multiorder.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. /*
  2. * multiorder.c: Multi-order radix tree entry testing
  3. * Copyright (c) 2016 Intel Corporation
  4. * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  5. * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. */
  16. #include <linux/radix-tree.h>
  17. #include <linux/slab.h>
  18. #include <linux/errno.h>
  19. #include "test.h"
  20. #define for_each_index(i, base, order) \
  21. for (i = base; i < base + (1 << order); i++)
  22. static void __multiorder_tag_test(int index, int order)
  23. {
  24. RADIX_TREE(tree, GFP_KERNEL);
  25. int base, err, i;
  26. /* our canonical entry */
  27. base = index & ~((1 << order) - 1);
  28. printf("Multiorder tag test with index %d, canonical entry %d\n",
  29. index, base);
  30. err = item_insert_order(&tree, index, order);
  31. assert(!err);
  32. /*
  33. * Verify we get collisions for covered indices. We try and fail to
  34. * insert an exceptional entry so we don't leak memory via
  35. * item_insert_order().
  36. */
  37. for_each_index(i, base, order) {
  38. err = __radix_tree_insert(&tree, i, order,
  39. (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
  40. assert(err == -EEXIST);
  41. }
  42. for_each_index(i, base, order) {
  43. assert(!radix_tree_tag_get(&tree, i, 0));
  44. assert(!radix_tree_tag_get(&tree, i, 1));
  45. }
  46. assert(radix_tree_tag_set(&tree, index, 0));
  47. for_each_index(i, base, order) {
  48. assert(radix_tree_tag_get(&tree, i, 0));
  49. assert(!radix_tree_tag_get(&tree, i, 1));
  50. }
  51. assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
  52. assert(radix_tree_tag_clear(&tree, index, 0));
  53. for_each_index(i, base, order) {
  54. assert(!radix_tree_tag_get(&tree, i, 0));
  55. assert(radix_tree_tag_get(&tree, i, 1));
  56. }
  57. assert(radix_tree_tag_clear(&tree, index, 1));
  58. assert(!radix_tree_tagged(&tree, 0));
  59. assert(!radix_tree_tagged(&tree, 1));
  60. item_kill_tree(&tree);
  61. }
  62. static void multiorder_tag_tests(void)
  63. {
  64. /* test multi-order entry for indices 0-7 with no sibling pointers */
  65. __multiorder_tag_test(0, 3);
  66. __multiorder_tag_test(5, 3);
  67. /* test multi-order entry for indices 8-15 with no sibling pointers */
  68. __multiorder_tag_test(8, 3);
  69. __multiorder_tag_test(15, 3);
  70. /*
  71. * Our order 5 entry covers indices 0-31 in a tree with height=2.
  72. * This is broken up as follows:
  73. * 0-7: canonical entry
  74. * 8-15: sibling 1
  75. * 16-23: sibling 2
  76. * 24-31: sibling 3
  77. */
  78. __multiorder_tag_test(0, 5);
  79. __multiorder_tag_test(29, 5);
  80. /* same test, but with indices 32-63 */
  81. __multiorder_tag_test(32, 5);
  82. __multiorder_tag_test(44, 5);
  83. /*
  84. * Our order 8 entry covers indices 0-255 in a tree with height=3.
  85. * This is broken up as follows:
  86. * 0-63: canonical entry
  87. * 64-127: sibling 1
  88. * 128-191: sibling 2
  89. * 192-255: sibling 3
  90. */
  91. __multiorder_tag_test(0, 8);
  92. __multiorder_tag_test(190, 8);
  93. /* same test, but with indices 256-511 */
  94. __multiorder_tag_test(256, 8);
  95. __multiorder_tag_test(300, 8);
  96. __multiorder_tag_test(0x12345678UL, 8);
  97. }
  98. static void multiorder_check(unsigned long index, int order)
  99. {
  100. unsigned long i;
  101. unsigned long min = index & ~((1UL << order) - 1);
  102. unsigned long max = min + (1UL << order);
  103. void **slot;
  104. struct item *item2 = item_create(min, order);
  105. RADIX_TREE(tree, GFP_KERNEL);
  106. printf("Multiorder index %ld, order %d\n", index, order);
  107. assert(item_insert_order(&tree, index, order) == 0);
  108. for (i = min; i < max; i++) {
  109. struct item *item = item_lookup(&tree, i);
  110. assert(item != 0);
  111. assert(item->index == index);
  112. }
  113. for (i = 0; i < min; i++)
  114. item_check_absent(&tree, i);
  115. for (i = max; i < 2*max; i++)
  116. item_check_absent(&tree, i);
  117. for (i = min; i < max; i++)
  118. assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
  119. slot = radix_tree_lookup_slot(&tree, index);
  120. free(*slot);
  121. radix_tree_replace_slot(&tree, slot, item2);
  122. for (i = min; i < max; i++) {
  123. struct item *item = item_lookup(&tree, i);
  124. assert(item != 0);
  125. assert(item->index == min);
  126. }
  127. assert(item_delete(&tree, min) != 0);
  128. for (i = 0; i < 2*max; i++)
  129. item_check_absent(&tree, i);
  130. }
  131. static void multiorder_shrink(unsigned long index, int order)
  132. {
  133. unsigned long i;
  134. unsigned long max = 1 << order;
  135. RADIX_TREE(tree, GFP_KERNEL);
  136. struct radix_tree_node *node;
  137. printf("Multiorder shrink index %ld, order %d\n", index, order);
  138. assert(item_insert_order(&tree, 0, order) == 0);
  139. node = tree.rnode;
  140. assert(item_insert(&tree, index) == 0);
  141. assert(node != tree.rnode);
  142. assert(item_delete(&tree, index) != 0);
  143. assert(node == tree.rnode);
  144. for (i = 0; i < max; i++) {
  145. struct item *item = item_lookup(&tree, i);
  146. assert(item != 0);
  147. assert(item->index == 0);
  148. }
  149. for (i = max; i < 2*max; i++)
  150. item_check_absent(&tree, i);
  151. if (!item_delete(&tree, 0)) {
  152. printf("failed to delete index %ld (order %d)\n", index, order); abort();
  153. }
  154. for (i = 0; i < 2*max; i++)
  155. item_check_absent(&tree, i);
  156. }
  157. static void multiorder_insert_bug(void)
  158. {
  159. RADIX_TREE(tree, GFP_KERNEL);
  160. item_insert(&tree, 0);
  161. radix_tree_tag_set(&tree, 0, 0);
  162. item_insert_order(&tree, 3 << 6, 6);
  163. item_kill_tree(&tree);
  164. }
  165. void multiorder_iteration(void)
  166. {
  167. RADIX_TREE(tree, GFP_KERNEL);
  168. struct radix_tree_iter iter;
  169. void **slot;
  170. int i, j, err;
  171. printf("Multiorder iteration test\n");
  172. #define NUM_ENTRIES 11
  173. int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
  174. int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
  175. for (i = 0; i < NUM_ENTRIES; i++) {
  176. err = item_insert_order(&tree, index[i], order[i]);
  177. assert(!err);
  178. }
  179. for (j = 0; j < 256; j++) {
  180. for (i = 0; i < NUM_ENTRIES; i++)
  181. if (j <= (index[i] | ((1 << order[i]) - 1)))
  182. break;
  183. radix_tree_for_each_slot(slot, &tree, &iter, j) {
  184. int height = order[i] / RADIX_TREE_MAP_SHIFT;
  185. int shift = height * RADIX_TREE_MAP_SHIFT;
  186. unsigned long mask = (1UL << order[i]) - 1;
  187. struct item *item = *slot;
  188. assert((iter.index | mask) == (index[i] | mask));
  189. assert(iter.shift == shift);
  190. assert(!radix_tree_is_internal_node(item));
  191. assert((item->index | mask) == (index[i] | mask));
  192. assert(item->order == order[i]);
  193. i++;
  194. }
  195. }
  196. item_kill_tree(&tree);
  197. }
  198. void multiorder_tagged_iteration(void)
  199. {
  200. RADIX_TREE(tree, GFP_KERNEL);
  201. struct radix_tree_iter iter;
  202. void **slot;
  203. int i, j;
  204. printf("Multiorder tagged iteration test\n");
  205. #define MT_NUM_ENTRIES 9
  206. int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
  207. int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
  208. #define TAG_ENTRIES 7
  209. int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
  210. for (i = 0; i < MT_NUM_ENTRIES; i++)
  211. assert(!item_insert_order(&tree, index[i], order[i]));
  212. assert(!radix_tree_tagged(&tree, 1));
  213. for (i = 0; i < TAG_ENTRIES; i++)
  214. assert(radix_tree_tag_set(&tree, tag_index[i], 1));
  215. for (j = 0; j < 256; j++) {
  216. int k;
  217. for (i = 0; i < TAG_ENTRIES; i++) {
  218. for (k = i; index[k] < tag_index[i]; k++)
  219. ;
  220. if (j <= (index[k] | ((1 << order[k]) - 1)))
  221. break;
  222. }
  223. radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
  224. unsigned long mask;
  225. struct item *item = *slot;
  226. for (k = i; index[k] < tag_index[i]; k++)
  227. ;
  228. mask = (1UL << order[k]) - 1;
  229. assert((iter.index | mask) == (tag_index[i] | mask));
  230. assert(!radix_tree_is_internal_node(item));
  231. assert((item->index | mask) == (tag_index[i] | mask));
  232. assert(item->order == order[k]);
  233. i++;
  234. }
  235. }
  236. assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
  237. TAG_ENTRIES);
  238. for (j = 0; j < 256; j++) {
  239. int mask, k;
  240. for (i = 0; i < TAG_ENTRIES; i++) {
  241. for (k = i; index[k] < tag_index[i]; k++)
  242. ;
  243. if (j <= (index[k] | ((1 << order[k]) - 1)))
  244. break;
  245. }
  246. radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
  247. struct item *item = *slot;
  248. for (k = i; index[k] < tag_index[i]; k++)
  249. ;
  250. mask = (1 << order[k]) - 1;
  251. assert((iter.index | mask) == (tag_index[i] | mask));
  252. assert(!radix_tree_is_internal_node(item));
  253. assert((item->index | mask) == (tag_index[i] | mask));
  254. assert(item->order == order[k]);
  255. i++;
  256. }
  257. }
  258. assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
  259. == TAG_ENTRIES);
  260. i = 0;
  261. radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
  262. assert(iter.index == tag_index[i]);
  263. i++;
  264. }
  265. item_kill_tree(&tree);
  266. }
  267. void multiorder_checks(void)
  268. {
  269. int i;
  270. for (i = 0; i < 20; i++) {
  271. multiorder_check(200, i);
  272. multiorder_check(0, i);
  273. multiorder_check((1UL << i) + 1, i);
  274. }
  275. for (i = 0; i < 15; i++)
  276. multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
  277. multiorder_insert_bug();
  278. multiorder_tag_tests();
  279. multiorder_iteration();
  280. multiorder_tagged_iteration();
  281. }