mr.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114
  1. /*
  2. * Copyright(c) 2016 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/vmalloc.h>
  49. #include <rdma/ib_umem.h>
  50. #include <rdma/rdma_vt.h>
  51. #include "vt.h"
  52. #include "mr.h"
  53. #include "trace.h"
  54. /**
  55. * rvt_driver_mr_init - Init MR resources per driver
  56. * @rdi: rvt dev struct
  57. *
  58. * Do any intilization needed when a driver registers with rdmavt.
  59. *
  60. * Return: 0 on success or errno on failure
  61. */
  62. int rvt_driver_mr_init(struct rvt_dev_info *rdi)
  63. {
  64. unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
  65. unsigned lk_tab_size;
  66. int i;
  67. /*
  68. * The top hfi1_lkey_table_size bits are used to index the
  69. * table. The lower 8 bits can be owned by the user (copied from
  70. * the LKEY). The remaining bits act as a generation number or tag.
  71. */
  72. if (!lkey_table_size)
  73. return -EINVAL;
  74. spin_lock_init(&rdi->lkey_table.lock);
  75. /* ensure generation is at least 4 bits */
  76. if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
  77. rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
  78. lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
  79. rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
  80. lkey_table_size = rdi->dparms.lkey_table_size;
  81. }
  82. rdi->lkey_table.max = 1 << lkey_table_size;
  83. rdi->lkey_table.shift = 32 - lkey_table_size;
  84. lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
  85. rdi->lkey_table.table = (struct rvt_mregion __rcu **)
  86. vmalloc_node(lk_tab_size, rdi->dparms.node);
  87. if (!rdi->lkey_table.table)
  88. return -ENOMEM;
  89. RCU_INIT_POINTER(rdi->dma_mr, NULL);
  90. for (i = 0; i < rdi->lkey_table.max; i++)
  91. RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
  92. return 0;
  93. }
  94. /**
  95. *rvt_mr_exit: clean up MR
  96. *@rdi: rvt dev structure
  97. *
  98. * called when drivers have unregistered or perhaps failed to register with us
  99. */
  100. void rvt_mr_exit(struct rvt_dev_info *rdi)
  101. {
  102. if (rdi->dma_mr)
  103. rvt_pr_err(rdi, "DMA MR not null!\n");
  104. vfree(rdi->lkey_table.table);
  105. }
  106. static void rvt_deinit_mregion(struct rvt_mregion *mr)
  107. {
  108. int i = mr->mapsz;
  109. mr->mapsz = 0;
  110. while (i)
  111. kfree(mr->map[--i]);
  112. percpu_ref_exit(&mr->refcount);
  113. }
  114. static void __rvt_mregion_complete(struct percpu_ref *ref)
  115. {
  116. struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
  117. refcount);
  118. complete(&mr->comp);
  119. }
  120. static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
  121. int count, unsigned int percpu_flags)
  122. {
  123. int m, i = 0;
  124. struct rvt_dev_info *dev = ib_to_rvt(pd->device);
  125. mr->mapsz = 0;
  126. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  127. for (; i < m; i++) {
  128. mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
  129. dev->dparms.node);
  130. if (!mr->map[i])
  131. goto bail;
  132. mr->mapsz++;
  133. }
  134. init_completion(&mr->comp);
  135. /* count returning the ptr to user */
  136. if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
  137. percpu_flags, GFP_KERNEL))
  138. goto bail;
  139. atomic_set(&mr->lkey_invalid, 0);
  140. mr->pd = pd;
  141. mr->max_segs = count;
  142. return 0;
  143. bail:
  144. rvt_deinit_mregion(mr);
  145. return -ENOMEM;
  146. }
  147. /**
  148. * rvt_alloc_lkey - allocate an lkey
  149. * @mr: memory region that this lkey protects
  150. * @dma_region: 0->normal key, 1->restricted DMA key
  151. *
  152. * Returns 0 if successful, otherwise returns -errno.
  153. *
  154. * Increments mr reference count as required.
  155. *
  156. * Sets the lkey field mr for non-dma regions.
  157. *
  158. */
  159. static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
  160. {
  161. unsigned long flags;
  162. u32 r;
  163. u32 n;
  164. int ret = 0;
  165. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  166. struct rvt_lkey_table *rkt = &dev->lkey_table;
  167. rvt_get_mr(mr);
  168. spin_lock_irqsave(&rkt->lock, flags);
  169. /* special case for dma_mr lkey == 0 */
  170. if (dma_region) {
  171. struct rvt_mregion *tmr;
  172. tmr = rcu_access_pointer(dev->dma_mr);
  173. if (!tmr) {
  174. mr->lkey_published = 1;
  175. /* Insure published written first */
  176. rcu_assign_pointer(dev->dma_mr, mr);
  177. rvt_get_mr(mr);
  178. }
  179. goto success;
  180. }
  181. /* Find the next available LKEY */
  182. r = rkt->next;
  183. n = r;
  184. for (;;) {
  185. if (!rcu_access_pointer(rkt->table[r]))
  186. break;
  187. r = (r + 1) & (rkt->max - 1);
  188. if (r == n)
  189. goto bail;
  190. }
  191. rkt->next = (r + 1) & (rkt->max - 1);
  192. /*
  193. * Make sure lkey is never zero which is reserved to indicate an
  194. * unrestricted LKEY.
  195. */
  196. rkt->gen++;
  197. /*
  198. * bits are capped to ensure enough bits for generation number
  199. */
  200. mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
  201. ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
  202. << 8);
  203. if (mr->lkey == 0) {
  204. mr->lkey |= 1 << 8;
  205. rkt->gen++;
  206. }
  207. mr->lkey_published = 1;
  208. /* Insure published written first */
  209. rcu_assign_pointer(rkt->table[r], mr);
  210. success:
  211. spin_unlock_irqrestore(&rkt->lock, flags);
  212. out:
  213. return ret;
  214. bail:
  215. rvt_put_mr(mr);
  216. spin_unlock_irqrestore(&rkt->lock, flags);
  217. ret = -ENOMEM;
  218. goto out;
  219. }
  220. /**
  221. * rvt_free_lkey - free an lkey
  222. * @mr: mr to free from tables
  223. */
  224. static void rvt_free_lkey(struct rvt_mregion *mr)
  225. {
  226. unsigned long flags;
  227. u32 lkey = mr->lkey;
  228. u32 r;
  229. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  230. struct rvt_lkey_table *rkt = &dev->lkey_table;
  231. int freed = 0;
  232. spin_lock_irqsave(&rkt->lock, flags);
  233. if (!lkey) {
  234. if (mr->lkey_published) {
  235. mr->lkey_published = 0;
  236. /* insure published is written before pointer */
  237. rcu_assign_pointer(dev->dma_mr, NULL);
  238. rvt_put_mr(mr);
  239. }
  240. } else {
  241. if (!mr->lkey_published)
  242. goto out;
  243. r = lkey >> (32 - dev->dparms.lkey_table_size);
  244. mr->lkey_published = 0;
  245. /* insure published is written before pointer */
  246. rcu_assign_pointer(rkt->table[r], NULL);
  247. }
  248. freed++;
  249. out:
  250. spin_unlock_irqrestore(&rkt->lock, flags);
  251. if (freed)
  252. percpu_ref_kill(&mr->refcount);
  253. }
  254. static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
  255. {
  256. struct rvt_mr *mr;
  257. int rval = -ENOMEM;
  258. int m;
  259. /* Allocate struct plus pointers to first level page tables. */
  260. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  261. mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
  262. if (!mr)
  263. goto bail;
  264. rval = rvt_init_mregion(&mr->mr, pd, count, 0);
  265. if (rval)
  266. goto bail;
  267. /*
  268. * ib_reg_phys_mr() will initialize mr->ibmr except for
  269. * lkey and rkey.
  270. */
  271. rval = rvt_alloc_lkey(&mr->mr, 0);
  272. if (rval)
  273. goto bail_mregion;
  274. mr->ibmr.lkey = mr->mr.lkey;
  275. mr->ibmr.rkey = mr->mr.lkey;
  276. done:
  277. return mr;
  278. bail_mregion:
  279. rvt_deinit_mregion(&mr->mr);
  280. bail:
  281. kfree(mr);
  282. mr = ERR_PTR(rval);
  283. goto done;
  284. }
  285. static void __rvt_free_mr(struct rvt_mr *mr)
  286. {
  287. rvt_free_lkey(&mr->mr);
  288. rvt_deinit_mregion(&mr->mr);
  289. kfree(mr);
  290. }
  291. /**
  292. * rvt_get_dma_mr - get a DMA memory region
  293. * @pd: protection domain for this memory region
  294. * @acc: access flags
  295. *
  296. * Return: the memory region on success, otherwise returns an errno.
  297. * Note that all DMA addresses should be created via the functions in
  298. * struct dma_virt_ops.
  299. */
  300. struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
  301. {
  302. struct rvt_mr *mr;
  303. struct ib_mr *ret;
  304. int rval;
  305. if (ibpd_to_rvtpd(pd)->user)
  306. return ERR_PTR(-EPERM);
  307. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  308. if (!mr) {
  309. ret = ERR_PTR(-ENOMEM);
  310. goto bail;
  311. }
  312. rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
  313. if (rval) {
  314. ret = ERR_PTR(rval);
  315. goto bail;
  316. }
  317. rval = rvt_alloc_lkey(&mr->mr, 1);
  318. if (rval) {
  319. ret = ERR_PTR(rval);
  320. goto bail_mregion;
  321. }
  322. mr->mr.access_flags = acc;
  323. ret = &mr->ibmr;
  324. done:
  325. return ret;
  326. bail_mregion:
  327. rvt_deinit_mregion(&mr->mr);
  328. bail:
  329. kfree(mr);
  330. goto done;
  331. }
  332. /**
  333. * rvt_reg_user_mr - register a userspace memory region
  334. * @pd: protection domain for this memory region
  335. * @start: starting userspace address
  336. * @length: length of region to register
  337. * @mr_access_flags: access flags for this memory region
  338. * @udata: unused by the driver
  339. *
  340. * Return: the memory region on success, otherwise returns an errno.
  341. */
  342. struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  343. u64 virt_addr, int mr_access_flags,
  344. struct ib_udata *udata)
  345. {
  346. struct rvt_mr *mr;
  347. struct ib_umem *umem;
  348. struct scatterlist *sg;
  349. int n, m, entry;
  350. struct ib_mr *ret;
  351. if (length == 0)
  352. return ERR_PTR(-EINVAL);
  353. umem = ib_umem_get(pd->uobject->context, start, length,
  354. mr_access_flags, 0);
  355. if (IS_ERR(umem))
  356. return (void *)umem;
  357. n = umem->nmap;
  358. mr = __rvt_alloc_mr(n, pd);
  359. if (IS_ERR(mr)) {
  360. ret = (struct ib_mr *)mr;
  361. goto bail_umem;
  362. }
  363. mr->mr.user_base = start;
  364. mr->mr.iova = virt_addr;
  365. mr->mr.length = length;
  366. mr->mr.offset = ib_umem_offset(umem);
  367. mr->mr.access_flags = mr_access_flags;
  368. mr->umem = umem;
  369. mr->mr.page_shift = umem->page_shift;
  370. m = 0;
  371. n = 0;
  372. for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
  373. void *vaddr;
  374. vaddr = page_address(sg_page(sg));
  375. if (!vaddr) {
  376. ret = ERR_PTR(-EINVAL);
  377. goto bail_inval;
  378. }
  379. mr->mr.map[m]->segs[n].vaddr = vaddr;
  380. mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
  381. trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
  382. BIT(umem->page_shift));
  383. n++;
  384. if (n == RVT_SEGSZ) {
  385. m++;
  386. n = 0;
  387. }
  388. }
  389. return &mr->ibmr;
  390. bail_inval:
  391. __rvt_free_mr(mr);
  392. bail_umem:
  393. ib_umem_release(umem);
  394. return ret;
  395. }
  396. /**
  397. * rvt_dereg_clean_qp_cb - callback from iterator
  398. * @qp - the qp
  399. * @v - the mregion (as u64)
  400. *
  401. * This routine fields the callback for all QPs and
  402. * for QPs in the same PD as the MR will call the
  403. * rvt_qp_mr_clean() to potentially cleanup references.
  404. */
  405. static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
  406. {
  407. struct rvt_mregion *mr = (struct rvt_mregion *)v;
  408. /* skip PDs that are not ours */
  409. if (mr->pd != qp->ibqp.pd)
  410. return;
  411. rvt_qp_mr_clean(qp, mr->lkey);
  412. }
  413. /**
  414. * rvt_dereg_clean_qps - find QPs for reference cleanup
  415. * @mr - the MR that is being deregistered
  416. *
  417. * This routine iterates RC QPs looking for references
  418. * to the lkey noted in mr.
  419. */
  420. static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
  421. {
  422. struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
  423. rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
  424. }
  425. /**
  426. * rvt_check_refs - check references
  427. * @mr - the megion
  428. * @t - the caller identification
  429. *
  430. * This routine checks MRs holding a reference during
  431. * when being de-registered.
  432. *
  433. * If the count is non-zero, the code calls a clean routine then
  434. * waits for the timeout for the count to zero.
  435. */
  436. static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
  437. {
  438. unsigned long timeout;
  439. struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
  440. if (mr->lkey) {
  441. /* avoid dma mr */
  442. rvt_dereg_clean_qps(mr);
  443. /* @mr was indexed on rcu protected @lkey_table */
  444. synchronize_rcu();
  445. }
  446. timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
  447. if (!timeout) {
  448. rvt_pr_err(rdi,
  449. "%s timeout mr %p pd %p lkey %x refcount %ld\n",
  450. t, mr, mr->pd, mr->lkey,
  451. atomic_long_read(&mr->refcount.count));
  452. rvt_get_mr(mr);
  453. return -EBUSY;
  454. }
  455. return 0;
  456. }
  457. /**
  458. * rvt_mr_has_lkey - is MR
  459. * @mr - the mregion
  460. * @lkey - the lkey
  461. */
  462. bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
  463. {
  464. return mr && lkey == mr->lkey;
  465. }
  466. /**
  467. * rvt_ss_has_lkey - is mr in sge tests
  468. * @ss - the sge state
  469. * @lkey
  470. *
  471. * This code tests for an MR in the indicated
  472. * sge state.
  473. */
  474. bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
  475. {
  476. int i;
  477. bool rval = false;
  478. if (!ss->num_sge)
  479. return rval;
  480. /* first one */
  481. rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
  482. /* any others */
  483. for (i = 0; !rval && i < ss->num_sge - 1; i++)
  484. rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
  485. return rval;
  486. }
  487. /**
  488. * rvt_dereg_mr - unregister and free a memory region
  489. * @ibmr: the memory region to free
  490. *
  491. *
  492. * Note that this is called to free MRs created by rvt_get_dma_mr()
  493. * or rvt_reg_user_mr().
  494. *
  495. * Returns 0 on success.
  496. */
  497. int rvt_dereg_mr(struct ib_mr *ibmr)
  498. {
  499. struct rvt_mr *mr = to_imr(ibmr);
  500. int ret;
  501. rvt_free_lkey(&mr->mr);
  502. rvt_put_mr(&mr->mr); /* will set completion if last */
  503. ret = rvt_check_refs(&mr->mr, __func__);
  504. if (ret)
  505. goto out;
  506. rvt_deinit_mregion(&mr->mr);
  507. if (mr->umem)
  508. ib_umem_release(mr->umem);
  509. kfree(mr);
  510. out:
  511. return ret;
  512. }
  513. /**
  514. * rvt_alloc_mr - Allocate a memory region usable with the
  515. * @pd: protection domain for this memory region
  516. * @mr_type: mem region type
  517. * @max_num_sg: Max number of segments allowed
  518. *
  519. * Return: the memory region on success, otherwise return an errno.
  520. */
  521. struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
  522. enum ib_mr_type mr_type,
  523. u32 max_num_sg)
  524. {
  525. struct rvt_mr *mr;
  526. if (mr_type != IB_MR_TYPE_MEM_REG)
  527. return ERR_PTR(-EINVAL);
  528. mr = __rvt_alloc_mr(max_num_sg, pd);
  529. if (IS_ERR(mr))
  530. return (struct ib_mr *)mr;
  531. return &mr->ibmr;
  532. }
  533. /**
  534. * rvt_set_page - page assignment function called by ib_sg_to_pages
  535. * @ibmr: memory region
  536. * @addr: dma address of mapped page
  537. *
  538. * Return: 0 on success
  539. */
  540. static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
  541. {
  542. struct rvt_mr *mr = to_imr(ibmr);
  543. u32 ps = 1 << mr->mr.page_shift;
  544. u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
  545. int m, n;
  546. if (unlikely(mapped_segs == mr->mr.max_segs))
  547. return -ENOMEM;
  548. if (mr->mr.length == 0) {
  549. mr->mr.user_base = addr;
  550. mr->mr.iova = addr;
  551. }
  552. m = mapped_segs / RVT_SEGSZ;
  553. n = mapped_segs % RVT_SEGSZ;
  554. mr->mr.map[m]->segs[n].vaddr = (void *)addr;
  555. mr->mr.map[m]->segs[n].length = ps;
  556. trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
  557. mr->mr.length += ps;
  558. return 0;
  559. }
  560. /**
  561. * rvt_map_mr_sg - map sg list and set it the memory region
  562. * @ibmr: memory region
  563. * @sg: dma mapped scatterlist
  564. * @sg_nents: number of entries in sg
  565. * @sg_offset: offset in bytes into sg
  566. *
  567. * Return: number of sg elements mapped to the memory region
  568. */
  569. int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
  570. int sg_nents, unsigned int *sg_offset)
  571. {
  572. struct rvt_mr *mr = to_imr(ibmr);
  573. mr->mr.length = 0;
  574. mr->mr.page_shift = PAGE_SHIFT;
  575. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
  576. rvt_set_page);
  577. }
  578. /**
  579. * rvt_fast_reg_mr - fast register physical MR
  580. * @qp: the queue pair where the work request comes from
  581. * @ibmr: the memory region to be registered
  582. * @key: updated key for this memory region
  583. * @access: access flags for this memory region
  584. *
  585. * Returns 0 on success.
  586. */
  587. int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
  588. int access)
  589. {
  590. struct rvt_mr *mr = to_imr(ibmr);
  591. if (qp->ibqp.pd != mr->mr.pd)
  592. return -EACCES;
  593. /* not applicable to dma MR or user MR */
  594. if (!mr->mr.lkey || mr->umem)
  595. return -EINVAL;
  596. if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
  597. return -EINVAL;
  598. ibmr->lkey = key;
  599. ibmr->rkey = key;
  600. mr->mr.lkey = key;
  601. mr->mr.access_flags = access;
  602. atomic_set(&mr->mr.lkey_invalid, 0);
  603. return 0;
  604. }
  605. EXPORT_SYMBOL(rvt_fast_reg_mr);
  606. /**
  607. * rvt_invalidate_rkey - invalidate an MR rkey
  608. * @qp: queue pair associated with the invalidate op
  609. * @rkey: rkey to invalidate
  610. *
  611. * Returns 0 on success.
  612. */
  613. int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
  614. {
  615. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  616. struct rvt_lkey_table *rkt = &dev->lkey_table;
  617. struct rvt_mregion *mr;
  618. if (rkey == 0)
  619. return -EINVAL;
  620. rcu_read_lock();
  621. mr = rcu_dereference(
  622. rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
  623. if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  624. goto bail;
  625. atomic_set(&mr->lkey_invalid, 1);
  626. rcu_read_unlock();
  627. return 0;
  628. bail:
  629. rcu_read_unlock();
  630. return -EINVAL;
  631. }
  632. EXPORT_SYMBOL(rvt_invalidate_rkey);
  633. /**
  634. * rvt_alloc_fmr - allocate a fast memory region
  635. * @pd: the protection domain for this memory region
  636. * @mr_access_flags: access flags for this memory region
  637. * @fmr_attr: fast memory region attributes
  638. *
  639. * Return: the memory region on success, otherwise returns an errno.
  640. */
  641. struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
  642. struct ib_fmr_attr *fmr_attr)
  643. {
  644. struct rvt_fmr *fmr;
  645. int m;
  646. struct ib_fmr *ret;
  647. int rval = -ENOMEM;
  648. /* Allocate struct plus pointers to first level page tables. */
  649. m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
  650. fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
  651. if (!fmr)
  652. goto bail;
  653. rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
  654. PERCPU_REF_INIT_ATOMIC);
  655. if (rval)
  656. goto bail;
  657. /*
  658. * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
  659. * rkey.
  660. */
  661. rval = rvt_alloc_lkey(&fmr->mr, 0);
  662. if (rval)
  663. goto bail_mregion;
  664. fmr->ibfmr.rkey = fmr->mr.lkey;
  665. fmr->ibfmr.lkey = fmr->mr.lkey;
  666. /*
  667. * Resources are allocated but no valid mapping (RKEY can't be
  668. * used).
  669. */
  670. fmr->mr.access_flags = mr_access_flags;
  671. fmr->mr.max_segs = fmr_attr->max_pages;
  672. fmr->mr.page_shift = fmr_attr->page_shift;
  673. ret = &fmr->ibfmr;
  674. done:
  675. return ret;
  676. bail_mregion:
  677. rvt_deinit_mregion(&fmr->mr);
  678. bail:
  679. kfree(fmr);
  680. ret = ERR_PTR(rval);
  681. goto done;
  682. }
  683. /**
  684. * rvt_map_phys_fmr - set up a fast memory region
  685. * @ibfmr: the fast memory region to set up
  686. * @page_list: the list of pages to associate with the fast memory region
  687. * @list_len: the number of pages to associate with the fast memory region
  688. * @iova: the virtual address of the start of the fast memory region
  689. *
  690. * This may be called from interrupt context.
  691. *
  692. * Return: 0 on success
  693. */
  694. int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
  695. int list_len, u64 iova)
  696. {
  697. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  698. struct rvt_lkey_table *rkt;
  699. unsigned long flags;
  700. int m, n;
  701. unsigned long i;
  702. u32 ps;
  703. struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
  704. i = atomic_long_read(&fmr->mr.refcount.count);
  705. if (i > 2)
  706. return -EBUSY;
  707. if (list_len > fmr->mr.max_segs)
  708. return -EINVAL;
  709. rkt = &rdi->lkey_table;
  710. spin_lock_irqsave(&rkt->lock, flags);
  711. fmr->mr.user_base = iova;
  712. fmr->mr.iova = iova;
  713. ps = 1 << fmr->mr.page_shift;
  714. fmr->mr.length = list_len * ps;
  715. m = 0;
  716. n = 0;
  717. for (i = 0; i < list_len; i++) {
  718. fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
  719. fmr->mr.map[m]->segs[n].length = ps;
  720. trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
  721. if (++n == RVT_SEGSZ) {
  722. m++;
  723. n = 0;
  724. }
  725. }
  726. spin_unlock_irqrestore(&rkt->lock, flags);
  727. return 0;
  728. }
  729. /**
  730. * rvt_unmap_fmr - unmap fast memory regions
  731. * @fmr_list: the list of fast memory regions to unmap
  732. *
  733. * Return: 0 on success.
  734. */
  735. int rvt_unmap_fmr(struct list_head *fmr_list)
  736. {
  737. struct rvt_fmr *fmr;
  738. struct rvt_lkey_table *rkt;
  739. unsigned long flags;
  740. struct rvt_dev_info *rdi;
  741. list_for_each_entry(fmr, fmr_list, ibfmr.list) {
  742. rdi = ib_to_rvt(fmr->ibfmr.device);
  743. rkt = &rdi->lkey_table;
  744. spin_lock_irqsave(&rkt->lock, flags);
  745. fmr->mr.user_base = 0;
  746. fmr->mr.iova = 0;
  747. fmr->mr.length = 0;
  748. spin_unlock_irqrestore(&rkt->lock, flags);
  749. }
  750. return 0;
  751. }
  752. /**
  753. * rvt_dealloc_fmr - deallocate a fast memory region
  754. * @ibfmr: the fast memory region to deallocate
  755. *
  756. * Return: 0 on success.
  757. */
  758. int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
  759. {
  760. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  761. int ret = 0;
  762. rvt_free_lkey(&fmr->mr);
  763. rvt_put_mr(&fmr->mr); /* will set completion if last */
  764. ret = rvt_check_refs(&fmr->mr, __func__);
  765. if (ret)
  766. goto out;
  767. rvt_deinit_mregion(&fmr->mr);
  768. kfree(fmr);
  769. out:
  770. return ret;
  771. }
  772. /**
  773. * rvt_sge_adjacent - is isge compressible
  774. * @last_sge: last outgoing SGE written
  775. * @sge: SGE to check
  776. *
  777. * If adjacent will update last_sge to add length.
  778. *
  779. * Return: true if isge is adjacent to last sge
  780. */
  781. static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
  782. struct ib_sge *sge)
  783. {
  784. if (last_sge && sge->lkey == last_sge->mr->lkey &&
  785. ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
  786. if (sge->lkey) {
  787. if (unlikely((sge->addr - last_sge->mr->user_base +
  788. sge->length > last_sge->mr->length)))
  789. return false; /* overrun, caller will catch */
  790. } else {
  791. last_sge->length += sge->length;
  792. }
  793. last_sge->sge_length += sge->length;
  794. trace_rvt_sge_adjacent(last_sge, sge);
  795. return true;
  796. }
  797. return false;
  798. }
  799. /**
  800. * rvt_lkey_ok - check IB SGE for validity and initialize
  801. * @rkt: table containing lkey to check SGE against
  802. * @pd: protection domain
  803. * @isge: outgoing internal SGE
  804. * @last_sge: last outgoing SGE written
  805. * @sge: SGE to check
  806. * @acc: access flags
  807. *
  808. * Check the IB SGE for validity and initialize our internal version
  809. * of it.
  810. *
  811. * Increments the reference count when a new sge is stored.
  812. *
  813. * Return: 0 if compressed, 1 if added , otherwise returns -errno.
  814. */
  815. int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
  816. struct rvt_sge *isge, struct rvt_sge *last_sge,
  817. struct ib_sge *sge, int acc)
  818. {
  819. struct rvt_mregion *mr;
  820. unsigned n, m;
  821. size_t off;
  822. /*
  823. * We use LKEY == zero for kernel virtual addresses
  824. * (see rvt_get_dma_mr() and dma_virt_ops).
  825. */
  826. if (sge->lkey == 0) {
  827. struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
  828. if (pd->user)
  829. return -EINVAL;
  830. if (rvt_sge_adjacent(last_sge, sge))
  831. return 0;
  832. rcu_read_lock();
  833. mr = rcu_dereference(dev->dma_mr);
  834. if (!mr)
  835. goto bail;
  836. rvt_get_mr(mr);
  837. rcu_read_unlock();
  838. isge->mr = mr;
  839. isge->vaddr = (void *)sge->addr;
  840. isge->length = sge->length;
  841. isge->sge_length = sge->length;
  842. isge->m = 0;
  843. isge->n = 0;
  844. goto ok;
  845. }
  846. if (rvt_sge_adjacent(last_sge, sge))
  847. return 0;
  848. rcu_read_lock();
  849. mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
  850. if (!mr)
  851. goto bail;
  852. rvt_get_mr(mr);
  853. if (!READ_ONCE(mr->lkey_published))
  854. goto bail_unref;
  855. if (unlikely(atomic_read(&mr->lkey_invalid) ||
  856. mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
  857. goto bail_unref;
  858. off = sge->addr - mr->user_base;
  859. if (unlikely(sge->addr < mr->user_base ||
  860. off + sge->length > mr->length ||
  861. (mr->access_flags & acc) != acc))
  862. goto bail_unref;
  863. rcu_read_unlock();
  864. off += mr->offset;
  865. if (mr->page_shift) {
  866. /*
  867. * page sizes are uniform power of 2 so no loop is necessary
  868. * entries_spanned_by_off is the number of times the loop below
  869. * would have executed.
  870. */
  871. size_t entries_spanned_by_off;
  872. entries_spanned_by_off = off >> mr->page_shift;
  873. off -= (entries_spanned_by_off << mr->page_shift);
  874. m = entries_spanned_by_off / RVT_SEGSZ;
  875. n = entries_spanned_by_off % RVT_SEGSZ;
  876. } else {
  877. m = 0;
  878. n = 0;
  879. while (off >= mr->map[m]->segs[n].length) {
  880. off -= mr->map[m]->segs[n].length;
  881. n++;
  882. if (n >= RVT_SEGSZ) {
  883. m++;
  884. n = 0;
  885. }
  886. }
  887. }
  888. isge->mr = mr;
  889. isge->vaddr = mr->map[m]->segs[n].vaddr + off;
  890. isge->length = mr->map[m]->segs[n].length - off;
  891. isge->sge_length = sge->length;
  892. isge->m = m;
  893. isge->n = n;
  894. ok:
  895. trace_rvt_sge_new(isge, sge);
  896. return 1;
  897. bail_unref:
  898. rvt_put_mr(mr);
  899. bail:
  900. rcu_read_unlock();
  901. return -EINVAL;
  902. }
  903. EXPORT_SYMBOL(rvt_lkey_ok);
  904. /**
  905. * rvt_rkey_ok - check the IB virtual address, length, and RKEY
  906. * @qp: qp for validation
  907. * @sge: SGE state
  908. * @len: length of data
  909. * @vaddr: virtual address to place data
  910. * @rkey: rkey to check
  911. * @acc: access flags
  912. *
  913. * Return: 1 if successful, otherwise 0.
  914. *
  915. * increments the reference count upon success
  916. */
  917. int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
  918. u32 len, u64 vaddr, u32 rkey, int acc)
  919. {
  920. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  921. struct rvt_lkey_table *rkt = &dev->lkey_table;
  922. struct rvt_mregion *mr;
  923. unsigned n, m;
  924. size_t off;
  925. /*
  926. * We use RKEY == zero for kernel virtual addresses
  927. * (see rvt_get_dma_mr() and dma_virt_ops).
  928. */
  929. rcu_read_lock();
  930. if (rkey == 0) {
  931. struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
  932. struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
  933. if (pd->user)
  934. goto bail;
  935. mr = rcu_dereference(rdi->dma_mr);
  936. if (!mr)
  937. goto bail;
  938. rvt_get_mr(mr);
  939. rcu_read_unlock();
  940. sge->mr = mr;
  941. sge->vaddr = (void *)vaddr;
  942. sge->length = len;
  943. sge->sge_length = len;
  944. sge->m = 0;
  945. sge->n = 0;
  946. goto ok;
  947. }
  948. mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
  949. if (!mr)
  950. goto bail;
  951. rvt_get_mr(mr);
  952. /* insure mr read is before test */
  953. if (!READ_ONCE(mr->lkey_published))
  954. goto bail_unref;
  955. if (unlikely(atomic_read(&mr->lkey_invalid) ||
  956. mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  957. goto bail_unref;
  958. off = vaddr - mr->iova;
  959. if (unlikely(vaddr < mr->iova || off + len > mr->length ||
  960. (mr->access_flags & acc) == 0))
  961. goto bail_unref;
  962. rcu_read_unlock();
  963. off += mr->offset;
  964. if (mr->page_shift) {
  965. /*
  966. * page sizes are uniform power of 2 so no loop is necessary
  967. * entries_spanned_by_off is the number of times the loop below
  968. * would have executed.
  969. */
  970. size_t entries_spanned_by_off;
  971. entries_spanned_by_off = off >> mr->page_shift;
  972. off -= (entries_spanned_by_off << mr->page_shift);
  973. m = entries_spanned_by_off / RVT_SEGSZ;
  974. n = entries_spanned_by_off % RVT_SEGSZ;
  975. } else {
  976. m = 0;
  977. n = 0;
  978. while (off >= mr->map[m]->segs[n].length) {
  979. off -= mr->map[m]->segs[n].length;
  980. n++;
  981. if (n >= RVT_SEGSZ) {
  982. m++;
  983. n = 0;
  984. }
  985. }
  986. }
  987. sge->mr = mr;
  988. sge->vaddr = mr->map[m]->segs[n].vaddr + off;
  989. sge->length = mr->map[m]->segs[n].length - off;
  990. sge->sge_length = len;
  991. sge->m = m;
  992. sge->n = n;
  993. ok:
  994. return 1;
  995. bail_unref:
  996. rvt_put_mr(mr);
  997. bail:
  998. rcu_read_unlock();
  999. return 0;
  1000. }
  1001. EXPORT_SYMBOL(rvt_rkey_ok);