89. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  90. #endif
  91. /*
  92. * Default maximum number of active map areas, this limits the number of vmas
  93. * per mm struct. Users can overwrite this number by sysctl but there is a
  94. * problem.
  95. *
  96. * When a program's coredump is generated as ELF format, a section is created
  97. * per a vma. In ELF, the number of sections is represented in unsigned short.
  98. * This means the number of sections should be smaller than 65535 at coredump.
  99. * Because the kernel adds some informative sections to a image of program at
  100. * generating coredump, we need some margin. The number of extra sections is
  101. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  102. *
  103. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  104. * not a hard limit any more. Although some userspace tools can be surprised by
  105. * that.
  106. */
  107. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  108. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  109. extern int sysctl_max_map_count;
  110. extern unsigned long sysctl_user_reserve_kbytes;
  111. extern unsigned long sysctl_admin_reserve_kbytes;
  112. extern int sysctl_overcommit_memory;
  113. extern int sysctl_overcommit_ratio;
  114. extern unsigned long sysctl_overcommit_kbytes;
  115. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  116. size_t *, loff_t *);
  117. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  118. size_t *, loff_t *);
  119. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  120. /* to align the pointer to the (next) page boundary */
  121. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  122. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  123. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  124. /*
  125. * Linux kernel virtual memory manager primitives.
  126. * The idea being to have a "virtual" mm in the same way
  127. * we have a virtual fs - giving a cleaner interface to the
  128. * mm details, and allowing different kinds of memory mappings
  129. * (from shared memory to executable loading to arbitrary
  130. * mmap() functions).
  131. */
  132. extern struct kmem_cache *vm_area_cachep;
  133. #ifndef CONFIG_MMU
  134. extern struct rb_root nommu_region_tree;
  135. extern struct rw_semaphore nommu_region_sem;
  136. extern unsigned int kobjsize(const void *objp);
  137. #endif
  138. /*
  139. * vm_flags in vm_area_struct, see mm_types.h.
  140. * When changing, update also include/trace/events/mmflags.h
  141. */
  142. #define VM_NONE 0x00000000
  143. #define VM_READ 0x00000001 /* currently active flags */
  144. #define VM_WRITE 0x00000002
  145. #define VM_EXEC 0x00000004
  146. #define VM_SHARED 0x00000008
  147. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  148. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  149. #define VM_MAYWRITE 0x00000020
  150. #define VM_MAYEXEC 0x00000040
  151. #define VM_MAYSHARE 0x00000080
  152. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  153. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  154. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  155. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  156. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  157. #define VM_LOCKED 0x00002000
  158. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  159. /* Used by sys_madvise() */
  160. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  161. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  162. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  163. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  164. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  165. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  166. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  167. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  168. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  169. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  170. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  171. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  172. #ifdef CONFIG_MEM_SOFT_DIRTY
  173. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  174. #else
  175. # define VM_SOFTDIRTY 0
  176. #endif
  177. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  178. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  179. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  180. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  181. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  182. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  183. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  184. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  187. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  188. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  189. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  190. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  191. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  192. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  193. #if defined(CONFIG_X86)
  194. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  195. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  196. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  197. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  198. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  199. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  200. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  201. #endif
  202. #elif defined(CONFIG_PPC)
  203. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  204. #elif defined(CONFIG_PARISC)
  205. # define VM_GROWSUP VM_ARCH_1
  206. #elif defined(CONFIG_IA64)
  207. # define VM_GROWSUP VM_ARCH_1
  208. #elif defined(CONFIG_SPARC64)
  209. # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
  210. # define VM_ARCH_CLEAR VM_SPARC_ADI
  211. #elif !defined(CONFIG_MMU)
  212. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  213. #endif
  214. #if defined(CONFIG_X86_INTEL_MPX)
  215. /* MPX specific bounds table or bounds directory */
  216. # define VM_MPX VM_HIGH_ARCH_4
  217. #else
  218. # define VM_MPX VM_NONE
  219. #endif
  220. #ifndef VM_GROWSUP
  221. # define VM_GROWSUP VM_NONE
  222. #endif
  223. /* Bits set in the VMA until the stack is in its final location */
  224. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  225. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  226. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  227. #endif
  228. #ifdef CONFIG_STACK_GROWSUP
  229. #define VM_STACK VM_GROWSUP
  230. #else
  231. #define VM_STACK VM_GROWSDOWN
  232. #endif
  233. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  234. /*
  235. * Special vmas that are non-mergable, non-mlock()able.
  236. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  237. */
  238. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  239. /* This mask defines which mm->def_flags a process can inherit its parent */
  240. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  241. /* This mask is used to clear all the VMA flags used by mlock */
  242. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  243. /* Arch-specific flags to clear when updating VM flags on protection change */
  244. #ifndef VM_ARCH_CLEAR
  245. # define VM_ARCH_CLEAR VM_NONE
  246. #endif
  247. #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
  248. /*
  249. * mapping from the currently active vm_flags protection bits (the
  250. * low four bits) to a page protection mask..
  251. */
  252. extern pgprot_t protection_map[16];
  253. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  254. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  255. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  256. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  257. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  258. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  259. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  260. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  261. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  262. #define FAULT_FLAG_TRACE \
  263. { FAULT_FLAG_WRITE, "WRITE" }, \
  264. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  265. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  266. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  267. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  268. { FAULT_FLAG_TRIED, "TRIED" }, \
  269. { FAULT_FLAG_USER, "USER" }, \
  270. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  271. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  272. /*
  273. * vm_fault is filled by the the pagefault handler and passed to the vma's
  274. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  275. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  276. *
  277. * MM layer fills up gfp_mask for page allocations but fault handler might
  278. * alter it if its implementation requires a different allocation context.
  279. *
  280. * pgoff should be used in favour of virtual_address, if possible.
  281. */
  282. struct vm_fault {
  283. struct vm_area_struct *vma; /* Target VMA */
  284. unsigned int flags; /* FAULT_FLAG_xxx flags */
  285. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  286. pgoff_t pgoff; /* Logical page offset based on vma */
  287. unsigned long address; /* Faulting virtual address */
  288. pmd_t *pmd; /* Pointer to pmd entry matching
  289. * the 'address' */
  290. pud_t *pud; /* Pointer to pud entry matching
  291. * the 'address'
  292. */
  293. pte_t orig_pte; /* Value of PTE at the time of fault */
  294. struct page *cow_page; /* Page handler may use for COW fault */
  295. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  296. struct page *page; /* ->fault handlers should return a
  297. * page here, unless VM_FAULT_NOPAGE
  298. * is set (which is also implied by
  299. * VM_FAULT_ERROR).
  300. */
  301. /* These three entries are valid only while holding ptl lock */
  302. pte_t *pte; /* Pointer to pte entry matching
  303. * the 'address'. NULL if the page
  304. * table hasn't been allocated.
  305. */
  306. spinlock_t *ptl; /* Page table lock.
  307. * Protects pte page table if 'pte'
  308. * is not NULL, otherwise pmd.
  309. */
  310. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  311. * vm_ops->map_pages() calls
  312. * alloc_set_pte() from atomic context.
  313. * do_fault_around() pre-allocates
  314. * page table to avoid allocation from
  315. * atomic context.
  316. */
  317. };
  318. /* page entry size for vm->huge_fault() */
  319. enum page_entry_size {
  320. PE_SIZE_PTE = 0,
  321. PE_SIZE_PMD,
  322. PE_SIZE_PUD,
  323. };
  324. /*
  325. * These are the virtual MM functions - opening of an area, closing and
  326. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  327. * to the functions called when a no-page or a wp-page exception occurs.
  328. */
  329. struct vm_operations_struct {
  330. void (*open)(struct vm_area_struct * area);
  331. void (*close)(struct vm_area_struct * area);
  332. int (*split)(struct vm_area_struct * area, unsigned long addr);
  333. int (*mremap)(struct vm_area_struct * area);
  334. vm_fault_t (*fault)(struct vm_fault *vmf);
  335. vm_fault_t (*huge_fault)(struct vm_fault *vmf,
  336. enum page_entry_size pe_size);
  337. void (*map_pages)(struct vm_fault *vmf,
  338. pgoff_t start_pgoff, pgoff_t end_pgoff);
  339. unsigned long (*pagesize)(struct vm_area_struct * area);
  340. /* notification that a previously read-only page is about to become
  341. * writable, if an error is returned it will cause a SIGBUS */
  342. vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
  343. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  344. vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
  345. /* called by access_process_vm when get_user_pages() fails, typically
  346. * for use by special VMAs that can switch between memory and hardware
  347. */
  348. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  349. void *buf, int len, int write);
  350. /* Called by the /proc/PID/maps code to ask the vma whether it
  351. * has a special name. Returning non-NULL will also cause this
  352. * vma to be dumped unconditionally. */
  353. const char *(*name)(struct vm_area_struct *vma);
  354. #ifdef CONFIG_NUMA
  355. /*
  356. * set_policy() op must add a reference to any non-NULL @new mempolicy
  357. * to hold the policy upon return. Caller should pass NULL @new to
  358. * remove a policy and fall back to surrounding context--i.e. do not
  359. * install a MPOL_DEFAULT policy, nor the task or system default
  360. * mempolicy.
  361. */
  362. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  363. /*
  364. * get_policy() op must add reference [mpol_get()] to any policy at
  365. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  366. * in mm/mempolicy.c will do this automatically.
  367. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  368. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  369. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  370. * must return NULL--i.e., do not "fallback" to task or system default
  371. * policy.
  372. */
  373. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  374. unsigned long addr);
  375. #endif
  376. /*
  377. * Called by vm_normal_page() for special PTEs to find the
  378. * page for @addr. This is useful if the default behavior
  379. * (using pte_page()) would not find the correct page.
  380. */
  381. struct page *(*find_special_page)(struct vm_area_struct *vma,
  382. unsigned long addr);
  383. };
  384. struct mmu_gather;
  385. struct inode;
  386. #define page_private(page) ((page)->private)
  387. #define set_page_private(page, v) ((page)->private = (v))
  388. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  389. static inline int pmd_devmap(pmd_t pmd)
  390. {
  391. return 0;
  392. }
  393. static inline int pud_devmap(pud_t pud)
  394. {
  395. return 0;
  396. }
  397. static inline int pgd_devmap(pgd_t pgd)
  398. {
  399. return 0;
  400. }
  401. #endif
  402. /*
  403. * FIXME: take this include out, include page-flags.h in
  404. * files which need it (119 of them)
  405. */
  406. #include <linux/page-flags.h>
  407. #include <linux/huge_mm.h>
  408. /*
  409. * Methods to modify the page usage count.
  410. *
  411. * What counts for a page usage:
  412. * - cache mapping (page->mapping)
  413. * - private data (page->private)
  414. * - page mapped in a task's page tables, each mapping
  415. * is counted separately
  416. *
  417. * Also, many kernel routines increase the page count before a critical
  418. * routine so they can be sure the page doesn't go away from under them.
  419. */
  420. /*
  421. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  422. */
  423. static inline int put_page_testzero(struct page *page)
  424. {
  425. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  426. return page_ref_dec_and_test(page);
  427. }
  428. /*
  429. * Try to grab a ref unless the page has a refcount of zero, return false if
  430. * that is the case.
  431. * This can be called when MMU is off so it must not access
  432. * any of the virtual mappings.
  433. */
  434. static inline int get_page_unless_zero(struct page *page)
  435. {
  436. return page_ref_add_unless(page, 1, 0);
  437. }
  438. extern int page_is_ram(unsigned long pfn);
  439. enum {
  440. REGION_INTERSECTS,
  441. REGION_DISJOINT,
  442. REGION_MIXED,
  443. };
  444. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  445. unsigned long desc);
  446. /* Support for virtually mapped pages */
  447. struct page *vmalloc_to_page(const void *addr);
  448. unsigned long vmalloc_to_pfn(const void *addr);
  449. /*
  450. * Determine if an address is within the vmalloc range
  451. *
  452. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  453. * is no special casing required.
  454. */
  455. static inline bool is_vmalloc_addr(const void *x)
  456. {
  457. #ifdef CONFIG_MMU
  458. unsigned long addr = (unsigned long)x;
  459. return addr >= VMALLOC_START && addr < VMALLOC_END;
  460. #else
  461. return false;
  462. #endif
  463. }
  464. #ifdef CONFIG_MMU
  465. extern int is_vmalloc_or_module_addr(const void *x);
  466. #else
  467. static inline int is_vmalloc_or_module_addr(const void *x)
  468. {
  469. return 0;
  470. }
  471. #endif
  472. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  473. static inline void *kvmalloc(size_t size, gfp_t flags)
  474. {
  475. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  476. }
  477. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  478. {
  479. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  480. }
  481. static inline void *kvzalloc(size_t size, gfp_t flags)
  482. {
  483. return kvmalloc(size, flags | __GFP_ZERO);
  484. }
  485. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  486. {
  487. size_t bytes;
  488. if (unlikely(check_mul_overflow(n, size, &bytes)))
  489. return NULL;
  490. return kvmalloc(bytes, flags);
  491. }
  492. extern void kvfree(const void *addr);
  493. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  494. {
  495. return &page[1].compound_mapcount;
  496. }
  497. static inline int compound_mapcount(struct page *page)
  498. {
  499. VM_BUG_ON_PAGE(!PageCompound(page), page);
  500. page = compound_head(page);
  501. return atomic_read(compound_mapcount_ptr(page)) + 1;
  502. }
  503. /*
  504. * The atomic page->_mapcount, starts from -1: so that transitions
  505. * both from it and to it can be tracked, using atomic_inc_and_test
  506. * and atomic_add_negative(-1).
  507. */
  508. static inline void page_mapcount_reset(struct page *page)
  509. {
  510. atomic_set(&(page)->_mapcount, -1);
  511. }
  512. int __page_mapcount(struct page *page);
  513. static inline int page_mapcount(struct page *page)
  514. {
  515. VM_BUG_ON_PAGE(PageSlab(page), page);
  516. if (unlikely(PageCompound(page)))
  517. return __page_mapcount(page);
  518. return atomic_read(&page->_mapcount) + 1;
  519. }
  520. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  521. int total_mapcount(struct page *page);
  522. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  523. #else
  524. static inline int total_mapcount(struct page *page)
  525. {
  526. return page_mapcount(page);
  527. }
  528. static inline int page_trans_huge_mapcount(struct page *page,
  529. int *total_mapcount)
  530. {
  531. int mapcount = page_mapcount(page);
  532. if (total_mapcount)
  533. *total_mapcount = mapcount;
  534. return mapcount;
  535. }
  536. #endif
  537. static inline struct page *virt_to_head_page(const void *x)
  538. {
  539. struct page *page = virt_to_page(x);
  540. return compound_head(page);
  541. }
  542. void __put_page(struct page *page);
  543. void put_pages_list(struct list_head *pages);
  544. void split_page(struct page *page, unsigned int order);
  545. /*
  546. * Compound pages have a destructor function. Provide a
  547. * prototype for that function and accessor functions.
  548. * These are _only_ valid on the head of a compound page.
  549. */
  550. typedef void compound_page_dtor(struct page *);
  551. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  552. enum compound_dtor_id {
  553. NULL_COMPOUND_DTOR,
  554. COMPOUND_PAGE_DTOR,
  555. #ifdef CONFIG_HUGETLB_PAGE
  556. HUGETLB_PAGE_DTOR,
  557. #endif
  558. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  559. TRANSHUGE_PAGE_DTOR,
  560. #endif
  561. NR_COMPOUND_DTORS,
  562. };
  563. extern compound_page_dtor * const compound_page_dtors[];
  564. static inline void set_compound_page_dtor(struct page *page,
  565. enum compound_dtor_id compound_dtor)
  566. {
  567. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  568. page[1].compound_dtor = compound_dtor;
  569. }
  570. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  571. {
  572. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  573. return compound_page_dtors[page[1].compound_dtor];
  574. }
  575. static inline unsigned int compound_order(struct page *page)
  576. {
  577. if (!PageHead(page))
  578. return 0;
  579. return page[1].compound_order;
  580. }
  581. static inline void set_compound_order(struct page *page, unsigned int order)
  582. {
  583. page[1].compound_order = order;
  584. }
  585. void free_compound_page(struct page *page);
  586. #ifdef CONFIG_MMU
  587. /*
  588. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  589. * servicing faults for write access. In the normal case, do always want
  590. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  591. * that do not have writing enabled, when used by access_process_vm.
  592. */
  593. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  594. {
  595. if (likely(vma->vm_flags & VM_WRITE))
  596. pte = pte_mkwrite(pte);
  597. return pte;
  598. }
  599. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  600. struct page *page);
  601. int finish_fault(struct vm_fault *vmf);
  602. int finish_mkwrite_fault(struct vm_fault *vmf);
  603. #endif
  604. /*
  605. * Multiple processes may "see" the same page. E.g. for untouched
  606. * mappings of /dev/null, all processes see the same page full of
  607. * zeroes, and text pages of executables and shared libraries have
  608. * only one copy in memory, at most, normally.
  609. *
  610. * For the non-reserved pages, page_count(page) denotes a reference count.
  611. * page_count() == 0 means the page is free. page->lru is then used for
  612. * freelist management in the buddy allocator.
  613. * page_count() > 0 means the page has been allocated.
  614. *
  615. * Pages are allocated by the slab allocator in order to provide memory
  616. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  617. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  618. * unless a particular usage is carefully commented. (the responsibility of
  619. * freeing the kmalloc memory is the caller's, of course).
  620. *
  621. * A page may be used by anyone else who does a __get_free_page().
  622. * In this case, page_count still tracks the references, and should only
  623. * be used through the normal accessor functions. The top bits of page->flags
  624. * and page->virtual store page management information, but all other fields
  625. * are unused and could be used privately, carefully. The management of this
  626. * page is the responsibility of the one who allocated it, and those who have
  627. * subsequently been given references to it.
  628. *
  629. * The other pages (we may call them "pagecache pages") are completely
  630. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  631. * The following discussion applies only to them.
  632. *
  633. * A pagecache page contains an opaque `private' member, which belongs to the
  634. * page's address_space. Usually, this is the address of a circular list of
  635. * the page's disk buffers. PG_private must be set to tell the VM to call
  636. * into the filesystem to release these pages.
  637. *
  638. * A page may belong to an inode's memory mapping. In this case, page->mapping
  639. * is the pointer to the inode, and page->index is the file offset of the page,
  640. * in units of PAGE_SIZE.
  641. *
  642. * If pagecache pages are not associated with an inode, they are said to be
  643. * anonymous pages. These may become associated with the swapcache, and in that
  644. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  645. *
  646. * In either case (swapcache or inode backed), the pagecache itself holds one
  647. * reference to the page. Setting PG_private should also increment the
  648. * refcount. The each user mapping also has a reference to the page.
  649. *
  650. * The pagecache pages are stored in a per-mapping radix tree, which is
  651. * rooted at mapping->i_pages, and indexed by offset.
  652. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  653. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  654. *
  655. * All pagecache pages may be subject to I/O:
  656. * - inode pages may need to be read from disk,
  657. * - inode pages which have been modified and are MAP_SHARED may need
  658. * to be written back to the inode on disk,
  659. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  660. * modified may need to be swapped out to swap space and (later) to be read
  661. * back into memory.
  662. */
  663. /*
  664. * The zone field is never updated after free_area_init_core()
  665. * sets it, so none of the operations on it need to be atomic.
  666. */
  667. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  668. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  669. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  670. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  671. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  672. /*
  673. * Define the bit shifts to access each section. For non-existent
  674. * sections we define the shift as 0; that plus a 0 mask ensures
  675. * the compiler will optimise away reference to them.
  676. */
  677. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  678. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  679. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  680. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  681. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  682. #ifdef NODE_NOT_IN_PAGE_FLAGS
  683. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  684. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  685. SECTIONS_PGOFF : ZONES_PGOFF)
  686. #else
  687. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  688. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  689. NODES_PGOFF : ZONES_PGOFF)
  690. #endif
  691. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  692. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  693. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  694. #endif
  695. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  696. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  697. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  698. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  699. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  700. static inline enum zone_type page_zonenum(const struct page *page)
  701. {
  702. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  703. }
  704. #ifdef CONFIG_ZONE_DEVICE
  705. static inline bool is_zone_device_page(const struct page *page)
  706. {
  707. return page_zonenum(page) == ZONE_DEVICE;
  708. }
  709. #else
  710. static inline bool is_zone_device_page(const struct page *page)
  711. {
  712. return false;
  713. }
  714. #endif
  715. #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  716. void put_zone_device_private_or_public_page(struct page *page);
  717. DECLARE_STATIC_KEY_FALSE(device_private_key);
  718. #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
  719. static inline bool is_device_private_page(const struct page *page);
  720. static inline bool is_device_public_page(const struct page *page);
  721. #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  722. static inline void put_zone_device_private_or_public_page(struct page *page)
  723. {
  724. }
  725. #define IS_HMM_ENABLED 0
  726. static inline bool is_device_private_page(const struct page *page)
  727. {
  728. return false;
  729. }
  730. static inline bool is_device_public_page(const struct page *page)
  731. {
  732. return false;
  733. }
  734. #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  735. static inline void get_page(struct page *page)
  736. {
  737. page = compound_head(page);
  738. /*
  739. * Getting a normal page or the head of a compound page
  740. * requires to already have an elevated page->_refcount.
  741. */
  742. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  743. page_ref_inc(page);
  744. }
  745. static inline void put_page(struct page *page)
  746. {
  747. page = compound_head(page);
  748. /*
  749. * For private device pages we need to catch refcount transition from
  750. * 2 to 1, when refcount reach one it means the private device page is
  751. * free and we need to inform the device driver through callback. See
  752. * include/linux/memremap.h and HMM for details.
  753. */
  754. if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
  755. unlikely(is_device_public_page(page)))) {
  756. put_zone_device_private_or_public_page(page);
  757. return;
  758. }
  759. if (put_page_testzero(page))
  760. __put_page(page);
  761. }
  762. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  763. #define SECTION_IN_PAGE_FLAGS
  764. #endif
  765. /*
  766. * The identification function is mainly used by the buddy allocator for
  767. * determining if two pages could be buddies. We are not really identifying
  768. * the zone since we could be using the section number id if we do not have
  769. * node id available in page flags.
  770. * We only guarantee that it will return the same value for two combinable
  771. * pages in a zone.
  772. */
  773. static inline int page_zone_id(struct page *page)
  774. {
  775. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  776. }
  777. static inline int zone_to_nid(struct zone *zone)
  778. {
  779. #ifdef CONFIG_NUMA
  780. return zone->node;
  781. #else
  782. return 0;
  783. #endif
  784. }
  785. #ifdef NODE_NOT_IN_PAGE_FLAGS
  786. extern int page_to_nid(const struct page *page);
  787. #else
  788. static inline int page_to_nid(const struct page *page)
  789. {
  790. struct page *p = (struct page *)page;
  791. return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
  792. }
  793. #endif
  794. #ifdef CONFIG_NUMA_BALANCING
  795. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  796. {
  797. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  798. }
  799. static inline int cpupid_to_pid(int cpupid)
  800. {
  801. return cpupid & LAST__PID_MASK;
  802. }
  803. static inline int cpupid_to_cpu(int cpupid)
  804. {
  805. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  806. }
  807. static inline int cpupid_to_nid(int cpupid)
  808. {
  809. return cpu_to_node(cpupid_to_cpu(cpupid));
  810. }
  811. static inline bool cpupid_pid_unset(int cpupid)
  812. {
  813. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  814. }
  815. static inline bool cpupid_cpu_unset(int cpupid)
  816. {
  817. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  818. }
  819. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  820. {
  821. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  822. }
  823. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  824. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  825. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  826. {
  827. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  828. }
  829. static inline int page_cpupid_last(struct page *page)
  830. {
  831. return page->_last_cpupid;
  832. }
  833. static inline void page_cpupid_reset_last(struct page *page)
  834. {
  835. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  836. }
  837. #else
  838. static inline int page_cpupid_last(struct page *page)
  839. {
  840. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  841. }
  842. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  843. static inline void page_cpupid_reset_last(struct page *page)
  844. {
  845. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  846. }
  847. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  848. #else /* !CONFIG_NUMA_BALANCING */
  849. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  850. {
  851. return page_to_nid(page); /* XXX */
  852. }
  853. static inline int page_cpupid_last(struct page *page)
  854. {
  855. return page_to_nid(page); /* XXX */
  856. }
  857. static inline int cpupid_to_nid(int cpupid)
  858. {
  859. return -1;
  860. }
  861. static inline int cpupid_to_pid(int cpupid)
  862. {
  863. return -1;
  864. }
  865. static inline int cpupid_to_cpu(int cpupid)
  866. {
  867. return -1;
  868. }
  869. static inline int cpu_pid_to_cpupid(int nid, int pid)
  870. {
  871. return -1;
  872. }
  873. static inline bool cpupid_pid_unset(int cpupid)
  874. {
  875. return 1;
  876. }
  877. static inline void page_cpupid_reset_last(struct page *page)
  878. {
  879. }
  880. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  881. {
  882. return false;
  883. }
  884. #endif /* CONFIG_NUMA_BALANCING */
  885. static inline struct zone *page_zone(const struct page *page)
  886. {
  887. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  888. }
  889. static inline pg_data_t *page_pgdat(const struct page *page)
  890. {
  891. return NODE_DATA(page_to_nid(page));
  892. }
  893. #ifdef SECTION_IN_PAGE_FLAGS
  894. static inline void set_page_section(struct page *page, unsigned long section)
  895. {
  896. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  897. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  898. }
  899. static inline unsigned long page_to_section(const struct page *page)
  900. {
  901. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  902. }
  903. #endif
  904. static inline void set_page_zone(struct page *page, enum zone_type zone)
  905. {
  906. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  907. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  908. }
  909. static inline void set_page_node(struct page *page, unsigned long node)
  910. {
  911. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  912. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  913. }
  914. static inline void set_page_links(struct page *page, enum zone_type zone,
  915. unsigned long node, unsigned long pfn)
  916. {
  917. set_page_zone(page, zone);
  918. set_page_node(page, node);
  919. #ifdef SECTION_IN_PAGE_FLAGS
  920. set_page_section(page, pfn_to_section_nr(pfn));
  921. #endif
  922. }
  923. #ifdef CONFIG_MEMCG
  924. static inline struct mem_cgroup *page_memcg(struct page *page)
  925. {
  926. return page->mem_cgroup;
  927. }
  928. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  929. {
  930. WARN_ON_ONCE(!rcu_read_lock_held());
  931. return READ_ONCE(page->mem_cgroup);
  932. }
  933. #else
  934. static inline struct mem_cgroup *page_memcg(struct page *page)
  935. {
  936. return NULL;
  937. }
  938. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  939. {
  940. WARN_ON_ONCE(!rcu_read_lock_held());
  941. return NULL;
  942. }
  943. #endif
  944. /*
  945. * Some inline functions in vmstat.h depend on page_zone()
  946. */
  947. #include <linux/vmstat.h>
  948. static __always_inline void *lowmem_page_address(const struct page *page)
  949. {
  950. return page_to_virt(page);
  951. }
  952. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  953. #define HASHED_PAGE_VIRTUAL
  954. #endif
  955. #if defined(WANT_PAGE_VIRTUAL)
  956. static inline void *page_address(const struct page *page)
  957. {
  958. return page->virtual;
  959. }
  960. static inline void set_page_address(struct page *page, void *address)
  961. {
  962. page->virtual = address;
  963. }
  964. #define page_address_init() do { } while(0)
  965. #endif
  966. #if defined(HASHED_PAGE_VIRTUAL)
  967. void *page_address(const struct page *page);
  968. void set_page_address(struct page *page, void *virtual);
  969. void page_address_init(void);
  970. #endif
  971. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  972. #define page_address(page) lowmem_page_address(page)
  973. #define set_page_address(page, address) do { } while(0)
  974. #define page_address_init() do { } while(0)
  975. #endif
  976. extern void *page_rmapping(struct page *page);
  977. extern struct anon_vma *page_anon_vma(struct page *page);
  978. extern struct address_space *page_mapping(struct page *page);
  979. extern struct address_space *__page_file_mapping(struct page *);
  980. static inline
  981. struct address_space *page_file_mapping(struct page *page)
  982. {
  983. if (unlikely(PageSwapCache(page)))
  984. return __page_file_mapping(page);
  985. return page->mapping;
  986. }
  987. extern pgoff_t __page_file_index(struct page *page);
  988. /*
  989. * Return the pagecache index of the passed page. Regular pagecache pages
  990. * use ->index whereas swapcache pages use swp_offset(->private)
  991. */
  992. static inline pgoff_t page_index(struct page *page)
  993. {
  994. if (unlikely(PageSwapCache(page)))
  995. return __page_file_index(page);
  996. return page->index;
  997. }
  998. bool page_mapped(struct page *page);
  999. struct address_space *page_mapping(struct page *page);
  1000. struct address_space *page_mapping_file(struct page *page);
  1001. /*
  1002. * Return true only if the page has been allocated with
  1003. * ALLOC_NO_WATERMARKS and the low watermark was not
  1004. * met implying that the system is under some pressure.
  1005. */
  1006. static inline bool page_is_pfmemalloc(struct page *page)
  1007. {
  1008. /*
  1009. * Page index cannot be this large so this must be
  1010. * a pfmemalloc page.
  1011. */
  1012. return page->index == -1UL;
  1013. }
  1014. /*
  1015. * Only to be called by the page allocator on a freshly allocated
  1016. * page.
  1017. */
  1018. static inline void set_page_pfmemalloc(struct page *page)
  1019. {
  1020. page->index = -1UL;
  1021. }
  1022. static inline void clear_page_pfmemalloc(struct page *page)
  1023. {
  1024. page->index = 0;
  1025. }
  1026. /*
  1027. * Different kinds of faults, as returned by handle_mm_fault().
  1028. * Used to decide whether a process gets delivered SIGBUS or
  1029. * just gets major/minor fault counters bumped up.
  1030. */
  1031. #define VM_FAULT_OOM 0x0001
  1032. #define VM_FAULT_SIGBUS 0x0002
  1033. #define VM_FAULT_MAJOR 0x0004
  1034. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1035. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1036. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1037. #define VM_FAULT_SIGSEGV 0x0040
  1038. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1039. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1040. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1041. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1042. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1043. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1044. * and needs fsync() to complete (for
  1045. * synchronous page faults in DAX) */
  1046. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1047. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1048. VM_FAULT_FALLBACK)
  1049. #define VM_FAULT_RESULT_TRACE \
  1050. { VM_FAULT_OOM, "OOM" }, \
  1051. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1052. { VM_FAULT_MAJOR, "MAJOR" }, \
  1053. { VM_FAULT_WRITE, "WRITE" }, \
  1054. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1055. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1056. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1057. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1058. { VM_FAULT_LOCKED, "LOCKED" }, \
  1059. { VM_FAULT_RETRY, "RETRY" }, \
  1060. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1061. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1062. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1063. /* Encode hstate index for a hwpoisoned large page */
  1064. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1065. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1066. /*
  1067. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1068. */
  1069. extern void pagefault_out_of_memory(void);
  1070. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1071. /*
  1072. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1073. * various contexts.
  1074. */
  1075. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1076. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1077. extern bool can_do_mlock(void);
  1078. extern int user_shm_lock(size_t, struct user_struct *);
  1079. extern void user_shm_unlock(size_t, struct user_struct *);
  1080. /*
  1081. * Parameter block passed down to zap_pte_range in exceptional cases.
  1082. */
  1083. struct zap_details {
  1084. struct address_space *check_mapping; /* Check page->mapping if set */
  1085. pgoff_t first_index; /* Lowest page->index to unmap */
  1086. pgoff_t last_index; /* Highest page->index to unmap */
  1087. };
  1088. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1089. pte_t pte, bool with_public_device);
  1090. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1091. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1092. pmd_t pmd);
  1093. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1094. unsigned long size);
  1095. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1096. unsigned long size);
  1097. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1098. unsigned long start, unsigned long end);
  1099. /**
  1100. * mm_walk - callbacks for walk_page_range
  1101. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1102. * this handler should only handle pud_trans_huge() puds.
  1103. * the pmd_entry or pte_entry callbacks will be used for
  1104. * regular PUDs.
  1105. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1106. * this handler is required to be able to handle
  1107. * pmd_trans_huge() pmds. They may simply choose to
  1108. * split_huge_page() instead of handling it explicitly.
  1109. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1110. * @pte_hole: if set, called for each hole at all levels
  1111. * @hugetlb_entry: if set, called for each hugetlb entry
  1112. * @test_walk: caller specific callback function to determine whether
  1113. * we walk over the current vma or not. Returning 0
  1114. * value means "do page table walk over the current vma,"
  1115. * and a negative one means "abort current page table walk
  1116. * right now." 1 means "skip the current vma."
  1117. * @mm: mm_struct representing the target process of page table walk
  1118. * @vma: vma currently walked (NULL if walking outside vmas)
  1119. * @private: private data for callbacks' usage
  1120. *
  1121. * (see the comment on walk_page_range() for more details)
  1122. */
  1123. struct mm_walk {
  1124. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1125. unsigned long next, struct mm_walk *walk);
  1126. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1127. unsigned long next, struct mm_walk *walk);
  1128. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1129. unsigned long next, struct mm_walk *walk);
  1130. int (*pte_hole)(unsigned long addr, unsigned long next,
  1131. struct mm_walk *walk);
  1132. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1133. unsigned long addr, unsigned long next,
  1134. struct mm_walk *walk);
  1135. int (*test_walk)(unsigned long addr, unsigned long next,
  1136. struct mm_walk *walk);
  1137. struct mm_struct *mm;
  1138. struct vm_area_struct *vma;
  1139. void *private;
  1140. };
  1141. int walk_page_range(unsigned long addr, unsigned long end,
  1142. struct mm_walk *walk);
  1143. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1144. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1145. unsigned long end, unsigned long floor, unsigned long ceiling);
  1146. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1147. struct vm_area_struct *vma);
  1148. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1149. unsigned long *start, unsigned long *end,
  1150. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1151. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1152. unsigned long *pfn);
  1153. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1154. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1155. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1156. void *buf, int len, int write);
  1157. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1158. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1159. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1160. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1161. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1162. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1163. int invalidate_inode_page(struct page *page);
  1164. #ifdef CONFIG_MMU
  1165. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1166. unsigned int flags);
  1167. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1168. unsigned long address, unsigned int fault_flags,
  1169. bool *unlocked);
  1170. void unmap_mapping_pages(struct address_space *mapping,
  1171. pgoff_t start, pgoff_t nr, bool even_cows);
  1172. void unmap_mapping_range(struct address_space *mapping,
  1173. loff_t const holebegin, loff_t const holelen, int even_cows);
  1174. #else
  1175. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1176. unsigned long address, unsigned int flags)
  1177. {
  1178. /* should never happen if there's no MMU */
  1179. BUG();
  1180. return VM_FAULT_SIGBUS;
  1181. }
  1182. static inline int fixup_user_fault(struct task_struct *tsk,
  1183. struct mm_struct *mm, unsigned long address,
  1184. unsigned int fault_flags, bool *unlocked)
  1185. {
  1186. /* should never happen if there's no MMU */
  1187. BUG();
  1188. return -EFAULT;
  1189. }
  1190. static inline void unmap_mapping_pages(struct address_space *mapping,
  1191. pgoff_t start, pgoff_t nr, bool even_cows) { }
  1192. static inline void unmap_mapping_range(struct address_space *mapping,
  1193. loff_t const holebegin, loff_t const holelen, int even_cows) { }
  1194. #endif
  1195. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1196. loff_t const holebegin, loff_t const holelen)
  1197. {
  1198. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1199. }
  1200. extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
  1201. void *buf, int len, unsigned int gup_flags);
  1202. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1203. void *buf, int len, unsigned int gup_flags);
  1204. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1205. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1206. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1207. unsigned long start, unsigned long nr_pages,
  1208. unsigned int gup_flags, struct page **pages,
  1209. struct vm_area_struct **vmas, int *locked);
  1210. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1211. unsigned int gup_flags, struct page **pages,
  1212. struct vm_area_struct **vmas);
  1213. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1214. unsigned int gup_flags, struct page **pages, int *locked);
  1215. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1216. struct page **pages, unsigned int gup_flags);
  1217. #ifdef CONFIG_FS_DAX
  1218. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1219. unsigned int gup_flags, struct page **pages,
  1220. struct vm_area_struct **vmas);
  1221. #else
  1222. static inline long get_user_pages_longterm(unsigned long start,
  1223. unsigned long nr_pages, unsigned int gup_flags,
  1224. struct page **pages, struct vm_area_struct **vmas)
  1225. {
  1226. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1227. }
  1228. #endif /* CONFIG_FS_DAX */
  1229. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1230. struct page **pages);
  1231. /* Container for pinned pfns / pages */
  1232. struct frame_vector {
  1233. unsigned int nr_allocated; /* Number of frames we have space for */
  1234. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1235. bool got_ref; /* Did we pin pages by getting page ref? */
  1236. bool is_pfns; /* Does array contain pages or pfns? */
  1237. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1238. * pfns_vector_pages() or pfns_vector_pfns()
  1239. * for access */
  1240. };
  1241. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1242. void frame_vector_destroy(struct frame_vector *vec);
  1243. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1244. unsigned int gup_flags, struct frame_vector *vec);
  1245. void put_vaddr_frames(struct frame_vector *vec);
  1246. int frame_vector_to_pages(struct frame_vector *vec);
  1247. void frame_vector_to_pfns(struct frame_vector *vec);
  1248. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1249. {
  1250. return vec->nr_frames;
  1251. }
  1252. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1253. {
  1254. if (vec->is_pfns) {
  1255. int err = frame_vector_to_pages(vec);
  1256. if (err)
  1257. return ERR_PTR(err);
  1258. }
  1259. return (struct page **)(vec->ptrs);
  1260. }
  1261. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1262. {
  1263. if (!vec->is_pfns)
  1264. frame_vector_to_pfns(vec);
  1265. return (unsigned long *)(vec->ptrs);
  1266. }
  1267. struct kvec;
  1268. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1269. struct page **pages);
  1270. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1271. struct page *get_dump_page(unsigned long addr);
  1272. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1273. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1274. unsigned int length);
  1275. void __set_page_dirty(struct page *, struct address_space *, int warn);
  1276. int __set_page_dirty_nobuffers(struct page *page);
  1277. int __set_page_dirty_no_writeback(struct page *page);
  1278. int redirty_page_for_writepage(struct writeback_control *wbc,
  1279. struct page *page);
  1280. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1281. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1282. struct bdi_writeback *wb);
  1283. int set_page_dirty(struct page *page);
  1284. int set_page_dirty_lock(struct page *page);
  1285. void __cancel_dirty_page(struct page *page);
  1286. static inline void cancel_dirty_page(struct page *page)
  1287. {
  1288. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1289. if (PageDirty(page))
  1290. __cancel_dirty_page(page);
  1291. }
  1292. int clear_page_dirty_for_io(struct page *page);
  1293. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1294. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1295. {
  1296. return !vma->vm_ops;
  1297. }
  1298. #ifdef CONFIG_SHMEM
  1299. /*
  1300. * The vma_is_shmem is not inline because it is used only by slow
  1301. * paths in userfault.
  1302. */
  1303. bool vma_is_shmem(struct vm_area_struct *vma);
  1304. #else
  1305. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1306. #endif
  1307. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1308. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1309. unsigned long old_addr, struct vm_area_struct *new_vma,
  1310. unsigned long new_addr, unsigned long len,
  1311. bool need_rmap_locks);
  1312. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1313. unsigned long end, pgprot_t newprot,
  1314. int dirty_accountable, int prot_numa);
  1315. extern int mprotect_fixup(struct vm_area_struct *vma,
  1316. struct vm_area_struct **pprev, unsigned long start,
  1317. unsigned long end, unsigned long newflags);
  1318. /*
  1319. * doesn't attempt to fault and will return short.
  1320. */
  1321. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1322. struct page **pages);
  1323. /*
  1324. * per-process(per-mm_struct) statistics.
  1325. */
  1326. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1327. {
  1328. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1329. #ifdef SPLIT_RSS_COUNTING
  1330. /*
  1331. * counter is updated in asynchronous manner and may go to minus.
  1332. * But it's never be expected number for users.
  1333. */
  1334. if (val < 0)
  1335. val = 0;
  1336. #endif
  1337. return (unsigned long)val;
  1338. }
  1339. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1340. {
  1341. atomic_long_add(value, &mm->rss_stat.count[member]);
  1342. }
  1343. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1344. {
  1345. atomic_long_inc(&mm->rss_stat.count[member]);
  1346. }
  1347. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1348. {
  1349. atomic_long_dec(&mm->rss_stat.count[member]);
  1350. }
  1351. /* Optimized variant when page is already known not to be PageAnon */
  1352. static inline int mm_counter_file(struct page *page)
  1353. {
  1354. if (PageSwapBacked(page))
  1355. return MM_SHMEMPAGES;
  1356. return MM_FILEPAGES;
  1357. }
  1358. static inline int mm_counter(struct page *page)
  1359. {
  1360. if (PageAnon(page))
  1361. return MM_ANONPAGES;
  1362. return mm_counter_file(page);
  1363. }
  1364. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1365. {
  1366. return get_mm_counter(mm, MM_FILEPAGES) +
  1367. get_mm_counter(mm, MM_ANONPAGES) +
  1368. get_mm_counter(mm, MM_SHMEMPAGES);
  1369. }
  1370. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1371. {
  1372. return max(mm->hiwater_rss, get_mm_rss(mm));
  1373. }
  1374. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1375. {
  1376. return max(mm->hiwater_vm, mm->total_vm);
  1377. }
  1378. static inline void update_hiwater_rss(struct mm_struct *mm)
  1379. {
  1380. unsigned long _rss = get_mm_rss(mm);
  1381. if ((mm)->hiwater_rss < _rss)
  1382. (mm)->hiwater_rss = _rss;
  1383. }
  1384. static inline void update_hiwater_vm(struct mm_struct *mm)
  1385. {
  1386. if (mm->hiwater_vm < mm->total_vm)
  1387. mm->hiwater_vm = mm->total_vm;
  1388. }
  1389. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1390. {
  1391. mm->hiwater_rss = get_mm_rss(mm);
  1392. }
  1393. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1394. struct mm_struct *mm)
  1395. {
  1396. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1397. if (*maxrss < hiwater_rss)
  1398. *maxrss = hiwater_rss;
  1399. }
  1400. #if defined(SPLIT_RSS_COUNTING)
  1401. void sync_mm_rss(struct mm_struct *mm);
  1402. #else
  1403. static inline void sync_mm_rss(struct mm_struct *mm)
  1404. {
  1405. }
  1406. #endif
  1407. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1408. static inline int pte_devmap(pte_t pte)
  1409. {
  1410. return 0;
  1411. }
  1412. #endif
  1413. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1414. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1415. spinlock_t **ptl);
  1416. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1417. spinlock_t **ptl)
  1418. {
  1419. pte_t *ptep;
  1420. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1421. return ptep;
  1422. }
  1423. #ifdef __PAGETABLE_P4D_FOLDED
  1424. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1425. unsigned long address)
  1426. {
  1427. return 0;
  1428. }
  1429. #else
  1430. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1431. #endif
  1432. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1433. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1434. unsigned long address)
  1435. {
  1436. return 0;
  1437. }
  1438. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1439. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1440. #else
  1441. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1442. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1443. {
  1444. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1445. }
  1446. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1447. {
  1448. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1449. }
  1450. #endif
  1451. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1452. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1453. unsigned long address)
  1454. {
  1455. return 0;
  1456. }
  1457. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1458. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1459. #else
  1460. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1461. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1462. {
  1463. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1464. }
  1465. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1466. {
  1467. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1468. }
  1469. #endif
  1470. #ifdef CONFIG_MMU
  1471. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1472. {
  1473. atomic_long_set(&mm->pgtables_bytes, 0);
  1474. }
  1475. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1476. {
  1477. return atomic_long_read(&mm->pgtables_bytes);
  1478. }
  1479. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1480. {
  1481. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1482. }
  1483. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1484. {
  1485. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1486. }
  1487. #else
  1488. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1489. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1490. {
  1491. return 0;
  1492. }
  1493. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1494. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1495. #endif
  1496. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1497. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1498. /*
  1499. * The following ifdef needed to get the 4level-fixup.h header to work.
  1500. * Remove it when 4level-fixup.h has been removed.
  1501. */
  1502. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1503. #ifndef __ARCH_HAS_5LEVEL_HACK
  1504. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1505. unsigned long address)
  1506. {
  1507. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1508. NULL : p4d_offset(pgd, address);
  1509. }
  1510. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1511. unsigned long address)
  1512. {
  1513. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1514. NULL : pud_offset(p4d, address);
  1515. }
  1516. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1517. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1518. {
  1519. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1520. NULL: pmd_offset(pud, address);
  1521. }
  1522. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1523. #if USE_SPLIT_PTE_PTLOCKS
  1524. #if ALLOC_SPLIT_PTLOCKS
  1525. void __init ptlock_cache_init(void);
  1526. extern bool ptlock_alloc(struct page *page);
  1527. extern void ptlock_free(struct page *page);
  1528. static inline spinlock_t *ptlock_ptr(struct page *page)
  1529. {
  1530. return page->ptl;
  1531. }
  1532. #else /* ALLOC_SPLIT_PTLOCKS */
  1533. static inline void ptlock_cache_init(void)
  1534. {
  1535. }
  1536. static inline bool ptlock_alloc(struct page *page)
  1537. {
  1538. return true;
  1539. }
  1540. static inline void ptlock_free(struct page *page)
  1541. {
  1542. }
  1543. static inline spinlock_t *ptlock_ptr(struct page *page)
  1544. {
  1545. return &page->ptl;
  1546. }
  1547. #endif /* ALLOC_SPLIT_PTLOCKS */
  1548. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1549. {
  1550. return ptlock_ptr(pmd_page(*pmd));
  1551. }
  1552. static inline bool ptlock_init(struct page *page)
  1553. {
  1554. /*
  1555. * prep_new_page() initialize page->private (and therefore page->ptl)
  1556. * with 0. Make sure nobody took it in use in between.
  1557. *
  1558. * It can happen if arch try to use slab for page table allocation:
  1559. * slab code uses page->slab_cache, which share storage with page->ptl.
  1560. */
  1561. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1562. if (!ptlock_alloc(page))
  1563. return false;
  1564. spin_lock_init(ptlock_ptr(page));
  1565. return true;
  1566. }
  1567. /* Reset page->mapping so free_pages_check won't complain. */
  1568. static inline void pte_lock_deinit(struct page *page)
  1569. {
  1570. page->mapping = NULL;
  1571. ptlock_free(page);
  1572. }
  1573. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1574. /*
  1575. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1576. */
  1577. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1578. {
  1579. return &mm->page_table_lock;
  1580. }
  1581. static inline void ptlock_cache_init(void) {}
  1582. static inline bool ptlock_init(struct page *page) { return true; }
  1583. static inline void pte_lock_deinit(struct page *page) {}
  1584. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1585. static inline void pgtable_init(void)
  1586. {
  1587. ptlock_cache_init();
  1588. pgtable_cache_init();
  1589. }
  1590. static inline bool pgtable_page_ctor(struct page *page)
  1591. {
  1592. if (!ptlock_init(page))
  1593. return false;
  1594. inc_zone_page_state(page, NR_PAGETABLE);
  1595. return true;
  1596. }
  1597. static inline void pgtable_page_dtor(struct page *page)
  1598. {
  1599. pte_lock_deinit(page);
  1600. dec_zone_page_state(page, NR_PAGETABLE);
  1601. }
  1602. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1603. ({ \
  1604. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1605. pte_t *__pte = pte_offset_map(pmd, address); \
  1606. *(ptlp) = __ptl; \
  1607. spin_lock(__ptl); \
  1608. __pte; \
  1609. })
  1610. #define pte_unmap_unlock(pte, ptl) do { \
  1611. spin_unlock(ptl); \
  1612. pte_unmap(pte); \
  1613. } while (0)
  1614. #define pte_alloc(mm, pmd, address) \
  1615. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1616. #define pte_alloc_map(mm, pmd, address) \
  1617. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1618. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1619. (pte_alloc(mm, pmd, address) ? \
  1620. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1621. #define pte_alloc_kernel(pmd, address) \
  1622. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1623. NULL: pte_offset_kernel(pmd, address))
  1624. #if USE_SPLIT_PMD_PTLOCKS
  1625. static struct page *pmd_to_page(pmd_t *pmd)
  1626. {
  1627. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1628. return virt_to_page((void *)((unsigned long) pmd & mask));
  1629. }
  1630. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1631. {
  1632. return ptlock_ptr(pmd_to_page(pmd));
  1633. }
  1634. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1635. {
  1636. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1637. page->pmd_huge_pte = NULL;
  1638. #endif
  1639. return ptlock_init(page);
  1640. }
  1641. static inline void pgtable_pmd_page_dtor(struct page *page)
  1642. {
  1643. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1644. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1645. #endif
  1646. ptlock_free(page);
  1647. }
  1648. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1649. #else
  1650. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1651. {
  1652. return &mm->page_table_lock;
  1653. }
  1654. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1655. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1656. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1657. #endif
  1658. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1659. {
  1660. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1661. spin_lock(ptl);
  1662. return ptl;
  1663. }
  1664. /*
  1665. * No scalability reason to split PUD locks yet, but follow the same pattern
  1666. * as the PMD locks to make it easier if we decide to. The VM should not be
  1667. * considered ready to switch to split PUD locks yet; there may be places
  1668. * which need to be converted from page_table_lock.
  1669. */
  1670. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1671. {
  1672. return &mm->page_table_lock;
  1673. }
  1674. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1675. {
  1676. spinlock_t *ptl = pud_lockptr(mm, pud);
  1677. spin_lock(ptl);
  1678. return ptl;
  1679. }
  1680. extern void __init pagecache_init(void);
  1681. extern void free_area_init(unsigned long * zones_size);
  1682. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1683. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1684. extern void free_initmem(void);
  1685. /*
  1686. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1687. * into the buddy system. The freed pages will be poisoned with pattern
  1688. * "poison" if it's within range [0, UCHAR_MAX].
  1689. * Return pages freed into the buddy system.
  1690. */
  1691. extern unsigned long free_reserved_area(void *start, void *end,
  1692. int poison, char *s);
  1693. #ifdef CONFIG_HIGHMEM
  1694. /*
  1695. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1696. * and totalram_pages.
  1697. */
  1698. extern void free_highmem_page(struct page *page);
  1699. #endif
  1700. extern void adjust_managed_page_count(struct page *page, long count);
  1701. extern void mem_init_print_info(const char *str);
  1702. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1703. /* Free the reserved page into the buddy system, so it gets managed. */
  1704. static inline void __free_reserved_page(struct page *page)
  1705. {
  1706. ClearPageReserved(page);
  1707. init_page_count(page);
  1708. __free_page(page);
  1709. }
  1710. static inline void free_reserved_page(struct page *page)
  1711. {
  1712. __free_reserved_page(page);
  1713. adjust_managed_page_count(page, 1);
  1714. }
  1715. static inline void mark_page_reserved(struct page *page)
  1716. {
  1717. SetPageReserved(page);
  1718. adjust_managed_page_count(page, -1);
  1719. }
  1720. /*
  1721. * Default method to free all the __init memory into the buddy system.
  1722. * The freed pages will be poisoned with pattern "poison" if it's within
  1723. * range [0, UCHAR_MAX].
  1724. * Return pages freed into the buddy system.
  1725. */
  1726. static inline unsigned long free_initmem_default(int poison)
  1727. {
  1728. extern char __init_begin[], __init_end[];
  1729. return free_reserved_area(&__init_begin, &__init_end,
  1730. poison, "unused kernel");
  1731. }
  1732. static inline unsigned long get_num_physpages(void)
  1733. {
  1734. int nid;
  1735. unsigned long phys_pages = 0;
  1736. for_each_online_node(nid)
  1737. phys_pages += node_present_pages(nid);
  1738. return phys_pages;
  1739. }
  1740. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1741. /*
  1742. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1743. * zones, allocate the backing mem_map and account for memory holes in a more
  1744. * architecture independent manner. This is a substitute for creating the
  1745. * zone_sizes[] and zholes_size[] arrays and passing them to
  1746. * free_area_init_node()
  1747. *
  1748. * An architecture is expected to register range of page frames backed by
  1749. * physical memory with memblock_add[_node]() before calling
  1750. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1751. * usage, an architecture is expected to do something like
  1752. *
  1753. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1754. * max_highmem_pfn};
  1755. * for_each_valid_physical_page_range()
  1756. * memblock_add_node(base, size, nid)
  1757. * free_area_init_nodes(max_zone_pfns);
  1758. *
  1759. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1760. * registered physical page range. Similarly
  1761. * sparse_memory_present_with_active_regions() calls memory_present() for
  1762. * each range when SPARSEMEM is enabled.
  1763. *
  1764. * See mm/page_alloc.c for more information on each function exposed by
  1765. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1766. */
  1767. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1768. unsigned long node_map_pfn_alignment(void);
  1769. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1770. unsigned long end_pfn);
  1771. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1772. unsigned long end_pfn);
  1773. extern void get_pfn_range_for_nid(unsigned int nid,
  1774. unsigned long *start_pfn, unsigned long *end_pfn);
  1775. extern unsigned long find_min_pfn_with_active_regions(void);
  1776. extern void free_bootmem_with_active_regions(int nid,
  1777. unsigned long max_low_pfn);
  1778. extern void sparse_memory_present_with_active_regions(int nid);
  1779. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1780. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1781. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1782. static inline int __early_pfn_to_nid(unsigned long pfn,
  1783. struct mminit_pfnnid_cache *state)
  1784. {
  1785. return 0;
  1786. }
  1787. #else
  1788. /* please see mm/page_alloc.c */
  1789. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1790. /* there is a per-arch backend function. */
  1791. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1792. struct mminit_pfnnid_cache *state);
  1793. #endif
  1794. #ifdef CONFIG_HAVE_MEMBLOCK
  1795. void zero_resv_unavail(void);
  1796. #else
  1797. static inline void zero_resv_unavail(void) {}
  1798. #endif
  1799. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1800. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
  1801. enum memmap_context, struct vmem_altmap *);
  1802. extern void setup_per_zone_wmarks(void);
  1803. extern int __meminit init_per_zone_wmark_min(void);
  1804. extern void mem_init(void);
  1805. extern void __init mmap_init(void);
  1806. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1807. extern long si_mem_available(void);
  1808. extern void si_meminfo(struct sysinfo * val);
  1809. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1810. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1811. extern unsigned long arch_reserved_kernel_pages(void);
  1812. #endif
  1813. extern __printf(3, 4)
  1814. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1815. extern void setup_per_cpu_pageset(void);
  1816. extern void zone_pcp_update(struct zone *zone);
  1817. extern void zone_pcp_reset(struct zone *zone);
  1818. /* page_alloc.c */
  1819. extern int min_free_kbytes;
  1820. extern int watermark_scale_factor;
  1821. /* nommu.c */
  1822. extern atomic_long_t mmap_pages_allocated;
  1823. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1824. /* interval_tree.c */
  1825. void vma_interval_tree_insert(struct vm_area_struct *node,
  1826. struct rb_root_cached *root);
  1827. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1828. struct vm_area_struct *prev,
  1829. struct rb_root_cached *root);
  1830. void vma_interval_tree_remove(struct vm_area_struct *node,
  1831. struct rb_root_cached *root);
  1832. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1833. unsigned long start, unsigned long last);
  1834. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1835. unsigned long start, unsigned long last);
  1836. #define vma_interval_tree_foreach(vma, root, start, last) \
  1837. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1838. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1839. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1840. struct rb_root_cached *root);
  1841. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1842. struct rb_root_cached *root);
  1843. struct anon_vma_chain *
  1844. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1845. unsigned long start, unsigned long last);
  1846. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1847. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1848. #ifdef CONFIG_DEBUG_VM_RB
  1849. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1850. #endif
  1851. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1852. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1853. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1854. /* mmap.c */
  1855. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1856. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1857. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1858. struct vm_area_struct *expand);
  1859. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1860. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1861. {
  1862. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1863. }
  1864. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1865. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1866. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1867. struct mempolicy *, struct vm_userfaultfd_ctx);
  1868. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1869. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1870. unsigned long addr, int new_below);
  1871. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1872. unsigned long addr, int new_below);
  1873. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1874. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1875. struct rb_node **, struct rb_node *);
  1876. extern void unlink_file_vma(struct vm_area_struct *);
  1877. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1878. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1879. bool *need_rmap_locks);
  1880. extern void exit_mmap(struct mm_struct *);
  1881. static inline int check_data_rlimit(unsigned long rlim,
  1882. unsigned long new,
  1883. unsigned long start,
  1884. unsigned long end_data,
  1885. unsigned long start_data)
  1886. {
  1887. if (rlim < RLIM_INFINITY) {
  1888. if (((new - start) + (end_data - start_data)) > rlim)
  1889. return -ENOSPC;
  1890. }
  1891. return 0;
  1892. }
  1893. extern int mm_take_all_locks(struct mm_struct *mm);
  1894. extern void mm_drop_all_locks(struct mm_struct *mm);
  1895. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1896. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1897. extern struct file *get_task_exe_file(struct task_struct *task);
  1898. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1899. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1900. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1901. const struct vm_special_mapping *sm);
  1902. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1903. unsigned long addr, unsigned long len,
  1904. unsigned long flags,
  1905. const struct vm_special_mapping *spec);
  1906. /* This is an obsolete alternative to _install_special_mapping. */
  1907. extern int install_special_mapping(struct mm_struct *mm,
  1908. unsigned long addr, unsigned long len,
  1909. unsigned long flags, struct page **pages);
  1910. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1911. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1912. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1913. struct list_head *uf);
  1914. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1915. unsigned long len, unsigned long prot, unsigned long flags,
  1916. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1917. struct list_head *uf);
  1918. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1919. struct list_head *uf);
  1920. static inline unsigned long
  1921. do_mmap_pgoff(struct file *file, unsigned long addr,
  1922. unsigned long len, unsigned long prot, unsigned long flags,
  1923. unsigned long pgoff, unsigned long *populate,
  1924. struct list_head *uf)
  1925. {
  1926. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1927. }
  1928. #ifdef CONFIG_MMU
  1929. extern int __mm_populate(unsigned long addr, unsigned long len,
  1930. int ignore_errors);
  1931. static inline void mm_populate(unsigned long addr, unsigned long len)
  1932. {
  1933. /* Ignore errors */
  1934. (void) __mm_populate(addr, len, 1);
  1935. }
  1936. #else
  1937. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1938. #endif
  1939. /* These take the mm semaphore themselves */
  1940. extern int __must_check vm_brk(unsigned long, unsigned long);
  1941. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1942. extern int vm_munmap(unsigned long, size_t);
  1943. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1944. unsigned long, unsigned long,
  1945. unsigned long, unsigned long);
  1946. struct vm_unmapped_area_info {
  1947. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1948. unsigned long flags;
  1949. unsigned long length;
  1950. unsigned long low_limit;
  1951. unsigned long high_limit;
  1952. unsigned long align_mask;
  1953. unsigned long align_offset;
  1954. };
  1955. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1956. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1957. /*
  1958. * Search for an unmapped address range.
  1959. *
  1960. * We are looking for a range that:
  1961. * - does not intersect with any VMA;
  1962. * - is contained within the [low_limit, high_limit) interval;
  1963. * - is at least the desired size.
  1964. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1965. */
  1966. static inline unsigned long
  1967. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1968. {
  1969. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1970. return unmapped_area_topdown(info);
  1971. else
  1972. return unmapped_area(info);
  1973. }
  1974. /* truncate.c */
  1975. extern void truncate_inode_pages(struct address_space *, loff_t);
  1976. extern void truncate_inode_pages_range(struct address_space *,
  1977. loff_t lstart, loff_t lend);
  1978. extern void truncate_inode_pages_final(struct address_space *);
  1979. /* generic vm_area_ops exported for stackable file systems */
  1980. extern int filemap_fault(struct vm_fault *vmf);
  1981. extern void filemap_map_pages(struct vm_fault *vmf,
  1982. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1983. extern int filemap_page_mkwrite(struct vm_fault *vmf);
  1984. /* mm/page-writeback.c */
  1985. int __must_check write_one_page(struct page *page);
  1986. void task_dirty_inc(struct task_struct *tsk);
  1987. /* readahead.c */
  1988. #define VM_MAX_READAHEAD 128 /* kbytes */
  1989. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1990. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1991. pgoff_t offset, unsigned long nr_to_read);
  1992. void page_cache_sync_readahead(struct address_space *mapping,
  1993. struct file_ra_state *ra,
  1994. struct file *filp,
  1995. pgoff_t offset,
  1996. unsigned long size);
  1997. void page_cache_async_readahead(struct address_space *mapping,
  1998. struct file_ra_state *ra,
  1999. struct file *filp,
  2000. struct page *pg,
  2001. pgoff_t offset,
  2002. unsigned long size);
  2003. extern unsigned long stack_guard_gap;
  2004. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  2005. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  2006. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  2007. extern int expand_downwards(struct vm_area_struct *vma,
  2008. unsigned long address);
  2009. #if VM_GROWSUP
  2010. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  2011. #else
  2012. #define expand_upwards(vma, address) (0)
  2013. #endif
  2014. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  2015. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  2016. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  2017. struct vm_area_struct **pprev);
  2018. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2019. NULL if none. Assume start_addr < end_addr. */
  2020. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2021. {
  2022. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2023. if (vma && end_addr <= vma->vm_start)
  2024. vma = NULL;
  2025. return vma;
  2026. }
  2027. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2028. {
  2029. unsigned long vm_start = vma->vm_start;
  2030. if (vma->vm_flags & VM_GROWSDOWN) {
  2031. vm_start -= stack_guard_gap;
  2032. if (vm_start > vma->vm_start)
  2033. vm_start = 0;
  2034. }
  2035. return vm_start;
  2036. }
  2037. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2038. {
  2039. unsigned long vm_end = vma->vm_end;
  2040. if (vma->vm_flags & VM_GROWSUP) {
  2041. vm_end += stack_guard_gap;
  2042. if (vm_end < vma->vm_end)
  2043. vm_end = -PAGE_SIZE;
  2044. }
  2045. return vm_end;
  2046. }
  2047. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2048. {
  2049. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2050. }
  2051. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2052. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2053. unsigned long vm_start, unsigned long vm_end)
  2054. {
  2055. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2056. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2057. vma = NULL;
  2058. return vma;
  2059. }
  2060. #ifdef CONFIG_MMU
  2061. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2062. void vma_set_page_prot(struct vm_area_struct *vma);
  2063. #else
  2064. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2065. {
  2066. return __pgprot(0);
  2067. }
  2068. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2069. {
  2070. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2071. }
  2072. #endif
  2073. #ifdef CONFIG_NUMA_BALANCING
  2074. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2075. unsigned long start, unsigned long end);
  2076. #endif
  2077. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2078. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2079. unsigned long pfn, unsigned long size, pgprot_t);
  2080. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2081. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2082. unsigned long pfn);
  2083. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2084. unsigned long pfn, pgprot_t pgprot);
  2085. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2086. pfn_t pfn);
  2087. int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
  2088. pfn_t pfn);
  2089. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2090. static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
  2091. unsigned long addr, struct page *page)
  2092. {
  2093. int err = vm_insert_page(vma, addr, page);
  2094. if (err == -ENOMEM)
  2095. return VM_FAULT_OOM;
  2096. if (err < 0 && err != -EBUSY)
  2097. return VM_FAULT_SIGBUS;
  2098. return VM_FAULT_NOPAGE;
  2099. }
  2100. static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
  2101. unsigned long addr, pfn_t pfn)
  2102. {
  2103. int err = vm_insert_mixed(vma, addr, pfn);
  2104. if (err == -ENOMEM)
  2105. return VM_FAULT_OOM;
  2106. if (err < 0 && err != -EBUSY)
  2107. return VM_FAULT_SIGBUS;
  2108. return VM_FAULT_NOPAGE;
  2109. }
  2110. static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
  2111. unsigned long addr, unsigned long pfn)
  2112. {
  2113. int err = vm_insert_pfn(vma, addr, pfn);
  2114. if (err == -ENOMEM)
  2115. return VM_FAULT_OOM;
  2116. if (err < 0 && err != -EBUSY)
  2117. return VM_FAULT_SIGBUS;
  2118. return VM_FAULT_NOPAGE;
  2119. }
  2120. static inline vm_fault_t vmf_error(int err)
  2121. {
  2122. if (err == -ENOMEM)
  2123. return VM_FAULT_OOM;
  2124. return VM_FAULT_SIGBUS;
  2125. }
  2126. struct page *follow_page_mask(struct vm_area_struct *vma,
  2127. unsigned long address, unsigned int foll_flags,
  2128. unsigned int *page_mask);
  2129. static inline struct page *follow_page(struct vm_area_struct *vma,
  2130. unsigned long address, unsigned int foll_flags)
  2131. {
  2132. unsigned int unused_page_mask;
  2133. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2134. }
  2135. #define FOLL_WRITE 0x01 /* check pte is writable */
  2136. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2137. #define FOLL_GET 0x04 /* do get_page on page */
  2138. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2139. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2140. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2141. * and return without waiting upon it */
  2142. #define FOLL_POPULATE 0x40 /* fault in page */
  2143. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2144. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2145. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2146. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2147. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2148. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2149. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2150. #define FOLL_COW 0x4000 /* internal GUP flag */
  2151. #define FOLL_ANON 0x8000 /* don't do file mappings */
  2152. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2153. {
  2154. if (vm_fault & VM_FAULT_OOM)
  2155. return -ENOMEM;
  2156. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2157. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2158. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2159. return -EFAULT;
  2160. return 0;
  2161. }
  2162. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2163. void *data);
  2164. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2165. unsigned long size, pte_fn_t fn, void *data);
  2166. #ifdef CONFIG_PAGE_POISONING
  2167. extern bool page_poisoning_enabled(void);
  2168. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2169. extern bool page_is_poisoned(struct page *page);
  2170. #else
  2171. static inline bool page_poisoning_enabled(void) { return false; }
  2172. static inline void kernel_poison_pages(struct page *page, int numpages,
  2173. int enable) { }
  2174. static inline bool page_is_poisoned(struct page *page) { return false; }
  2175. #endif
  2176. #ifdef CONFIG_DEBUG_PAGEALLOC
  2177. extern bool _debug_pagealloc_enabled;
  2178. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2179. static inline bool debug_pagealloc_enabled(void)
  2180. {
  2181. return _debug_pagealloc_enabled;
  2182. }
  2183. static inline void
  2184. kernel_map_pages(struct page *page, int numpages, int enable)
  2185. {
  2186. if (!debug_pagealloc_enabled())
  2187. return;
  2188. __kernel_map_pages(page, numpages, enable);
  2189. }
  2190. #ifdef CONFIG_HIBERNATION
  2191. extern bool kernel_page_present(struct page *page);
  2192. #endif /* CONFIG_HIBERNATION */
  2193. #else /* CONFIG_DEBUG_PAGEALLOC */
  2194. static inline void
  2195. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2196. #ifdef CONFIG_HIBERNATION
  2197. static inline bool kernel_page_present(struct page *page) { return true; }
  2198. #endif /* CONFIG_HIBERNATION */
  2199. static inline bool debug_pagealloc_enabled(void)
  2200. {
  2201. return false;
  2202. }
  2203. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2204. #ifdef __HAVE_ARCH_GATE_AREA
  2205. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2206. extern int in_gate_area_no_mm(unsigned long addr);
  2207. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2208. #else
  2209. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2210. {
  2211. return NULL;
  2212. }
  2213. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2214. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2215. {
  2216. return 0;
  2217. }
  2218. #endif /* __HAVE_ARCH_GATE_AREA */
  2219. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2220. #ifdef CONFIG_SYSCTL
  2221. extern int sysctl_drop_caches;
  2222. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2223. void __user *, size_t *, loff_t *);
  2224. #endif
  2225. void drop_slab(void);
  2226. void drop_slab_node(int nid);
  2227. #ifndef CONFIG_MMU
  2228. #define randomize_va_space 0
  2229. #else
  2230. extern int randomize_va_space;
  2231. #endif
  2232. const char * arch_vma_name(struct vm_area_struct *vma);
  2233. void print_vma_addr(char *prefix, unsigned long rip);
  2234. void sparse_mem_maps_populate_node(struct page **map_map,
  2235. unsigned long pnum_begin,
  2236. unsigned long pnum_end,
  2237. unsigned long map_count,
  2238. int nodeid);
  2239. struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
  2240. struct vmem_altmap *altmap);
  2241. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2242. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2243. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2244. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2245. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2246. void *vmemmap_alloc_block(unsigned long size, int node);
  2247. struct vmem_altmap;
  2248. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  2249. void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
  2250. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2251. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2252. int node);
  2253. int vmemmap_populate(unsigned long start, unsigned long end, int node,
  2254. struct vmem_altmap *altmap);
  2255. void vmemmap_populate_print_last(void);
  2256. #ifdef CONFIG_MEMORY_HOTPLUG
  2257. void vmemmap_free(unsigned long start, unsigned long end,
  2258. struct vmem_altmap *altmap);
  2259. #endif
  2260. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2261. unsigned long nr_pages);
  2262. enum mf_flags {
  2263. MF_COUNT_INCREASED = 1 << 0,
  2264. MF_ACTION_REQUIRED = 1 << 1,
  2265. MF_MUST_KILL = 1 << 2,
  2266. MF_SOFT_OFFLINE = 1 << 3,
  2267. };
  2268. extern int memory_failure(unsigned long pfn, int flags);
  2269. extern void memory_failure_queue(unsigned long pfn, int flags);
  2270. extern int unpoison_memory(unsigned long pfn);
  2271. extern int get_hwpoison_page(struct page *page);
  2272. #define put_hwpoison_page(page) put_page(page)
  2273. extern int sysctl_memory_failure_early_kill;
  2274. extern int sysctl_memory_failure_recovery;
  2275. extern void shake_page(struct page *p, int access);
  2276. extern atomic_long_t num_poisoned_pages __read_mostly;
  2277. extern int soft_offline_page(struct page *page, int flags);
  2278. /*
  2279. * Error handlers for various types of pages.
  2280. */
  2281. enum mf_result {
  2282. MF_IGNORED, /* Error: cannot be handled */
  2283. MF_FAILED, /* Error: handling failed */
  2284. MF_DELAYED, /* Will be handled later */
  2285. MF_RECOVERED, /* Successfully recovered */
  2286. };
  2287. enum mf_action_page_type {
  2288. MF_MSG_KERNEL,
  2289. MF_MSG_KERNEL_HIGH_ORDER,
  2290. MF_MSG_SLAB,
  2291. MF_MSG_DIFFERENT_COMPOUND,
  2292. MF_MSG_POISONED_HUGE,
  2293. MF_MSG_HUGE,
  2294. MF_MSG_FREE_HUGE,
  2295. MF_MSG_NON_PMD_HUGE,
  2296. MF_MSG_UNMAP_FAILED,
  2297. MF_MSG_DIRTY_SWAPCACHE,
  2298. MF_MSG_CLEAN_SWAPCACHE,
  2299. MF_MSG_DIRTY_MLOCKED_LRU,
  2300. MF_MSG_CLEAN_MLOCKED_LRU,
  2301. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2302. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2303. MF_MSG_DIRTY_LRU,
  2304. MF_MSG_CLEAN_LRU,
  2305. MF_MSG_TRUNCATED_LRU,
  2306. MF_MSG_BUDDY,
  2307. MF_MSG_BUDDY_2ND,
  2308. MF_MSG_UNKNOWN,
  2309. };
  2310. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2311. extern void clear_huge_page(struct page *page,
  2312. unsigned long addr_hint,
  2313. unsigned int pages_per_huge_page);
  2314. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2315. unsigned long addr, struct vm_area_struct *vma,
  2316. unsigned int pages_per_huge_page);
  2317. extern long copy_huge_page_from_user(struct page *dst_page,
  2318. const void __user *usr_src,
  2319. unsigned int pages_per_huge_page,
  2320. bool allow_pagefault);
  2321. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2322. extern struct page_ext_operations debug_guardpage_ops;
  2323. #ifdef CONFIG_DEBUG_PAGEALLOC
  2324. extern unsigned int _debug_guardpage_minorder;
  2325. extern bool _debug_guardpage_enabled;
  2326. static inline unsigned int debug_guardpage_minorder(void)
  2327. {
  2328. return _debug_guardpage_minorder;
  2329. }
  2330. static inline bool debug_guardpage_enabled(void)
  2331. {
  2332. return _debug_guardpage_enabled;
  2333. }
  2334. static inline bool page_is_guard(struct page *page)
  2335. {
  2336. struct page_ext *page_ext;
  2337. if (!debug_guardpage_enabled())
  2338. return false;
  2339. page_ext = lookup_page_ext(page);
  2340. if (unlikely(!page_ext))
  2341. return false;
  2342. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2343. }
  2344. #else
  2345. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2346. static inline bool debug_guardpage_enabled(void) { return false; }
  2347. static inline bool page_is_guard(struct page *page) { return false; }
  2348. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2349. #if MAX_NUMNODES > 1
  2350. void __init setup_nr_node_ids(void);
  2351. #else
  2352. static inline void setup_nr_node_ids(void) {}
  2353. #endif
  2354. #endif /* __KERNEL__ */
  2355. #endif /* _LINUX_MM_H */