sched.c 225 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <trace/sched.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. /*
  78. * Convert user-nice values [ -20 ... 0 ... 19 ]
  79. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  80. * and back.
  81. */
  82. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  83. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  84. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  85. /*
  86. * 'User priority' is the nice value converted to something we
  87. * can work with better when scaling various scheduler parameters,
  88. * it's a [ 0 ... 39 ] range.
  89. */
  90. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  91. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  92. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  93. /*
  94. * Helpers for converting nanosecond timing to jiffy resolution
  95. */
  96. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. /*
  107. * single value that denotes runtime == period, ie unlimited time.
  108. */
  109. #define RUNTIME_INF ((u64)~0ULL)
  110. #ifdef CONFIG_SMP
  111. /*
  112. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  113. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  114. */
  115. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  116. {
  117. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  118. }
  119. /*
  120. * Each time a sched group cpu_power is changed,
  121. * we must compute its reciprocal value
  122. */
  123. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  124. {
  125. sg->__cpu_power += val;
  126. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  127. }
  128. #endif
  129. static inline int rt_policy(int policy)
  130. {
  131. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  132. return 1;
  133. return 0;
  134. }
  135. static inline int task_has_rt_policy(struct task_struct *p)
  136. {
  137. return rt_policy(p->policy);
  138. }
  139. /*
  140. * This is the priority-queue data structure of the RT scheduling class:
  141. */
  142. struct rt_prio_array {
  143. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  144. struct list_head queue[MAX_RT_PRIO];
  145. };
  146. struct rt_bandwidth {
  147. /* nests inside the rq lock: */
  148. spinlock_t rt_runtime_lock;
  149. ktime_t rt_period;
  150. u64 rt_runtime;
  151. struct hrtimer rt_period_timer;
  152. };
  153. static struct rt_bandwidth def_rt_bandwidth;
  154. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  155. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  156. {
  157. struct rt_bandwidth *rt_b =
  158. container_of(timer, struct rt_bandwidth, rt_period_timer);
  159. ktime_t now;
  160. int overrun;
  161. int idle = 0;
  162. for (;;) {
  163. now = hrtimer_cb_get_time(timer);
  164. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  165. if (!overrun)
  166. break;
  167. idle = do_sched_rt_period_timer(rt_b, overrun);
  168. }
  169. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  170. }
  171. static
  172. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  173. {
  174. rt_b->rt_period = ns_to_ktime(period);
  175. rt_b->rt_runtime = runtime;
  176. spin_lock_init(&rt_b->rt_runtime_lock);
  177. hrtimer_init(&rt_b->rt_period_timer,
  178. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  179. rt_b->rt_period_timer.function = sched_rt_period_timer;
  180. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  181. }
  182. static inline int rt_bandwidth_enabled(void)
  183. {
  184. return sysctl_sched_rt_runtime >= 0;
  185. }
  186. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  187. {
  188. ktime_t now;
  189. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  190. return;
  191. if (hrtimer_active(&rt_b->rt_period_timer))
  192. return;
  193. spin_lock(&rt_b->rt_runtime_lock);
  194. for (;;) {
  195. if (hrtimer_active(&rt_b->rt_period_timer))
  196. break;
  197. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  198. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  199. hrtimer_start_expires(&rt_b->rt_period_timer,
  200. HRTIMER_MODE_ABS);
  201. }
  202. spin_unlock(&rt_b->rt_runtime_lock);
  203. }
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  206. {
  207. hrtimer_cancel(&rt_b->rt_period_timer);
  208. }
  209. #endif
  210. /*
  211. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  212. * detach_destroy_domains and partition_sched_domains.
  213. */
  214. static DEFINE_MUTEX(sched_domains_mutex);
  215. #ifdef CONFIG_GROUP_SCHED
  216. #include <linux/cgroup.h>
  217. struct cfs_rq;
  218. static LIST_HEAD(task_groups);
  219. /* task group related information */
  220. struct task_group {
  221. #ifdef CONFIG_CGROUP_SCHED
  222. struct cgroup_subsys_state css;
  223. #endif
  224. #ifdef CONFIG_FAIR_GROUP_SCHED
  225. /* schedulable entities of this group on each cpu */
  226. struct sched_entity **se;
  227. /* runqueue "owned" by this group on each cpu */
  228. struct cfs_rq **cfs_rq;
  229. unsigned long shares;
  230. #endif
  231. #ifdef CONFIG_RT_GROUP_SCHED
  232. struct sched_rt_entity **rt_se;
  233. struct rt_rq **rt_rq;
  234. struct rt_bandwidth rt_bandwidth;
  235. #endif
  236. struct rcu_head rcu;
  237. struct list_head list;
  238. struct task_group *parent;
  239. struct list_head siblings;
  240. struct list_head children;
  241. };
  242. #ifdef CONFIG_USER_SCHED
  243. /*
  244. * Root task group.
  245. * Every UID task group (including init_task_group aka UID-0) will
  246. * be a child to this group.
  247. */
  248. struct task_group root_task_group;
  249. #ifdef CONFIG_FAIR_GROUP_SCHED
  250. /* Default task group's sched entity on each cpu */
  251. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  252. /* Default task group's cfs_rq on each cpu */
  253. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_FAIR_GROUP_SCHED */
  255. #ifdef CONFIG_RT_GROUP_SCHED
  256. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  257. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  258. #endif /* CONFIG_RT_GROUP_SCHED */
  259. #else /* !CONFIG_USER_SCHED */
  260. #define root_task_group init_task_group
  261. #endif /* CONFIG_USER_SCHED */
  262. /* task_group_lock serializes add/remove of task groups and also changes to
  263. * a task group's cpu shares.
  264. */
  265. static DEFINE_SPINLOCK(task_group_lock);
  266. #ifdef CONFIG_FAIR_GROUP_SCHED
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. tg = p->user->tg;
  294. #elif defined(CONFIG_CGROUP_SCHED)
  295. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  296. struct task_group, css);
  297. #else
  298. tg = &init_task_group;
  299. #endif
  300. return tg;
  301. }
  302. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  303. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  304. {
  305. #ifdef CONFIG_FAIR_GROUP_SCHED
  306. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  307. p->se.parent = task_group(p)->se[cpu];
  308. #endif
  309. #ifdef CONFIG_RT_GROUP_SCHED
  310. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  311. p->rt.parent = task_group(p)->rt_se[cpu];
  312. #endif
  313. }
  314. #else
  315. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  316. static inline struct task_group *task_group(struct task_struct *p)
  317. {
  318. return NULL;
  319. }
  320. #endif /* CONFIG_GROUP_SCHED */
  321. /* CFS-related fields in a runqueue */
  322. struct cfs_rq {
  323. struct load_weight load;
  324. unsigned long nr_running;
  325. u64 exec_clock;
  326. u64 min_vruntime;
  327. u64 pair_start;
  328. struct rb_root tasks_timeline;
  329. struct rb_node *rb_leftmost;
  330. struct list_head tasks;
  331. struct list_head *balance_iterator;
  332. /*
  333. * 'curr' points to currently running entity on this cfs_rq.
  334. * It is set to NULL otherwise (i.e when none are currently running).
  335. */
  336. struct sched_entity *curr, *next;
  337. unsigned long nr_spread_over;
  338. #ifdef CONFIG_FAIR_GROUP_SCHED
  339. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  340. /*
  341. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  342. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  343. * (like users, containers etc.)
  344. *
  345. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  346. * list is used during load balance.
  347. */
  348. struct list_head leaf_cfs_rq_list;
  349. struct task_group *tg; /* group that "owns" this runqueue */
  350. #ifdef CONFIG_SMP
  351. /*
  352. * the part of load.weight contributed by tasks
  353. */
  354. unsigned long task_weight;
  355. /*
  356. * h_load = weight * f(tg)
  357. *
  358. * Where f(tg) is the recursive weight fraction assigned to
  359. * this group.
  360. */
  361. unsigned long h_load;
  362. /*
  363. * this cpu's part of tg->shares
  364. */
  365. unsigned long shares;
  366. /*
  367. * load.weight at the time we set shares
  368. */
  369. unsigned long rq_weight;
  370. #endif
  371. #endif
  372. };
  373. /* Real-Time classes' related field in a runqueue: */
  374. struct rt_rq {
  375. struct rt_prio_array active;
  376. unsigned long rt_nr_running;
  377. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  378. int highest_prio; /* highest queued rt task prio */
  379. #endif
  380. #ifdef CONFIG_SMP
  381. unsigned long rt_nr_migratory;
  382. int overloaded;
  383. #endif
  384. int rt_throttled;
  385. u64 rt_time;
  386. u64 rt_runtime;
  387. /* Nests inside the rq lock: */
  388. spinlock_t rt_runtime_lock;
  389. #ifdef CONFIG_RT_GROUP_SCHED
  390. unsigned long rt_nr_boosted;
  391. struct rq *rq;
  392. struct list_head leaf_rt_rq_list;
  393. struct task_group *tg;
  394. struct sched_rt_entity *rt_se;
  395. #endif
  396. };
  397. #ifdef CONFIG_SMP
  398. /*
  399. * We add the notion of a root-domain which will be used to define per-domain
  400. * variables. Each exclusive cpuset essentially defines an island domain by
  401. * fully partitioning the member cpus from any other cpuset. Whenever a new
  402. * exclusive cpuset is created, we also create and attach a new root-domain
  403. * object.
  404. *
  405. */
  406. struct root_domain {
  407. atomic_t refcount;
  408. cpumask_t span;
  409. cpumask_t online;
  410. /*
  411. * The "RT overload" flag: it gets set if a CPU has more than
  412. * one runnable RT task.
  413. */
  414. cpumask_t rto_mask;
  415. atomic_t rto_count;
  416. #ifdef CONFIG_SMP
  417. struct cpupri cpupri;
  418. #endif
  419. };
  420. /*
  421. * By default the system creates a single root-domain with all cpus as
  422. * members (mimicking the global state we have today).
  423. */
  424. static struct root_domain def_root_domain;
  425. #endif
  426. /*
  427. * This is the main, per-CPU runqueue data structure.
  428. *
  429. * Locking rule: those places that want to lock multiple runqueues
  430. * (such as the load balancing or the thread migration code), lock
  431. * acquire operations must be ordered by ascending &runqueue.
  432. */
  433. struct rq {
  434. /* runqueue lock: */
  435. spinlock_t lock;
  436. /*
  437. * nr_running and cpu_load should be in the same cacheline because
  438. * remote CPUs use both these fields when doing load calculation.
  439. */
  440. unsigned long nr_running;
  441. #define CPU_LOAD_IDX_MAX 5
  442. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  443. unsigned char idle_at_tick;
  444. #ifdef CONFIG_NO_HZ
  445. unsigned long last_tick_seen;
  446. unsigned char in_nohz_recently;
  447. #endif
  448. /* capture load from *all* tasks on this cpu: */
  449. struct load_weight load;
  450. unsigned long nr_load_updates;
  451. u64 nr_switches;
  452. struct cfs_rq cfs;
  453. struct rt_rq rt;
  454. #ifdef CONFIG_FAIR_GROUP_SCHED
  455. /* list of leaf cfs_rq on this cpu: */
  456. struct list_head leaf_cfs_rq_list;
  457. #endif
  458. #ifdef CONFIG_RT_GROUP_SCHED
  459. struct list_head leaf_rt_rq_list;
  460. #endif
  461. /*
  462. * This is part of a global counter where only the total sum
  463. * over all CPUs matters. A task can increase this counter on
  464. * one CPU and if it got migrated afterwards it may decrease
  465. * it on another CPU. Always updated under the runqueue lock:
  466. */
  467. unsigned long nr_uninterruptible;
  468. struct task_struct *curr, *idle;
  469. unsigned long next_balance;
  470. struct mm_struct *prev_mm;
  471. u64 clock;
  472. atomic_t nr_iowait;
  473. #ifdef CONFIG_SMP
  474. struct root_domain *rd;
  475. struct sched_domain *sd;
  476. /* For active balancing */
  477. int active_balance;
  478. int push_cpu;
  479. /* cpu of this runqueue: */
  480. int cpu;
  481. int online;
  482. unsigned long avg_load_per_task;
  483. struct task_struct *migration_thread;
  484. struct list_head migration_queue;
  485. #endif
  486. #ifdef CONFIG_SCHED_HRTICK
  487. #ifdef CONFIG_SMP
  488. int hrtick_csd_pending;
  489. struct call_single_data hrtick_csd;
  490. #endif
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. };
  512. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  513. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  514. {
  515. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  516. }
  517. static inline int cpu_of(struct rq *rq)
  518. {
  519. #ifdef CONFIG_SMP
  520. return rq->cpu;
  521. #else
  522. return 0;
  523. #endif
  524. }
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. static inline void update_rq_clock(struct rq *rq)
  539. {
  540. rq->clock = sched_clock_cpu(cpu_of(rq));
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(void)
  558. {
  559. int cpu = get_cpu();
  560. struct rq *rq = cpu_rq(cpu);
  561. int ret;
  562. ret = spin_is_locked(&rq->lock);
  563. put_cpu();
  564. return ret;
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_open(struct inode *inode, struct file *filp)
  590. {
  591. filp->private_data = inode->i_private;
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_read(struct file *filp, char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char *buf;
  599. int r = 0;
  600. int len = 0;
  601. int i;
  602. for (i = 0; sched_feat_names[i]; i++) {
  603. len += strlen(sched_feat_names[i]);
  604. len += 4;
  605. }
  606. buf = kmalloc(len + 2, GFP_KERNEL);
  607. if (!buf)
  608. return -ENOMEM;
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (sysctl_sched_features & (1UL << i))
  611. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  612. else
  613. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  614. }
  615. r += sprintf(buf + r, "\n");
  616. WARN_ON(r >= len + 2);
  617. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  618. kfree(buf);
  619. return r;
  620. }
  621. static ssize_t
  622. sched_feat_write(struct file *filp, const char __user *ubuf,
  623. size_t cnt, loff_t *ppos)
  624. {
  625. char buf[64];
  626. char *cmp = buf;
  627. int neg = 0;
  628. int i;
  629. if (cnt > 63)
  630. cnt = 63;
  631. if (copy_from_user(&buf, ubuf, cnt))
  632. return -EFAULT;
  633. buf[cnt] = 0;
  634. if (strncmp(buf, "NO_", 3) == 0) {
  635. neg = 1;
  636. cmp += 3;
  637. }
  638. for (i = 0; sched_feat_names[i]; i++) {
  639. int len = strlen(sched_feat_names[i]);
  640. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  641. if (neg)
  642. sysctl_sched_features &= ~(1UL << i);
  643. else
  644. sysctl_sched_features |= (1UL << i);
  645. break;
  646. }
  647. }
  648. if (!sched_feat_names[i])
  649. return -EINVAL;
  650. filp->f_pos += cnt;
  651. return cnt;
  652. }
  653. static struct file_operations sched_feat_fops = {
  654. .open = sched_feat_open,
  655. .read = sched_feat_read,
  656. .write = sched_feat_write,
  657. };
  658. static __init int sched_init_debug(void)
  659. {
  660. debugfs_create_file("sched_features", 0644, NULL, NULL,
  661. &sched_feat_fops);
  662. return 0;
  663. }
  664. late_initcall(sched_init_debug);
  665. #endif
  666. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  667. /*
  668. * Number of tasks to iterate in a single balance run.
  669. * Limited because this is done with IRQs disabled.
  670. */
  671. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  672. /*
  673. * ratelimit for updating the group shares.
  674. * default: 0.25ms
  675. */
  676. unsigned int sysctl_sched_shares_ratelimit = 250000;
  677. /*
  678. * period over which we measure -rt task cpu usage in us.
  679. * default: 1s
  680. */
  681. unsigned int sysctl_sched_rt_period = 1000000;
  682. static __read_mostly int scheduler_running;
  683. /*
  684. * part of the period that we allow rt tasks to run in us.
  685. * default: 0.95s
  686. */
  687. int sysctl_sched_rt_runtime = 950000;
  688. static inline u64 global_rt_period(void)
  689. {
  690. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  691. }
  692. static inline u64 global_rt_runtime(void)
  693. {
  694. if (sysctl_sched_rt_runtime < 0)
  695. return RUNTIME_INF;
  696. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  697. }
  698. #ifndef prepare_arch_switch
  699. # define prepare_arch_switch(next) do { } while (0)
  700. #endif
  701. #ifndef finish_arch_switch
  702. # define finish_arch_switch(prev) do { } while (0)
  703. #endif
  704. static inline int task_current(struct rq *rq, struct task_struct *p)
  705. {
  706. return rq->curr == p;
  707. }
  708. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  709. static inline int task_running(struct rq *rq, struct task_struct *p)
  710. {
  711. return task_current(rq, p);
  712. }
  713. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  714. {
  715. }
  716. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  717. {
  718. #ifdef CONFIG_DEBUG_SPINLOCK
  719. /* this is a valid case when another task releases the spinlock */
  720. rq->lock.owner = current;
  721. #endif
  722. /*
  723. * If we are tracking spinlock dependencies then we have to
  724. * fix up the runqueue lock - which gets 'carried over' from
  725. * prev into current:
  726. */
  727. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  728. spin_unlock_irq(&rq->lock);
  729. }
  730. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  731. static inline int task_running(struct rq *rq, struct task_struct *p)
  732. {
  733. #ifdef CONFIG_SMP
  734. return p->oncpu;
  735. #else
  736. return task_current(rq, p);
  737. #endif
  738. }
  739. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  740. {
  741. #ifdef CONFIG_SMP
  742. /*
  743. * We can optimise this out completely for !SMP, because the
  744. * SMP rebalancing from interrupt is the only thing that cares
  745. * here.
  746. */
  747. next->oncpu = 1;
  748. #endif
  749. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  750. spin_unlock_irq(&rq->lock);
  751. #else
  752. spin_unlock(&rq->lock);
  753. #endif
  754. }
  755. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  756. {
  757. #ifdef CONFIG_SMP
  758. /*
  759. * After ->oncpu is cleared, the task can be moved to a different CPU.
  760. * We must ensure this doesn't happen until the switch is completely
  761. * finished.
  762. */
  763. smp_wmb();
  764. prev->oncpu = 0;
  765. #endif
  766. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  767. local_irq_enable();
  768. #endif
  769. }
  770. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  771. /*
  772. * __task_rq_lock - lock the runqueue a given task resides on.
  773. * Must be called interrupts disabled.
  774. */
  775. static inline struct rq *__task_rq_lock(struct task_struct *p)
  776. __acquires(rq->lock)
  777. {
  778. for (;;) {
  779. struct rq *rq = task_rq(p);
  780. spin_lock(&rq->lock);
  781. if (likely(rq == task_rq(p)))
  782. return rq;
  783. spin_unlock(&rq->lock);
  784. }
  785. }
  786. /*
  787. * task_rq_lock - lock the runqueue a given task resides on and disable
  788. * interrupts. Note the ordering: we can safely lookup the task_rq without
  789. * explicitly disabling preemption.
  790. */
  791. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  792. __acquires(rq->lock)
  793. {
  794. struct rq *rq;
  795. for (;;) {
  796. local_irq_save(*flags);
  797. rq = task_rq(p);
  798. spin_lock(&rq->lock);
  799. if (likely(rq == task_rq(p)))
  800. return rq;
  801. spin_unlock_irqrestore(&rq->lock, *flags);
  802. }
  803. }
  804. static void __task_rq_unlock(struct rq *rq)
  805. __releases(rq->lock)
  806. {
  807. spin_unlock(&rq->lock);
  808. }
  809. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  810. __releases(rq->lock)
  811. {
  812. spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. /*
  815. * this_rq_lock - lock this runqueue and disable interrupts.
  816. */
  817. static struct rq *this_rq_lock(void)
  818. __acquires(rq->lock)
  819. {
  820. struct rq *rq;
  821. local_irq_disable();
  822. rq = this_rq();
  823. spin_lock(&rq->lock);
  824. return rq;
  825. }
  826. #ifdef CONFIG_SCHED_HRTICK
  827. /*
  828. * Use HR-timers to deliver accurate preemption points.
  829. *
  830. * Its all a bit involved since we cannot program an hrt while holding the
  831. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  832. * reschedule event.
  833. *
  834. * When we get rescheduled we reprogram the hrtick_timer outside of the
  835. * rq->lock.
  836. */
  837. /*
  838. * Use hrtick when:
  839. * - enabled by features
  840. * - hrtimer is actually high res
  841. */
  842. static inline int hrtick_enabled(struct rq *rq)
  843. {
  844. if (!sched_feat(HRTICK))
  845. return 0;
  846. if (!cpu_active(cpu_of(rq)))
  847. return 0;
  848. return hrtimer_is_hres_active(&rq->hrtick_timer);
  849. }
  850. static void hrtick_clear(struct rq *rq)
  851. {
  852. if (hrtimer_active(&rq->hrtick_timer))
  853. hrtimer_cancel(&rq->hrtick_timer);
  854. }
  855. /*
  856. * High-resolution timer tick.
  857. * Runs from hardirq context with interrupts disabled.
  858. */
  859. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  860. {
  861. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  862. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  863. spin_lock(&rq->lock);
  864. update_rq_clock(rq);
  865. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  866. spin_unlock(&rq->lock);
  867. return HRTIMER_NORESTART;
  868. }
  869. #ifdef CONFIG_SMP
  870. /*
  871. * called from hardirq (IPI) context
  872. */
  873. static void __hrtick_start(void *arg)
  874. {
  875. struct rq *rq = arg;
  876. spin_lock(&rq->lock);
  877. hrtimer_restart(&rq->hrtick_timer);
  878. rq->hrtick_csd_pending = 0;
  879. spin_unlock(&rq->lock);
  880. }
  881. /*
  882. * Called to set the hrtick timer state.
  883. *
  884. * called with rq->lock held and irqs disabled
  885. */
  886. static void hrtick_start(struct rq *rq, u64 delay)
  887. {
  888. struct hrtimer *timer = &rq->hrtick_timer;
  889. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  890. hrtimer_set_expires(timer, time);
  891. if (rq == this_rq()) {
  892. hrtimer_restart(timer);
  893. } else if (!rq->hrtick_csd_pending) {
  894. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  895. rq->hrtick_csd_pending = 1;
  896. }
  897. }
  898. static int
  899. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  900. {
  901. int cpu = (int)(long)hcpu;
  902. switch (action) {
  903. case CPU_UP_CANCELED:
  904. case CPU_UP_CANCELED_FROZEN:
  905. case CPU_DOWN_PREPARE:
  906. case CPU_DOWN_PREPARE_FROZEN:
  907. case CPU_DEAD:
  908. case CPU_DEAD_FROZEN:
  909. hrtick_clear(cpu_rq(cpu));
  910. return NOTIFY_OK;
  911. }
  912. return NOTIFY_DONE;
  913. }
  914. static __init void init_hrtick(void)
  915. {
  916. hotcpu_notifier(hotplug_hrtick, 0);
  917. }
  918. #else
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  927. }
  928. static inline void init_hrtick(void)
  929. {
  930. }
  931. #endif /* CONFIG_SMP */
  932. static void init_rq_hrtick(struct rq *rq)
  933. {
  934. #ifdef CONFIG_SMP
  935. rq->hrtick_csd_pending = 0;
  936. rq->hrtick_csd.flags = 0;
  937. rq->hrtick_csd.func = __hrtick_start;
  938. rq->hrtick_csd.info = rq;
  939. #endif
  940. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  941. rq->hrtick_timer.function = hrtick;
  942. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  943. }
  944. #else /* CONFIG_SCHED_HRTICK */
  945. static inline void hrtick_clear(struct rq *rq)
  946. {
  947. }
  948. static inline void init_rq_hrtick(struct rq *rq)
  949. {
  950. }
  951. static inline void init_hrtick(void)
  952. {
  953. }
  954. #endif /* CONFIG_SCHED_HRTICK */
  955. /*
  956. * resched_task - mark a task 'to be rescheduled now'.
  957. *
  958. * On UP this means the setting of the need_resched flag, on SMP it
  959. * might also involve a cross-CPU call to trigger the scheduler on
  960. * the target CPU.
  961. */
  962. #ifdef CONFIG_SMP
  963. #ifndef tsk_is_polling
  964. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  965. #endif
  966. static void resched_task(struct task_struct *p)
  967. {
  968. int cpu;
  969. assert_spin_locked(&task_rq(p)->lock);
  970. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  971. return;
  972. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  973. cpu = task_cpu(p);
  974. if (cpu == smp_processor_id())
  975. return;
  976. /* NEED_RESCHED must be visible before we test polling */
  977. smp_mb();
  978. if (!tsk_is_polling(p))
  979. smp_send_reschedule(cpu);
  980. }
  981. static void resched_cpu(int cpu)
  982. {
  983. struct rq *rq = cpu_rq(cpu);
  984. unsigned long flags;
  985. if (!spin_trylock_irqsave(&rq->lock, flags))
  986. return;
  987. resched_task(cpu_curr(cpu));
  988. spin_unlock_irqrestore(&rq->lock, flags);
  989. }
  990. #ifdef CONFIG_NO_HZ
  991. /*
  992. * When add_timer_on() enqueues a timer into the timer wheel of an
  993. * idle CPU then this timer might expire before the next timer event
  994. * which is scheduled to wake up that CPU. In case of a completely
  995. * idle system the next event might even be infinite time into the
  996. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  997. * leaves the inner idle loop so the newly added timer is taken into
  998. * account when the CPU goes back to idle and evaluates the timer
  999. * wheel for the next timer event.
  1000. */
  1001. void wake_up_idle_cpu(int cpu)
  1002. {
  1003. struct rq *rq = cpu_rq(cpu);
  1004. if (cpu == smp_processor_id())
  1005. return;
  1006. /*
  1007. * This is safe, as this function is called with the timer
  1008. * wheel base lock of (cpu) held. When the CPU is on the way
  1009. * to idle and has not yet set rq->curr to idle then it will
  1010. * be serialized on the timer wheel base lock and take the new
  1011. * timer into account automatically.
  1012. */
  1013. if (rq->curr != rq->idle)
  1014. return;
  1015. /*
  1016. * We can set TIF_RESCHED on the idle task of the other CPU
  1017. * lockless. The worst case is that the other CPU runs the
  1018. * idle task through an additional NOOP schedule()
  1019. */
  1020. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1021. /* NEED_RESCHED must be visible before we test polling */
  1022. smp_mb();
  1023. if (!tsk_is_polling(rq->idle))
  1024. smp_send_reschedule(cpu);
  1025. }
  1026. #endif /* CONFIG_NO_HZ */
  1027. #else /* !CONFIG_SMP */
  1028. static void resched_task(struct task_struct *p)
  1029. {
  1030. assert_spin_locked(&task_rq(p)->lock);
  1031. set_tsk_need_resched(p);
  1032. }
  1033. #endif /* CONFIG_SMP */
  1034. #if BITS_PER_LONG == 32
  1035. # define WMULT_CONST (~0UL)
  1036. #else
  1037. # define WMULT_CONST (1UL << 32)
  1038. #endif
  1039. #define WMULT_SHIFT 32
  1040. /*
  1041. * Shift right and round:
  1042. */
  1043. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1044. /*
  1045. * delta *= weight / lw
  1046. */
  1047. static unsigned long
  1048. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1049. struct load_weight *lw)
  1050. {
  1051. u64 tmp;
  1052. if (!lw->inv_weight) {
  1053. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1054. lw->inv_weight = 1;
  1055. else
  1056. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1057. / (lw->weight+1);
  1058. }
  1059. tmp = (u64)delta_exec * weight;
  1060. /*
  1061. * Check whether we'd overflow the 64-bit multiplication:
  1062. */
  1063. if (unlikely(tmp > WMULT_CONST))
  1064. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1065. WMULT_SHIFT/2);
  1066. else
  1067. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1068. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1069. }
  1070. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1071. {
  1072. lw->weight += inc;
  1073. lw->inv_weight = 0;
  1074. }
  1075. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1076. {
  1077. lw->weight -= dec;
  1078. lw->inv_weight = 0;
  1079. }
  1080. /*
  1081. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1082. * of tasks with abnormal "nice" values across CPUs the contribution that
  1083. * each task makes to its run queue's load is weighted according to its
  1084. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1085. * scaled version of the new time slice allocation that they receive on time
  1086. * slice expiry etc.
  1087. */
  1088. #define WEIGHT_IDLEPRIO 2
  1089. #define WMULT_IDLEPRIO (1 << 31)
  1090. /*
  1091. * Nice levels are multiplicative, with a gentle 10% change for every
  1092. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1093. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1094. * that remained on nice 0.
  1095. *
  1096. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1097. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1098. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1099. * If a task goes up by ~10% and another task goes down by ~10% then
  1100. * the relative distance between them is ~25%.)
  1101. */
  1102. static const int prio_to_weight[40] = {
  1103. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1104. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1105. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1106. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1107. /* 0 */ 1024, 820, 655, 526, 423,
  1108. /* 5 */ 335, 272, 215, 172, 137,
  1109. /* 10 */ 110, 87, 70, 56, 45,
  1110. /* 15 */ 36, 29, 23, 18, 15,
  1111. };
  1112. /*
  1113. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1114. *
  1115. * In cases where the weight does not change often, we can use the
  1116. * precalculated inverse to speed up arithmetics by turning divisions
  1117. * into multiplications:
  1118. */
  1119. static const u32 prio_to_wmult[40] = {
  1120. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1121. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1122. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1123. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1124. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1125. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1126. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1127. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1128. };
  1129. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1130. /*
  1131. * runqueue iterator, to support SMP load-balancing between different
  1132. * scheduling classes, without having to expose their internal data
  1133. * structures to the load-balancing proper:
  1134. */
  1135. struct rq_iterator {
  1136. void *arg;
  1137. struct task_struct *(*start)(void *);
  1138. struct task_struct *(*next)(void *);
  1139. };
  1140. #ifdef CONFIG_SMP
  1141. static unsigned long
  1142. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1143. unsigned long max_load_move, struct sched_domain *sd,
  1144. enum cpu_idle_type idle, int *all_pinned,
  1145. int *this_best_prio, struct rq_iterator *iterator);
  1146. static int
  1147. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1148. struct sched_domain *sd, enum cpu_idle_type idle,
  1149. struct rq_iterator *iterator);
  1150. #endif
  1151. #ifdef CONFIG_CGROUP_CPUACCT
  1152. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1153. #else
  1154. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1155. #endif
  1156. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1157. {
  1158. update_load_add(&rq->load, load);
  1159. }
  1160. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1161. {
  1162. update_load_sub(&rq->load, load);
  1163. }
  1164. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1165. typedef int (*tg_visitor)(struct task_group *, void *);
  1166. /*
  1167. * Iterate the full tree, calling @down when first entering a node and @up when
  1168. * leaving it for the final time.
  1169. */
  1170. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1171. {
  1172. struct task_group *parent, *child;
  1173. int ret;
  1174. rcu_read_lock();
  1175. parent = &root_task_group;
  1176. down:
  1177. ret = (*down)(parent, data);
  1178. if (ret)
  1179. goto out_unlock;
  1180. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1181. parent = child;
  1182. goto down;
  1183. up:
  1184. continue;
  1185. }
  1186. ret = (*up)(parent, data);
  1187. if (ret)
  1188. goto out_unlock;
  1189. child = parent;
  1190. parent = parent->parent;
  1191. if (parent)
  1192. goto up;
  1193. out_unlock:
  1194. rcu_read_unlock();
  1195. return ret;
  1196. }
  1197. static int tg_nop(struct task_group *tg, void *data)
  1198. {
  1199. return 0;
  1200. }
  1201. #endif
  1202. #ifdef CONFIG_SMP
  1203. static unsigned long source_load(int cpu, int type);
  1204. static unsigned long target_load(int cpu, int type);
  1205. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1206. static unsigned long cpu_avg_load_per_task(int cpu)
  1207. {
  1208. struct rq *rq = cpu_rq(cpu);
  1209. if (rq->nr_running)
  1210. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1211. return rq->avg_load_per_task;
  1212. }
  1213. #ifdef CONFIG_FAIR_GROUP_SCHED
  1214. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1215. /*
  1216. * Calculate and set the cpu's group shares.
  1217. */
  1218. static void
  1219. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1220. unsigned long sd_shares, unsigned long sd_rq_weight)
  1221. {
  1222. int boost = 0;
  1223. unsigned long shares;
  1224. unsigned long rq_weight;
  1225. if (!tg->se[cpu])
  1226. return;
  1227. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1228. /*
  1229. * If there are currently no tasks on the cpu pretend there is one of
  1230. * average load so that when a new task gets to run here it will not
  1231. * get delayed by group starvation.
  1232. */
  1233. if (!rq_weight) {
  1234. boost = 1;
  1235. rq_weight = NICE_0_LOAD;
  1236. }
  1237. if (unlikely(rq_weight > sd_rq_weight))
  1238. rq_weight = sd_rq_weight;
  1239. /*
  1240. * \Sum shares * rq_weight
  1241. * shares = -----------------------
  1242. * \Sum rq_weight
  1243. *
  1244. */
  1245. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1246. /*
  1247. * record the actual number of shares, not the boosted amount.
  1248. */
  1249. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1250. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1251. if (shares < MIN_SHARES)
  1252. shares = MIN_SHARES;
  1253. else if (shares > MAX_SHARES)
  1254. shares = MAX_SHARES;
  1255. __set_se_shares(tg->se[cpu], shares);
  1256. }
  1257. /*
  1258. * Re-compute the task group their per cpu shares over the given domain.
  1259. * This needs to be done in a bottom-up fashion because the rq weight of a
  1260. * parent group depends on the shares of its child groups.
  1261. */
  1262. static int tg_shares_up(struct task_group *tg, void *data)
  1263. {
  1264. unsigned long rq_weight = 0;
  1265. unsigned long shares = 0;
  1266. struct sched_domain *sd = data;
  1267. int i;
  1268. for_each_cpu_mask(i, sd->span) {
  1269. rq_weight += tg->cfs_rq[i]->load.weight;
  1270. shares += tg->cfs_rq[i]->shares;
  1271. }
  1272. if ((!shares && rq_weight) || shares > tg->shares)
  1273. shares = tg->shares;
  1274. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1275. shares = tg->shares;
  1276. if (!rq_weight)
  1277. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1278. for_each_cpu_mask(i, sd->span) {
  1279. struct rq *rq = cpu_rq(i);
  1280. unsigned long flags;
  1281. spin_lock_irqsave(&rq->lock, flags);
  1282. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1283. spin_unlock_irqrestore(&rq->lock, flags);
  1284. }
  1285. return 0;
  1286. }
  1287. /*
  1288. * Compute the cpu's hierarchical load factor for each task group.
  1289. * This needs to be done in a top-down fashion because the load of a child
  1290. * group is a fraction of its parents load.
  1291. */
  1292. static int tg_load_down(struct task_group *tg, void *data)
  1293. {
  1294. unsigned long load;
  1295. long cpu = (long)data;
  1296. if (!tg->parent) {
  1297. load = cpu_rq(cpu)->load.weight;
  1298. } else {
  1299. load = tg->parent->cfs_rq[cpu]->h_load;
  1300. load *= tg->cfs_rq[cpu]->shares;
  1301. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1302. }
  1303. tg->cfs_rq[cpu]->h_load = load;
  1304. return 0;
  1305. }
  1306. static void update_shares(struct sched_domain *sd)
  1307. {
  1308. u64 now = cpu_clock(raw_smp_processor_id());
  1309. s64 elapsed = now - sd->last_update;
  1310. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1311. sd->last_update = now;
  1312. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1313. }
  1314. }
  1315. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1316. {
  1317. spin_unlock(&rq->lock);
  1318. update_shares(sd);
  1319. spin_lock(&rq->lock);
  1320. }
  1321. static void update_h_load(long cpu)
  1322. {
  1323. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1324. }
  1325. #else
  1326. static inline void update_shares(struct sched_domain *sd)
  1327. {
  1328. }
  1329. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1330. {
  1331. }
  1332. #endif
  1333. #endif
  1334. #ifdef CONFIG_FAIR_GROUP_SCHED
  1335. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1336. {
  1337. #ifdef CONFIG_SMP
  1338. cfs_rq->shares = shares;
  1339. #endif
  1340. }
  1341. #endif
  1342. #include "sched_stats.h"
  1343. #include "sched_idletask.c"
  1344. #include "sched_fair.c"
  1345. #include "sched_rt.c"
  1346. #ifdef CONFIG_SCHED_DEBUG
  1347. # include "sched_debug.c"
  1348. #endif
  1349. #define sched_class_highest (&rt_sched_class)
  1350. #define for_each_class(class) \
  1351. for (class = sched_class_highest; class; class = class->next)
  1352. static void inc_nr_running(struct rq *rq)
  1353. {
  1354. rq->nr_running++;
  1355. }
  1356. static void dec_nr_running(struct rq *rq)
  1357. {
  1358. rq->nr_running--;
  1359. }
  1360. static void set_load_weight(struct task_struct *p)
  1361. {
  1362. if (task_has_rt_policy(p)) {
  1363. p->se.load.weight = prio_to_weight[0] * 2;
  1364. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1365. return;
  1366. }
  1367. /*
  1368. * SCHED_IDLE tasks get minimal weight:
  1369. */
  1370. if (p->policy == SCHED_IDLE) {
  1371. p->se.load.weight = WEIGHT_IDLEPRIO;
  1372. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1373. return;
  1374. }
  1375. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1376. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1377. }
  1378. static void update_avg(u64 *avg, u64 sample)
  1379. {
  1380. s64 diff = sample - *avg;
  1381. *avg += diff >> 3;
  1382. }
  1383. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1384. {
  1385. sched_info_queued(p);
  1386. p->sched_class->enqueue_task(rq, p, wakeup);
  1387. p->se.on_rq = 1;
  1388. }
  1389. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1390. {
  1391. if (sleep && p->se.last_wakeup) {
  1392. update_avg(&p->se.avg_overlap,
  1393. p->se.sum_exec_runtime - p->se.last_wakeup);
  1394. p->se.last_wakeup = 0;
  1395. }
  1396. sched_info_dequeued(p);
  1397. p->sched_class->dequeue_task(rq, p, sleep);
  1398. p->se.on_rq = 0;
  1399. }
  1400. /*
  1401. * __normal_prio - return the priority that is based on the static prio
  1402. */
  1403. static inline int __normal_prio(struct task_struct *p)
  1404. {
  1405. return p->static_prio;
  1406. }
  1407. /*
  1408. * Calculate the expected normal priority: i.e. priority
  1409. * without taking RT-inheritance into account. Might be
  1410. * boosted by interactivity modifiers. Changes upon fork,
  1411. * setprio syscalls, and whenever the interactivity
  1412. * estimator recalculates.
  1413. */
  1414. static inline int normal_prio(struct task_struct *p)
  1415. {
  1416. int prio;
  1417. if (task_has_rt_policy(p))
  1418. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1419. else
  1420. prio = __normal_prio(p);
  1421. return prio;
  1422. }
  1423. /*
  1424. * Calculate the current priority, i.e. the priority
  1425. * taken into account by the scheduler. This value might
  1426. * be boosted by RT tasks, or might be boosted by
  1427. * interactivity modifiers. Will be RT if the task got
  1428. * RT-boosted. If not then it returns p->normal_prio.
  1429. */
  1430. static int effective_prio(struct task_struct *p)
  1431. {
  1432. p->normal_prio = normal_prio(p);
  1433. /*
  1434. * If we are RT tasks or we were boosted to RT priority,
  1435. * keep the priority unchanged. Otherwise, update priority
  1436. * to the normal priority:
  1437. */
  1438. if (!rt_prio(p->prio))
  1439. return p->normal_prio;
  1440. return p->prio;
  1441. }
  1442. /*
  1443. * activate_task - move a task to the runqueue.
  1444. */
  1445. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1446. {
  1447. if (task_contributes_to_load(p))
  1448. rq->nr_uninterruptible--;
  1449. enqueue_task(rq, p, wakeup);
  1450. inc_nr_running(rq);
  1451. }
  1452. /*
  1453. * deactivate_task - remove a task from the runqueue.
  1454. */
  1455. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1456. {
  1457. if (task_contributes_to_load(p))
  1458. rq->nr_uninterruptible++;
  1459. dequeue_task(rq, p, sleep);
  1460. dec_nr_running(rq);
  1461. }
  1462. /**
  1463. * task_curr - is this task currently executing on a CPU?
  1464. * @p: the task in question.
  1465. */
  1466. inline int task_curr(const struct task_struct *p)
  1467. {
  1468. return cpu_curr(task_cpu(p)) == p;
  1469. }
  1470. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1471. {
  1472. set_task_rq(p, cpu);
  1473. #ifdef CONFIG_SMP
  1474. /*
  1475. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1476. * successfuly executed on another CPU. We must ensure that updates of
  1477. * per-task data have been completed by this moment.
  1478. */
  1479. smp_wmb();
  1480. task_thread_info(p)->cpu = cpu;
  1481. #endif
  1482. }
  1483. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1484. const struct sched_class *prev_class,
  1485. int oldprio, int running)
  1486. {
  1487. if (prev_class != p->sched_class) {
  1488. if (prev_class->switched_from)
  1489. prev_class->switched_from(rq, p, running);
  1490. p->sched_class->switched_to(rq, p, running);
  1491. } else
  1492. p->sched_class->prio_changed(rq, p, oldprio, running);
  1493. }
  1494. #ifdef CONFIG_SMP
  1495. /* Used instead of source_load when we know the type == 0 */
  1496. static unsigned long weighted_cpuload(const int cpu)
  1497. {
  1498. return cpu_rq(cpu)->load.weight;
  1499. }
  1500. /*
  1501. * Is this task likely cache-hot:
  1502. */
  1503. static int
  1504. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1505. {
  1506. s64 delta;
  1507. /*
  1508. * Buddy candidates are cache hot:
  1509. */
  1510. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1511. return 1;
  1512. if (p->sched_class != &fair_sched_class)
  1513. return 0;
  1514. if (sysctl_sched_migration_cost == -1)
  1515. return 1;
  1516. if (sysctl_sched_migration_cost == 0)
  1517. return 0;
  1518. delta = now - p->se.exec_start;
  1519. return delta < (s64)sysctl_sched_migration_cost;
  1520. }
  1521. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1522. {
  1523. int old_cpu = task_cpu(p);
  1524. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1525. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1526. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1527. u64 clock_offset;
  1528. clock_offset = old_rq->clock - new_rq->clock;
  1529. #ifdef CONFIG_SCHEDSTATS
  1530. if (p->se.wait_start)
  1531. p->se.wait_start -= clock_offset;
  1532. if (p->se.sleep_start)
  1533. p->se.sleep_start -= clock_offset;
  1534. if (p->se.block_start)
  1535. p->se.block_start -= clock_offset;
  1536. if (old_cpu != new_cpu) {
  1537. schedstat_inc(p, se.nr_migrations);
  1538. if (task_hot(p, old_rq->clock, NULL))
  1539. schedstat_inc(p, se.nr_forced2_migrations);
  1540. }
  1541. #endif
  1542. p->se.vruntime -= old_cfsrq->min_vruntime -
  1543. new_cfsrq->min_vruntime;
  1544. __set_task_cpu(p, new_cpu);
  1545. }
  1546. struct migration_req {
  1547. struct list_head list;
  1548. struct task_struct *task;
  1549. int dest_cpu;
  1550. struct completion done;
  1551. };
  1552. /*
  1553. * The task's runqueue lock must be held.
  1554. * Returns true if you have to wait for migration thread.
  1555. */
  1556. static int
  1557. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1558. {
  1559. struct rq *rq = task_rq(p);
  1560. /*
  1561. * If the task is not on a runqueue (and not running), then
  1562. * it is sufficient to simply update the task's cpu field.
  1563. */
  1564. if (!p->se.on_rq && !task_running(rq, p)) {
  1565. set_task_cpu(p, dest_cpu);
  1566. return 0;
  1567. }
  1568. init_completion(&req->done);
  1569. req->task = p;
  1570. req->dest_cpu = dest_cpu;
  1571. list_add(&req->list, &rq->migration_queue);
  1572. return 1;
  1573. }
  1574. /*
  1575. * wait_task_inactive - wait for a thread to unschedule.
  1576. *
  1577. * If @match_state is nonzero, it's the @p->state value just checked and
  1578. * not expected to change. If it changes, i.e. @p might have woken up,
  1579. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1580. * we return a positive number (its total switch count). If a second call
  1581. * a short while later returns the same number, the caller can be sure that
  1582. * @p has remained unscheduled the whole time.
  1583. *
  1584. * The caller must ensure that the task *will* unschedule sometime soon,
  1585. * else this function might spin for a *long* time. This function can't
  1586. * be called with interrupts off, or it may introduce deadlock with
  1587. * smp_call_function() if an IPI is sent by the same process we are
  1588. * waiting to become inactive.
  1589. */
  1590. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1591. {
  1592. unsigned long flags;
  1593. int running, on_rq;
  1594. unsigned long ncsw;
  1595. struct rq *rq;
  1596. for (;;) {
  1597. /*
  1598. * We do the initial early heuristics without holding
  1599. * any task-queue locks at all. We'll only try to get
  1600. * the runqueue lock when things look like they will
  1601. * work out!
  1602. */
  1603. rq = task_rq(p);
  1604. /*
  1605. * If the task is actively running on another CPU
  1606. * still, just relax and busy-wait without holding
  1607. * any locks.
  1608. *
  1609. * NOTE! Since we don't hold any locks, it's not
  1610. * even sure that "rq" stays as the right runqueue!
  1611. * But we don't care, since "task_running()" will
  1612. * return false if the runqueue has changed and p
  1613. * is actually now running somewhere else!
  1614. */
  1615. while (task_running(rq, p)) {
  1616. if (match_state && unlikely(p->state != match_state))
  1617. return 0;
  1618. cpu_relax();
  1619. }
  1620. /*
  1621. * Ok, time to look more closely! We need the rq
  1622. * lock now, to be *sure*. If we're wrong, we'll
  1623. * just go back and repeat.
  1624. */
  1625. rq = task_rq_lock(p, &flags);
  1626. trace_sched_wait_task(rq, p);
  1627. running = task_running(rq, p);
  1628. on_rq = p->se.on_rq;
  1629. ncsw = 0;
  1630. if (!match_state || p->state == match_state)
  1631. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1632. task_rq_unlock(rq, &flags);
  1633. /*
  1634. * If it changed from the expected state, bail out now.
  1635. */
  1636. if (unlikely(!ncsw))
  1637. break;
  1638. /*
  1639. * Was it really running after all now that we
  1640. * checked with the proper locks actually held?
  1641. *
  1642. * Oops. Go back and try again..
  1643. */
  1644. if (unlikely(running)) {
  1645. cpu_relax();
  1646. continue;
  1647. }
  1648. /*
  1649. * It's not enough that it's not actively running,
  1650. * it must be off the runqueue _entirely_, and not
  1651. * preempted!
  1652. *
  1653. * So if it wa still runnable (but just not actively
  1654. * running right now), it's preempted, and we should
  1655. * yield - it could be a while.
  1656. */
  1657. if (unlikely(on_rq)) {
  1658. schedule_timeout_uninterruptible(1);
  1659. continue;
  1660. }
  1661. /*
  1662. * Ahh, all good. It wasn't running, and it wasn't
  1663. * runnable, which means that it will never become
  1664. * running in the future either. We're all done!
  1665. */
  1666. break;
  1667. }
  1668. return ncsw;
  1669. }
  1670. /***
  1671. * kick_process - kick a running thread to enter/exit the kernel
  1672. * @p: the to-be-kicked thread
  1673. *
  1674. * Cause a process which is running on another CPU to enter
  1675. * kernel-mode, without any delay. (to get signals handled.)
  1676. *
  1677. * NOTE: this function doesnt have to take the runqueue lock,
  1678. * because all it wants to ensure is that the remote task enters
  1679. * the kernel. If the IPI races and the task has been migrated
  1680. * to another CPU then no harm is done and the purpose has been
  1681. * achieved as well.
  1682. */
  1683. void kick_process(struct task_struct *p)
  1684. {
  1685. int cpu;
  1686. preempt_disable();
  1687. cpu = task_cpu(p);
  1688. if ((cpu != smp_processor_id()) && task_curr(p))
  1689. smp_send_reschedule(cpu);
  1690. preempt_enable();
  1691. }
  1692. /*
  1693. * Return a low guess at the load of a migration-source cpu weighted
  1694. * according to the scheduling class and "nice" value.
  1695. *
  1696. * We want to under-estimate the load of migration sources, to
  1697. * balance conservatively.
  1698. */
  1699. static unsigned long source_load(int cpu, int type)
  1700. {
  1701. struct rq *rq = cpu_rq(cpu);
  1702. unsigned long total = weighted_cpuload(cpu);
  1703. if (type == 0 || !sched_feat(LB_BIAS))
  1704. return total;
  1705. return min(rq->cpu_load[type-1], total);
  1706. }
  1707. /*
  1708. * Return a high guess at the load of a migration-target cpu weighted
  1709. * according to the scheduling class and "nice" value.
  1710. */
  1711. static unsigned long target_load(int cpu, int type)
  1712. {
  1713. struct rq *rq = cpu_rq(cpu);
  1714. unsigned long total = weighted_cpuload(cpu);
  1715. if (type == 0 || !sched_feat(LB_BIAS))
  1716. return total;
  1717. return max(rq->cpu_load[type-1], total);
  1718. }
  1719. /*
  1720. * find_idlest_group finds and returns the least busy CPU group within the
  1721. * domain.
  1722. */
  1723. static struct sched_group *
  1724. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1725. {
  1726. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1727. unsigned long min_load = ULONG_MAX, this_load = 0;
  1728. int load_idx = sd->forkexec_idx;
  1729. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1730. do {
  1731. unsigned long load, avg_load;
  1732. int local_group;
  1733. int i;
  1734. /* Skip over this group if it has no CPUs allowed */
  1735. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1736. continue;
  1737. local_group = cpu_isset(this_cpu, group->cpumask);
  1738. /* Tally up the load of all CPUs in the group */
  1739. avg_load = 0;
  1740. for_each_cpu_mask_nr(i, group->cpumask) {
  1741. /* Bias balancing toward cpus of our domain */
  1742. if (local_group)
  1743. load = source_load(i, load_idx);
  1744. else
  1745. load = target_load(i, load_idx);
  1746. avg_load += load;
  1747. }
  1748. /* Adjust by relative CPU power of the group */
  1749. avg_load = sg_div_cpu_power(group,
  1750. avg_load * SCHED_LOAD_SCALE);
  1751. if (local_group) {
  1752. this_load = avg_load;
  1753. this = group;
  1754. } else if (avg_load < min_load) {
  1755. min_load = avg_load;
  1756. idlest = group;
  1757. }
  1758. } while (group = group->next, group != sd->groups);
  1759. if (!idlest || 100*this_load < imbalance*min_load)
  1760. return NULL;
  1761. return idlest;
  1762. }
  1763. /*
  1764. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1765. */
  1766. static int
  1767. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1768. cpumask_t *tmp)
  1769. {
  1770. unsigned long load, min_load = ULONG_MAX;
  1771. int idlest = -1;
  1772. int i;
  1773. /* Traverse only the allowed CPUs */
  1774. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1775. for_each_cpu_mask_nr(i, *tmp) {
  1776. load = weighted_cpuload(i);
  1777. if (load < min_load || (load == min_load && i == this_cpu)) {
  1778. min_load = load;
  1779. idlest = i;
  1780. }
  1781. }
  1782. return idlest;
  1783. }
  1784. /*
  1785. * sched_balance_self: balance the current task (running on cpu) in domains
  1786. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1787. * SD_BALANCE_EXEC.
  1788. *
  1789. * Balance, ie. select the least loaded group.
  1790. *
  1791. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1792. *
  1793. * preempt must be disabled.
  1794. */
  1795. static int sched_balance_self(int cpu, int flag)
  1796. {
  1797. struct task_struct *t = current;
  1798. struct sched_domain *tmp, *sd = NULL;
  1799. for_each_domain(cpu, tmp) {
  1800. /*
  1801. * If power savings logic is enabled for a domain, stop there.
  1802. */
  1803. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1804. break;
  1805. if (tmp->flags & flag)
  1806. sd = tmp;
  1807. }
  1808. if (sd)
  1809. update_shares(sd);
  1810. while (sd) {
  1811. cpumask_t span, tmpmask;
  1812. struct sched_group *group;
  1813. int new_cpu, weight;
  1814. if (!(sd->flags & flag)) {
  1815. sd = sd->child;
  1816. continue;
  1817. }
  1818. span = sd->span;
  1819. group = find_idlest_group(sd, t, cpu);
  1820. if (!group) {
  1821. sd = sd->child;
  1822. continue;
  1823. }
  1824. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1825. if (new_cpu == -1 || new_cpu == cpu) {
  1826. /* Now try balancing at a lower domain level of cpu */
  1827. sd = sd->child;
  1828. continue;
  1829. }
  1830. /* Now try balancing at a lower domain level of new_cpu */
  1831. cpu = new_cpu;
  1832. sd = NULL;
  1833. weight = cpus_weight(span);
  1834. for_each_domain(cpu, tmp) {
  1835. if (weight <= cpus_weight(tmp->span))
  1836. break;
  1837. if (tmp->flags & flag)
  1838. sd = tmp;
  1839. }
  1840. /* while loop will break here if sd == NULL */
  1841. }
  1842. return cpu;
  1843. }
  1844. #endif /* CONFIG_SMP */
  1845. /***
  1846. * try_to_wake_up - wake up a thread
  1847. * @p: the to-be-woken-up thread
  1848. * @state: the mask of task states that can be woken
  1849. * @sync: do a synchronous wakeup?
  1850. *
  1851. * Put it on the run-queue if it's not already there. The "current"
  1852. * thread is always on the run-queue (except when the actual
  1853. * re-schedule is in progress), and as such you're allowed to do
  1854. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1855. * runnable without the overhead of this.
  1856. *
  1857. * returns failure only if the task is already active.
  1858. */
  1859. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1860. {
  1861. int cpu, orig_cpu, this_cpu, success = 0;
  1862. unsigned long flags;
  1863. long old_state;
  1864. struct rq *rq;
  1865. if (!sched_feat(SYNC_WAKEUPS))
  1866. sync = 0;
  1867. #ifdef CONFIG_SMP
  1868. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1869. struct sched_domain *sd;
  1870. this_cpu = raw_smp_processor_id();
  1871. cpu = task_cpu(p);
  1872. for_each_domain(this_cpu, sd) {
  1873. if (cpu_isset(cpu, sd->span)) {
  1874. update_shares(sd);
  1875. break;
  1876. }
  1877. }
  1878. }
  1879. #endif
  1880. smp_wmb();
  1881. rq = task_rq_lock(p, &flags);
  1882. old_state = p->state;
  1883. if (!(old_state & state))
  1884. goto out;
  1885. if (p->se.on_rq)
  1886. goto out_running;
  1887. cpu = task_cpu(p);
  1888. orig_cpu = cpu;
  1889. this_cpu = smp_processor_id();
  1890. #ifdef CONFIG_SMP
  1891. if (unlikely(task_running(rq, p)))
  1892. goto out_activate;
  1893. cpu = p->sched_class->select_task_rq(p, sync);
  1894. if (cpu != orig_cpu) {
  1895. set_task_cpu(p, cpu);
  1896. task_rq_unlock(rq, &flags);
  1897. /* might preempt at this point */
  1898. rq = task_rq_lock(p, &flags);
  1899. old_state = p->state;
  1900. if (!(old_state & state))
  1901. goto out;
  1902. if (p->se.on_rq)
  1903. goto out_running;
  1904. this_cpu = smp_processor_id();
  1905. cpu = task_cpu(p);
  1906. }
  1907. #ifdef CONFIG_SCHEDSTATS
  1908. schedstat_inc(rq, ttwu_count);
  1909. if (cpu == this_cpu)
  1910. schedstat_inc(rq, ttwu_local);
  1911. else {
  1912. struct sched_domain *sd;
  1913. for_each_domain(this_cpu, sd) {
  1914. if (cpu_isset(cpu, sd->span)) {
  1915. schedstat_inc(sd, ttwu_wake_remote);
  1916. break;
  1917. }
  1918. }
  1919. }
  1920. #endif /* CONFIG_SCHEDSTATS */
  1921. out_activate:
  1922. #endif /* CONFIG_SMP */
  1923. schedstat_inc(p, se.nr_wakeups);
  1924. if (sync)
  1925. schedstat_inc(p, se.nr_wakeups_sync);
  1926. if (orig_cpu != cpu)
  1927. schedstat_inc(p, se.nr_wakeups_migrate);
  1928. if (cpu == this_cpu)
  1929. schedstat_inc(p, se.nr_wakeups_local);
  1930. else
  1931. schedstat_inc(p, se.nr_wakeups_remote);
  1932. update_rq_clock(rq);
  1933. activate_task(rq, p, 1);
  1934. success = 1;
  1935. out_running:
  1936. trace_sched_wakeup(rq, p);
  1937. check_preempt_curr(rq, p, sync);
  1938. p->state = TASK_RUNNING;
  1939. #ifdef CONFIG_SMP
  1940. if (p->sched_class->task_wake_up)
  1941. p->sched_class->task_wake_up(rq, p);
  1942. #endif
  1943. out:
  1944. current->se.last_wakeup = current->se.sum_exec_runtime;
  1945. task_rq_unlock(rq, &flags);
  1946. return success;
  1947. }
  1948. int wake_up_process(struct task_struct *p)
  1949. {
  1950. return try_to_wake_up(p, TASK_ALL, 0);
  1951. }
  1952. EXPORT_SYMBOL(wake_up_process);
  1953. int wake_up_state(struct task_struct *p, unsigned int state)
  1954. {
  1955. return try_to_wake_up(p, state, 0);
  1956. }
  1957. /*
  1958. * Perform scheduler related setup for a newly forked process p.
  1959. * p is forked by current.
  1960. *
  1961. * __sched_fork() is basic setup used by init_idle() too:
  1962. */
  1963. static void __sched_fork(struct task_struct *p)
  1964. {
  1965. p->se.exec_start = 0;
  1966. p->se.sum_exec_runtime = 0;
  1967. p->se.prev_sum_exec_runtime = 0;
  1968. p->se.last_wakeup = 0;
  1969. p->se.avg_overlap = 0;
  1970. #ifdef CONFIG_SCHEDSTATS
  1971. p->se.wait_start = 0;
  1972. p->se.sum_sleep_runtime = 0;
  1973. p->se.sleep_start = 0;
  1974. p->se.block_start = 0;
  1975. p->se.sleep_max = 0;
  1976. p->se.block_max = 0;
  1977. p->se.exec_max = 0;
  1978. p->se.slice_max = 0;
  1979. p->se.wait_max = 0;
  1980. #endif
  1981. INIT_LIST_HEAD(&p->rt.run_list);
  1982. p->se.on_rq = 0;
  1983. INIT_LIST_HEAD(&p->se.group_node);
  1984. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1985. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1986. #endif
  1987. /*
  1988. * We mark the process as running here, but have not actually
  1989. * inserted it onto the runqueue yet. This guarantees that
  1990. * nobody will actually run it, and a signal or other external
  1991. * event cannot wake it up and insert it on the runqueue either.
  1992. */
  1993. p->state = TASK_RUNNING;
  1994. }
  1995. /*
  1996. * fork()/clone()-time setup:
  1997. */
  1998. void sched_fork(struct task_struct *p, int clone_flags)
  1999. {
  2000. int cpu = get_cpu();
  2001. __sched_fork(p);
  2002. #ifdef CONFIG_SMP
  2003. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2004. #endif
  2005. set_task_cpu(p, cpu);
  2006. /*
  2007. * Make sure we do not leak PI boosting priority to the child:
  2008. */
  2009. p->prio = current->normal_prio;
  2010. if (!rt_prio(p->prio))
  2011. p->sched_class = &fair_sched_class;
  2012. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2013. if (likely(sched_info_on()))
  2014. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2015. #endif
  2016. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2017. p->oncpu = 0;
  2018. #endif
  2019. #ifdef CONFIG_PREEMPT
  2020. /* Want to start with kernel preemption disabled. */
  2021. task_thread_info(p)->preempt_count = 1;
  2022. #endif
  2023. put_cpu();
  2024. }
  2025. /*
  2026. * wake_up_new_task - wake up a newly created task for the first time.
  2027. *
  2028. * This function will do some initial scheduler statistics housekeeping
  2029. * that must be done for every newly created context, then puts the task
  2030. * on the runqueue and wakes it.
  2031. */
  2032. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2033. {
  2034. unsigned long flags;
  2035. struct rq *rq;
  2036. rq = task_rq_lock(p, &flags);
  2037. BUG_ON(p->state != TASK_RUNNING);
  2038. update_rq_clock(rq);
  2039. p->prio = effective_prio(p);
  2040. if (!p->sched_class->task_new || !current->se.on_rq) {
  2041. activate_task(rq, p, 0);
  2042. } else {
  2043. /*
  2044. * Let the scheduling class do new task startup
  2045. * management (if any):
  2046. */
  2047. p->sched_class->task_new(rq, p);
  2048. inc_nr_running(rq);
  2049. }
  2050. trace_sched_wakeup_new(rq, p);
  2051. check_preempt_curr(rq, p, 0);
  2052. #ifdef CONFIG_SMP
  2053. if (p->sched_class->task_wake_up)
  2054. p->sched_class->task_wake_up(rq, p);
  2055. #endif
  2056. task_rq_unlock(rq, &flags);
  2057. }
  2058. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2059. /**
  2060. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2061. * @notifier: notifier struct to register
  2062. */
  2063. void preempt_notifier_register(struct preempt_notifier *notifier)
  2064. {
  2065. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2066. }
  2067. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2068. /**
  2069. * preempt_notifier_unregister - no longer interested in preemption notifications
  2070. * @notifier: notifier struct to unregister
  2071. *
  2072. * This is safe to call from within a preemption notifier.
  2073. */
  2074. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2075. {
  2076. hlist_del(&notifier->link);
  2077. }
  2078. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2079. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2080. {
  2081. struct preempt_notifier *notifier;
  2082. struct hlist_node *node;
  2083. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2084. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2085. }
  2086. static void
  2087. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2088. struct task_struct *next)
  2089. {
  2090. struct preempt_notifier *notifier;
  2091. struct hlist_node *node;
  2092. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2093. notifier->ops->sched_out(notifier, next);
  2094. }
  2095. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2096. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2097. {
  2098. }
  2099. static void
  2100. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2101. struct task_struct *next)
  2102. {
  2103. }
  2104. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2105. /**
  2106. * prepare_task_switch - prepare to switch tasks
  2107. * @rq: the runqueue preparing to switch
  2108. * @prev: the current task that is being switched out
  2109. * @next: the task we are going to switch to.
  2110. *
  2111. * This is called with the rq lock held and interrupts off. It must
  2112. * be paired with a subsequent finish_task_switch after the context
  2113. * switch.
  2114. *
  2115. * prepare_task_switch sets up locking and calls architecture specific
  2116. * hooks.
  2117. */
  2118. static inline void
  2119. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2120. struct task_struct *next)
  2121. {
  2122. fire_sched_out_preempt_notifiers(prev, next);
  2123. prepare_lock_switch(rq, next);
  2124. prepare_arch_switch(next);
  2125. }
  2126. /**
  2127. * finish_task_switch - clean up after a task-switch
  2128. * @rq: runqueue associated with task-switch
  2129. * @prev: the thread we just switched away from.
  2130. *
  2131. * finish_task_switch must be called after the context switch, paired
  2132. * with a prepare_task_switch call before the context switch.
  2133. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2134. * and do any other architecture-specific cleanup actions.
  2135. *
  2136. * Note that we may have delayed dropping an mm in context_switch(). If
  2137. * so, we finish that here outside of the runqueue lock. (Doing it
  2138. * with the lock held can cause deadlocks; see schedule() for
  2139. * details.)
  2140. */
  2141. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2142. __releases(rq->lock)
  2143. {
  2144. struct mm_struct *mm = rq->prev_mm;
  2145. long prev_state;
  2146. rq->prev_mm = NULL;
  2147. /*
  2148. * A task struct has one reference for the use as "current".
  2149. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2150. * schedule one last time. The schedule call will never return, and
  2151. * the scheduled task must drop that reference.
  2152. * The test for TASK_DEAD must occur while the runqueue locks are
  2153. * still held, otherwise prev could be scheduled on another cpu, die
  2154. * there before we look at prev->state, and then the reference would
  2155. * be dropped twice.
  2156. * Manfred Spraul <manfred@colorfullife.com>
  2157. */
  2158. prev_state = prev->state;
  2159. finish_arch_switch(prev);
  2160. finish_lock_switch(rq, prev);
  2161. #ifdef CONFIG_SMP
  2162. if (current->sched_class->post_schedule)
  2163. current->sched_class->post_schedule(rq);
  2164. #endif
  2165. fire_sched_in_preempt_notifiers(current);
  2166. if (mm)
  2167. mmdrop(mm);
  2168. if (unlikely(prev_state == TASK_DEAD)) {
  2169. /*
  2170. * Remove function-return probe instances associated with this
  2171. * task and put them back on the free list.
  2172. */
  2173. kprobe_flush_task(prev);
  2174. put_task_struct(prev);
  2175. }
  2176. }
  2177. /**
  2178. * schedule_tail - first thing a freshly forked thread must call.
  2179. * @prev: the thread we just switched away from.
  2180. */
  2181. asmlinkage void schedule_tail(struct task_struct *prev)
  2182. __releases(rq->lock)
  2183. {
  2184. struct rq *rq = this_rq();
  2185. finish_task_switch(rq, prev);
  2186. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2187. /* In this case, finish_task_switch does not reenable preemption */
  2188. preempt_enable();
  2189. #endif
  2190. if (current->set_child_tid)
  2191. put_user(task_pid_vnr(current), current->set_child_tid);
  2192. }
  2193. /*
  2194. * context_switch - switch to the new MM and the new
  2195. * thread's register state.
  2196. */
  2197. static inline void
  2198. context_switch(struct rq *rq, struct task_struct *prev,
  2199. struct task_struct *next)
  2200. {
  2201. struct mm_struct *mm, *oldmm;
  2202. prepare_task_switch(rq, prev, next);
  2203. trace_sched_switch(rq, prev, next);
  2204. mm = next->mm;
  2205. oldmm = prev->active_mm;
  2206. /*
  2207. * For paravirt, this is coupled with an exit in switch_to to
  2208. * combine the page table reload and the switch backend into
  2209. * one hypercall.
  2210. */
  2211. arch_enter_lazy_cpu_mode();
  2212. if (unlikely(!mm)) {
  2213. next->active_mm = oldmm;
  2214. atomic_inc(&oldmm->mm_count);
  2215. enter_lazy_tlb(oldmm, next);
  2216. } else
  2217. switch_mm(oldmm, mm, next);
  2218. if (unlikely(!prev->mm)) {
  2219. prev->active_mm = NULL;
  2220. rq->prev_mm = oldmm;
  2221. }
  2222. /*
  2223. * Since the runqueue lock will be released by the next
  2224. * task (which is an invalid locking op but in the case
  2225. * of the scheduler it's an obvious special-case), so we
  2226. * do an early lockdep release here:
  2227. */
  2228. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2229. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2230. #endif
  2231. /* Here we just switch the register state and the stack. */
  2232. switch_to(prev, next, prev);
  2233. barrier();
  2234. /*
  2235. * this_rq must be evaluated again because prev may have moved
  2236. * CPUs since it called schedule(), thus the 'rq' on its stack
  2237. * frame will be invalid.
  2238. */
  2239. finish_task_switch(this_rq(), prev);
  2240. }
  2241. /*
  2242. * nr_running, nr_uninterruptible and nr_context_switches:
  2243. *
  2244. * externally visible scheduler statistics: current number of runnable
  2245. * threads, current number of uninterruptible-sleeping threads, total
  2246. * number of context switches performed since bootup.
  2247. */
  2248. unsigned long nr_running(void)
  2249. {
  2250. unsigned long i, sum = 0;
  2251. for_each_online_cpu(i)
  2252. sum += cpu_rq(i)->nr_running;
  2253. return sum;
  2254. }
  2255. unsigned long nr_uninterruptible(void)
  2256. {
  2257. unsigned long i, sum = 0;
  2258. for_each_possible_cpu(i)
  2259. sum += cpu_rq(i)->nr_uninterruptible;
  2260. /*
  2261. * Since we read the counters lockless, it might be slightly
  2262. * inaccurate. Do not allow it to go below zero though:
  2263. */
  2264. if (unlikely((long)sum < 0))
  2265. sum = 0;
  2266. return sum;
  2267. }
  2268. unsigned long long nr_context_switches(void)
  2269. {
  2270. int i;
  2271. unsigned long long sum = 0;
  2272. for_each_possible_cpu(i)
  2273. sum += cpu_rq(i)->nr_switches;
  2274. return sum;
  2275. }
  2276. unsigned long nr_iowait(void)
  2277. {
  2278. unsigned long i, sum = 0;
  2279. for_each_possible_cpu(i)
  2280. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2281. return sum;
  2282. }
  2283. unsigned long nr_active(void)
  2284. {
  2285. unsigned long i, running = 0, uninterruptible = 0;
  2286. for_each_online_cpu(i) {
  2287. running += cpu_rq(i)->nr_running;
  2288. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2289. }
  2290. if (unlikely((long)uninterruptible < 0))
  2291. uninterruptible = 0;
  2292. return running + uninterruptible;
  2293. }
  2294. /*
  2295. * Update rq->cpu_load[] statistics. This function is usually called every
  2296. * scheduler tick (TICK_NSEC).
  2297. */
  2298. static void update_cpu_load(struct rq *this_rq)
  2299. {
  2300. unsigned long this_load = this_rq->load.weight;
  2301. int i, scale;
  2302. this_rq->nr_load_updates++;
  2303. /* Update our load: */
  2304. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2305. unsigned long old_load, new_load;
  2306. /* scale is effectively 1 << i now, and >> i divides by scale */
  2307. old_load = this_rq->cpu_load[i];
  2308. new_load = this_load;
  2309. /*
  2310. * Round up the averaging division if load is increasing. This
  2311. * prevents us from getting stuck on 9 if the load is 10, for
  2312. * example.
  2313. */
  2314. if (new_load > old_load)
  2315. new_load += scale-1;
  2316. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2317. }
  2318. }
  2319. #ifdef CONFIG_SMP
  2320. /*
  2321. * double_rq_lock - safely lock two runqueues
  2322. *
  2323. * Note this does not disable interrupts like task_rq_lock,
  2324. * you need to do so manually before calling.
  2325. */
  2326. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2327. __acquires(rq1->lock)
  2328. __acquires(rq2->lock)
  2329. {
  2330. BUG_ON(!irqs_disabled());
  2331. if (rq1 == rq2) {
  2332. spin_lock(&rq1->lock);
  2333. __acquire(rq2->lock); /* Fake it out ;) */
  2334. } else {
  2335. if (rq1 < rq2) {
  2336. spin_lock(&rq1->lock);
  2337. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2338. } else {
  2339. spin_lock(&rq2->lock);
  2340. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2341. }
  2342. }
  2343. update_rq_clock(rq1);
  2344. update_rq_clock(rq2);
  2345. }
  2346. /*
  2347. * double_rq_unlock - safely unlock two runqueues
  2348. *
  2349. * Note this does not restore interrupts like task_rq_unlock,
  2350. * you need to do so manually after calling.
  2351. */
  2352. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2353. __releases(rq1->lock)
  2354. __releases(rq2->lock)
  2355. {
  2356. spin_unlock(&rq1->lock);
  2357. if (rq1 != rq2)
  2358. spin_unlock(&rq2->lock);
  2359. else
  2360. __release(rq2->lock);
  2361. }
  2362. /*
  2363. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2364. */
  2365. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2366. __releases(this_rq->lock)
  2367. __acquires(busiest->lock)
  2368. __acquires(this_rq->lock)
  2369. {
  2370. int ret = 0;
  2371. if (unlikely(!irqs_disabled())) {
  2372. /* printk() doesn't work good under rq->lock */
  2373. spin_unlock(&this_rq->lock);
  2374. BUG_ON(1);
  2375. }
  2376. if (unlikely(!spin_trylock(&busiest->lock))) {
  2377. if (busiest < this_rq) {
  2378. spin_unlock(&this_rq->lock);
  2379. spin_lock(&busiest->lock);
  2380. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2381. ret = 1;
  2382. } else
  2383. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2384. }
  2385. return ret;
  2386. }
  2387. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2388. __releases(busiest->lock)
  2389. {
  2390. spin_unlock(&busiest->lock);
  2391. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2392. }
  2393. /*
  2394. * If dest_cpu is allowed for this process, migrate the task to it.
  2395. * This is accomplished by forcing the cpu_allowed mask to only
  2396. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2397. * the cpu_allowed mask is restored.
  2398. */
  2399. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2400. {
  2401. struct migration_req req;
  2402. unsigned long flags;
  2403. struct rq *rq;
  2404. rq = task_rq_lock(p, &flags);
  2405. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2406. || unlikely(!cpu_active(dest_cpu)))
  2407. goto out;
  2408. trace_sched_migrate_task(rq, p, dest_cpu);
  2409. /* force the process onto the specified CPU */
  2410. if (migrate_task(p, dest_cpu, &req)) {
  2411. /* Need to wait for migration thread (might exit: take ref). */
  2412. struct task_struct *mt = rq->migration_thread;
  2413. get_task_struct(mt);
  2414. task_rq_unlock(rq, &flags);
  2415. wake_up_process(mt);
  2416. put_task_struct(mt);
  2417. wait_for_completion(&req.done);
  2418. return;
  2419. }
  2420. out:
  2421. task_rq_unlock(rq, &flags);
  2422. }
  2423. /*
  2424. * sched_exec - execve() is a valuable balancing opportunity, because at
  2425. * this point the task has the smallest effective memory and cache footprint.
  2426. */
  2427. void sched_exec(void)
  2428. {
  2429. int new_cpu, this_cpu = get_cpu();
  2430. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2431. put_cpu();
  2432. if (new_cpu != this_cpu)
  2433. sched_migrate_task(current, new_cpu);
  2434. }
  2435. /*
  2436. * pull_task - move a task from a remote runqueue to the local runqueue.
  2437. * Both runqueues must be locked.
  2438. */
  2439. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2440. struct rq *this_rq, int this_cpu)
  2441. {
  2442. deactivate_task(src_rq, p, 0);
  2443. set_task_cpu(p, this_cpu);
  2444. activate_task(this_rq, p, 0);
  2445. /*
  2446. * Note that idle threads have a prio of MAX_PRIO, for this test
  2447. * to be always true for them.
  2448. */
  2449. check_preempt_curr(this_rq, p, 0);
  2450. }
  2451. /*
  2452. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2453. */
  2454. static
  2455. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2456. struct sched_domain *sd, enum cpu_idle_type idle,
  2457. int *all_pinned)
  2458. {
  2459. /*
  2460. * We do not migrate tasks that are:
  2461. * 1) running (obviously), or
  2462. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2463. * 3) are cache-hot on their current CPU.
  2464. */
  2465. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2466. schedstat_inc(p, se.nr_failed_migrations_affine);
  2467. return 0;
  2468. }
  2469. *all_pinned = 0;
  2470. if (task_running(rq, p)) {
  2471. schedstat_inc(p, se.nr_failed_migrations_running);
  2472. return 0;
  2473. }
  2474. /*
  2475. * Aggressive migration if:
  2476. * 1) task is cache cold, or
  2477. * 2) too many balance attempts have failed.
  2478. */
  2479. if (!task_hot(p, rq->clock, sd) ||
  2480. sd->nr_balance_failed > sd->cache_nice_tries) {
  2481. #ifdef CONFIG_SCHEDSTATS
  2482. if (task_hot(p, rq->clock, sd)) {
  2483. schedstat_inc(sd, lb_hot_gained[idle]);
  2484. schedstat_inc(p, se.nr_forced_migrations);
  2485. }
  2486. #endif
  2487. return 1;
  2488. }
  2489. if (task_hot(p, rq->clock, sd)) {
  2490. schedstat_inc(p, se.nr_failed_migrations_hot);
  2491. return 0;
  2492. }
  2493. return 1;
  2494. }
  2495. static unsigned long
  2496. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2497. unsigned long max_load_move, struct sched_domain *sd,
  2498. enum cpu_idle_type idle, int *all_pinned,
  2499. int *this_best_prio, struct rq_iterator *iterator)
  2500. {
  2501. int loops = 0, pulled = 0, pinned = 0;
  2502. struct task_struct *p;
  2503. long rem_load_move = max_load_move;
  2504. if (max_load_move == 0)
  2505. goto out;
  2506. pinned = 1;
  2507. /*
  2508. * Start the load-balancing iterator:
  2509. */
  2510. p = iterator->start(iterator->arg);
  2511. next:
  2512. if (!p || loops++ > sysctl_sched_nr_migrate)
  2513. goto out;
  2514. if ((p->se.load.weight >> 1) > rem_load_move ||
  2515. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2516. p = iterator->next(iterator->arg);
  2517. goto next;
  2518. }
  2519. pull_task(busiest, p, this_rq, this_cpu);
  2520. pulled++;
  2521. rem_load_move -= p->se.load.weight;
  2522. /*
  2523. * We only want to steal up to the prescribed amount of weighted load.
  2524. */
  2525. if (rem_load_move > 0) {
  2526. if (p->prio < *this_best_prio)
  2527. *this_best_prio = p->prio;
  2528. p = iterator->next(iterator->arg);
  2529. goto next;
  2530. }
  2531. out:
  2532. /*
  2533. * Right now, this is one of only two places pull_task() is called,
  2534. * so we can safely collect pull_task() stats here rather than
  2535. * inside pull_task().
  2536. */
  2537. schedstat_add(sd, lb_gained[idle], pulled);
  2538. if (all_pinned)
  2539. *all_pinned = pinned;
  2540. return max_load_move - rem_load_move;
  2541. }
  2542. /*
  2543. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2544. * this_rq, as part of a balancing operation within domain "sd".
  2545. * Returns 1 if successful and 0 otherwise.
  2546. *
  2547. * Called with both runqueues locked.
  2548. */
  2549. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2550. unsigned long max_load_move,
  2551. struct sched_domain *sd, enum cpu_idle_type idle,
  2552. int *all_pinned)
  2553. {
  2554. const struct sched_class *class = sched_class_highest;
  2555. unsigned long total_load_moved = 0;
  2556. int this_best_prio = this_rq->curr->prio;
  2557. do {
  2558. total_load_moved +=
  2559. class->load_balance(this_rq, this_cpu, busiest,
  2560. max_load_move - total_load_moved,
  2561. sd, idle, all_pinned, &this_best_prio);
  2562. class = class->next;
  2563. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2564. break;
  2565. } while (class && max_load_move > total_load_moved);
  2566. return total_load_moved > 0;
  2567. }
  2568. static int
  2569. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2570. struct sched_domain *sd, enum cpu_idle_type idle,
  2571. struct rq_iterator *iterator)
  2572. {
  2573. struct task_struct *p = iterator->start(iterator->arg);
  2574. int pinned = 0;
  2575. while (p) {
  2576. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2577. pull_task(busiest, p, this_rq, this_cpu);
  2578. /*
  2579. * Right now, this is only the second place pull_task()
  2580. * is called, so we can safely collect pull_task()
  2581. * stats here rather than inside pull_task().
  2582. */
  2583. schedstat_inc(sd, lb_gained[idle]);
  2584. return 1;
  2585. }
  2586. p = iterator->next(iterator->arg);
  2587. }
  2588. return 0;
  2589. }
  2590. /*
  2591. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2592. * part of active balancing operations within "domain".
  2593. * Returns 1 if successful and 0 otherwise.
  2594. *
  2595. * Called with both runqueues locked.
  2596. */
  2597. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2598. struct sched_domain *sd, enum cpu_idle_type idle)
  2599. {
  2600. const struct sched_class *class;
  2601. for (class = sched_class_highest; class; class = class->next)
  2602. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2603. return 1;
  2604. return 0;
  2605. }
  2606. /*
  2607. * find_busiest_group finds and returns the busiest CPU group within the
  2608. * domain. It calculates and returns the amount of weighted load which
  2609. * should be moved to restore balance via the imbalance parameter.
  2610. */
  2611. static struct sched_group *
  2612. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2613. unsigned long *imbalance, enum cpu_idle_type idle,
  2614. int *sd_idle, const cpumask_t *cpus, int *balance)
  2615. {
  2616. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2617. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2618. unsigned long max_pull;
  2619. unsigned long busiest_load_per_task, busiest_nr_running;
  2620. unsigned long this_load_per_task, this_nr_running;
  2621. int load_idx, group_imb = 0;
  2622. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2623. int power_savings_balance = 1;
  2624. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2625. unsigned long min_nr_running = ULONG_MAX;
  2626. struct sched_group *group_min = NULL, *group_leader = NULL;
  2627. #endif
  2628. max_load = this_load = total_load = total_pwr = 0;
  2629. busiest_load_per_task = busiest_nr_running = 0;
  2630. this_load_per_task = this_nr_running = 0;
  2631. if (idle == CPU_NOT_IDLE)
  2632. load_idx = sd->busy_idx;
  2633. else if (idle == CPU_NEWLY_IDLE)
  2634. load_idx = sd->newidle_idx;
  2635. else
  2636. load_idx = sd->idle_idx;
  2637. do {
  2638. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2639. int local_group;
  2640. int i;
  2641. int __group_imb = 0;
  2642. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2643. unsigned long sum_nr_running, sum_weighted_load;
  2644. unsigned long sum_avg_load_per_task;
  2645. unsigned long avg_load_per_task;
  2646. local_group = cpu_isset(this_cpu, group->cpumask);
  2647. if (local_group)
  2648. balance_cpu = first_cpu(group->cpumask);
  2649. /* Tally up the load of all CPUs in the group */
  2650. sum_weighted_load = sum_nr_running = avg_load = 0;
  2651. sum_avg_load_per_task = avg_load_per_task = 0;
  2652. max_cpu_load = 0;
  2653. min_cpu_load = ~0UL;
  2654. for_each_cpu_mask_nr(i, group->cpumask) {
  2655. struct rq *rq;
  2656. if (!cpu_isset(i, *cpus))
  2657. continue;
  2658. rq = cpu_rq(i);
  2659. if (*sd_idle && rq->nr_running)
  2660. *sd_idle = 0;
  2661. /* Bias balancing toward cpus of our domain */
  2662. if (local_group) {
  2663. if (idle_cpu(i) && !first_idle_cpu) {
  2664. first_idle_cpu = 1;
  2665. balance_cpu = i;
  2666. }
  2667. load = target_load(i, load_idx);
  2668. } else {
  2669. load = source_load(i, load_idx);
  2670. if (load > max_cpu_load)
  2671. max_cpu_load = load;
  2672. if (min_cpu_load > load)
  2673. min_cpu_load = load;
  2674. }
  2675. avg_load += load;
  2676. sum_nr_running += rq->nr_running;
  2677. sum_weighted_load += weighted_cpuload(i);
  2678. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2679. }
  2680. /*
  2681. * First idle cpu or the first cpu(busiest) in this sched group
  2682. * is eligible for doing load balancing at this and above
  2683. * domains. In the newly idle case, we will allow all the cpu's
  2684. * to do the newly idle load balance.
  2685. */
  2686. if (idle != CPU_NEWLY_IDLE && local_group &&
  2687. balance_cpu != this_cpu && balance) {
  2688. *balance = 0;
  2689. goto ret;
  2690. }
  2691. total_load += avg_load;
  2692. total_pwr += group->__cpu_power;
  2693. /* Adjust by relative CPU power of the group */
  2694. avg_load = sg_div_cpu_power(group,
  2695. avg_load * SCHED_LOAD_SCALE);
  2696. /*
  2697. * Consider the group unbalanced when the imbalance is larger
  2698. * than the average weight of two tasks.
  2699. *
  2700. * APZ: with cgroup the avg task weight can vary wildly and
  2701. * might not be a suitable number - should we keep a
  2702. * normalized nr_running number somewhere that negates
  2703. * the hierarchy?
  2704. */
  2705. avg_load_per_task = sg_div_cpu_power(group,
  2706. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2707. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2708. __group_imb = 1;
  2709. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2710. if (local_group) {
  2711. this_load = avg_load;
  2712. this = group;
  2713. this_nr_running = sum_nr_running;
  2714. this_load_per_task = sum_weighted_load;
  2715. } else if (avg_load > max_load &&
  2716. (sum_nr_running > group_capacity || __group_imb)) {
  2717. max_load = avg_load;
  2718. busiest = group;
  2719. busiest_nr_running = sum_nr_running;
  2720. busiest_load_per_task = sum_weighted_load;
  2721. group_imb = __group_imb;
  2722. }
  2723. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2724. /*
  2725. * Busy processors will not participate in power savings
  2726. * balance.
  2727. */
  2728. if (idle == CPU_NOT_IDLE ||
  2729. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2730. goto group_next;
  2731. /*
  2732. * If the local group is idle or completely loaded
  2733. * no need to do power savings balance at this domain
  2734. */
  2735. if (local_group && (this_nr_running >= group_capacity ||
  2736. !this_nr_running))
  2737. power_savings_balance = 0;
  2738. /*
  2739. * If a group is already running at full capacity or idle,
  2740. * don't include that group in power savings calculations
  2741. */
  2742. if (!power_savings_balance || sum_nr_running >= group_capacity
  2743. || !sum_nr_running)
  2744. goto group_next;
  2745. /*
  2746. * Calculate the group which has the least non-idle load.
  2747. * This is the group from where we need to pick up the load
  2748. * for saving power
  2749. */
  2750. if ((sum_nr_running < min_nr_running) ||
  2751. (sum_nr_running == min_nr_running &&
  2752. first_cpu(group->cpumask) <
  2753. first_cpu(group_min->cpumask))) {
  2754. group_min = group;
  2755. min_nr_running = sum_nr_running;
  2756. min_load_per_task = sum_weighted_load /
  2757. sum_nr_running;
  2758. }
  2759. /*
  2760. * Calculate the group which is almost near its
  2761. * capacity but still has some space to pick up some load
  2762. * from other group and save more power
  2763. */
  2764. if (sum_nr_running <= group_capacity - 1) {
  2765. if (sum_nr_running > leader_nr_running ||
  2766. (sum_nr_running == leader_nr_running &&
  2767. first_cpu(group->cpumask) >
  2768. first_cpu(group_leader->cpumask))) {
  2769. group_leader = group;
  2770. leader_nr_running = sum_nr_running;
  2771. }
  2772. }
  2773. group_next:
  2774. #endif
  2775. group = group->next;
  2776. } while (group != sd->groups);
  2777. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2778. goto out_balanced;
  2779. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2780. if (this_load >= avg_load ||
  2781. 100*max_load <= sd->imbalance_pct*this_load)
  2782. goto out_balanced;
  2783. busiest_load_per_task /= busiest_nr_running;
  2784. if (group_imb)
  2785. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2786. /*
  2787. * We're trying to get all the cpus to the average_load, so we don't
  2788. * want to push ourselves above the average load, nor do we wish to
  2789. * reduce the max loaded cpu below the average load, as either of these
  2790. * actions would just result in more rebalancing later, and ping-pong
  2791. * tasks around. Thus we look for the minimum possible imbalance.
  2792. * Negative imbalances (*we* are more loaded than anyone else) will
  2793. * be counted as no imbalance for these purposes -- we can't fix that
  2794. * by pulling tasks to us. Be careful of negative numbers as they'll
  2795. * appear as very large values with unsigned longs.
  2796. */
  2797. if (max_load <= busiest_load_per_task)
  2798. goto out_balanced;
  2799. /*
  2800. * In the presence of smp nice balancing, certain scenarios can have
  2801. * max load less than avg load(as we skip the groups at or below
  2802. * its cpu_power, while calculating max_load..)
  2803. */
  2804. if (max_load < avg_load) {
  2805. *imbalance = 0;
  2806. goto small_imbalance;
  2807. }
  2808. /* Don't want to pull so many tasks that a group would go idle */
  2809. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2810. /* How much load to actually move to equalise the imbalance */
  2811. *imbalance = min(max_pull * busiest->__cpu_power,
  2812. (avg_load - this_load) * this->__cpu_power)
  2813. / SCHED_LOAD_SCALE;
  2814. /*
  2815. * if *imbalance is less than the average load per runnable task
  2816. * there is no gaurantee that any tasks will be moved so we'll have
  2817. * a think about bumping its value to force at least one task to be
  2818. * moved
  2819. */
  2820. if (*imbalance < busiest_load_per_task) {
  2821. unsigned long tmp, pwr_now, pwr_move;
  2822. unsigned int imbn;
  2823. small_imbalance:
  2824. pwr_move = pwr_now = 0;
  2825. imbn = 2;
  2826. if (this_nr_running) {
  2827. this_load_per_task /= this_nr_running;
  2828. if (busiest_load_per_task > this_load_per_task)
  2829. imbn = 1;
  2830. } else
  2831. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2832. if (max_load - this_load + 2*busiest_load_per_task >=
  2833. busiest_load_per_task * imbn) {
  2834. *imbalance = busiest_load_per_task;
  2835. return busiest;
  2836. }
  2837. /*
  2838. * OK, we don't have enough imbalance to justify moving tasks,
  2839. * however we may be able to increase total CPU power used by
  2840. * moving them.
  2841. */
  2842. pwr_now += busiest->__cpu_power *
  2843. min(busiest_load_per_task, max_load);
  2844. pwr_now += this->__cpu_power *
  2845. min(this_load_per_task, this_load);
  2846. pwr_now /= SCHED_LOAD_SCALE;
  2847. /* Amount of load we'd subtract */
  2848. tmp = sg_div_cpu_power(busiest,
  2849. busiest_load_per_task * SCHED_LOAD_SCALE);
  2850. if (max_load > tmp)
  2851. pwr_move += busiest->__cpu_power *
  2852. min(busiest_load_per_task, max_load - tmp);
  2853. /* Amount of load we'd add */
  2854. if (max_load * busiest->__cpu_power <
  2855. busiest_load_per_task * SCHED_LOAD_SCALE)
  2856. tmp = sg_div_cpu_power(this,
  2857. max_load * busiest->__cpu_power);
  2858. else
  2859. tmp = sg_div_cpu_power(this,
  2860. busiest_load_per_task * SCHED_LOAD_SCALE);
  2861. pwr_move += this->__cpu_power *
  2862. min(this_load_per_task, this_load + tmp);
  2863. pwr_move /= SCHED_LOAD_SCALE;
  2864. /* Move if we gain throughput */
  2865. if (pwr_move > pwr_now)
  2866. *imbalance = busiest_load_per_task;
  2867. }
  2868. return busiest;
  2869. out_balanced:
  2870. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2871. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2872. goto ret;
  2873. if (this == group_leader && group_leader != group_min) {
  2874. *imbalance = min_load_per_task;
  2875. return group_min;
  2876. }
  2877. #endif
  2878. ret:
  2879. *imbalance = 0;
  2880. return NULL;
  2881. }
  2882. /*
  2883. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2884. */
  2885. static struct rq *
  2886. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2887. unsigned long imbalance, const cpumask_t *cpus)
  2888. {
  2889. struct rq *busiest = NULL, *rq;
  2890. unsigned long max_load = 0;
  2891. int i;
  2892. for_each_cpu_mask_nr(i, group->cpumask) {
  2893. unsigned long wl;
  2894. if (!cpu_isset(i, *cpus))
  2895. continue;
  2896. rq = cpu_rq(i);
  2897. wl = weighted_cpuload(i);
  2898. if (rq->nr_running == 1 && wl > imbalance)
  2899. continue;
  2900. if (wl > max_load) {
  2901. max_load = wl;
  2902. busiest = rq;
  2903. }
  2904. }
  2905. return busiest;
  2906. }
  2907. /*
  2908. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2909. * so long as it is large enough.
  2910. */
  2911. #define MAX_PINNED_INTERVAL 512
  2912. /*
  2913. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2914. * tasks if there is an imbalance.
  2915. */
  2916. static int load_balance(int this_cpu, struct rq *this_rq,
  2917. struct sched_domain *sd, enum cpu_idle_type idle,
  2918. int *balance, cpumask_t *cpus)
  2919. {
  2920. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2921. struct sched_group *group;
  2922. unsigned long imbalance;
  2923. struct rq *busiest;
  2924. unsigned long flags;
  2925. cpus_setall(*cpus);
  2926. /*
  2927. * When power savings policy is enabled for the parent domain, idle
  2928. * sibling can pick up load irrespective of busy siblings. In this case,
  2929. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2930. * portraying it as CPU_NOT_IDLE.
  2931. */
  2932. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2933. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2934. sd_idle = 1;
  2935. schedstat_inc(sd, lb_count[idle]);
  2936. redo:
  2937. update_shares(sd);
  2938. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2939. cpus, balance);
  2940. if (*balance == 0)
  2941. goto out_balanced;
  2942. if (!group) {
  2943. schedstat_inc(sd, lb_nobusyg[idle]);
  2944. goto out_balanced;
  2945. }
  2946. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2947. if (!busiest) {
  2948. schedstat_inc(sd, lb_nobusyq[idle]);
  2949. goto out_balanced;
  2950. }
  2951. BUG_ON(busiest == this_rq);
  2952. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2953. ld_moved = 0;
  2954. if (busiest->nr_running > 1) {
  2955. /*
  2956. * Attempt to move tasks. If find_busiest_group has found
  2957. * an imbalance but busiest->nr_running <= 1, the group is
  2958. * still unbalanced. ld_moved simply stays zero, so it is
  2959. * correctly treated as an imbalance.
  2960. */
  2961. local_irq_save(flags);
  2962. double_rq_lock(this_rq, busiest);
  2963. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2964. imbalance, sd, idle, &all_pinned);
  2965. double_rq_unlock(this_rq, busiest);
  2966. local_irq_restore(flags);
  2967. /*
  2968. * some other cpu did the load balance for us.
  2969. */
  2970. if (ld_moved && this_cpu != smp_processor_id())
  2971. resched_cpu(this_cpu);
  2972. /* All tasks on this runqueue were pinned by CPU affinity */
  2973. if (unlikely(all_pinned)) {
  2974. cpu_clear(cpu_of(busiest), *cpus);
  2975. if (!cpus_empty(*cpus))
  2976. goto redo;
  2977. goto out_balanced;
  2978. }
  2979. }
  2980. if (!ld_moved) {
  2981. schedstat_inc(sd, lb_failed[idle]);
  2982. sd->nr_balance_failed++;
  2983. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2984. spin_lock_irqsave(&busiest->lock, flags);
  2985. /* don't kick the migration_thread, if the curr
  2986. * task on busiest cpu can't be moved to this_cpu
  2987. */
  2988. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2989. spin_unlock_irqrestore(&busiest->lock, flags);
  2990. all_pinned = 1;
  2991. goto out_one_pinned;
  2992. }
  2993. if (!busiest->active_balance) {
  2994. busiest->active_balance = 1;
  2995. busiest->push_cpu = this_cpu;
  2996. active_balance = 1;
  2997. }
  2998. spin_unlock_irqrestore(&busiest->lock, flags);
  2999. if (active_balance)
  3000. wake_up_process(busiest->migration_thread);
  3001. /*
  3002. * We've kicked active balancing, reset the failure
  3003. * counter.
  3004. */
  3005. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3006. }
  3007. } else
  3008. sd->nr_balance_failed = 0;
  3009. if (likely(!active_balance)) {
  3010. /* We were unbalanced, so reset the balancing interval */
  3011. sd->balance_interval = sd->min_interval;
  3012. } else {
  3013. /*
  3014. * If we've begun active balancing, start to back off. This
  3015. * case may not be covered by the all_pinned logic if there
  3016. * is only 1 task on the busy runqueue (because we don't call
  3017. * move_tasks).
  3018. */
  3019. if (sd->balance_interval < sd->max_interval)
  3020. sd->balance_interval *= 2;
  3021. }
  3022. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3023. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3024. ld_moved = -1;
  3025. goto out;
  3026. out_balanced:
  3027. schedstat_inc(sd, lb_balanced[idle]);
  3028. sd->nr_balance_failed = 0;
  3029. out_one_pinned:
  3030. /* tune up the balancing interval */
  3031. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3032. (sd->balance_interval < sd->max_interval))
  3033. sd->balance_interval *= 2;
  3034. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3035. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3036. ld_moved = -1;
  3037. else
  3038. ld_moved = 0;
  3039. out:
  3040. if (ld_moved)
  3041. update_shares(sd);
  3042. return ld_moved;
  3043. }
  3044. /*
  3045. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3046. * tasks if there is an imbalance.
  3047. *
  3048. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3049. * this_rq is locked.
  3050. */
  3051. static int
  3052. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3053. cpumask_t *cpus)
  3054. {
  3055. struct sched_group *group;
  3056. struct rq *busiest = NULL;
  3057. unsigned long imbalance;
  3058. int ld_moved = 0;
  3059. int sd_idle = 0;
  3060. int all_pinned = 0;
  3061. cpus_setall(*cpus);
  3062. /*
  3063. * When power savings policy is enabled for the parent domain, idle
  3064. * sibling can pick up load irrespective of busy siblings. In this case,
  3065. * let the state of idle sibling percolate up as IDLE, instead of
  3066. * portraying it as CPU_NOT_IDLE.
  3067. */
  3068. if (sd->flags & SD_SHARE_CPUPOWER &&
  3069. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3070. sd_idle = 1;
  3071. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3072. redo:
  3073. update_shares_locked(this_rq, sd);
  3074. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3075. &sd_idle, cpus, NULL);
  3076. if (!group) {
  3077. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3078. goto out_balanced;
  3079. }
  3080. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3081. if (!busiest) {
  3082. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3083. goto out_balanced;
  3084. }
  3085. BUG_ON(busiest == this_rq);
  3086. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3087. ld_moved = 0;
  3088. if (busiest->nr_running > 1) {
  3089. /* Attempt to move tasks */
  3090. double_lock_balance(this_rq, busiest);
  3091. /* this_rq->clock is already updated */
  3092. update_rq_clock(busiest);
  3093. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3094. imbalance, sd, CPU_NEWLY_IDLE,
  3095. &all_pinned);
  3096. double_unlock_balance(this_rq, busiest);
  3097. if (unlikely(all_pinned)) {
  3098. cpu_clear(cpu_of(busiest), *cpus);
  3099. if (!cpus_empty(*cpus))
  3100. goto redo;
  3101. }
  3102. }
  3103. if (!ld_moved) {
  3104. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3105. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. return -1;
  3108. } else
  3109. sd->nr_balance_failed = 0;
  3110. update_shares_locked(this_rq, sd);
  3111. return ld_moved;
  3112. out_balanced:
  3113. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3114. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3115. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3116. return -1;
  3117. sd->nr_balance_failed = 0;
  3118. return 0;
  3119. }
  3120. /*
  3121. * idle_balance is called by schedule() if this_cpu is about to become
  3122. * idle. Attempts to pull tasks from other CPUs.
  3123. */
  3124. static void idle_balance(int this_cpu, struct rq *this_rq)
  3125. {
  3126. struct sched_domain *sd;
  3127. int pulled_task = -1;
  3128. unsigned long next_balance = jiffies + HZ;
  3129. cpumask_t tmpmask;
  3130. for_each_domain(this_cpu, sd) {
  3131. unsigned long interval;
  3132. if (!(sd->flags & SD_LOAD_BALANCE))
  3133. continue;
  3134. if (sd->flags & SD_BALANCE_NEWIDLE)
  3135. /* If we've pulled tasks over stop searching: */
  3136. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3137. sd, &tmpmask);
  3138. interval = msecs_to_jiffies(sd->balance_interval);
  3139. if (time_after(next_balance, sd->last_balance + interval))
  3140. next_balance = sd->last_balance + interval;
  3141. if (pulled_task)
  3142. break;
  3143. }
  3144. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3145. /*
  3146. * We are going idle. next_balance may be set based on
  3147. * a busy processor. So reset next_balance.
  3148. */
  3149. this_rq->next_balance = next_balance;
  3150. }
  3151. }
  3152. /*
  3153. * active_load_balance is run by migration threads. It pushes running tasks
  3154. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3155. * running on each physical CPU where possible, and avoids physical /
  3156. * logical imbalances.
  3157. *
  3158. * Called with busiest_rq locked.
  3159. */
  3160. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3161. {
  3162. int target_cpu = busiest_rq->push_cpu;
  3163. struct sched_domain *sd;
  3164. struct rq *target_rq;
  3165. /* Is there any task to move? */
  3166. if (busiest_rq->nr_running <= 1)
  3167. return;
  3168. target_rq = cpu_rq(target_cpu);
  3169. /*
  3170. * This condition is "impossible", if it occurs
  3171. * we need to fix it. Originally reported by
  3172. * Bjorn Helgaas on a 128-cpu setup.
  3173. */
  3174. BUG_ON(busiest_rq == target_rq);
  3175. /* move a task from busiest_rq to target_rq */
  3176. double_lock_balance(busiest_rq, target_rq);
  3177. update_rq_clock(busiest_rq);
  3178. update_rq_clock(target_rq);
  3179. /* Search for an sd spanning us and the target CPU. */
  3180. for_each_domain(target_cpu, sd) {
  3181. if ((sd->flags & SD_LOAD_BALANCE) &&
  3182. cpu_isset(busiest_cpu, sd->span))
  3183. break;
  3184. }
  3185. if (likely(sd)) {
  3186. schedstat_inc(sd, alb_count);
  3187. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3188. sd, CPU_IDLE))
  3189. schedstat_inc(sd, alb_pushed);
  3190. else
  3191. schedstat_inc(sd, alb_failed);
  3192. }
  3193. double_unlock_balance(busiest_rq, target_rq);
  3194. }
  3195. #ifdef CONFIG_NO_HZ
  3196. static struct {
  3197. atomic_t load_balancer;
  3198. cpumask_t cpu_mask;
  3199. } nohz ____cacheline_aligned = {
  3200. .load_balancer = ATOMIC_INIT(-1),
  3201. .cpu_mask = CPU_MASK_NONE,
  3202. };
  3203. /*
  3204. * This routine will try to nominate the ilb (idle load balancing)
  3205. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3206. * load balancing on behalf of all those cpus. If all the cpus in the system
  3207. * go into this tickless mode, then there will be no ilb owner (as there is
  3208. * no need for one) and all the cpus will sleep till the next wakeup event
  3209. * arrives...
  3210. *
  3211. * For the ilb owner, tick is not stopped. And this tick will be used
  3212. * for idle load balancing. ilb owner will still be part of
  3213. * nohz.cpu_mask..
  3214. *
  3215. * While stopping the tick, this cpu will become the ilb owner if there
  3216. * is no other owner. And will be the owner till that cpu becomes busy
  3217. * or if all cpus in the system stop their ticks at which point
  3218. * there is no need for ilb owner.
  3219. *
  3220. * When the ilb owner becomes busy, it nominates another owner, during the
  3221. * next busy scheduler_tick()
  3222. */
  3223. int select_nohz_load_balancer(int stop_tick)
  3224. {
  3225. int cpu = smp_processor_id();
  3226. if (stop_tick) {
  3227. cpu_set(cpu, nohz.cpu_mask);
  3228. cpu_rq(cpu)->in_nohz_recently = 1;
  3229. /*
  3230. * If we are going offline and still the leader, give up!
  3231. */
  3232. if (!cpu_active(cpu) &&
  3233. atomic_read(&nohz.load_balancer) == cpu) {
  3234. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3235. BUG();
  3236. return 0;
  3237. }
  3238. /* time for ilb owner also to sleep */
  3239. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3240. if (atomic_read(&nohz.load_balancer) == cpu)
  3241. atomic_set(&nohz.load_balancer, -1);
  3242. return 0;
  3243. }
  3244. if (atomic_read(&nohz.load_balancer) == -1) {
  3245. /* make me the ilb owner */
  3246. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3247. return 1;
  3248. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3249. return 1;
  3250. } else {
  3251. if (!cpu_isset(cpu, nohz.cpu_mask))
  3252. return 0;
  3253. cpu_clear(cpu, nohz.cpu_mask);
  3254. if (atomic_read(&nohz.load_balancer) == cpu)
  3255. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3256. BUG();
  3257. }
  3258. return 0;
  3259. }
  3260. #endif
  3261. static DEFINE_SPINLOCK(balancing);
  3262. /*
  3263. * It checks each scheduling domain to see if it is due to be balanced,
  3264. * and initiates a balancing operation if so.
  3265. *
  3266. * Balancing parameters are set up in arch_init_sched_domains.
  3267. */
  3268. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3269. {
  3270. int balance = 1;
  3271. struct rq *rq = cpu_rq(cpu);
  3272. unsigned long interval;
  3273. struct sched_domain *sd;
  3274. /* Earliest time when we have to do rebalance again */
  3275. unsigned long next_balance = jiffies + 60*HZ;
  3276. int update_next_balance = 0;
  3277. int need_serialize;
  3278. cpumask_t tmp;
  3279. for_each_domain(cpu, sd) {
  3280. if (!(sd->flags & SD_LOAD_BALANCE))
  3281. continue;
  3282. interval = sd->balance_interval;
  3283. if (idle != CPU_IDLE)
  3284. interval *= sd->busy_factor;
  3285. /* scale ms to jiffies */
  3286. interval = msecs_to_jiffies(interval);
  3287. if (unlikely(!interval))
  3288. interval = 1;
  3289. if (interval > HZ*NR_CPUS/10)
  3290. interval = HZ*NR_CPUS/10;
  3291. need_serialize = sd->flags & SD_SERIALIZE;
  3292. if (need_serialize) {
  3293. if (!spin_trylock(&balancing))
  3294. goto out;
  3295. }
  3296. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3297. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3298. /*
  3299. * We've pulled tasks over so either we're no
  3300. * longer idle, or one of our SMT siblings is
  3301. * not idle.
  3302. */
  3303. idle = CPU_NOT_IDLE;
  3304. }
  3305. sd->last_balance = jiffies;
  3306. }
  3307. if (need_serialize)
  3308. spin_unlock(&balancing);
  3309. out:
  3310. if (time_after(next_balance, sd->last_balance + interval)) {
  3311. next_balance = sd->last_balance + interval;
  3312. update_next_balance = 1;
  3313. }
  3314. /*
  3315. * Stop the load balance at this level. There is another
  3316. * CPU in our sched group which is doing load balancing more
  3317. * actively.
  3318. */
  3319. if (!balance)
  3320. break;
  3321. }
  3322. /*
  3323. * next_balance will be updated only when there is a need.
  3324. * When the cpu is attached to null domain for ex, it will not be
  3325. * updated.
  3326. */
  3327. if (likely(update_next_balance))
  3328. rq->next_balance = next_balance;
  3329. }
  3330. /*
  3331. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3332. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3333. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3334. */
  3335. static void run_rebalance_domains(struct softirq_action *h)
  3336. {
  3337. int this_cpu = smp_processor_id();
  3338. struct rq *this_rq = cpu_rq(this_cpu);
  3339. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3340. CPU_IDLE : CPU_NOT_IDLE;
  3341. rebalance_domains(this_cpu, idle);
  3342. #ifdef CONFIG_NO_HZ
  3343. /*
  3344. * If this cpu is the owner for idle load balancing, then do the
  3345. * balancing on behalf of the other idle cpus whose ticks are
  3346. * stopped.
  3347. */
  3348. if (this_rq->idle_at_tick &&
  3349. atomic_read(&nohz.load_balancer) == this_cpu) {
  3350. cpumask_t cpus = nohz.cpu_mask;
  3351. struct rq *rq;
  3352. int balance_cpu;
  3353. cpu_clear(this_cpu, cpus);
  3354. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3355. /*
  3356. * If this cpu gets work to do, stop the load balancing
  3357. * work being done for other cpus. Next load
  3358. * balancing owner will pick it up.
  3359. */
  3360. if (need_resched())
  3361. break;
  3362. rebalance_domains(balance_cpu, CPU_IDLE);
  3363. rq = cpu_rq(balance_cpu);
  3364. if (time_after(this_rq->next_balance, rq->next_balance))
  3365. this_rq->next_balance = rq->next_balance;
  3366. }
  3367. }
  3368. #endif
  3369. }
  3370. /*
  3371. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3372. *
  3373. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3374. * idle load balancing owner or decide to stop the periodic load balancing,
  3375. * if the whole system is idle.
  3376. */
  3377. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3378. {
  3379. #ifdef CONFIG_NO_HZ
  3380. /*
  3381. * If we were in the nohz mode recently and busy at the current
  3382. * scheduler tick, then check if we need to nominate new idle
  3383. * load balancer.
  3384. */
  3385. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3386. rq->in_nohz_recently = 0;
  3387. if (atomic_read(&nohz.load_balancer) == cpu) {
  3388. cpu_clear(cpu, nohz.cpu_mask);
  3389. atomic_set(&nohz.load_balancer, -1);
  3390. }
  3391. if (atomic_read(&nohz.load_balancer) == -1) {
  3392. /*
  3393. * simple selection for now: Nominate the
  3394. * first cpu in the nohz list to be the next
  3395. * ilb owner.
  3396. *
  3397. * TBD: Traverse the sched domains and nominate
  3398. * the nearest cpu in the nohz.cpu_mask.
  3399. */
  3400. int ilb = first_cpu(nohz.cpu_mask);
  3401. if (ilb < nr_cpu_ids)
  3402. resched_cpu(ilb);
  3403. }
  3404. }
  3405. /*
  3406. * If this cpu is idle and doing idle load balancing for all the
  3407. * cpus with ticks stopped, is it time for that to stop?
  3408. */
  3409. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3410. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3411. resched_cpu(cpu);
  3412. return;
  3413. }
  3414. /*
  3415. * If this cpu is idle and the idle load balancing is done by
  3416. * someone else, then no need raise the SCHED_SOFTIRQ
  3417. */
  3418. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3419. cpu_isset(cpu, nohz.cpu_mask))
  3420. return;
  3421. #endif
  3422. if (time_after_eq(jiffies, rq->next_balance))
  3423. raise_softirq(SCHED_SOFTIRQ);
  3424. }
  3425. #else /* CONFIG_SMP */
  3426. /*
  3427. * on UP we do not need to balance between CPUs:
  3428. */
  3429. static inline void idle_balance(int cpu, struct rq *rq)
  3430. {
  3431. }
  3432. #endif
  3433. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3434. EXPORT_PER_CPU_SYMBOL(kstat);
  3435. /*
  3436. * Return any ns on the sched_clock that have not yet been banked in
  3437. * @p in case that task is currently running.
  3438. */
  3439. unsigned long long task_delta_exec(struct task_struct *p)
  3440. {
  3441. unsigned long flags;
  3442. struct rq *rq;
  3443. u64 ns = 0;
  3444. rq = task_rq_lock(p, &flags);
  3445. if (task_current(rq, p)) {
  3446. u64 delta_exec;
  3447. update_rq_clock(rq);
  3448. delta_exec = rq->clock - p->se.exec_start;
  3449. if ((s64)delta_exec > 0)
  3450. ns = delta_exec;
  3451. }
  3452. task_rq_unlock(rq, &flags);
  3453. return ns;
  3454. }
  3455. /*
  3456. * Account user cpu time to a process.
  3457. * @p: the process that the cpu time gets accounted to
  3458. * @cputime: the cpu time spent in user space since the last update
  3459. */
  3460. void account_user_time(struct task_struct *p, cputime_t cputime)
  3461. {
  3462. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3463. cputime64_t tmp;
  3464. p->utime = cputime_add(p->utime, cputime);
  3465. account_group_user_time(p, cputime);
  3466. /* Add user time to cpustat. */
  3467. tmp = cputime_to_cputime64(cputime);
  3468. if (TASK_NICE(p) > 0)
  3469. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3470. else
  3471. cpustat->user = cputime64_add(cpustat->user, tmp);
  3472. /* Account for user time used */
  3473. acct_update_integrals(p);
  3474. }
  3475. /*
  3476. * Account guest cpu time to a process.
  3477. * @p: the process that the cpu time gets accounted to
  3478. * @cputime: the cpu time spent in virtual machine since the last update
  3479. */
  3480. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3481. {
  3482. cputime64_t tmp;
  3483. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3484. tmp = cputime_to_cputime64(cputime);
  3485. p->utime = cputime_add(p->utime, cputime);
  3486. account_group_user_time(p, cputime);
  3487. p->gtime = cputime_add(p->gtime, cputime);
  3488. cpustat->user = cputime64_add(cpustat->user, tmp);
  3489. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3490. }
  3491. /*
  3492. * Account scaled user cpu time to a process.
  3493. * @p: the process that the cpu time gets accounted to
  3494. * @cputime: the cpu time spent in user space since the last update
  3495. */
  3496. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3497. {
  3498. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3499. }
  3500. /*
  3501. * Account system cpu time to a process.
  3502. * @p: the process that the cpu time gets accounted to
  3503. * @hardirq_offset: the offset to subtract from hardirq_count()
  3504. * @cputime: the cpu time spent in kernel space since the last update
  3505. */
  3506. void account_system_time(struct task_struct *p, int hardirq_offset,
  3507. cputime_t cputime)
  3508. {
  3509. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3510. struct rq *rq = this_rq();
  3511. cputime64_t tmp;
  3512. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3513. account_guest_time(p, cputime);
  3514. return;
  3515. }
  3516. p->stime = cputime_add(p->stime, cputime);
  3517. account_group_system_time(p, cputime);
  3518. /* Add system time to cpustat. */
  3519. tmp = cputime_to_cputime64(cputime);
  3520. if (hardirq_count() - hardirq_offset)
  3521. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3522. else if (softirq_count())
  3523. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3524. else if (p != rq->idle)
  3525. cpustat->system = cputime64_add(cpustat->system, tmp);
  3526. else if (atomic_read(&rq->nr_iowait) > 0)
  3527. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3528. else
  3529. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3530. /* Account for system time used */
  3531. acct_update_integrals(p);
  3532. }
  3533. /*
  3534. * Account scaled system cpu time to a process.
  3535. * @p: the process that the cpu time gets accounted to
  3536. * @hardirq_offset: the offset to subtract from hardirq_count()
  3537. * @cputime: the cpu time spent in kernel space since the last update
  3538. */
  3539. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3540. {
  3541. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3542. }
  3543. /*
  3544. * Account for involuntary wait time.
  3545. * @p: the process from which the cpu time has been stolen
  3546. * @steal: the cpu time spent in involuntary wait
  3547. */
  3548. void account_steal_time(struct task_struct *p, cputime_t steal)
  3549. {
  3550. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3551. cputime64_t tmp = cputime_to_cputime64(steal);
  3552. struct rq *rq = this_rq();
  3553. if (p == rq->idle) {
  3554. p->stime = cputime_add(p->stime, steal);
  3555. account_group_system_time(p, steal);
  3556. if (atomic_read(&rq->nr_iowait) > 0)
  3557. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3558. else
  3559. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3560. } else
  3561. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3562. }
  3563. /*
  3564. * Use precise platform statistics if available:
  3565. */
  3566. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3567. cputime_t task_utime(struct task_struct *p)
  3568. {
  3569. return p->utime;
  3570. }
  3571. cputime_t task_stime(struct task_struct *p)
  3572. {
  3573. return p->stime;
  3574. }
  3575. #else
  3576. cputime_t task_utime(struct task_struct *p)
  3577. {
  3578. clock_t utime = cputime_to_clock_t(p->utime),
  3579. total = utime + cputime_to_clock_t(p->stime);
  3580. u64 temp;
  3581. /*
  3582. * Use CFS's precise accounting:
  3583. */
  3584. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3585. if (total) {
  3586. temp *= utime;
  3587. do_div(temp, total);
  3588. }
  3589. utime = (clock_t)temp;
  3590. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3591. return p->prev_utime;
  3592. }
  3593. cputime_t task_stime(struct task_struct *p)
  3594. {
  3595. clock_t stime;
  3596. /*
  3597. * Use CFS's precise accounting. (we subtract utime from
  3598. * the total, to make sure the total observed by userspace
  3599. * grows monotonically - apps rely on that):
  3600. */
  3601. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3602. cputime_to_clock_t(task_utime(p));
  3603. if (stime >= 0)
  3604. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3605. return p->prev_stime;
  3606. }
  3607. #endif
  3608. inline cputime_t task_gtime(struct task_struct *p)
  3609. {
  3610. return p->gtime;
  3611. }
  3612. /*
  3613. * This function gets called by the timer code, with HZ frequency.
  3614. * We call it with interrupts disabled.
  3615. *
  3616. * It also gets called by the fork code, when changing the parent's
  3617. * timeslices.
  3618. */
  3619. void scheduler_tick(void)
  3620. {
  3621. int cpu = smp_processor_id();
  3622. struct rq *rq = cpu_rq(cpu);
  3623. struct task_struct *curr = rq->curr;
  3624. sched_clock_tick();
  3625. spin_lock(&rq->lock);
  3626. update_rq_clock(rq);
  3627. update_cpu_load(rq);
  3628. curr->sched_class->task_tick(rq, curr, 0);
  3629. spin_unlock(&rq->lock);
  3630. #ifdef CONFIG_SMP
  3631. rq->idle_at_tick = idle_cpu(cpu);
  3632. trigger_load_balance(rq, cpu);
  3633. #endif
  3634. }
  3635. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3636. defined(CONFIG_PREEMPT_TRACER))
  3637. static inline unsigned long get_parent_ip(unsigned long addr)
  3638. {
  3639. if (in_lock_functions(addr)) {
  3640. addr = CALLER_ADDR2;
  3641. if (in_lock_functions(addr))
  3642. addr = CALLER_ADDR3;
  3643. }
  3644. return addr;
  3645. }
  3646. void __kprobes add_preempt_count(int val)
  3647. {
  3648. #ifdef CONFIG_DEBUG_PREEMPT
  3649. /*
  3650. * Underflow?
  3651. */
  3652. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3653. return;
  3654. #endif
  3655. preempt_count() += val;
  3656. #ifdef CONFIG_DEBUG_PREEMPT
  3657. /*
  3658. * Spinlock count overflowing soon?
  3659. */
  3660. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3661. PREEMPT_MASK - 10);
  3662. #endif
  3663. if (preempt_count() == val)
  3664. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3665. }
  3666. EXPORT_SYMBOL(add_preempt_count);
  3667. void __kprobes sub_preempt_count(int val)
  3668. {
  3669. #ifdef CONFIG_DEBUG_PREEMPT
  3670. /*
  3671. * Underflow?
  3672. */
  3673. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3674. return;
  3675. /*
  3676. * Is the spinlock portion underflowing?
  3677. */
  3678. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3679. !(preempt_count() & PREEMPT_MASK)))
  3680. return;
  3681. #endif
  3682. if (preempt_count() == val)
  3683. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3684. preempt_count() -= val;
  3685. }
  3686. EXPORT_SYMBOL(sub_preempt_count);
  3687. #endif
  3688. /*
  3689. * Print scheduling while atomic bug:
  3690. */
  3691. static noinline void __schedule_bug(struct task_struct *prev)
  3692. {
  3693. struct pt_regs *regs = get_irq_regs();
  3694. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3695. prev->comm, prev->pid, preempt_count());
  3696. debug_show_held_locks(prev);
  3697. print_modules();
  3698. if (irqs_disabled())
  3699. print_irqtrace_events(prev);
  3700. if (regs)
  3701. show_regs(regs);
  3702. else
  3703. dump_stack();
  3704. }
  3705. /*
  3706. * Various schedule()-time debugging checks and statistics:
  3707. */
  3708. static inline void schedule_debug(struct task_struct *prev)
  3709. {
  3710. /*
  3711. * Test if we are atomic. Since do_exit() needs to call into
  3712. * schedule() atomically, we ignore that path for now.
  3713. * Otherwise, whine if we are scheduling when we should not be.
  3714. */
  3715. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3716. __schedule_bug(prev);
  3717. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3718. schedstat_inc(this_rq(), sched_count);
  3719. #ifdef CONFIG_SCHEDSTATS
  3720. if (unlikely(prev->lock_depth >= 0)) {
  3721. schedstat_inc(this_rq(), bkl_count);
  3722. schedstat_inc(prev, sched_info.bkl_count);
  3723. }
  3724. #endif
  3725. }
  3726. /*
  3727. * Pick up the highest-prio task:
  3728. */
  3729. static inline struct task_struct *
  3730. pick_next_task(struct rq *rq, struct task_struct *prev)
  3731. {
  3732. const struct sched_class *class;
  3733. struct task_struct *p;
  3734. /*
  3735. * Optimization: we know that if all tasks are in
  3736. * the fair class we can call that function directly:
  3737. */
  3738. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3739. p = fair_sched_class.pick_next_task(rq);
  3740. if (likely(p))
  3741. return p;
  3742. }
  3743. class = sched_class_highest;
  3744. for ( ; ; ) {
  3745. p = class->pick_next_task(rq);
  3746. if (p)
  3747. return p;
  3748. /*
  3749. * Will never be NULL as the idle class always
  3750. * returns a non-NULL p:
  3751. */
  3752. class = class->next;
  3753. }
  3754. }
  3755. /*
  3756. * schedule() is the main scheduler function.
  3757. */
  3758. asmlinkage void __sched schedule(void)
  3759. {
  3760. struct task_struct *prev, *next;
  3761. unsigned long *switch_count;
  3762. struct rq *rq;
  3763. int cpu;
  3764. need_resched:
  3765. preempt_disable();
  3766. cpu = smp_processor_id();
  3767. rq = cpu_rq(cpu);
  3768. rcu_qsctr_inc(cpu);
  3769. prev = rq->curr;
  3770. switch_count = &prev->nivcsw;
  3771. release_kernel_lock(prev);
  3772. need_resched_nonpreemptible:
  3773. schedule_debug(prev);
  3774. if (sched_feat(HRTICK))
  3775. hrtick_clear(rq);
  3776. /*
  3777. * Do the rq-clock update outside the rq lock:
  3778. */
  3779. local_irq_disable();
  3780. update_rq_clock(rq);
  3781. spin_lock(&rq->lock);
  3782. clear_tsk_need_resched(prev);
  3783. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3784. if (unlikely(signal_pending_state(prev->state, prev)))
  3785. prev->state = TASK_RUNNING;
  3786. else
  3787. deactivate_task(rq, prev, 1);
  3788. switch_count = &prev->nvcsw;
  3789. }
  3790. #ifdef CONFIG_SMP
  3791. if (prev->sched_class->pre_schedule)
  3792. prev->sched_class->pre_schedule(rq, prev);
  3793. #endif
  3794. if (unlikely(!rq->nr_running))
  3795. idle_balance(cpu, rq);
  3796. prev->sched_class->put_prev_task(rq, prev);
  3797. next = pick_next_task(rq, prev);
  3798. if (likely(prev != next)) {
  3799. sched_info_switch(prev, next);
  3800. rq->nr_switches++;
  3801. rq->curr = next;
  3802. ++*switch_count;
  3803. context_switch(rq, prev, next); /* unlocks the rq */
  3804. /*
  3805. * the context switch might have flipped the stack from under
  3806. * us, hence refresh the local variables.
  3807. */
  3808. cpu = smp_processor_id();
  3809. rq = cpu_rq(cpu);
  3810. } else
  3811. spin_unlock_irq(&rq->lock);
  3812. if (unlikely(reacquire_kernel_lock(current) < 0))
  3813. goto need_resched_nonpreemptible;
  3814. preempt_enable_no_resched();
  3815. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3816. goto need_resched;
  3817. }
  3818. EXPORT_SYMBOL(schedule);
  3819. #ifdef CONFIG_PREEMPT
  3820. /*
  3821. * this is the entry point to schedule() from in-kernel preemption
  3822. * off of preempt_enable. Kernel preemptions off return from interrupt
  3823. * occur there and call schedule directly.
  3824. */
  3825. asmlinkage void __sched preempt_schedule(void)
  3826. {
  3827. struct thread_info *ti = current_thread_info();
  3828. /*
  3829. * If there is a non-zero preempt_count or interrupts are disabled,
  3830. * we do not want to preempt the current task. Just return..
  3831. */
  3832. if (likely(ti->preempt_count || irqs_disabled()))
  3833. return;
  3834. do {
  3835. add_preempt_count(PREEMPT_ACTIVE);
  3836. schedule();
  3837. sub_preempt_count(PREEMPT_ACTIVE);
  3838. /*
  3839. * Check again in case we missed a preemption opportunity
  3840. * between schedule and now.
  3841. */
  3842. barrier();
  3843. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3844. }
  3845. EXPORT_SYMBOL(preempt_schedule);
  3846. /*
  3847. * this is the entry point to schedule() from kernel preemption
  3848. * off of irq context.
  3849. * Note, that this is called and return with irqs disabled. This will
  3850. * protect us against recursive calling from irq.
  3851. */
  3852. asmlinkage void __sched preempt_schedule_irq(void)
  3853. {
  3854. struct thread_info *ti = current_thread_info();
  3855. /* Catch callers which need to be fixed */
  3856. BUG_ON(ti->preempt_count || !irqs_disabled());
  3857. do {
  3858. add_preempt_count(PREEMPT_ACTIVE);
  3859. local_irq_enable();
  3860. schedule();
  3861. local_irq_disable();
  3862. sub_preempt_count(PREEMPT_ACTIVE);
  3863. /*
  3864. * Check again in case we missed a preemption opportunity
  3865. * between schedule and now.
  3866. */
  3867. barrier();
  3868. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3869. }
  3870. #endif /* CONFIG_PREEMPT */
  3871. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3872. void *key)
  3873. {
  3874. return try_to_wake_up(curr->private, mode, sync);
  3875. }
  3876. EXPORT_SYMBOL(default_wake_function);
  3877. /*
  3878. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3879. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3880. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3881. *
  3882. * There are circumstances in which we can try to wake a task which has already
  3883. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3884. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3885. */
  3886. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3887. int nr_exclusive, int sync, void *key)
  3888. {
  3889. wait_queue_t *curr, *next;
  3890. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3891. unsigned flags = curr->flags;
  3892. if (curr->func(curr, mode, sync, key) &&
  3893. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3894. break;
  3895. }
  3896. }
  3897. /**
  3898. * __wake_up - wake up threads blocked on a waitqueue.
  3899. * @q: the waitqueue
  3900. * @mode: which threads
  3901. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3902. * @key: is directly passed to the wakeup function
  3903. */
  3904. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3905. int nr_exclusive, void *key)
  3906. {
  3907. unsigned long flags;
  3908. spin_lock_irqsave(&q->lock, flags);
  3909. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3910. spin_unlock_irqrestore(&q->lock, flags);
  3911. }
  3912. EXPORT_SYMBOL(__wake_up);
  3913. /*
  3914. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3915. */
  3916. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3917. {
  3918. __wake_up_common(q, mode, 1, 0, NULL);
  3919. }
  3920. /**
  3921. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3922. * @q: the waitqueue
  3923. * @mode: which threads
  3924. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3925. *
  3926. * The sync wakeup differs that the waker knows that it will schedule
  3927. * away soon, so while the target thread will be woken up, it will not
  3928. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3929. * with each other. This can prevent needless bouncing between CPUs.
  3930. *
  3931. * On UP it can prevent extra preemption.
  3932. */
  3933. void
  3934. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3935. {
  3936. unsigned long flags;
  3937. int sync = 1;
  3938. if (unlikely(!q))
  3939. return;
  3940. if (unlikely(!nr_exclusive))
  3941. sync = 0;
  3942. spin_lock_irqsave(&q->lock, flags);
  3943. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3944. spin_unlock_irqrestore(&q->lock, flags);
  3945. }
  3946. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3947. /**
  3948. * complete: - signals a single thread waiting on this completion
  3949. * @x: holds the state of this particular completion
  3950. *
  3951. * This will wake up a single thread waiting on this completion. Threads will be
  3952. * awakened in the same order in which they were queued.
  3953. *
  3954. * See also complete_all(), wait_for_completion() and related routines.
  3955. */
  3956. void complete(struct completion *x)
  3957. {
  3958. unsigned long flags;
  3959. spin_lock_irqsave(&x->wait.lock, flags);
  3960. x->done++;
  3961. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3962. spin_unlock_irqrestore(&x->wait.lock, flags);
  3963. }
  3964. EXPORT_SYMBOL(complete);
  3965. /**
  3966. * complete_all: - signals all threads waiting on this completion
  3967. * @x: holds the state of this particular completion
  3968. *
  3969. * This will wake up all threads waiting on this particular completion event.
  3970. */
  3971. void complete_all(struct completion *x)
  3972. {
  3973. unsigned long flags;
  3974. spin_lock_irqsave(&x->wait.lock, flags);
  3975. x->done += UINT_MAX/2;
  3976. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3977. spin_unlock_irqrestore(&x->wait.lock, flags);
  3978. }
  3979. EXPORT_SYMBOL(complete_all);
  3980. static inline long __sched
  3981. do_wait_for_common(struct completion *x, long timeout, int state)
  3982. {
  3983. if (!x->done) {
  3984. DECLARE_WAITQUEUE(wait, current);
  3985. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3986. __add_wait_queue_tail(&x->wait, &wait);
  3987. do {
  3988. if (signal_pending_state(state, current)) {
  3989. timeout = -ERESTARTSYS;
  3990. break;
  3991. }
  3992. __set_current_state(state);
  3993. spin_unlock_irq(&x->wait.lock);
  3994. timeout = schedule_timeout(timeout);
  3995. spin_lock_irq(&x->wait.lock);
  3996. } while (!x->done && timeout);
  3997. __remove_wait_queue(&x->wait, &wait);
  3998. if (!x->done)
  3999. return timeout;
  4000. }
  4001. x->done--;
  4002. return timeout ?: 1;
  4003. }
  4004. static long __sched
  4005. wait_for_common(struct completion *x, long timeout, int state)
  4006. {
  4007. might_sleep();
  4008. spin_lock_irq(&x->wait.lock);
  4009. timeout = do_wait_for_common(x, timeout, state);
  4010. spin_unlock_irq(&x->wait.lock);
  4011. return timeout;
  4012. }
  4013. /**
  4014. * wait_for_completion: - waits for completion of a task
  4015. * @x: holds the state of this particular completion
  4016. *
  4017. * This waits to be signaled for completion of a specific task. It is NOT
  4018. * interruptible and there is no timeout.
  4019. *
  4020. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4021. * and interrupt capability. Also see complete().
  4022. */
  4023. void __sched wait_for_completion(struct completion *x)
  4024. {
  4025. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4026. }
  4027. EXPORT_SYMBOL(wait_for_completion);
  4028. /**
  4029. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4030. * @x: holds the state of this particular completion
  4031. * @timeout: timeout value in jiffies
  4032. *
  4033. * This waits for either a completion of a specific task to be signaled or for a
  4034. * specified timeout to expire. The timeout is in jiffies. It is not
  4035. * interruptible.
  4036. */
  4037. unsigned long __sched
  4038. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4039. {
  4040. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4041. }
  4042. EXPORT_SYMBOL(wait_for_completion_timeout);
  4043. /**
  4044. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4045. * @x: holds the state of this particular completion
  4046. *
  4047. * This waits for completion of a specific task to be signaled. It is
  4048. * interruptible.
  4049. */
  4050. int __sched wait_for_completion_interruptible(struct completion *x)
  4051. {
  4052. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4053. if (t == -ERESTARTSYS)
  4054. return t;
  4055. return 0;
  4056. }
  4057. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4058. /**
  4059. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4060. * @x: holds the state of this particular completion
  4061. * @timeout: timeout value in jiffies
  4062. *
  4063. * This waits for either a completion of a specific task to be signaled or for a
  4064. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4065. */
  4066. unsigned long __sched
  4067. wait_for_completion_interruptible_timeout(struct completion *x,
  4068. unsigned long timeout)
  4069. {
  4070. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4071. }
  4072. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4073. /**
  4074. * wait_for_completion_killable: - waits for completion of a task (killable)
  4075. * @x: holds the state of this particular completion
  4076. *
  4077. * This waits to be signaled for completion of a specific task. It can be
  4078. * interrupted by a kill signal.
  4079. */
  4080. int __sched wait_for_completion_killable(struct completion *x)
  4081. {
  4082. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4083. if (t == -ERESTARTSYS)
  4084. return t;
  4085. return 0;
  4086. }
  4087. EXPORT_SYMBOL(wait_for_completion_killable);
  4088. /**
  4089. * try_wait_for_completion - try to decrement a completion without blocking
  4090. * @x: completion structure
  4091. *
  4092. * Returns: 0 if a decrement cannot be done without blocking
  4093. * 1 if a decrement succeeded.
  4094. *
  4095. * If a completion is being used as a counting completion,
  4096. * attempt to decrement the counter without blocking. This
  4097. * enables us to avoid waiting if the resource the completion
  4098. * is protecting is not available.
  4099. */
  4100. bool try_wait_for_completion(struct completion *x)
  4101. {
  4102. int ret = 1;
  4103. spin_lock_irq(&x->wait.lock);
  4104. if (!x->done)
  4105. ret = 0;
  4106. else
  4107. x->done--;
  4108. spin_unlock_irq(&x->wait.lock);
  4109. return ret;
  4110. }
  4111. EXPORT_SYMBOL(try_wait_for_completion);
  4112. /**
  4113. * completion_done - Test to see if a completion has any waiters
  4114. * @x: completion structure
  4115. *
  4116. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4117. * 1 if there are no waiters.
  4118. *
  4119. */
  4120. bool completion_done(struct completion *x)
  4121. {
  4122. int ret = 1;
  4123. spin_lock_irq(&x->wait.lock);
  4124. if (!x->done)
  4125. ret = 0;
  4126. spin_unlock_irq(&x->wait.lock);
  4127. return ret;
  4128. }
  4129. EXPORT_SYMBOL(completion_done);
  4130. static long __sched
  4131. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4132. {
  4133. unsigned long flags;
  4134. wait_queue_t wait;
  4135. init_waitqueue_entry(&wait, current);
  4136. __set_current_state(state);
  4137. spin_lock_irqsave(&q->lock, flags);
  4138. __add_wait_queue(q, &wait);
  4139. spin_unlock(&q->lock);
  4140. timeout = schedule_timeout(timeout);
  4141. spin_lock_irq(&q->lock);
  4142. __remove_wait_queue(q, &wait);
  4143. spin_unlock_irqrestore(&q->lock, flags);
  4144. return timeout;
  4145. }
  4146. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4147. {
  4148. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4149. }
  4150. EXPORT_SYMBOL(interruptible_sleep_on);
  4151. long __sched
  4152. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4153. {
  4154. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4155. }
  4156. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4157. void __sched sleep_on(wait_queue_head_t *q)
  4158. {
  4159. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4160. }
  4161. EXPORT_SYMBOL(sleep_on);
  4162. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4163. {
  4164. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4165. }
  4166. EXPORT_SYMBOL(sleep_on_timeout);
  4167. #ifdef CONFIG_RT_MUTEXES
  4168. /*
  4169. * rt_mutex_setprio - set the current priority of a task
  4170. * @p: task
  4171. * @prio: prio value (kernel-internal form)
  4172. *
  4173. * This function changes the 'effective' priority of a task. It does
  4174. * not touch ->normal_prio like __setscheduler().
  4175. *
  4176. * Used by the rt_mutex code to implement priority inheritance logic.
  4177. */
  4178. void rt_mutex_setprio(struct task_struct *p, int prio)
  4179. {
  4180. unsigned long flags;
  4181. int oldprio, on_rq, running;
  4182. struct rq *rq;
  4183. const struct sched_class *prev_class = p->sched_class;
  4184. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4185. rq = task_rq_lock(p, &flags);
  4186. update_rq_clock(rq);
  4187. oldprio = p->prio;
  4188. on_rq = p->se.on_rq;
  4189. running = task_current(rq, p);
  4190. if (on_rq)
  4191. dequeue_task(rq, p, 0);
  4192. if (running)
  4193. p->sched_class->put_prev_task(rq, p);
  4194. if (rt_prio(prio))
  4195. p->sched_class = &rt_sched_class;
  4196. else
  4197. p->sched_class = &fair_sched_class;
  4198. p->prio = prio;
  4199. if (running)
  4200. p->sched_class->set_curr_task(rq);
  4201. if (on_rq) {
  4202. enqueue_task(rq, p, 0);
  4203. check_class_changed(rq, p, prev_class, oldprio, running);
  4204. }
  4205. task_rq_unlock(rq, &flags);
  4206. }
  4207. #endif
  4208. void set_user_nice(struct task_struct *p, long nice)
  4209. {
  4210. int old_prio, delta, on_rq;
  4211. unsigned long flags;
  4212. struct rq *rq;
  4213. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4214. return;
  4215. /*
  4216. * We have to be careful, if called from sys_setpriority(),
  4217. * the task might be in the middle of scheduling on another CPU.
  4218. */
  4219. rq = task_rq_lock(p, &flags);
  4220. update_rq_clock(rq);
  4221. /*
  4222. * The RT priorities are set via sched_setscheduler(), but we still
  4223. * allow the 'normal' nice value to be set - but as expected
  4224. * it wont have any effect on scheduling until the task is
  4225. * SCHED_FIFO/SCHED_RR:
  4226. */
  4227. if (task_has_rt_policy(p)) {
  4228. p->static_prio = NICE_TO_PRIO(nice);
  4229. goto out_unlock;
  4230. }
  4231. on_rq = p->se.on_rq;
  4232. if (on_rq)
  4233. dequeue_task(rq, p, 0);
  4234. p->static_prio = NICE_TO_PRIO(nice);
  4235. set_load_weight(p);
  4236. old_prio = p->prio;
  4237. p->prio = effective_prio(p);
  4238. delta = p->prio - old_prio;
  4239. if (on_rq) {
  4240. enqueue_task(rq, p, 0);
  4241. /*
  4242. * If the task increased its priority or is running and
  4243. * lowered its priority, then reschedule its CPU:
  4244. */
  4245. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4246. resched_task(rq->curr);
  4247. }
  4248. out_unlock:
  4249. task_rq_unlock(rq, &flags);
  4250. }
  4251. EXPORT_SYMBOL(set_user_nice);
  4252. /*
  4253. * can_nice - check if a task can reduce its nice value
  4254. * @p: task
  4255. * @nice: nice value
  4256. */
  4257. int can_nice(const struct task_struct *p, const int nice)
  4258. {
  4259. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4260. int nice_rlim = 20 - nice;
  4261. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4262. capable(CAP_SYS_NICE));
  4263. }
  4264. #ifdef __ARCH_WANT_SYS_NICE
  4265. /*
  4266. * sys_nice - change the priority of the current process.
  4267. * @increment: priority increment
  4268. *
  4269. * sys_setpriority is a more generic, but much slower function that
  4270. * does similar things.
  4271. */
  4272. asmlinkage long sys_nice(int increment)
  4273. {
  4274. long nice, retval;
  4275. /*
  4276. * Setpriority might change our priority at the same moment.
  4277. * We don't have to worry. Conceptually one call occurs first
  4278. * and we have a single winner.
  4279. */
  4280. if (increment < -40)
  4281. increment = -40;
  4282. if (increment > 40)
  4283. increment = 40;
  4284. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4285. if (nice < -20)
  4286. nice = -20;
  4287. if (nice > 19)
  4288. nice = 19;
  4289. if (increment < 0 && !can_nice(current, nice))
  4290. return -EPERM;
  4291. retval = security_task_setnice(current, nice);
  4292. if (retval)
  4293. return retval;
  4294. set_user_nice(current, nice);
  4295. return 0;
  4296. }
  4297. #endif
  4298. /**
  4299. * task_prio - return the priority value of a given task.
  4300. * @p: the task in question.
  4301. *
  4302. * This is the priority value as seen by users in /proc.
  4303. * RT tasks are offset by -200. Normal tasks are centered
  4304. * around 0, value goes from -16 to +15.
  4305. */
  4306. int task_prio(const struct task_struct *p)
  4307. {
  4308. return p->prio - MAX_RT_PRIO;
  4309. }
  4310. /**
  4311. * task_nice - return the nice value of a given task.
  4312. * @p: the task in question.
  4313. */
  4314. int task_nice(const struct task_struct *p)
  4315. {
  4316. return TASK_NICE(p);
  4317. }
  4318. EXPORT_SYMBOL(task_nice);
  4319. /**
  4320. * idle_cpu - is a given cpu idle currently?
  4321. * @cpu: the processor in question.
  4322. */
  4323. int idle_cpu(int cpu)
  4324. {
  4325. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4326. }
  4327. /**
  4328. * idle_task - return the idle task for a given cpu.
  4329. * @cpu: the processor in question.
  4330. */
  4331. struct task_struct *idle_task(int cpu)
  4332. {
  4333. return cpu_rq(cpu)->idle;
  4334. }
  4335. /**
  4336. * find_process_by_pid - find a process with a matching PID value.
  4337. * @pid: the pid in question.
  4338. */
  4339. static struct task_struct *find_process_by_pid(pid_t pid)
  4340. {
  4341. return pid ? find_task_by_vpid(pid) : current;
  4342. }
  4343. /* Actually do priority change: must hold rq lock. */
  4344. static void
  4345. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4346. {
  4347. BUG_ON(p->se.on_rq);
  4348. p->policy = policy;
  4349. switch (p->policy) {
  4350. case SCHED_NORMAL:
  4351. case SCHED_BATCH:
  4352. case SCHED_IDLE:
  4353. p->sched_class = &fair_sched_class;
  4354. break;
  4355. case SCHED_FIFO:
  4356. case SCHED_RR:
  4357. p->sched_class = &rt_sched_class;
  4358. break;
  4359. }
  4360. p->rt_priority = prio;
  4361. p->normal_prio = normal_prio(p);
  4362. /* we are holding p->pi_lock already */
  4363. p->prio = rt_mutex_getprio(p);
  4364. set_load_weight(p);
  4365. }
  4366. static int __sched_setscheduler(struct task_struct *p, int policy,
  4367. struct sched_param *param, bool user)
  4368. {
  4369. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4370. unsigned long flags;
  4371. const struct sched_class *prev_class = p->sched_class;
  4372. struct rq *rq;
  4373. /* may grab non-irq protected spin_locks */
  4374. BUG_ON(in_interrupt());
  4375. recheck:
  4376. /* double check policy once rq lock held */
  4377. if (policy < 0)
  4378. policy = oldpolicy = p->policy;
  4379. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4380. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4381. policy != SCHED_IDLE)
  4382. return -EINVAL;
  4383. /*
  4384. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4385. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4386. * SCHED_BATCH and SCHED_IDLE is 0.
  4387. */
  4388. if (param->sched_priority < 0 ||
  4389. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4390. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4391. return -EINVAL;
  4392. if (rt_policy(policy) != (param->sched_priority != 0))
  4393. return -EINVAL;
  4394. /*
  4395. * Allow unprivileged RT tasks to decrease priority:
  4396. */
  4397. if (user && !capable(CAP_SYS_NICE)) {
  4398. if (rt_policy(policy)) {
  4399. unsigned long rlim_rtprio;
  4400. if (!lock_task_sighand(p, &flags))
  4401. return -ESRCH;
  4402. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4403. unlock_task_sighand(p, &flags);
  4404. /* can't set/change the rt policy */
  4405. if (policy != p->policy && !rlim_rtprio)
  4406. return -EPERM;
  4407. /* can't increase priority */
  4408. if (param->sched_priority > p->rt_priority &&
  4409. param->sched_priority > rlim_rtprio)
  4410. return -EPERM;
  4411. }
  4412. /*
  4413. * Like positive nice levels, dont allow tasks to
  4414. * move out of SCHED_IDLE either:
  4415. */
  4416. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4417. return -EPERM;
  4418. /* can't change other user's priorities */
  4419. if ((current->euid != p->euid) &&
  4420. (current->euid != p->uid))
  4421. return -EPERM;
  4422. }
  4423. if (user) {
  4424. #ifdef CONFIG_RT_GROUP_SCHED
  4425. /*
  4426. * Do not allow realtime tasks into groups that have no runtime
  4427. * assigned.
  4428. */
  4429. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4430. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4431. return -EPERM;
  4432. #endif
  4433. retval = security_task_setscheduler(p, policy, param);
  4434. if (retval)
  4435. return retval;
  4436. }
  4437. /*
  4438. * make sure no PI-waiters arrive (or leave) while we are
  4439. * changing the priority of the task:
  4440. */
  4441. spin_lock_irqsave(&p->pi_lock, flags);
  4442. /*
  4443. * To be able to change p->policy safely, the apropriate
  4444. * runqueue lock must be held.
  4445. */
  4446. rq = __task_rq_lock(p);
  4447. /* recheck policy now with rq lock held */
  4448. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4449. policy = oldpolicy = -1;
  4450. __task_rq_unlock(rq);
  4451. spin_unlock_irqrestore(&p->pi_lock, flags);
  4452. goto recheck;
  4453. }
  4454. update_rq_clock(rq);
  4455. on_rq = p->se.on_rq;
  4456. running = task_current(rq, p);
  4457. if (on_rq)
  4458. deactivate_task(rq, p, 0);
  4459. if (running)
  4460. p->sched_class->put_prev_task(rq, p);
  4461. oldprio = p->prio;
  4462. __setscheduler(rq, p, policy, param->sched_priority);
  4463. if (running)
  4464. p->sched_class->set_curr_task(rq);
  4465. if (on_rq) {
  4466. activate_task(rq, p, 0);
  4467. check_class_changed(rq, p, prev_class, oldprio, running);
  4468. }
  4469. __task_rq_unlock(rq);
  4470. spin_unlock_irqrestore(&p->pi_lock, flags);
  4471. rt_mutex_adjust_pi(p);
  4472. return 0;
  4473. }
  4474. /**
  4475. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4476. * @p: the task in question.
  4477. * @policy: new policy.
  4478. * @param: structure containing the new RT priority.
  4479. *
  4480. * NOTE that the task may be already dead.
  4481. */
  4482. int sched_setscheduler(struct task_struct *p, int policy,
  4483. struct sched_param *param)
  4484. {
  4485. return __sched_setscheduler(p, policy, param, true);
  4486. }
  4487. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4488. /**
  4489. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4490. * @p: the task in question.
  4491. * @policy: new policy.
  4492. * @param: structure containing the new RT priority.
  4493. *
  4494. * Just like sched_setscheduler, only don't bother checking if the
  4495. * current context has permission. For example, this is needed in
  4496. * stop_machine(): we create temporary high priority worker threads,
  4497. * but our caller might not have that capability.
  4498. */
  4499. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4500. struct sched_param *param)
  4501. {
  4502. return __sched_setscheduler(p, policy, param, false);
  4503. }
  4504. static int
  4505. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4506. {
  4507. struct sched_param lparam;
  4508. struct task_struct *p;
  4509. int retval;
  4510. if (!param || pid < 0)
  4511. return -EINVAL;
  4512. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4513. return -EFAULT;
  4514. rcu_read_lock();
  4515. retval = -ESRCH;
  4516. p = find_process_by_pid(pid);
  4517. if (p != NULL)
  4518. retval = sched_setscheduler(p, policy, &lparam);
  4519. rcu_read_unlock();
  4520. return retval;
  4521. }
  4522. /**
  4523. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4524. * @pid: the pid in question.
  4525. * @policy: new policy.
  4526. * @param: structure containing the new RT priority.
  4527. */
  4528. asmlinkage long
  4529. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4530. {
  4531. /* negative values for policy are not valid */
  4532. if (policy < 0)
  4533. return -EINVAL;
  4534. return do_sched_setscheduler(pid, policy, param);
  4535. }
  4536. /**
  4537. * sys_sched_setparam - set/change the RT priority of a thread
  4538. * @pid: the pid in question.
  4539. * @param: structure containing the new RT priority.
  4540. */
  4541. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4542. {
  4543. return do_sched_setscheduler(pid, -1, param);
  4544. }
  4545. /**
  4546. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4547. * @pid: the pid in question.
  4548. */
  4549. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4550. {
  4551. struct task_struct *p;
  4552. int retval;
  4553. if (pid < 0)
  4554. return -EINVAL;
  4555. retval = -ESRCH;
  4556. read_lock(&tasklist_lock);
  4557. p = find_process_by_pid(pid);
  4558. if (p) {
  4559. retval = security_task_getscheduler(p);
  4560. if (!retval)
  4561. retval = p->policy;
  4562. }
  4563. read_unlock(&tasklist_lock);
  4564. return retval;
  4565. }
  4566. /**
  4567. * sys_sched_getscheduler - get the RT priority of a thread
  4568. * @pid: the pid in question.
  4569. * @param: structure containing the RT priority.
  4570. */
  4571. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4572. {
  4573. struct sched_param lp;
  4574. struct task_struct *p;
  4575. int retval;
  4576. if (!param || pid < 0)
  4577. return -EINVAL;
  4578. read_lock(&tasklist_lock);
  4579. p = find_process_by_pid(pid);
  4580. retval = -ESRCH;
  4581. if (!p)
  4582. goto out_unlock;
  4583. retval = security_task_getscheduler(p);
  4584. if (retval)
  4585. goto out_unlock;
  4586. lp.sched_priority = p->rt_priority;
  4587. read_unlock(&tasklist_lock);
  4588. /*
  4589. * This one might sleep, we cannot do it with a spinlock held ...
  4590. */
  4591. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4592. return retval;
  4593. out_unlock:
  4594. read_unlock(&tasklist_lock);
  4595. return retval;
  4596. }
  4597. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4598. {
  4599. cpumask_t cpus_allowed;
  4600. cpumask_t new_mask = *in_mask;
  4601. struct task_struct *p;
  4602. int retval;
  4603. get_online_cpus();
  4604. read_lock(&tasklist_lock);
  4605. p = find_process_by_pid(pid);
  4606. if (!p) {
  4607. read_unlock(&tasklist_lock);
  4608. put_online_cpus();
  4609. return -ESRCH;
  4610. }
  4611. /*
  4612. * It is not safe to call set_cpus_allowed with the
  4613. * tasklist_lock held. We will bump the task_struct's
  4614. * usage count and then drop tasklist_lock.
  4615. */
  4616. get_task_struct(p);
  4617. read_unlock(&tasklist_lock);
  4618. retval = -EPERM;
  4619. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4620. !capable(CAP_SYS_NICE))
  4621. goto out_unlock;
  4622. retval = security_task_setscheduler(p, 0, NULL);
  4623. if (retval)
  4624. goto out_unlock;
  4625. cpuset_cpus_allowed(p, &cpus_allowed);
  4626. cpus_and(new_mask, new_mask, cpus_allowed);
  4627. again:
  4628. retval = set_cpus_allowed_ptr(p, &new_mask);
  4629. if (!retval) {
  4630. cpuset_cpus_allowed(p, &cpus_allowed);
  4631. if (!cpus_subset(new_mask, cpus_allowed)) {
  4632. /*
  4633. * We must have raced with a concurrent cpuset
  4634. * update. Just reset the cpus_allowed to the
  4635. * cpuset's cpus_allowed
  4636. */
  4637. new_mask = cpus_allowed;
  4638. goto again;
  4639. }
  4640. }
  4641. out_unlock:
  4642. put_task_struct(p);
  4643. put_online_cpus();
  4644. return retval;
  4645. }
  4646. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4647. cpumask_t *new_mask)
  4648. {
  4649. if (len < sizeof(cpumask_t)) {
  4650. memset(new_mask, 0, sizeof(cpumask_t));
  4651. } else if (len > sizeof(cpumask_t)) {
  4652. len = sizeof(cpumask_t);
  4653. }
  4654. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4655. }
  4656. /**
  4657. * sys_sched_setaffinity - set the cpu affinity of a process
  4658. * @pid: pid of the process
  4659. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4660. * @user_mask_ptr: user-space pointer to the new cpu mask
  4661. */
  4662. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4663. unsigned long __user *user_mask_ptr)
  4664. {
  4665. cpumask_t new_mask;
  4666. int retval;
  4667. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4668. if (retval)
  4669. return retval;
  4670. return sched_setaffinity(pid, &new_mask);
  4671. }
  4672. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4673. {
  4674. struct task_struct *p;
  4675. int retval;
  4676. get_online_cpus();
  4677. read_lock(&tasklist_lock);
  4678. retval = -ESRCH;
  4679. p = find_process_by_pid(pid);
  4680. if (!p)
  4681. goto out_unlock;
  4682. retval = security_task_getscheduler(p);
  4683. if (retval)
  4684. goto out_unlock;
  4685. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4686. out_unlock:
  4687. read_unlock(&tasklist_lock);
  4688. put_online_cpus();
  4689. return retval;
  4690. }
  4691. /**
  4692. * sys_sched_getaffinity - get the cpu affinity of a process
  4693. * @pid: pid of the process
  4694. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4695. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4696. */
  4697. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4698. unsigned long __user *user_mask_ptr)
  4699. {
  4700. int ret;
  4701. cpumask_t mask;
  4702. if (len < sizeof(cpumask_t))
  4703. return -EINVAL;
  4704. ret = sched_getaffinity(pid, &mask);
  4705. if (ret < 0)
  4706. return ret;
  4707. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4708. return -EFAULT;
  4709. return sizeof(cpumask_t);
  4710. }
  4711. /**
  4712. * sys_sched_yield - yield the current processor to other threads.
  4713. *
  4714. * This function yields the current CPU to other tasks. If there are no
  4715. * other threads running on this CPU then this function will return.
  4716. */
  4717. asmlinkage long sys_sched_yield(void)
  4718. {
  4719. struct rq *rq = this_rq_lock();
  4720. schedstat_inc(rq, yld_count);
  4721. current->sched_class->yield_task(rq);
  4722. /*
  4723. * Since we are going to call schedule() anyway, there's
  4724. * no need to preempt or enable interrupts:
  4725. */
  4726. __release(rq->lock);
  4727. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4728. _raw_spin_unlock(&rq->lock);
  4729. preempt_enable_no_resched();
  4730. schedule();
  4731. return 0;
  4732. }
  4733. static void __cond_resched(void)
  4734. {
  4735. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4736. __might_sleep(__FILE__, __LINE__);
  4737. #endif
  4738. /*
  4739. * The BKS might be reacquired before we have dropped
  4740. * PREEMPT_ACTIVE, which could trigger a second
  4741. * cond_resched() call.
  4742. */
  4743. do {
  4744. add_preempt_count(PREEMPT_ACTIVE);
  4745. schedule();
  4746. sub_preempt_count(PREEMPT_ACTIVE);
  4747. } while (need_resched());
  4748. }
  4749. int __sched _cond_resched(void)
  4750. {
  4751. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4752. system_state == SYSTEM_RUNNING) {
  4753. __cond_resched();
  4754. return 1;
  4755. }
  4756. return 0;
  4757. }
  4758. EXPORT_SYMBOL(_cond_resched);
  4759. /*
  4760. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4761. * call schedule, and on return reacquire the lock.
  4762. *
  4763. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4764. * operations here to prevent schedule() from being called twice (once via
  4765. * spin_unlock(), once by hand).
  4766. */
  4767. int cond_resched_lock(spinlock_t *lock)
  4768. {
  4769. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4770. int ret = 0;
  4771. if (spin_needbreak(lock) || resched) {
  4772. spin_unlock(lock);
  4773. if (resched && need_resched())
  4774. __cond_resched();
  4775. else
  4776. cpu_relax();
  4777. ret = 1;
  4778. spin_lock(lock);
  4779. }
  4780. return ret;
  4781. }
  4782. EXPORT_SYMBOL(cond_resched_lock);
  4783. int __sched cond_resched_softirq(void)
  4784. {
  4785. BUG_ON(!in_softirq());
  4786. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4787. local_bh_enable();
  4788. __cond_resched();
  4789. local_bh_disable();
  4790. return 1;
  4791. }
  4792. return 0;
  4793. }
  4794. EXPORT_SYMBOL(cond_resched_softirq);
  4795. /**
  4796. * yield - yield the current processor to other threads.
  4797. *
  4798. * This is a shortcut for kernel-space yielding - it marks the
  4799. * thread runnable and calls sys_sched_yield().
  4800. */
  4801. void __sched yield(void)
  4802. {
  4803. set_current_state(TASK_RUNNING);
  4804. sys_sched_yield();
  4805. }
  4806. EXPORT_SYMBOL(yield);
  4807. /*
  4808. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4809. * that process accounting knows that this is a task in IO wait state.
  4810. *
  4811. * But don't do that if it is a deliberate, throttling IO wait (this task
  4812. * has set its backing_dev_info: the queue against which it should throttle)
  4813. */
  4814. void __sched io_schedule(void)
  4815. {
  4816. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4817. delayacct_blkio_start();
  4818. atomic_inc(&rq->nr_iowait);
  4819. schedule();
  4820. atomic_dec(&rq->nr_iowait);
  4821. delayacct_blkio_end();
  4822. }
  4823. EXPORT_SYMBOL(io_schedule);
  4824. long __sched io_schedule_timeout(long timeout)
  4825. {
  4826. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4827. long ret;
  4828. delayacct_blkio_start();
  4829. atomic_inc(&rq->nr_iowait);
  4830. ret = schedule_timeout(timeout);
  4831. atomic_dec(&rq->nr_iowait);
  4832. delayacct_blkio_end();
  4833. return ret;
  4834. }
  4835. /**
  4836. * sys_sched_get_priority_max - return maximum RT priority.
  4837. * @policy: scheduling class.
  4838. *
  4839. * this syscall returns the maximum rt_priority that can be used
  4840. * by a given scheduling class.
  4841. */
  4842. asmlinkage long sys_sched_get_priority_max(int policy)
  4843. {
  4844. int ret = -EINVAL;
  4845. switch (policy) {
  4846. case SCHED_FIFO:
  4847. case SCHED_RR:
  4848. ret = MAX_USER_RT_PRIO-1;
  4849. break;
  4850. case SCHED_NORMAL:
  4851. case SCHED_BATCH:
  4852. case SCHED_IDLE:
  4853. ret = 0;
  4854. break;
  4855. }
  4856. return ret;
  4857. }
  4858. /**
  4859. * sys_sched_get_priority_min - return minimum RT priority.
  4860. * @policy: scheduling class.
  4861. *
  4862. * this syscall returns the minimum rt_priority that can be used
  4863. * by a given scheduling class.
  4864. */
  4865. asmlinkage long sys_sched_get_priority_min(int policy)
  4866. {
  4867. int ret = -EINVAL;
  4868. switch (policy) {
  4869. case SCHED_FIFO:
  4870. case SCHED_RR:
  4871. ret = 1;
  4872. break;
  4873. case SCHED_NORMAL:
  4874. case SCHED_BATCH:
  4875. case SCHED_IDLE:
  4876. ret = 0;
  4877. }
  4878. return ret;
  4879. }
  4880. /**
  4881. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4882. * @pid: pid of the process.
  4883. * @interval: userspace pointer to the timeslice value.
  4884. *
  4885. * this syscall writes the default timeslice value of a given process
  4886. * into the user-space timespec buffer. A value of '0' means infinity.
  4887. */
  4888. asmlinkage
  4889. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4890. {
  4891. struct task_struct *p;
  4892. unsigned int time_slice;
  4893. int retval;
  4894. struct timespec t;
  4895. if (pid < 0)
  4896. return -EINVAL;
  4897. retval = -ESRCH;
  4898. read_lock(&tasklist_lock);
  4899. p = find_process_by_pid(pid);
  4900. if (!p)
  4901. goto out_unlock;
  4902. retval = security_task_getscheduler(p);
  4903. if (retval)
  4904. goto out_unlock;
  4905. /*
  4906. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4907. * tasks that are on an otherwise idle runqueue:
  4908. */
  4909. time_slice = 0;
  4910. if (p->policy == SCHED_RR) {
  4911. time_slice = DEF_TIMESLICE;
  4912. } else if (p->policy != SCHED_FIFO) {
  4913. struct sched_entity *se = &p->se;
  4914. unsigned long flags;
  4915. struct rq *rq;
  4916. rq = task_rq_lock(p, &flags);
  4917. if (rq->cfs.load.weight)
  4918. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4919. task_rq_unlock(rq, &flags);
  4920. }
  4921. read_unlock(&tasklist_lock);
  4922. jiffies_to_timespec(time_slice, &t);
  4923. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4924. return retval;
  4925. out_unlock:
  4926. read_unlock(&tasklist_lock);
  4927. return retval;
  4928. }
  4929. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4930. void sched_show_task(struct task_struct *p)
  4931. {
  4932. unsigned long free = 0;
  4933. unsigned state;
  4934. state = p->state ? __ffs(p->state) + 1 : 0;
  4935. printk(KERN_INFO "%-13.13s %c", p->comm,
  4936. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4937. #if BITS_PER_LONG == 32
  4938. if (state == TASK_RUNNING)
  4939. printk(KERN_CONT " running ");
  4940. else
  4941. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4942. #else
  4943. if (state == TASK_RUNNING)
  4944. printk(KERN_CONT " running task ");
  4945. else
  4946. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4947. #endif
  4948. #ifdef CONFIG_DEBUG_STACK_USAGE
  4949. {
  4950. unsigned long *n = end_of_stack(p);
  4951. while (!*n)
  4952. n++;
  4953. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4954. }
  4955. #endif
  4956. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4957. task_pid_nr(p), task_pid_nr(p->real_parent));
  4958. show_stack(p, NULL);
  4959. }
  4960. void show_state_filter(unsigned long state_filter)
  4961. {
  4962. struct task_struct *g, *p;
  4963. #if BITS_PER_LONG == 32
  4964. printk(KERN_INFO
  4965. " task PC stack pid father\n");
  4966. #else
  4967. printk(KERN_INFO
  4968. " task PC stack pid father\n");
  4969. #endif
  4970. read_lock(&tasklist_lock);
  4971. do_each_thread(g, p) {
  4972. /*
  4973. * reset the NMI-timeout, listing all files on a slow
  4974. * console might take alot of time:
  4975. */
  4976. touch_nmi_watchdog();
  4977. if (!state_filter || (p->state & state_filter))
  4978. sched_show_task(p);
  4979. } while_each_thread(g, p);
  4980. touch_all_softlockup_watchdogs();
  4981. #ifdef CONFIG_SCHED_DEBUG
  4982. sysrq_sched_debug_show();
  4983. #endif
  4984. read_unlock(&tasklist_lock);
  4985. /*
  4986. * Only show locks if all tasks are dumped:
  4987. */
  4988. if (state_filter == -1)
  4989. debug_show_all_locks();
  4990. }
  4991. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4992. {
  4993. idle->sched_class = &idle_sched_class;
  4994. }
  4995. /**
  4996. * init_idle - set up an idle thread for a given CPU
  4997. * @idle: task in question
  4998. * @cpu: cpu the idle task belongs to
  4999. *
  5000. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5001. * flag, to make booting more robust.
  5002. */
  5003. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5004. {
  5005. struct rq *rq = cpu_rq(cpu);
  5006. unsigned long flags;
  5007. __sched_fork(idle);
  5008. idle->se.exec_start = sched_clock();
  5009. idle->prio = idle->normal_prio = MAX_PRIO;
  5010. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5011. __set_task_cpu(idle, cpu);
  5012. spin_lock_irqsave(&rq->lock, flags);
  5013. rq->curr = rq->idle = idle;
  5014. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5015. idle->oncpu = 1;
  5016. #endif
  5017. spin_unlock_irqrestore(&rq->lock, flags);
  5018. /* Set the preempt count _outside_ the spinlocks! */
  5019. #if defined(CONFIG_PREEMPT)
  5020. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5021. #else
  5022. task_thread_info(idle)->preempt_count = 0;
  5023. #endif
  5024. /*
  5025. * The idle tasks have their own, simple scheduling class:
  5026. */
  5027. idle->sched_class = &idle_sched_class;
  5028. }
  5029. /*
  5030. * In a system that switches off the HZ timer nohz_cpu_mask
  5031. * indicates which cpus entered this state. This is used
  5032. * in the rcu update to wait only for active cpus. For system
  5033. * which do not switch off the HZ timer nohz_cpu_mask should
  5034. * always be CPU_MASK_NONE.
  5035. */
  5036. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5037. /*
  5038. * Increase the granularity value when there are more CPUs,
  5039. * because with more CPUs the 'effective latency' as visible
  5040. * to users decreases. But the relationship is not linear,
  5041. * so pick a second-best guess by going with the log2 of the
  5042. * number of CPUs.
  5043. *
  5044. * This idea comes from the SD scheduler of Con Kolivas:
  5045. */
  5046. static inline void sched_init_granularity(void)
  5047. {
  5048. unsigned int factor = 1 + ilog2(num_online_cpus());
  5049. const unsigned long limit = 200000000;
  5050. sysctl_sched_min_granularity *= factor;
  5051. if (sysctl_sched_min_granularity > limit)
  5052. sysctl_sched_min_granularity = limit;
  5053. sysctl_sched_latency *= factor;
  5054. if (sysctl_sched_latency > limit)
  5055. sysctl_sched_latency = limit;
  5056. sysctl_sched_wakeup_granularity *= factor;
  5057. sysctl_sched_shares_ratelimit *= factor;
  5058. }
  5059. #ifdef CONFIG_SMP
  5060. /*
  5061. * This is how migration works:
  5062. *
  5063. * 1) we queue a struct migration_req structure in the source CPU's
  5064. * runqueue and wake up that CPU's migration thread.
  5065. * 2) we down() the locked semaphore => thread blocks.
  5066. * 3) migration thread wakes up (implicitly it forces the migrated
  5067. * thread off the CPU)
  5068. * 4) it gets the migration request and checks whether the migrated
  5069. * task is still in the wrong runqueue.
  5070. * 5) if it's in the wrong runqueue then the migration thread removes
  5071. * it and puts it into the right queue.
  5072. * 6) migration thread up()s the semaphore.
  5073. * 7) we wake up and the migration is done.
  5074. */
  5075. /*
  5076. * Change a given task's CPU affinity. Migrate the thread to a
  5077. * proper CPU and schedule it away if the CPU it's executing on
  5078. * is removed from the allowed bitmask.
  5079. *
  5080. * NOTE: the caller must have a valid reference to the task, the
  5081. * task must not exit() & deallocate itself prematurely. The
  5082. * call is not atomic; no spinlocks may be held.
  5083. */
  5084. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5085. {
  5086. struct migration_req req;
  5087. unsigned long flags;
  5088. struct rq *rq;
  5089. int ret = 0;
  5090. rq = task_rq_lock(p, &flags);
  5091. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5092. ret = -EINVAL;
  5093. goto out;
  5094. }
  5095. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5096. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5097. ret = -EINVAL;
  5098. goto out;
  5099. }
  5100. if (p->sched_class->set_cpus_allowed)
  5101. p->sched_class->set_cpus_allowed(p, new_mask);
  5102. else {
  5103. p->cpus_allowed = *new_mask;
  5104. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5105. }
  5106. /* Can the task run on the task's current CPU? If so, we're done */
  5107. if (cpu_isset(task_cpu(p), *new_mask))
  5108. goto out;
  5109. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5110. /* Need help from migration thread: drop lock and wait. */
  5111. task_rq_unlock(rq, &flags);
  5112. wake_up_process(rq->migration_thread);
  5113. wait_for_completion(&req.done);
  5114. tlb_migrate_finish(p->mm);
  5115. return 0;
  5116. }
  5117. out:
  5118. task_rq_unlock(rq, &flags);
  5119. return ret;
  5120. }
  5121. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5122. /*
  5123. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5124. * this because either it can't run here any more (set_cpus_allowed()
  5125. * away from this CPU, or CPU going down), or because we're
  5126. * attempting to rebalance this task on exec (sched_exec).
  5127. *
  5128. * So we race with normal scheduler movements, but that's OK, as long
  5129. * as the task is no longer on this CPU.
  5130. *
  5131. * Returns non-zero if task was successfully migrated.
  5132. */
  5133. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5134. {
  5135. struct rq *rq_dest, *rq_src;
  5136. int ret = 0, on_rq;
  5137. if (unlikely(!cpu_active(dest_cpu)))
  5138. return ret;
  5139. rq_src = cpu_rq(src_cpu);
  5140. rq_dest = cpu_rq(dest_cpu);
  5141. double_rq_lock(rq_src, rq_dest);
  5142. /* Already moved. */
  5143. if (task_cpu(p) != src_cpu)
  5144. goto done;
  5145. /* Affinity changed (again). */
  5146. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5147. goto fail;
  5148. on_rq = p->se.on_rq;
  5149. if (on_rq)
  5150. deactivate_task(rq_src, p, 0);
  5151. set_task_cpu(p, dest_cpu);
  5152. if (on_rq) {
  5153. activate_task(rq_dest, p, 0);
  5154. check_preempt_curr(rq_dest, p, 0);
  5155. }
  5156. done:
  5157. ret = 1;
  5158. fail:
  5159. double_rq_unlock(rq_src, rq_dest);
  5160. return ret;
  5161. }
  5162. /*
  5163. * migration_thread - this is a highprio system thread that performs
  5164. * thread migration by bumping thread off CPU then 'pushing' onto
  5165. * another runqueue.
  5166. */
  5167. static int migration_thread(void *data)
  5168. {
  5169. int cpu = (long)data;
  5170. struct rq *rq;
  5171. rq = cpu_rq(cpu);
  5172. BUG_ON(rq->migration_thread != current);
  5173. set_current_state(TASK_INTERRUPTIBLE);
  5174. while (!kthread_should_stop()) {
  5175. struct migration_req *req;
  5176. struct list_head *head;
  5177. spin_lock_irq(&rq->lock);
  5178. if (cpu_is_offline(cpu)) {
  5179. spin_unlock_irq(&rq->lock);
  5180. goto wait_to_die;
  5181. }
  5182. if (rq->active_balance) {
  5183. active_load_balance(rq, cpu);
  5184. rq->active_balance = 0;
  5185. }
  5186. head = &rq->migration_queue;
  5187. if (list_empty(head)) {
  5188. spin_unlock_irq(&rq->lock);
  5189. schedule();
  5190. set_current_state(TASK_INTERRUPTIBLE);
  5191. continue;
  5192. }
  5193. req = list_entry(head->next, struct migration_req, list);
  5194. list_del_init(head->next);
  5195. spin_unlock(&rq->lock);
  5196. __migrate_task(req->task, cpu, req->dest_cpu);
  5197. local_irq_enable();
  5198. complete(&req->done);
  5199. }
  5200. __set_current_state(TASK_RUNNING);
  5201. return 0;
  5202. wait_to_die:
  5203. /* Wait for kthread_stop */
  5204. set_current_state(TASK_INTERRUPTIBLE);
  5205. while (!kthread_should_stop()) {
  5206. schedule();
  5207. set_current_state(TASK_INTERRUPTIBLE);
  5208. }
  5209. __set_current_state(TASK_RUNNING);
  5210. return 0;
  5211. }
  5212. #ifdef CONFIG_HOTPLUG_CPU
  5213. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5214. {
  5215. int ret;
  5216. local_irq_disable();
  5217. ret = __migrate_task(p, src_cpu, dest_cpu);
  5218. local_irq_enable();
  5219. return ret;
  5220. }
  5221. /*
  5222. * Figure out where task on dead CPU should go, use force if necessary.
  5223. * NOTE: interrupts should be disabled by the caller
  5224. */
  5225. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5226. {
  5227. unsigned long flags;
  5228. cpumask_t mask;
  5229. struct rq *rq;
  5230. int dest_cpu;
  5231. do {
  5232. /* On same node? */
  5233. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5234. cpus_and(mask, mask, p->cpus_allowed);
  5235. dest_cpu = any_online_cpu(mask);
  5236. /* On any allowed CPU? */
  5237. if (dest_cpu >= nr_cpu_ids)
  5238. dest_cpu = any_online_cpu(p->cpus_allowed);
  5239. /* No more Mr. Nice Guy. */
  5240. if (dest_cpu >= nr_cpu_ids) {
  5241. cpumask_t cpus_allowed;
  5242. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5243. /*
  5244. * Try to stay on the same cpuset, where the
  5245. * current cpuset may be a subset of all cpus.
  5246. * The cpuset_cpus_allowed_locked() variant of
  5247. * cpuset_cpus_allowed() will not block. It must be
  5248. * called within calls to cpuset_lock/cpuset_unlock.
  5249. */
  5250. rq = task_rq_lock(p, &flags);
  5251. p->cpus_allowed = cpus_allowed;
  5252. dest_cpu = any_online_cpu(p->cpus_allowed);
  5253. task_rq_unlock(rq, &flags);
  5254. /*
  5255. * Don't tell them about moving exiting tasks or
  5256. * kernel threads (both mm NULL), since they never
  5257. * leave kernel.
  5258. */
  5259. if (p->mm && printk_ratelimit()) {
  5260. printk(KERN_INFO "process %d (%s) no "
  5261. "longer affine to cpu%d\n",
  5262. task_pid_nr(p), p->comm, dead_cpu);
  5263. }
  5264. }
  5265. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5266. }
  5267. /*
  5268. * While a dead CPU has no uninterruptible tasks queued at this point,
  5269. * it might still have a nonzero ->nr_uninterruptible counter, because
  5270. * for performance reasons the counter is not stricly tracking tasks to
  5271. * their home CPUs. So we just add the counter to another CPU's counter,
  5272. * to keep the global sum constant after CPU-down:
  5273. */
  5274. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5275. {
  5276. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5277. unsigned long flags;
  5278. local_irq_save(flags);
  5279. double_rq_lock(rq_src, rq_dest);
  5280. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5281. rq_src->nr_uninterruptible = 0;
  5282. double_rq_unlock(rq_src, rq_dest);
  5283. local_irq_restore(flags);
  5284. }
  5285. /* Run through task list and migrate tasks from the dead cpu. */
  5286. static void migrate_live_tasks(int src_cpu)
  5287. {
  5288. struct task_struct *p, *t;
  5289. read_lock(&tasklist_lock);
  5290. do_each_thread(t, p) {
  5291. if (p == current)
  5292. continue;
  5293. if (task_cpu(p) == src_cpu)
  5294. move_task_off_dead_cpu(src_cpu, p);
  5295. } while_each_thread(t, p);
  5296. read_unlock(&tasklist_lock);
  5297. }
  5298. /*
  5299. * Schedules idle task to be the next runnable task on current CPU.
  5300. * It does so by boosting its priority to highest possible.
  5301. * Used by CPU offline code.
  5302. */
  5303. void sched_idle_next(void)
  5304. {
  5305. int this_cpu = smp_processor_id();
  5306. struct rq *rq = cpu_rq(this_cpu);
  5307. struct task_struct *p = rq->idle;
  5308. unsigned long flags;
  5309. /* cpu has to be offline */
  5310. BUG_ON(cpu_online(this_cpu));
  5311. /*
  5312. * Strictly not necessary since rest of the CPUs are stopped by now
  5313. * and interrupts disabled on the current cpu.
  5314. */
  5315. spin_lock_irqsave(&rq->lock, flags);
  5316. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5317. update_rq_clock(rq);
  5318. activate_task(rq, p, 0);
  5319. spin_unlock_irqrestore(&rq->lock, flags);
  5320. }
  5321. /*
  5322. * Ensures that the idle task is using init_mm right before its cpu goes
  5323. * offline.
  5324. */
  5325. void idle_task_exit(void)
  5326. {
  5327. struct mm_struct *mm = current->active_mm;
  5328. BUG_ON(cpu_online(smp_processor_id()));
  5329. if (mm != &init_mm)
  5330. switch_mm(mm, &init_mm, current);
  5331. mmdrop(mm);
  5332. }
  5333. /* called under rq->lock with disabled interrupts */
  5334. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5335. {
  5336. struct rq *rq = cpu_rq(dead_cpu);
  5337. /* Must be exiting, otherwise would be on tasklist. */
  5338. BUG_ON(!p->exit_state);
  5339. /* Cannot have done final schedule yet: would have vanished. */
  5340. BUG_ON(p->state == TASK_DEAD);
  5341. get_task_struct(p);
  5342. /*
  5343. * Drop lock around migration; if someone else moves it,
  5344. * that's OK. No task can be added to this CPU, so iteration is
  5345. * fine.
  5346. */
  5347. spin_unlock_irq(&rq->lock);
  5348. move_task_off_dead_cpu(dead_cpu, p);
  5349. spin_lock_irq(&rq->lock);
  5350. put_task_struct(p);
  5351. }
  5352. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5353. static void migrate_dead_tasks(unsigned int dead_cpu)
  5354. {
  5355. struct rq *rq = cpu_rq(dead_cpu);
  5356. struct task_struct *next;
  5357. for ( ; ; ) {
  5358. if (!rq->nr_running)
  5359. break;
  5360. update_rq_clock(rq);
  5361. next = pick_next_task(rq, rq->curr);
  5362. if (!next)
  5363. break;
  5364. next->sched_class->put_prev_task(rq, next);
  5365. migrate_dead(dead_cpu, next);
  5366. }
  5367. }
  5368. #endif /* CONFIG_HOTPLUG_CPU */
  5369. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5370. static struct ctl_table sd_ctl_dir[] = {
  5371. {
  5372. .procname = "sched_domain",
  5373. .mode = 0555,
  5374. },
  5375. {0, },
  5376. };
  5377. static struct ctl_table sd_ctl_root[] = {
  5378. {
  5379. .ctl_name = CTL_KERN,
  5380. .procname = "kernel",
  5381. .mode = 0555,
  5382. .child = sd_ctl_dir,
  5383. },
  5384. {0, },
  5385. };
  5386. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5387. {
  5388. struct ctl_table *entry =
  5389. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5390. return entry;
  5391. }
  5392. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5393. {
  5394. struct ctl_table *entry;
  5395. /*
  5396. * In the intermediate directories, both the child directory and
  5397. * procname are dynamically allocated and could fail but the mode
  5398. * will always be set. In the lowest directory the names are
  5399. * static strings and all have proc handlers.
  5400. */
  5401. for (entry = *tablep; entry->mode; entry++) {
  5402. if (entry->child)
  5403. sd_free_ctl_entry(&entry->child);
  5404. if (entry->proc_handler == NULL)
  5405. kfree(entry->procname);
  5406. }
  5407. kfree(*tablep);
  5408. *tablep = NULL;
  5409. }
  5410. static void
  5411. set_table_entry(struct ctl_table *entry,
  5412. const char *procname, void *data, int maxlen,
  5413. mode_t mode, proc_handler *proc_handler)
  5414. {
  5415. entry->procname = procname;
  5416. entry->data = data;
  5417. entry->maxlen = maxlen;
  5418. entry->mode = mode;
  5419. entry->proc_handler = proc_handler;
  5420. }
  5421. static struct ctl_table *
  5422. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5423. {
  5424. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5425. if (table == NULL)
  5426. return NULL;
  5427. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5428. sizeof(long), 0644, proc_doulongvec_minmax);
  5429. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5430. sizeof(long), 0644, proc_doulongvec_minmax);
  5431. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5432. sizeof(int), 0644, proc_dointvec_minmax);
  5433. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5434. sizeof(int), 0644, proc_dointvec_minmax);
  5435. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5436. sizeof(int), 0644, proc_dointvec_minmax);
  5437. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5438. sizeof(int), 0644, proc_dointvec_minmax);
  5439. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5440. sizeof(int), 0644, proc_dointvec_minmax);
  5441. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5442. sizeof(int), 0644, proc_dointvec_minmax);
  5443. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5444. sizeof(int), 0644, proc_dointvec_minmax);
  5445. set_table_entry(&table[9], "cache_nice_tries",
  5446. &sd->cache_nice_tries,
  5447. sizeof(int), 0644, proc_dointvec_minmax);
  5448. set_table_entry(&table[10], "flags", &sd->flags,
  5449. sizeof(int), 0644, proc_dointvec_minmax);
  5450. set_table_entry(&table[11], "name", sd->name,
  5451. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5452. /* &table[12] is terminator */
  5453. return table;
  5454. }
  5455. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5456. {
  5457. struct ctl_table *entry, *table;
  5458. struct sched_domain *sd;
  5459. int domain_num = 0, i;
  5460. char buf[32];
  5461. for_each_domain(cpu, sd)
  5462. domain_num++;
  5463. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5464. if (table == NULL)
  5465. return NULL;
  5466. i = 0;
  5467. for_each_domain(cpu, sd) {
  5468. snprintf(buf, 32, "domain%d", i);
  5469. entry->procname = kstrdup(buf, GFP_KERNEL);
  5470. entry->mode = 0555;
  5471. entry->child = sd_alloc_ctl_domain_table(sd);
  5472. entry++;
  5473. i++;
  5474. }
  5475. return table;
  5476. }
  5477. static struct ctl_table_header *sd_sysctl_header;
  5478. static void register_sched_domain_sysctl(void)
  5479. {
  5480. int i, cpu_num = num_online_cpus();
  5481. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5482. char buf[32];
  5483. WARN_ON(sd_ctl_dir[0].child);
  5484. sd_ctl_dir[0].child = entry;
  5485. if (entry == NULL)
  5486. return;
  5487. for_each_online_cpu(i) {
  5488. snprintf(buf, 32, "cpu%d", i);
  5489. entry->procname = kstrdup(buf, GFP_KERNEL);
  5490. entry->mode = 0555;
  5491. entry->child = sd_alloc_ctl_cpu_table(i);
  5492. entry++;
  5493. }
  5494. WARN_ON(sd_sysctl_header);
  5495. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5496. }
  5497. /* may be called multiple times per register */
  5498. static void unregister_sched_domain_sysctl(void)
  5499. {
  5500. if (sd_sysctl_header)
  5501. unregister_sysctl_table(sd_sysctl_header);
  5502. sd_sysctl_header = NULL;
  5503. if (sd_ctl_dir[0].child)
  5504. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5505. }
  5506. #else
  5507. static void register_sched_domain_sysctl(void)
  5508. {
  5509. }
  5510. static void unregister_sched_domain_sysctl(void)
  5511. {
  5512. }
  5513. #endif
  5514. static void set_rq_online(struct rq *rq)
  5515. {
  5516. if (!rq->online) {
  5517. const struct sched_class *class;
  5518. cpu_set(rq->cpu, rq->rd->online);
  5519. rq->online = 1;
  5520. for_each_class(class) {
  5521. if (class->rq_online)
  5522. class->rq_online(rq);
  5523. }
  5524. }
  5525. }
  5526. static void set_rq_offline(struct rq *rq)
  5527. {
  5528. if (rq->online) {
  5529. const struct sched_class *class;
  5530. for_each_class(class) {
  5531. if (class->rq_offline)
  5532. class->rq_offline(rq);
  5533. }
  5534. cpu_clear(rq->cpu, rq->rd->online);
  5535. rq->online = 0;
  5536. }
  5537. }
  5538. /*
  5539. * migration_call - callback that gets triggered when a CPU is added.
  5540. * Here we can start up the necessary migration thread for the new CPU.
  5541. */
  5542. static int __cpuinit
  5543. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5544. {
  5545. struct task_struct *p;
  5546. int cpu = (long)hcpu;
  5547. unsigned long flags;
  5548. struct rq *rq;
  5549. switch (action) {
  5550. case CPU_UP_PREPARE:
  5551. case CPU_UP_PREPARE_FROZEN:
  5552. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5553. if (IS_ERR(p))
  5554. return NOTIFY_BAD;
  5555. kthread_bind(p, cpu);
  5556. /* Must be high prio: stop_machine expects to yield to it. */
  5557. rq = task_rq_lock(p, &flags);
  5558. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5559. task_rq_unlock(rq, &flags);
  5560. cpu_rq(cpu)->migration_thread = p;
  5561. break;
  5562. case CPU_ONLINE:
  5563. case CPU_ONLINE_FROZEN:
  5564. /* Strictly unnecessary, as first user will wake it. */
  5565. wake_up_process(cpu_rq(cpu)->migration_thread);
  5566. /* Update our root-domain */
  5567. rq = cpu_rq(cpu);
  5568. spin_lock_irqsave(&rq->lock, flags);
  5569. if (rq->rd) {
  5570. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5571. set_rq_online(rq);
  5572. }
  5573. spin_unlock_irqrestore(&rq->lock, flags);
  5574. break;
  5575. #ifdef CONFIG_HOTPLUG_CPU
  5576. case CPU_UP_CANCELED:
  5577. case CPU_UP_CANCELED_FROZEN:
  5578. if (!cpu_rq(cpu)->migration_thread)
  5579. break;
  5580. /* Unbind it from offline cpu so it can run. Fall thru. */
  5581. kthread_bind(cpu_rq(cpu)->migration_thread,
  5582. any_online_cpu(cpu_online_map));
  5583. kthread_stop(cpu_rq(cpu)->migration_thread);
  5584. cpu_rq(cpu)->migration_thread = NULL;
  5585. break;
  5586. case CPU_DEAD:
  5587. case CPU_DEAD_FROZEN:
  5588. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5589. migrate_live_tasks(cpu);
  5590. rq = cpu_rq(cpu);
  5591. kthread_stop(rq->migration_thread);
  5592. rq->migration_thread = NULL;
  5593. /* Idle task back to normal (off runqueue, low prio) */
  5594. spin_lock_irq(&rq->lock);
  5595. update_rq_clock(rq);
  5596. deactivate_task(rq, rq->idle, 0);
  5597. rq->idle->static_prio = MAX_PRIO;
  5598. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5599. rq->idle->sched_class = &idle_sched_class;
  5600. migrate_dead_tasks(cpu);
  5601. spin_unlock_irq(&rq->lock);
  5602. cpuset_unlock();
  5603. migrate_nr_uninterruptible(rq);
  5604. BUG_ON(rq->nr_running != 0);
  5605. /*
  5606. * No need to migrate the tasks: it was best-effort if
  5607. * they didn't take sched_hotcpu_mutex. Just wake up
  5608. * the requestors.
  5609. */
  5610. spin_lock_irq(&rq->lock);
  5611. while (!list_empty(&rq->migration_queue)) {
  5612. struct migration_req *req;
  5613. req = list_entry(rq->migration_queue.next,
  5614. struct migration_req, list);
  5615. list_del_init(&req->list);
  5616. complete(&req->done);
  5617. }
  5618. spin_unlock_irq(&rq->lock);
  5619. break;
  5620. case CPU_DYING:
  5621. case CPU_DYING_FROZEN:
  5622. /* Update our root-domain */
  5623. rq = cpu_rq(cpu);
  5624. spin_lock_irqsave(&rq->lock, flags);
  5625. if (rq->rd) {
  5626. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5627. set_rq_offline(rq);
  5628. }
  5629. spin_unlock_irqrestore(&rq->lock, flags);
  5630. break;
  5631. #endif
  5632. }
  5633. return NOTIFY_OK;
  5634. }
  5635. /* Register at highest priority so that task migration (migrate_all_tasks)
  5636. * happens before everything else.
  5637. */
  5638. static struct notifier_block __cpuinitdata migration_notifier = {
  5639. .notifier_call = migration_call,
  5640. .priority = 10
  5641. };
  5642. static int __init migration_init(void)
  5643. {
  5644. void *cpu = (void *)(long)smp_processor_id();
  5645. int err;
  5646. /* Start one for the boot CPU: */
  5647. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5648. BUG_ON(err == NOTIFY_BAD);
  5649. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5650. register_cpu_notifier(&migration_notifier);
  5651. return err;
  5652. }
  5653. early_initcall(migration_init);
  5654. #endif
  5655. #ifdef CONFIG_SMP
  5656. #ifdef CONFIG_SCHED_DEBUG
  5657. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5658. {
  5659. switch (lvl) {
  5660. case SD_LV_NONE:
  5661. return "NONE";
  5662. case SD_LV_SIBLING:
  5663. return "SIBLING";
  5664. case SD_LV_MC:
  5665. return "MC";
  5666. case SD_LV_CPU:
  5667. return "CPU";
  5668. case SD_LV_NODE:
  5669. return "NODE";
  5670. case SD_LV_ALLNODES:
  5671. return "ALLNODES";
  5672. case SD_LV_MAX:
  5673. return "MAX";
  5674. }
  5675. return "MAX";
  5676. }
  5677. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5678. cpumask_t *groupmask)
  5679. {
  5680. struct sched_group *group = sd->groups;
  5681. char str[256];
  5682. cpulist_scnprintf(str, sizeof(str), sd->span);
  5683. cpus_clear(*groupmask);
  5684. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5685. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5686. printk("does not load-balance\n");
  5687. if (sd->parent)
  5688. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5689. " has parent");
  5690. return -1;
  5691. }
  5692. printk(KERN_CONT "span %s level %s\n",
  5693. str, sd_level_to_string(sd->level));
  5694. if (!cpu_isset(cpu, sd->span)) {
  5695. printk(KERN_ERR "ERROR: domain->span does not contain "
  5696. "CPU%d\n", cpu);
  5697. }
  5698. if (!cpu_isset(cpu, group->cpumask)) {
  5699. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5700. " CPU%d\n", cpu);
  5701. }
  5702. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5703. do {
  5704. if (!group) {
  5705. printk("\n");
  5706. printk(KERN_ERR "ERROR: group is NULL\n");
  5707. break;
  5708. }
  5709. if (!group->__cpu_power) {
  5710. printk(KERN_CONT "\n");
  5711. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5712. "set\n");
  5713. break;
  5714. }
  5715. if (!cpus_weight(group->cpumask)) {
  5716. printk(KERN_CONT "\n");
  5717. printk(KERN_ERR "ERROR: empty group\n");
  5718. break;
  5719. }
  5720. if (cpus_intersects(*groupmask, group->cpumask)) {
  5721. printk(KERN_CONT "\n");
  5722. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5723. break;
  5724. }
  5725. cpus_or(*groupmask, *groupmask, group->cpumask);
  5726. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5727. printk(KERN_CONT " %s", str);
  5728. group = group->next;
  5729. } while (group != sd->groups);
  5730. printk(KERN_CONT "\n");
  5731. if (!cpus_equal(sd->span, *groupmask))
  5732. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5733. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5734. printk(KERN_ERR "ERROR: parent span is not a superset "
  5735. "of domain->span\n");
  5736. return 0;
  5737. }
  5738. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5739. {
  5740. cpumask_t *groupmask;
  5741. int level = 0;
  5742. if (!sd) {
  5743. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5744. return;
  5745. }
  5746. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5747. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5748. if (!groupmask) {
  5749. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5750. return;
  5751. }
  5752. for (;;) {
  5753. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5754. break;
  5755. level++;
  5756. sd = sd->parent;
  5757. if (!sd)
  5758. break;
  5759. }
  5760. kfree(groupmask);
  5761. }
  5762. #else /* !CONFIG_SCHED_DEBUG */
  5763. # define sched_domain_debug(sd, cpu) do { } while (0)
  5764. #endif /* CONFIG_SCHED_DEBUG */
  5765. static int sd_degenerate(struct sched_domain *sd)
  5766. {
  5767. if (cpus_weight(sd->span) == 1)
  5768. return 1;
  5769. /* Following flags need at least 2 groups */
  5770. if (sd->flags & (SD_LOAD_BALANCE |
  5771. SD_BALANCE_NEWIDLE |
  5772. SD_BALANCE_FORK |
  5773. SD_BALANCE_EXEC |
  5774. SD_SHARE_CPUPOWER |
  5775. SD_SHARE_PKG_RESOURCES)) {
  5776. if (sd->groups != sd->groups->next)
  5777. return 0;
  5778. }
  5779. /* Following flags don't use groups */
  5780. if (sd->flags & (SD_WAKE_IDLE |
  5781. SD_WAKE_AFFINE |
  5782. SD_WAKE_BALANCE))
  5783. return 0;
  5784. return 1;
  5785. }
  5786. static int
  5787. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5788. {
  5789. unsigned long cflags = sd->flags, pflags = parent->flags;
  5790. if (sd_degenerate(parent))
  5791. return 1;
  5792. if (!cpus_equal(sd->span, parent->span))
  5793. return 0;
  5794. /* Does parent contain flags not in child? */
  5795. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5796. if (cflags & SD_WAKE_AFFINE)
  5797. pflags &= ~SD_WAKE_BALANCE;
  5798. /* Flags needing groups don't count if only 1 group in parent */
  5799. if (parent->groups == parent->groups->next) {
  5800. pflags &= ~(SD_LOAD_BALANCE |
  5801. SD_BALANCE_NEWIDLE |
  5802. SD_BALANCE_FORK |
  5803. SD_BALANCE_EXEC |
  5804. SD_SHARE_CPUPOWER |
  5805. SD_SHARE_PKG_RESOURCES);
  5806. }
  5807. if (~cflags & pflags)
  5808. return 0;
  5809. return 1;
  5810. }
  5811. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5812. {
  5813. unsigned long flags;
  5814. spin_lock_irqsave(&rq->lock, flags);
  5815. if (rq->rd) {
  5816. struct root_domain *old_rd = rq->rd;
  5817. if (cpu_isset(rq->cpu, old_rd->online))
  5818. set_rq_offline(rq);
  5819. cpu_clear(rq->cpu, old_rd->span);
  5820. if (atomic_dec_and_test(&old_rd->refcount))
  5821. kfree(old_rd);
  5822. }
  5823. atomic_inc(&rd->refcount);
  5824. rq->rd = rd;
  5825. cpu_set(rq->cpu, rd->span);
  5826. if (cpu_isset(rq->cpu, cpu_online_map))
  5827. set_rq_online(rq);
  5828. spin_unlock_irqrestore(&rq->lock, flags);
  5829. }
  5830. static void init_rootdomain(struct root_domain *rd)
  5831. {
  5832. memset(rd, 0, sizeof(*rd));
  5833. cpus_clear(rd->span);
  5834. cpus_clear(rd->online);
  5835. cpupri_init(&rd->cpupri);
  5836. }
  5837. static void init_defrootdomain(void)
  5838. {
  5839. init_rootdomain(&def_root_domain);
  5840. atomic_set(&def_root_domain.refcount, 1);
  5841. }
  5842. static struct root_domain *alloc_rootdomain(void)
  5843. {
  5844. struct root_domain *rd;
  5845. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5846. if (!rd)
  5847. return NULL;
  5848. init_rootdomain(rd);
  5849. return rd;
  5850. }
  5851. /*
  5852. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5853. * hold the hotplug lock.
  5854. */
  5855. static void
  5856. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5857. {
  5858. struct rq *rq = cpu_rq(cpu);
  5859. struct sched_domain *tmp;
  5860. /* Remove the sched domains which do not contribute to scheduling. */
  5861. for (tmp = sd; tmp; tmp = tmp->parent) {
  5862. struct sched_domain *parent = tmp->parent;
  5863. if (!parent)
  5864. break;
  5865. if (sd_parent_degenerate(tmp, parent)) {
  5866. tmp->parent = parent->parent;
  5867. if (parent->parent)
  5868. parent->parent->child = tmp;
  5869. }
  5870. }
  5871. if (sd && sd_degenerate(sd)) {
  5872. sd = sd->parent;
  5873. if (sd)
  5874. sd->child = NULL;
  5875. }
  5876. sched_domain_debug(sd, cpu);
  5877. rq_attach_root(rq, rd);
  5878. rcu_assign_pointer(rq->sd, sd);
  5879. }
  5880. /* cpus with isolated domains */
  5881. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5882. /* Setup the mask of cpus configured for isolated domains */
  5883. static int __init isolated_cpu_setup(char *str)
  5884. {
  5885. static int __initdata ints[NR_CPUS];
  5886. int i;
  5887. str = get_options(str, ARRAY_SIZE(ints), ints);
  5888. cpus_clear(cpu_isolated_map);
  5889. for (i = 1; i <= ints[0]; i++)
  5890. if (ints[i] < NR_CPUS)
  5891. cpu_set(ints[i], cpu_isolated_map);
  5892. return 1;
  5893. }
  5894. __setup("isolcpus=", isolated_cpu_setup);
  5895. /*
  5896. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5897. * to a function which identifies what group(along with sched group) a CPU
  5898. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5899. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5900. *
  5901. * init_sched_build_groups will build a circular linked list of the groups
  5902. * covered by the given span, and will set each group's ->cpumask correctly,
  5903. * and ->cpu_power to 0.
  5904. */
  5905. static void
  5906. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5907. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5908. struct sched_group **sg,
  5909. cpumask_t *tmpmask),
  5910. cpumask_t *covered, cpumask_t *tmpmask)
  5911. {
  5912. struct sched_group *first = NULL, *last = NULL;
  5913. int i;
  5914. cpus_clear(*covered);
  5915. for_each_cpu_mask_nr(i, *span) {
  5916. struct sched_group *sg;
  5917. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5918. int j;
  5919. if (cpu_isset(i, *covered))
  5920. continue;
  5921. cpus_clear(sg->cpumask);
  5922. sg->__cpu_power = 0;
  5923. for_each_cpu_mask_nr(j, *span) {
  5924. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5925. continue;
  5926. cpu_set(j, *covered);
  5927. cpu_set(j, sg->cpumask);
  5928. }
  5929. if (!first)
  5930. first = sg;
  5931. if (last)
  5932. last->next = sg;
  5933. last = sg;
  5934. }
  5935. last->next = first;
  5936. }
  5937. #define SD_NODES_PER_DOMAIN 16
  5938. #ifdef CONFIG_NUMA
  5939. /**
  5940. * find_next_best_node - find the next node to include in a sched_domain
  5941. * @node: node whose sched_domain we're building
  5942. * @used_nodes: nodes already in the sched_domain
  5943. *
  5944. * Find the next node to include in a given scheduling domain. Simply
  5945. * finds the closest node not already in the @used_nodes map.
  5946. *
  5947. * Should use nodemask_t.
  5948. */
  5949. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5950. {
  5951. int i, n, val, min_val, best_node = 0;
  5952. min_val = INT_MAX;
  5953. for (i = 0; i < nr_node_ids; i++) {
  5954. /* Start at @node */
  5955. n = (node + i) % nr_node_ids;
  5956. if (!nr_cpus_node(n))
  5957. continue;
  5958. /* Skip already used nodes */
  5959. if (node_isset(n, *used_nodes))
  5960. continue;
  5961. /* Simple min distance search */
  5962. val = node_distance(node, n);
  5963. if (val < min_val) {
  5964. min_val = val;
  5965. best_node = n;
  5966. }
  5967. }
  5968. node_set(best_node, *used_nodes);
  5969. return best_node;
  5970. }
  5971. /**
  5972. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5973. * @node: node whose cpumask we're constructing
  5974. * @span: resulting cpumask
  5975. *
  5976. * Given a node, construct a good cpumask for its sched_domain to span. It
  5977. * should be one that prevents unnecessary balancing, but also spreads tasks
  5978. * out optimally.
  5979. */
  5980. static void sched_domain_node_span(int node, cpumask_t *span)
  5981. {
  5982. nodemask_t used_nodes;
  5983. node_to_cpumask_ptr(nodemask, node);
  5984. int i;
  5985. cpus_clear(*span);
  5986. nodes_clear(used_nodes);
  5987. cpus_or(*span, *span, *nodemask);
  5988. node_set(node, used_nodes);
  5989. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5990. int next_node = find_next_best_node(node, &used_nodes);
  5991. node_to_cpumask_ptr_next(nodemask, next_node);
  5992. cpus_or(*span, *span, *nodemask);
  5993. }
  5994. }
  5995. #endif /* CONFIG_NUMA */
  5996. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5997. /*
  5998. * SMT sched-domains:
  5999. */
  6000. #ifdef CONFIG_SCHED_SMT
  6001. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6002. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6003. static int
  6004. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6005. cpumask_t *unused)
  6006. {
  6007. if (sg)
  6008. *sg = &per_cpu(sched_group_cpus, cpu);
  6009. return cpu;
  6010. }
  6011. #endif /* CONFIG_SCHED_SMT */
  6012. /*
  6013. * multi-core sched-domains:
  6014. */
  6015. #ifdef CONFIG_SCHED_MC
  6016. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6017. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6018. #endif /* CONFIG_SCHED_MC */
  6019. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6020. static int
  6021. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6022. cpumask_t *mask)
  6023. {
  6024. int group;
  6025. *mask = per_cpu(cpu_sibling_map, cpu);
  6026. cpus_and(*mask, *mask, *cpu_map);
  6027. group = first_cpu(*mask);
  6028. if (sg)
  6029. *sg = &per_cpu(sched_group_core, group);
  6030. return group;
  6031. }
  6032. #elif defined(CONFIG_SCHED_MC)
  6033. static int
  6034. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6035. cpumask_t *unused)
  6036. {
  6037. if (sg)
  6038. *sg = &per_cpu(sched_group_core, cpu);
  6039. return cpu;
  6040. }
  6041. #endif
  6042. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6043. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6044. static int
  6045. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6046. cpumask_t *mask)
  6047. {
  6048. int group;
  6049. #ifdef CONFIG_SCHED_MC
  6050. *mask = cpu_coregroup_map(cpu);
  6051. cpus_and(*mask, *mask, *cpu_map);
  6052. group = first_cpu(*mask);
  6053. #elif defined(CONFIG_SCHED_SMT)
  6054. *mask = per_cpu(cpu_sibling_map, cpu);
  6055. cpus_and(*mask, *mask, *cpu_map);
  6056. group = first_cpu(*mask);
  6057. #else
  6058. group = cpu;
  6059. #endif
  6060. if (sg)
  6061. *sg = &per_cpu(sched_group_phys, group);
  6062. return group;
  6063. }
  6064. #ifdef CONFIG_NUMA
  6065. /*
  6066. * The init_sched_build_groups can't handle what we want to do with node
  6067. * groups, so roll our own. Now each node has its own list of groups which
  6068. * gets dynamically allocated.
  6069. */
  6070. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6071. static struct sched_group ***sched_group_nodes_bycpu;
  6072. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6073. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6074. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6075. struct sched_group **sg, cpumask_t *nodemask)
  6076. {
  6077. int group;
  6078. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6079. cpus_and(*nodemask, *nodemask, *cpu_map);
  6080. group = first_cpu(*nodemask);
  6081. if (sg)
  6082. *sg = &per_cpu(sched_group_allnodes, group);
  6083. return group;
  6084. }
  6085. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6086. {
  6087. struct sched_group *sg = group_head;
  6088. int j;
  6089. if (!sg)
  6090. return;
  6091. do {
  6092. for_each_cpu_mask_nr(j, sg->cpumask) {
  6093. struct sched_domain *sd;
  6094. sd = &per_cpu(phys_domains, j);
  6095. if (j != first_cpu(sd->groups->cpumask)) {
  6096. /*
  6097. * Only add "power" once for each
  6098. * physical package.
  6099. */
  6100. continue;
  6101. }
  6102. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6103. }
  6104. sg = sg->next;
  6105. } while (sg != group_head);
  6106. }
  6107. #endif /* CONFIG_NUMA */
  6108. #ifdef CONFIG_NUMA
  6109. /* Free memory allocated for various sched_group structures */
  6110. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6111. {
  6112. int cpu, i;
  6113. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6114. struct sched_group **sched_group_nodes
  6115. = sched_group_nodes_bycpu[cpu];
  6116. if (!sched_group_nodes)
  6117. continue;
  6118. for (i = 0; i < nr_node_ids; i++) {
  6119. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6120. *nodemask = node_to_cpumask(i);
  6121. cpus_and(*nodemask, *nodemask, *cpu_map);
  6122. if (cpus_empty(*nodemask))
  6123. continue;
  6124. if (sg == NULL)
  6125. continue;
  6126. sg = sg->next;
  6127. next_sg:
  6128. oldsg = sg;
  6129. sg = sg->next;
  6130. kfree(oldsg);
  6131. if (oldsg != sched_group_nodes[i])
  6132. goto next_sg;
  6133. }
  6134. kfree(sched_group_nodes);
  6135. sched_group_nodes_bycpu[cpu] = NULL;
  6136. }
  6137. }
  6138. #else /* !CONFIG_NUMA */
  6139. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6140. {
  6141. }
  6142. #endif /* CONFIG_NUMA */
  6143. /*
  6144. * Initialize sched groups cpu_power.
  6145. *
  6146. * cpu_power indicates the capacity of sched group, which is used while
  6147. * distributing the load between different sched groups in a sched domain.
  6148. * Typically cpu_power for all the groups in a sched domain will be same unless
  6149. * there are asymmetries in the topology. If there are asymmetries, group
  6150. * having more cpu_power will pickup more load compared to the group having
  6151. * less cpu_power.
  6152. *
  6153. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6154. * the maximum number of tasks a group can handle in the presence of other idle
  6155. * or lightly loaded groups in the same sched domain.
  6156. */
  6157. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6158. {
  6159. struct sched_domain *child;
  6160. struct sched_group *group;
  6161. WARN_ON(!sd || !sd->groups);
  6162. if (cpu != first_cpu(sd->groups->cpumask))
  6163. return;
  6164. child = sd->child;
  6165. sd->groups->__cpu_power = 0;
  6166. /*
  6167. * For perf policy, if the groups in child domain share resources
  6168. * (for example cores sharing some portions of the cache hierarchy
  6169. * or SMT), then set this domain groups cpu_power such that each group
  6170. * can handle only one task, when there are other idle groups in the
  6171. * same sched domain.
  6172. */
  6173. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6174. (child->flags &
  6175. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6176. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6177. return;
  6178. }
  6179. /*
  6180. * add cpu_power of each child group to this groups cpu_power
  6181. */
  6182. group = child->groups;
  6183. do {
  6184. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6185. group = group->next;
  6186. } while (group != child->groups);
  6187. }
  6188. /*
  6189. * Initializers for schedule domains
  6190. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6191. */
  6192. #ifdef CONFIG_SCHED_DEBUG
  6193. # define SD_INIT_NAME(sd, type) sd->name = #type
  6194. #else
  6195. # define SD_INIT_NAME(sd, type) do { } while (0)
  6196. #endif
  6197. #define SD_INIT(sd, type) sd_init_##type(sd)
  6198. #define SD_INIT_FUNC(type) \
  6199. static noinline void sd_init_##type(struct sched_domain *sd) \
  6200. { \
  6201. memset(sd, 0, sizeof(*sd)); \
  6202. *sd = SD_##type##_INIT; \
  6203. sd->level = SD_LV_##type; \
  6204. SD_INIT_NAME(sd, type); \
  6205. }
  6206. SD_INIT_FUNC(CPU)
  6207. #ifdef CONFIG_NUMA
  6208. SD_INIT_FUNC(ALLNODES)
  6209. SD_INIT_FUNC(NODE)
  6210. #endif
  6211. #ifdef CONFIG_SCHED_SMT
  6212. SD_INIT_FUNC(SIBLING)
  6213. #endif
  6214. #ifdef CONFIG_SCHED_MC
  6215. SD_INIT_FUNC(MC)
  6216. #endif
  6217. /*
  6218. * To minimize stack usage kmalloc room for cpumasks and share the
  6219. * space as the usage in build_sched_domains() dictates. Used only
  6220. * if the amount of space is significant.
  6221. */
  6222. struct allmasks {
  6223. cpumask_t tmpmask; /* make this one first */
  6224. union {
  6225. cpumask_t nodemask;
  6226. cpumask_t this_sibling_map;
  6227. cpumask_t this_core_map;
  6228. };
  6229. cpumask_t send_covered;
  6230. #ifdef CONFIG_NUMA
  6231. cpumask_t domainspan;
  6232. cpumask_t covered;
  6233. cpumask_t notcovered;
  6234. #endif
  6235. };
  6236. #if NR_CPUS > 128
  6237. #define SCHED_CPUMASK_ALLOC 1
  6238. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6239. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6240. #else
  6241. #define SCHED_CPUMASK_ALLOC 0
  6242. #define SCHED_CPUMASK_FREE(v)
  6243. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6244. #endif
  6245. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6246. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6247. static int default_relax_domain_level = -1;
  6248. static int __init setup_relax_domain_level(char *str)
  6249. {
  6250. unsigned long val;
  6251. val = simple_strtoul(str, NULL, 0);
  6252. if (val < SD_LV_MAX)
  6253. default_relax_domain_level = val;
  6254. return 1;
  6255. }
  6256. __setup("relax_domain_level=", setup_relax_domain_level);
  6257. static void set_domain_attribute(struct sched_domain *sd,
  6258. struct sched_domain_attr *attr)
  6259. {
  6260. int request;
  6261. if (!attr || attr->relax_domain_level < 0) {
  6262. if (default_relax_domain_level < 0)
  6263. return;
  6264. else
  6265. request = default_relax_domain_level;
  6266. } else
  6267. request = attr->relax_domain_level;
  6268. if (request < sd->level) {
  6269. /* turn off idle balance on this domain */
  6270. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6271. } else {
  6272. /* turn on idle balance on this domain */
  6273. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6274. }
  6275. }
  6276. /*
  6277. * Build sched domains for a given set of cpus and attach the sched domains
  6278. * to the individual cpus
  6279. */
  6280. static int __build_sched_domains(const cpumask_t *cpu_map,
  6281. struct sched_domain_attr *attr)
  6282. {
  6283. int i;
  6284. struct root_domain *rd;
  6285. SCHED_CPUMASK_DECLARE(allmasks);
  6286. cpumask_t *tmpmask;
  6287. #ifdef CONFIG_NUMA
  6288. struct sched_group **sched_group_nodes = NULL;
  6289. int sd_allnodes = 0;
  6290. /*
  6291. * Allocate the per-node list of sched groups
  6292. */
  6293. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6294. GFP_KERNEL);
  6295. if (!sched_group_nodes) {
  6296. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6297. return -ENOMEM;
  6298. }
  6299. #endif
  6300. rd = alloc_rootdomain();
  6301. if (!rd) {
  6302. printk(KERN_WARNING "Cannot alloc root domain\n");
  6303. #ifdef CONFIG_NUMA
  6304. kfree(sched_group_nodes);
  6305. #endif
  6306. return -ENOMEM;
  6307. }
  6308. #if SCHED_CPUMASK_ALLOC
  6309. /* get space for all scratch cpumask variables */
  6310. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6311. if (!allmasks) {
  6312. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6313. kfree(rd);
  6314. #ifdef CONFIG_NUMA
  6315. kfree(sched_group_nodes);
  6316. #endif
  6317. return -ENOMEM;
  6318. }
  6319. #endif
  6320. tmpmask = (cpumask_t *)allmasks;
  6321. #ifdef CONFIG_NUMA
  6322. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6323. #endif
  6324. /*
  6325. * Set up domains for cpus specified by the cpu_map.
  6326. */
  6327. for_each_cpu_mask_nr(i, *cpu_map) {
  6328. struct sched_domain *sd = NULL, *p;
  6329. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6330. *nodemask = node_to_cpumask(cpu_to_node(i));
  6331. cpus_and(*nodemask, *nodemask, *cpu_map);
  6332. #ifdef CONFIG_NUMA
  6333. if (cpus_weight(*cpu_map) >
  6334. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6335. sd = &per_cpu(allnodes_domains, i);
  6336. SD_INIT(sd, ALLNODES);
  6337. set_domain_attribute(sd, attr);
  6338. sd->span = *cpu_map;
  6339. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6340. p = sd;
  6341. sd_allnodes = 1;
  6342. } else
  6343. p = NULL;
  6344. sd = &per_cpu(node_domains, i);
  6345. SD_INIT(sd, NODE);
  6346. set_domain_attribute(sd, attr);
  6347. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6348. sd->parent = p;
  6349. if (p)
  6350. p->child = sd;
  6351. cpus_and(sd->span, sd->span, *cpu_map);
  6352. #endif
  6353. p = sd;
  6354. sd = &per_cpu(phys_domains, i);
  6355. SD_INIT(sd, CPU);
  6356. set_domain_attribute(sd, attr);
  6357. sd->span = *nodemask;
  6358. sd->parent = p;
  6359. if (p)
  6360. p->child = sd;
  6361. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6362. #ifdef CONFIG_SCHED_MC
  6363. p = sd;
  6364. sd = &per_cpu(core_domains, i);
  6365. SD_INIT(sd, MC);
  6366. set_domain_attribute(sd, attr);
  6367. sd->span = cpu_coregroup_map(i);
  6368. cpus_and(sd->span, sd->span, *cpu_map);
  6369. sd->parent = p;
  6370. p->child = sd;
  6371. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6372. #endif
  6373. #ifdef CONFIG_SCHED_SMT
  6374. p = sd;
  6375. sd = &per_cpu(cpu_domains, i);
  6376. SD_INIT(sd, SIBLING);
  6377. set_domain_attribute(sd, attr);
  6378. sd->span = per_cpu(cpu_sibling_map, i);
  6379. cpus_and(sd->span, sd->span, *cpu_map);
  6380. sd->parent = p;
  6381. p->child = sd;
  6382. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6383. #endif
  6384. }
  6385. #ifdef CONFIG_SCHED_SMT
  6386. /* Set up CPU (sibling) groups */
  6387. for_each_cpu_mask_nr(i, *cpu_map) {
  6388. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6389. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6390. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6391. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6392. if (i != first_cpu(*this_sibling_map))
  6393. continue;
  6394. init_sched_build_groups(this_sibling_map, cpu_map,
  6395. &cpu_to_cpu_group,
  6396. send_covered, tmpmask);
  6397. }
  6398. #endif
  6399. #ifdef CONFIG_SCHED_MC
  6400. /* Set up multi-core groups */
  6401. for_each_cpu_mask_nr(i, *cpu_map) {
  6402. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6403. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6404. *this_core_map = cpu_coregroup_map(i);
  6405. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6406. if (i != first_cpu(*this_core_map))
  6407. continue;
  6408. init_sched_build_groups(this_core_map, cpu_map,
  6409. &cpu_to_core_group,
  6410. send_covered, tmpmask);
  6411. }
  6412. #endif
  6413. /* Set up physical groups */
  6414. for (i = 0; i < nr_node_ids; i++) {
  6415. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6416. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6417. *nodemask = node_to_cpumask(i);
  6418. cpus_and(*nodemask, *nodemask, *cpu_map);
  6419. if (cpus_empty(*nodemask))
  6420. continue;
  6421. init_sched_build_groups(nodemask, cpu_map,
  6422. &cpu_to_phys_group,
  6423. send_covered, tmpmask);
  6424. }
  6425. #ifdef CONFIG_NUMA
  6426. /* Set up node groups */
  6427. if (sd_allnodes) {
  6428. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6429. init_sched_build_groups(cpu_map, cpu_map,
  6430. &cpu_to_allnodes_group,
  6431. send_covered, tmpmask);
  6432. }
  6433. for (i = 0; i < nr_node_ids; i++) {
  6434. /* Set up node groups */
  6435. struct sched_group *sg, *prev;
  6436. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6437. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6438. SCHED_CPUMASK_VAR(covered, allmasks);
  6439. int j;
  6440. *nodemask = node_to_cpumask(i);
  6441. cpus_clear(*covered);
  6442. cpus_and(*nodemask, *nodemask, *cpu_map);
  6443. if (cpus_empty(*nodemask)) {
  6444. sched_group_nodes[i] = NULL;
  6445. continue;
  6446. }
  6447. sched_domain_node_span(i, domainspan);
  6448. cpus_and(*domainspan, *domainspan, *cpu_map);
  6449. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6450. if (!sg) {
  6451. printk(KERN_WARNING "Can not alloc domain group for "
  6452. "node %d\n", i);
  6453. goto error;
  6454. }
  6455. sched_group_nodes[i] = sg;
  6456. for_each_cpu_mask_nr(j, *nodemask) {
  6457. struct sched_domain *sd;
  6458. sd = &per_cpu(node_domains, j);
  6459. sd->groups = sg;
  6460. }
  6461. sg->__cpu_power = 0;
  6462. sg->cpumask = *nodemask;
  6463. sg->next = sg;
  6464. cpus_or(*covered, *covered, *nodemask);
  6465. prev = sg;
  6466. for (j = 0; j < nr_node_ids; j++) {
  6467. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6468. int n = (i + j) % nr_node_ids;
  6469. node_to_cpumask_ptr(pnodemask, n);
  6470. cpus_complement(*notcovered, *covered);
  6471. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6472. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6473. if (cpus_empty(*tmpmask))
  6474. break;
  6475. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6476. if (cpus_empty(*tmpmask))
  6477. continue;
  6478. sg = kmalloc_node(sizeof(struct sched_group),
  6479. GFP_KERNEL, i);
  6480. if (!sg) {
  6481. printk(KERN_WARNING
  6482. "Can not alloc domain group for node %d\n", j);
  6483. goto error;
  6484. }
  6485. sg->__cpu_power = 0;
  6486. sg->cpumask = *tmpmask;
  6487. sg->next = prev->next;
  6488. cpus_or(*covered, *covered, *tmpmask);
  6489. prev->next = sg;
  6490. prev = sg;
  6491. }
  6492. }
  6493. #endif
  6494. /* Calculate CPU power for physical packages and nodes */
  6495. #ifdef CONFIG_SCHED_SMT
  6496. for_each_cpu_mask_nr(i, *cpu_map) {
  6497. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6498. init_sched_groups_power(i, sd);
  6499. }
  6500. #endif
  6501. #ifdef CONFIG_SCHED_MC
  6502. for_each_cpu_mask_nr(i, *cpu_map) {
  6503. struct sched_domain *sd = &per_cpu(core_domains, i);
  6504. init_sched_groups_power(i, sd);
  6505. }
  6506. #endif
  6507. for_each_cpu_mask_nr(i, *cpu_map) {
  6508. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6509. init_sched_groups_power(i, sd);
  6510. }
  6511. #ifdef CONFIG_NUMA
  6512. for (i = 0; i < nr_node_ids; i++)
  6513. init_numa_sched_groups_power(sched_group_nodes[i]);
  6514. if (sd_allnodes) {
  6515. struct sched_group *sg;
  6516. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6517. tmpmask);
  6518. init_numa_sched_groups_power(sg);
  6519. }
  6520. #endif
  6521. /* Attach the domains */
  6522. for_each_cpu_mask_nr(i, *cpu_map) {
  6523. struct sched_domain *sd;
  6524. #ifdef CONFIG_SCHED_SMT
  6525. sd = &per_cpu(cpu_domains, i);
  6526. #elif defined(CONFIG_SCHED_MC)
  6527. sd = &per_cpu(core_domains, i);
  6528. #else
  6529. sd = &per_cpu(phys_domains, i);
  6530. #endif
  6531. cpu_attach_domain(sd, rd, i);
  6532. }
  6533. SCHED_CPUMASK_FREE((void *)allmasks);
  6534. return 0;
  6535. #ifdef CONFIG_NUMA
  6536. error:
  6537. free_sched_groups(cpu_map, tmpmask);
  6538. SCHED_CPUMASK_FREE((void *)allmasks);
  6539. return -ENOMEM;
  6540. #endif
  6541. }
  6542. static int build_sched_domains(const cpumask_t *cpu_map)
  6543. {
  6544. return __build_sched_domains(cpu_map, NULL);
  6545. }
  6546. static cpumask_t *doms_cur; /* current sched domains */
  6547. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6548. static struct sched_domain_attr *dattr_cur;
  6549. /* attribues of custom domains in 'doms_cur' */
  6550. /*
  6551. * Special case: If a kmalloc of a doms_cur partition (array of
  6552. * cpumask_t) fails, then fallback to a single sched domain,
  6553. * as determined by the single cpumask_t fallback_doms.
  6554. */
  6555. static cpumask_t fallback_doms;
  6556. void __attribute__((weak)) arch_update_cpu_topology(void)
  6557. {
  6558. }
  6559. /*
  6560. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6561. * For now this just excludes isolated cpus, but could be used to
  6562. * exclude other special cases in the future.
  6563. */
  6564. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6565. {
  6566. int err;
  6567. arch_update_cpu_topology();
  6568. ndoms_cur = 1;
  6569. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6570. if (!doms_cur)
  6571. doms_cur = &fallback_doms;
  6572. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6573. dattr_cur = NULL;
  6574. err = build_sched_domains(doms_cur);
  6575. register_sched_domain_sysctl();
  6576. return err;
  6577. }
  6578. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6579. cpumask_t *tmpmask)
  6580. {
  6581. free_sched_groups(cpu_map, tmpmask);
  6582. }
  6583. /*
  6584. * Detach sched domains from a group of cpus specified in cpu_map
  6585. * These cpus will now be attached to the NULL domain
  6586. */
  6587. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6588. {
  6589. cpumask_t tmpmask;
  6590. int i;
  6591. unregister_sched_domain_sysctl();
  6592. for_each_cpu_mask_nr(i, *cpu_map)
  6593. cpu_attach_domain(NULL, &def_root_domain, i);
  6594. synchronize_sched();
  6595. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6596. }
  6597. /* handle null as "default" */
  6598. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6599. struct sched_domain_attr *new, int idx_new)
  6600. {
  6601. struct sched_domain_attr tmp;
  6602. /* fast path */
  6603. if (!new && !cur)
  6604. return 1;
  6605. tmp = SD_ATTR_INIT;
  6606. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6607. new ? (new + idx_new) : &tmp,
  6608. sizeof(struct sched_domain_attr));
  6609. }
  6610. /*
  6611. * Partition sched domains as specified by the 'ndoms_new'
  6612. * cpumasks in the array doms_new[] of cpumasks. This compares
  6613. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6614. * It destroys each deleted domain and builds each new domain.
  6615. *
  6616. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6617. * The masks don't intersect (don't overlap.) We should setup one
  6618. * sched domain for each mask. CPUs not in any of the cpumasks will
  6619. * not be load balanced. If the same cpumask appears both in the
  6620. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6621. * it as it is.
  6622. *
  6623. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6624. * ownership of it and will kfree it when done with it. If the caller
  6625. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6626. * and partition_sched_domains() will fallback to the single partition
  6627. * 'fallback_doms', it also forces the domains to be rebuilt.
  6628. *
  6629. * If doms_new==NULL it will be replaced with cpu_online_map.
  6630. * ndoms_new==0 is a special case for destroying existing domains.
  6631. * It will not create the default domain.
  6632. *
  6633. * Call with hotplug lock held
  6634. */
  6635. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6636. struct sched_domain_attr *dattr_new)
  6637. {
  6638. int i, j, n;
  6639. mutex_lock(&sched_domains_mutex);
  6640. /* always unregister in case we don't destroy any domains */
  6641. unregister_sched_domain_sysctl();
  6642. n = doms_new ? ndoms_new : 0;
  6643. /* Destroy deleted domains */
  6644. for (i = 0; i < ndoms_cur; i++) {
  6645. for (j = 0; j < n; j++) {
  6646. if (cpus_equal(doms_cur[i], doms_new[j])
  6647. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6648. goto match1;
  6649. }
  6650. /* no match - a current sched domain not in new doms_new[] */
  6651. detach_destroy_domains(doms_cur + i);
  6652. match1:
  6653. ;
  6654. }
  6655. if (doms_new == NULL) {
  6656. ndoms_cur = 0;
  6657. doms_new = &fallback_doms;
  6658. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6659. dattr_new = NULL;
  6660. }
  6661. /* Build new domains */
  6662. for (i = 0; i < ndoms_new; i++) {
  6663. for (j = 0; j < ndoms_cur; j++) {
  6664. if (cpus_equal(doms_new[i], doms_cur[j])
  6665. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6666. goto match2;
  6667. }
  6668. /* no match - add a new doms_new */
  6669. __build_sched_domains(doms_new + i,
  6670. dattr_new ? dattr_new + i : NULL);
  6671. match2:
  6672. ;
  6673. }
  6674. /* Remember the new sched domains */
  6675. if (doms_cur != &fallback_doms)
  6676. kfree(doms_cur);
  6677. kfree(dattr_cur); /* kfree(NULL) is safe */
  6678. doms_cur = doms_new;
  6679. dattr_cur = dattr_new;
  6680. ndoms_cur = ndoms_new;
  6681. register_sched_domain_sysctl();
  6682. mutex_unlock(&sched_domains_mutex);
  6683. }
  6684. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6685. int arch_reinit_sched_domains(void)
  6686. {
  6687. get_online_cpus();
  6688. /* Destroy domains first to force the rebuild */
  6689. partition_sched_domains(0, NULL, NULL);
  6690. rebuild_sched_domains();
  6691. put_online_cpus();
  6692. return 0;
  6693. }
  6694. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6695. {
  6696. int ret;
  6697. if (buf[0] != '0' && buf[0] != '1')
  6698. return -EINVAL;
  6699. if (smt)
  6700. sched_smt_power_savings = (buf[0] == '1');
  6701. else
  6702. sched_mc_power_savings = (buf[0] == '1');
  6703. ret = arch_reinit_sched_domains();
  6704. return ret ? ret : count;
  6705. }
  6706. #ifdef CONFIG_SCHED_MC
  6707. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6708. char *page)
  6709. {
  6710. return sprintf(page, "%u\n", sched_mc_power_savings);
  6711. }
  6712. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6713. const char *buf, size_t count)
  6714. {
  6715. return sched_power_savings_store(buf, count, 0);
  6716. }
  6717. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6718. sched_mc_power_savings_show,
  6719. sched_mc_power_savings_store);
  6720. #endif
  6721. #ifdef CONFIG_SCHED_SMT
  6722. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6723. char *page)
  6724. {
  6725. return sprintf(page, "%u\n", sched_smt_power_savings);
  6726. }
  6727. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6728. const char *buf, size_t count)
  6729. {
  6730. return sched_power_savings_store(buf, count, 1);
  6731. }
  6732. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6733. sched_smt_power_savings_show,
  6734. sched_smt_power_savings_store);
  6735. #endif
  6736. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6737. {
  6738. int err = 0;
  6739. #ifdef CONFIG_SCHED_SMT
  6740. if (smt_capable())
  6741. err = sysfs_create_file(&cls->kset.kobj,
  6742. &attr_sched_smt_power_savings.attr);
  6743. #endif
  6744. #ifdef CONFIG_SCHED_MC
  6745. if (!err && mc_capable())
  6746. err = sysfs_create_file(&cls->kset.kobj,
  6747. &attr_sched_mc_power_savings.attr);
  6748. #endif
  6749. return err;
  6750. }
  6751. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6752. #ifndef CONFIG_CPUSETS
  6753. /*
  6754. * Add online and remove offline CPUs from the scheduler domains.
  6755. * When cpusets are enabled they take over this function.
  6756. */
  6757. static int update_sched_domains(struct notifier_block *nfb,
  6758. unsigned long action, void *hcpu)
  6759. {
  6760. switch (action) {
  6761. case CPU_ONLINE:
  6762. case CPU_ONLINE_FROZEN:
  6763. case CPU_DEAD:
  6764. case CPU_DEAD_FROZEN:
  6765. partition_sched_domains(1, NULL, NULL);
  6766. return NOTIFY_OK;
  6767. default:
  6768. return NOTIFY_DONE;
  6769. }
  6770. }
  6771. #endif
  6772. static int update_runtime(struct notifier_block *nfb,
  6773. unsigned long action, void *hcpu)
  6774. {
  6775. int cpu = (int)(long)hcpu;
  6776. switch (action) {
  6777. case CPU_DOWN_PREPARE:
  6778. case CPU_DOWN_PREPARE_FROZEN:
  6779. disable_runtime(cpu_rq(cpu));
  6780. return NOTIFY_OK;
  6781. case CPU_DOWN_FAILED:
  6782. case CPU_DOWN_FAILED_FROZEN:
  6783. case CPU_ONLINE:
  6784. case CPU_ONLINE_FROZEN:
  6785. enable_runtime(cpu_rq(cpu));
  6786. return NOTIFY_OK;
  6787. default:
  6788. return NOTIFY_DONE;
  6789. }
  6790. }
  6791. void __init sched_init_smp(void)
  6792. {
  6793. cpumask_t non_isolated_cpus;
  6794. #if defined(CONFIG_NUMA)
  6795. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6796. GFP_KERNEL);
  6797. BUG_ON(sched_group_nodes_bycpu == NULL);
  6798. #endif
  6799. get_online_cpus();
  6800. mutex_lock(&sched_domains_mutex);
  6801. arch_init_sched_domains(&cpu_online_map);
  6802. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6803. if (cpus_empty(non_isolated_cpus))
  6804. cpu_set(smp_processor_id(), non_isolated_cpus);
  6805. mutex_unlock(&sched_domains_mutex);
  6806. put_online_cpus();
  6807. #ifndef CONFIG_CPUSETS
  6808. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6809. hotcpu_notifier(update_sched_domains, 0);
  6810. #endif
  6811. /* RT runtime code needs to handle some hotplug events */
  6812. hotcpu_notifier(update_runtime, 0);
  6813. init_hrtick();
  6814. /* Move init over to a non-isolated CPU */
  6815. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6816. BUG();
  6817. sched_init_granularity();
  6818. }
  6819. #else
  6820. void __init sched_init_smp(void)
  6821. {
  6822. sched_init_granularity();
  6823. }
  6824. #endif /* CONFIG_SMP */
  6825. int in_sched_functions(unsigned long addr)
  6826. {
  6827. return in_lock_functions(addr) ||
  6828. (addr >= (unsigned long)__sched_text_start
  6829. && addr < (unsigned long)__sched_text_end);
  6830. }
  6831. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6832. {
  6833. cfs_rq->tasks_timeline = RB_ROOT;
  6834. INIT_LIST_HEAD(&cfs_rq->tasks);
  6835. #ifdef CONFIG_FAIR_GROUP_SCHED
  6836. cfs_rq->rq = rq;
  6837. #endif
  6838. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6839. }
  6840. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6841. {
  6842. struct rt_prio_array *array;
  6843. int i;
  6844. array = &rt_rq->active;
  6845. for (i = 0; i < MAX_RT_PRIO; i++) {
  6846. INIT_LIST_HEAD(array->queue + i);
  6847. __clear_bit(i, array->bitmap);
  6848. }
  6849. /* delimiter for bitsearch: */
  6850. __set_bit(MAX_RT_PRIO, array->bitmap);
  6851. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6852. rt_rq->highest_prio = MAX_RT_PRIO;
  6853. #endif
  6854. #ifdef CONFIG_SMP
  6855. rt_rq->rt_nr_migratory = 0;
  6856. rt_rq->overloaded = 0;
  6857. #endif
  6858. rt_rq->rt_time = 0;
  6859. rt_rq->rt_throttled = 0;
  6860. rt_rq->rt_runtime = 0;
  6861. spin_lock_init(&rt_rq->rt_runtime_lock);
  6862. #ifdef CONFIG_RT_GROUP_SCHED
  6863. rt_rq->rt_nr_boosted = 0;
  6864. rt_rq->rq = rq;
  6865. #endif
  6866. }
  6867. #ifdef CONFIG_FAIR_GROUP_SCHED
  6868. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6869. struct sched_entity *se, int cpu, int add,
  6870. struct sched_entity *parent)
  6871. {
  6872. struct rq *rq = cpu_rq(cpu);
  6873. tg->cfs_rq[cpu] = cfs_rq;
  6874. init_cfs_rq(cfs_rq, rq);
  6875. cfs_rq->tg = tg;
  6876. if (add)
  6877. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6878. tg->se[cpu] = se;
  6879. /* se could be NULL for init_task_group */
  6880. if (!se)
  6881. return;
  6882. if (!parent)
  6883. se->cfs_rq = &rq->cfs;
  6884. else
  6885. se->cfs_rq = parent->my_q;
  6886. se->my_q = cfs_rq;
  6887. se->load.weight = tg->shares;
  6888. se->load.inv_weight = 0;
  6889. se->parent = parent;
  6890. }
  6891. #endif
  6892. #ifdef CONFIG_RT_GROUP_SCHED
  6893. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6894. struct sched_rt_entity *rt_se, int cpu, int add,
  6895. struct sched_rt_entity *parent)
  6896. {
  6897. struct rq *rq = cpu_rq(cpu);
  6898. tg->rt_rq[cpu] = rt_rq;
  6899. init_rt_rq(rt_rq, rq);
  6900. rt_rq->tg = tg;
  6901. rt_rq->rt_se = rt_se;
  6902. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6903. if (add)
  6904. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6905. tg->rt_se[cpu] = rt_se;
  6906. if (!rt_se)
  6907. return;
  6908. if (!parent)
  6909. rt_se->rt_rq = &rq->rt;
  6910. else
  6911. rt_se->rt_rq = parent->my_q;
  6912. rt_se->my_q = rt_rq;
  6913. rt_se->parent = parent;
  6914. INIT_LIST_HEAD(&rt_se->run_list);
  6915. }
  6916. #endif
  6917. void __init sched_init(void)
  6918. {
  6919. int i, j;
  6920. unsigned long alloc_size = 0, ptr;
  6921. #ifdef CONFIG_FAIR_GROUP_SCHED
  6922. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6923. #endif
  6924. #ifdef CONFIG_RT_GROUP_SCHED
  6925. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6926. #endif
  6927. #ifdef CONFIG_USER_SCHED
  6928. alloc_size *= 2;
  6929. #endif
  6930. /*
  6931. * As sched_init() is called before page_alloc is setup,
  6932. * we use alloc_bootmem().
  6933. */
  6934. if (alloc_size) {
  6935. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6936. #ifdef CONFIG_FAIR_GROUP_SCHED
  6937. init_task_group.se = (struct sched_entity **)ptr;
  6938. ptr += nr_cpu_ids * sizeof(void **);
  6939. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6940. ptr += nr_cpu_ids * sizeof(void **);
  6941. #ifdef CONFIG_USER_SCHED
  6942. root_task_group.se = (struct sched_entity **)ptr;
  6943. ptr += nr_cpu_ids * sizeof(void **);
  6944. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6945. ptr += nr_cpu_ids * sizeof(void **);
  6946. #endif /* CONFIG_USER_SCHED */
  6947. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6948. #ifdef CONFIG_RT_GROUP_SCHED
  6949. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6950. ptr += nr_cpu_ids * sizeof(void **);
  6951. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6952. ptr += nr_cpu_ids * sizeof(void **);
  6953. #ifdef CONFIG_USER_SCHED
  6954. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6955. ptr += nr_cpu_ids * sizeof(void **);
  6956. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6957. ptr += nr_cpu_ids * sizeof(void **);
  6958. #endif /* CONFIG_USER_SCHED */
  6959. #endif /* CONFIG_RT_GROUP_SCHED */
  6960. }
  6961. #ifdef CONFIG_SMP
  6962. init_defrootdomain();
  6963. #endif
  6964. init_rt_bandwidth(&def_rt_bandwidth,
  6965. global_rt_period(), global_rt_runtime());
  6966. #ifdef CONFIG_RT_GROUP_SCHED
  6967. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6968. global_rt_period(), global_rt_runtime());
  6969. #ifdef CONFIG_USER_SCHED
  6970. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6971. global_rt_period(), RUNTIME_INF);
  6972. #endif /* CONFIG_USER_SCHED */
  6973. #endif /* CONFIG_RT_GROUP_SCHED */
  6974. #ifdef CONFIG_GROUP_SCHED
  6975. list_add(&init_task_group.list, &task_groups);
  6976. INIT_LIST_HEAD(&init_task_group.children);
  6977. #ifdef CONFIG_USER_SCHED
  6978. INIT_LIST_HEAD(&root_task_group.children);
  6979. init_task_group.parent = &root_task_group;
  6980. list_add(&init_task_group.siblings, &root_task_group.children);
  6981. #endif /* CONFIG_USER_SCHED */
  6982. #endif /* CONFIG_GROUP_SCHED */
  6983. for_each_possible_cpu(i) {
  6984. struct rq *rq;
  6985. rq = cpu_rq(i);
  6986. spin_lock_init(&rq->lock);
  6987. rq->nr_running = 0;
  6988. init_cfs_rq(&rq->cfs, rq);
  6989. init_rt_rq(&rq->rt, rq);
  6990. #ifdef CONFIG_FAIR_GROUP_SCHED
  6991. init_task_group.shares = init_task_group_load;
  6992. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6993. #ifdef CONFIG_CGROUP_SCHED
  6994. /*
  6995. * How much cpu bandwidth does init_task_group get?
  6996. *
  6997. * In case of task-groups formed thr' the cgroup filesystem, it
  6998. * gets 100% of the cpu resources in the system. This overall
  6999. * system cpu resource is divided among the tasks of
  7000. * init_task_group and its child task-groups in a fair manner,
  7001. * based on each entity's (task or task-group's) weight
  7002. * (se->load.weight).
  7003. *
  7004. * In other words, if init_task_group has 10 tasks of weight
  7005. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7006. * then A0's share of the cpu resource is:
  7007. *
  7008. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7009. *
  7010. * We achieve this by letting init_task_group's tasks sit
  7011. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7012. */
  7013. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7014. #elif defined CONFIG_USER_SCHED
  7015. root_task_group.shares = NICE_0_LOAD;
  7016. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7017. /*
  7018. * In case of task-groups formed thr' the user id of tasks,
  7019. * init_task_group represents tasks belonging to root user.
  7020. * Hence it forms a sibling of all subsequent groups formed.
  7021. * In this case, init_task_group gets only a fraction of overall
  7022. * system cpu resource, based on the weight assigned to root
  7023. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7024. * by letting tasks of init_task_group sit in a separate cfs_rq
  7025. * (init_cfs_rq) and having one entity represent this group of
  7026. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7027. */
  7028. init_tg_cfs_entry(&init_task_group,
  7029. &per_cpu(init_cfs_rq, i),
  7030. &per_cpu(init_sched_entity, i), i, 1,
  7031. root_task_group.se[i]);
  7032. #endif
  7033. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7034. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7035. #ifdef CONFIG_RT_GROUP_SCHED
  7036. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7037. #ifdef CONFIG_CGROUP_SCHED
  7038. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7039. #elif defined CONFIG_USER_SCHED
  7040. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7041. init_tg_rt_entry(&init_task_group,
  7042. &per_cpu(init_rt_rq, i),
  7043. &per_cpu(init_sched_rt_entity, i), i, 1,
  7044. root_task_group.rt_se[i]);
  7045. #endif
  7046. #endif
  7047. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7048. rq->cpu_load[j] = 0;
  7049. #ifdef CONFIG_SMP
  7050. rq->sd = NULL;
  7051. rq->rd = NULL;
  7052. rq->active_balance = 0;
  7053. rq->next_balance = jiffies;
  7054. rq->push_cpu = 0;
  7055. rq->cpu = i;
  7056. rq->online = 0;
  7057. rq->migration_thread = NULL;
  7058. INIT_LIST_HEAD(&rq->migration_queue);
  7059. rq_attach_root(rq, &def_root_domain);
  7060. #endif
  7061. init_rq_hrtick(rq);
  7062. atomic_set(&rq->nr_iowait, 0);
  7063. }
  7064. set_load_weight(&init_task);
  7065. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7066. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7067. #endif
  7068. #ifdef CONFIG_SMP
  7069. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7070. #endif
  7071. #ifdef CONFIG_RT_MUTEXES
  7072. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7073. #endif
  7074. /*
  7075. * The boot idle thread does lazy MMU switching as well:
  7076. */
  7077. atomic_inc(&init_mm.mm_count);
  7078. enter_lazy_tlb(&init_mm, current);
  7079. /*
  7080. * Make us the idle thread. Technically, schedule() should not be
  7081. * called from this thread, however somewhere below it might be,
  7082. * but because we are the idle thread, we just pick up running again
  7083. * when this runqueue becomes "idle".
  7084. */
  7085. init_idle(current, smp_processor_id());
  7086. /*
  7087. * During early bootup we pretend to be a normal task:
  7088. */
  7089. current->sched_class = &fair_sched_class;
  7090. scheduler_running = 1;
  7091. }
  7092. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7093. void __might_sleep(char *file, int line)
  7094. {
  7095. #ifdef in_atomic
  7096. static unsigned long prev_jiffy; /* ratelimiting */
  7097. if ((!in_atomic() && !irqs_disabled()) ||
  7098. system_state != SYSTEM_RUNNING || oops_in_progress)
  7099. return;
  7100. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7101. return;
  7102. prev_jiffy = jiffies;
  7103. printk(KERN_ERR
  7104. "BUG: sleeping function called from invalid context at %s:%d\n",
  7105. file, line);
  7106. printk(KERN_ERR
  7107. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7108. in_atomic(), irqs_disabled(),
  7109. current->pid, current->comm);
  7110. debug_show_held_locks(current);
  7111. if (irqs_disabled())
  7112. print_irqtrace_events(current);
  7113. dump_stack();
  7114. #endif
  7115. }
  7116. EXPORT_SYMBOL(__might_sleep);
  7117. #endif
  7118. #ifdef CONFIG_MAGIC_SYSRQ
  7119. static void normalize_task(struct rq *rq, struct task_struct *p)
  7120. {
  7121. int on_rq;
  7122. update_rq_clock(rq);
  7123. on_rq = p->se.on_rq;
  7124. if (on_rq)
  7125. deactivate_task(rq, p, 0);
  7126. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7127. if (on_rq) {
  7128. activate_task(rq, p, 0);
  7129. resched_task(rq->curr);
  7130. }
  7131. }
  7132. void normalize_rt_tasks(void)
  7133. {
  7134. struct task_struct *g, *p;
  7135. unsigned long flags;
  7136. struct rq *rq;
  7137. read_lock_irqsave(&tasklist_lock, flags);
  7138. do_each_thread(g, p) {
  7139. /*
  7140. * Only normalize user tasks:
  7141. */
  7142. if (!p->mm)
  7143. continue;
  7144. p->se.exec_start = 0;
  7145. #ifdef CONFIG_SCHEDSTATS
  7146. p->se.wait_start = 0;
  7147. p->se.sleep_start = 0;
  7148. p->se.block_start = 0;
  7149. #endif
  7150. if (!rt_task(p)) {
  7151. /*
  7152. * Renice negative nice level userspace
  7153. * tasks back to 0:
  7154. */
  7155. if (TASK_NICE(p) < 0 && p->mm)
  7156. set_user_nice(p, 0);
  7157. continue;
  7158. }
  7159. spin_lock(&p->pi_lock);
  7160. rq = __task_rq_lock(p);
  7161. normalize_task(rq, p);
  7162. __task_rq_unlock(rq);
  7163. spin_unlock(&p->pi_lock);
  7164. } while_each_thread(g, p);
  7165. read_unlock_irqrestore(&tasklist_lock, flags);
  7166. }
  7167. #endif /* CONFIG_MAGIC_SYSRQ */
  7168. #ifdef CONFIG_IA64
  7169. /*
  7170. * These functions are only useful for the IA64 MCA handling.
  7171. *
  7172. * They can only be called when the whole system has been
  7173. * stopped - every CPU needs to be quiescent, and no scheduling
  7174. * activity can take place. Using them for anything else would
  7175. * be a serious bug, and as a result, they aren't even visible
  7176. * under any other configuration.
  7177. */
  7178. /**
  7179. * curr_task - return the current task for a given cpu.
  7180. * @cpu: the processor in question.
  7181. *
  7182. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7183. */
  7184. struct task_struct *curr_task(int cpu)
  7185. {
  7186. return cpu_curr(cpu);
  7187. }
  7188. /**
  7189. * set_curr_task - set the current task for a given cpu.
  7190. * @cpu: the processor in question.
  7191. * @p: the task pointer to set.
  7192. *
  7193. * Description: This function must only be used when non-maskable interrupts
  7194. * are serviced on a separate stack. It allows the architecture to switch the
  7195. * notion of the current task on a cpu in a non-blocking manner. This function
  7196. * must be called with all CPU's synchronized, and interrupts disabled, the
  7197. * and caller must save the original value of the current task (see
  7198. * curr_task() above) and restore that value before reenabling interrupts and
  7199. * re-starting the system.
  7200. *
  7201. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7202. */
  7203. void set_curr_task(int cpu, struct task_struct *p)
  7204. {
  7205. cpu_curr(cpu) = p;
  7206. }
  7207. #endif
  7208. #ifdef CONFIG_FAIR_GROUP_SCHED
  7209. static void free_fair_sched_group(struct task_group *tg)
  7210. {
  7211. int i;
  7212. for_each_possible_cpu(i) {
  7213. if (tg->cfs_rq)
  7214. kfree(tg->cfs_rq[i]);
  7215. if (tg->se)
  7216. kfree(tg->se[i]);
  7217. }
  7218. kfree(tg->cfs_rq);
  7219. kfree(tg->se);
  7220. }
  7221. static
  7222. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7223. {
  7224. struct cfs_rq *cfs_rq;
  7225. struct sched_entity *se, *parent_se;
  7226. struct rq *rq;
  7227. int i;
  7228. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7229. if (!tg->cfs_rq)
  7230. goto err;
  7231. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7232. if (!tg->se)
  7233. goto err;
  7234. tg->shares = NICE_0_LOAD;
  7235. for_each_possible_cpu(i) {
  7236. rq = cpu_rq(i);
  7237. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7238. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7239. if (!cfs_rq)
  7240. goto err;
  7241. se = kmalloc_node(sizeof(struct sched_entity),
  7242. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7243. if (!se)
  7244. goto err;
  7245. parent_se = parent ? parent->se[i] : NULL;
  7246. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7247. }
  7248. return 1;
  7249. err:
  7250. return 0;
  7251. }
  7252. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7253. {
  7254. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7255. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7256. }
  7257. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7258. {
  7259. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7260. }
  7261. #else /* !CONFG_FAIR_GROUP_SCHED */
  7262. static inline void free_fair_sched_group(struct task_group *tg)
  7263. {
  7264. }
  7265. static inline
  7266. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7267. {
  7268. return 1;
  7269. }
  7270. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7271. {
  7272. }
  7273. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7274. {
  7275. }
  7276. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7277. #ifdef CONFIG_RT_GROUP_SCHED
  7278. static void free_rt_sched_group(struct task_group *tg)
  7279. {
  7280. int i;
  7281. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7282. for_each_possible_cpu(i) {
  7283. if (tg->rt_rq)
  7284. kfree(tg->rt_rq[i]);
  7285. if (tg->rt_se)
  7286. kfree(tg->rt_se[i]);
  7287. }
  7288. kfree(tg->rt_rq);
  7289. kfree(tg->rt_se);
  7290. }
  7291. static
  7292. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7293. {
  7294. struct rt_rq *rt_rq;
  7295. struct sched_rt_entity *rt_se, *parent_se;
  7296. struct rq *rq;
  7297. int i;
  7298. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7299. if (!tg->rt_rq)
  7300. goto err;
  7301. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7302. if (!tg->rt_se)
  7303. goto err;
  7304. init_rt_bandwidth(&tg->rt_bandwidth,
  7305. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7306. for_each_possible_cpu(i) {
  7307. rq = cpu_rq(i);
  7308. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7309. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7310. if (!rt_rq)
  7311. goto err;
  7312. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7313. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7314. if (!rt_se)
  7315. goto err;
  7316. parent_se = parent ? parent->rt_se[i] : NULL;
  7317. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7318. }
  7319. return 1;
  7320. err:
  7321. return 0;
  7322. }
  7323. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7324. {
  7325. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7326. &cpu_rq(cpu)->leaf_rt_rq_list);
  7327. }
  7328. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7329. {
  7330. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7331. }
  7332. #else /* !CONFIG_RT_GROUP_SCHED */
  7333. static inline void free_rt_sched_group(struct task_group *tg)
  7334. {
  7335. }
  7336. static inline
  7337. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7338. {
  7339. return 1;
  7340. }
  7341. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7342. {
  7343. }
  7344. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7345. {
  7346. }
  7347. #endif /* CONFIG_RT_GROUP_SCHED */
  7348. #ifdef CONFIG_GROUP_SCHED
  7349. static void free_sched_group(struct task_group *tg)
  7350. {
  7351. free_fair_sched_group(tg);
  7352. free_rt_sched_group(tg);
  7353. kfree(tg);
  7354. }
  7355. /* allocate runqueue etc for a new task group */
  7356. struct task_group *sched_create_group(struct task_group *parent)
  7357. {
  7358. struct task_group *tg;
  7359. unsigned long flags;
  7360. int i;
  7361. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7362. if (!tg)
  7363. return ERR_PTR(-ENOMEM);
  7364. if (!alloc_fair_sched_group(tg, parent))
  7365. goto err;
  7366. if (!alloc_rt_sched_group(tg, parent))
  7367. goto err;
  7368. spin_lock_irqsave(&task_group_lock, flags);
  7369. for_each_possible_cpu(i) {
  7370. register_fair_sched_group(tg, i);
  7371. register_rt_sched_group(tg, i);
  7372. }
  7373. list_add_rcu(&tg->list, &task_groups);
  7374. WARN_ON(!parent); /* root should already exist */
  7375. tg->parent = parent;
  7376. INIT_LIST_HEAD(&tg->children);
  7377. list_add_rcu(&tg->siblings, &parent->children);
  7378. spin_unlock_irqrestore(&task_group_lock, flags);
  7379. return tg;
  7380. err:
  7381. free_sched_group(tg);
  7382. return ERR_PTR(-ENOMEM);
  7383. }
  7384. /* rcu callback to free various structures associated with a task group */
  7385. static void free_sched_group_rcu(struct rcu_head *rhp)
  7386. {
  7387. /* now it should be safe to free those cfs_rqs */
  7388. free_sched_group(container_of(rhp, struct task_group, rcu));
  7389. }
  7390. /* Destroy runqueue etc associated with a task group */
  7391. void sched_destroy_group(struct task_group *tg)
  7392. {
  7393. unsigned long flags;
  7394. int i;
  7395. spin_lock_irqsave(&task_group_lock, flags);
  7396. for_each_possible_cpu(i) {
  7397. unregister_fair_sched_group(tg, i);
  7398. unregister_rt_sched_group(tg, i);
  7399. }
  7400. list_del_rcu(&tg->list);
  7401. list_del_rcu(&tg->siblings);
  7402. spin_unlock_irqrestore(&task_group_lock, flags);
  7403. /* wait for possible concurrent references to cfs_rqs complete */
  7404. call_rcu(&tg->rcu, free_sched_group_rcu);
  7405. }
  7406. /* change task's runqueue when it moves between groups.
  7407. * The caller of this function should have put the task in its new group
  7408. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7409. * reflect its new group.
  7410. */
  7411. void sched_move_task(struct task_struct *tsk)
  7412. {
  7413. int on_rq, running;
  7414. unsigned long flags;
  7415. struct rq *rq;
  7416. rq = task_rq_lock(tsk, &flags);
  7417. update_rq_clock(rq);
  7418. running = task_current(rq, tsk);
  7419. on_rq = tsk->se.on_rq;
  7420. if (on_rq)
  7421. dequeue_task(rq, tsk, 0);
  7422. if (unlikely(running))
  7423. tsk->sched_class->put_prev_task(rq, tsk);
  7424. set_task_rq(tsk, task_cpu(tsk));
  7425. #ifdef CONFIG_FAIR_GROUP_SCHED
  7426. if (tsk->sched_class->moved_group)
  7427. tsk->sched_class->moved_group(tsk);
  7428. #endif
  7429. if (unlikely(running))
  7430. tsk->sched_class->set_curr_task(rq);
  7431. if (on_rq)
  7432. enqueue_task(rq, tsk, 0);
  7433. task_rq_unlock(rq, &flags);
  7434. }
  7435. #endif /* CONFIG_GROUP_SCHED */
  7436. #ifdef CONFIG_FAIR_GROUP_SCHED
  7437. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7438. {
  7439. struct cfs_rq *cfs_rq = se->cfs_rq;
  7440. int on_rq;
  7441. on_rq = se->on_rq;
  7442. if (on_rq)
  7443. dequeue_entity(cfs_rq, se, 0);
  7444. se->load.weight = shares;
  7445. se->load.inv_weight = 0;
  7446. if (on_rq)
  7447. enqueue_entity(cfs_rq, se, 0);
  7448. }
  7449. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7450. {
  7451. struct cfs_rq *cfs_rq = se->cfs_rq;
  7452. struct rq *rq = cfs_rq->rq;
  7453. unsigned long flags;
  7454. spin_lock_irqsave(&rq->lock, flags);
  7455. __set_se_shares(se, shares);
  7456. spin_unlock_irqrestore(&rq->lock, flags);
  7457. }
  7458. static DEFINE_MUTEX(shares_mutex);
  7459. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7460. {
  7461. int i;
  7462. unsigned long flags;
  7463. /*
  7464. * We can't change the weight of the root cgroup.
  7465. */
  7466. if (!tg->se[0])
  7467. return -EINVAL;
  7468. if (shares < MIN_SHARES)
  7469. shares = MIN_SHARES;
  7470. else if (shares > MAX_SHARES)
  7471. shares = MAX_SHARES;
  7472. mutex_lock(&shares_mutex);
  7473. if (tg->shares == shares)
  7474. goto done;
  7475. spin_lock_irqsave(&task_group_lock, flags);
  7476. for_each_possible_cpu(i)
  7477. unregister_fair_sched_group(tg, i);
  7478. list_del_rcu(&tg->siblings);
  7479. spin_unlock_irqrestore(&task_group_lock, flags);
  7480. /* wait for any ongoing reference to this group to finish */
  7481. synchronize_sched();
  7482. /*
  7483. * Now we are free to modify the group's share on each cpu
  7484. * w/o tripping rebalance_share or load_balance_fair.
  7485. */
  7486. tg->shares = shares;
  7487. for_each_possible_cpu(i) {
  7488. /*
  7489. * force a rebalance
  7490. */
  7491. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7492. set_se_shares(tg->se[i], shares);
  7493. }
  7494. /*
  7495. * Enable load balance activity on this group, by inserting it back on
  7496. * each cpu's rq->leaf_cfs_rq_list.
  7497. */
  7498. spin_lock_irqsave(&task_group_lock, flags);
  7499. for_each_possible_cpu(i)
  7500. register_fair_sched_group(tg, i);
  7501. list_add_rcu(&tg->siblings, &tg->parent->children);
  7502. spin_unlock_irqrestore(&task_group_lock, flags);
  7503. done:
  7504. mutex_unlock(&shares_mutex);
  7505. return 0;
  7506. }
  7507. unsigned long sched_group_shares(struct task_group *tg)
  7508. {
  7509. return tg->shares;
  7510. }
  7511. #endif
  7512. #ifdef CONFIG_RT_GROUP_SCHED
  7513. /*
  7514. * Ensure that the real time constraints are schedulable.
  7515. */
  7516. static DEFINE_MUTEX(rt_constraints_mutex);
  7517. static unsigned long to_ratio(u64 period, u64 runtime)
  7518. {
  7519. if (runtime == RUNTIME_INF)
  7520. return 1ULL << 20;
  7521. return div64_u64(runtime << 20, period);
  7522. }
  7523. /* Must be called with tasklist_lock held */
  7524. static inline int tg_has_rt_tasks(struct task_group *tg)
  7525. {
  7526. struct task_struct *g, *p;
  7527. do_each_thread(g, p) {
  7528. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7529. return 1;
  7530. } while_each_thread(g, p);
  7531. return 0;
  7532. }
  7533. struct rt_schedulable_data {
  7534. struct task_group *tg;
  7535. u64 rt_period;
  7536. u64 rt_runtime;
  7537. };
  7538. static int tg_schedulable(struct task_group *tg, void *data)
  7539. {
  7540. struct rt_schedulable_data *d = data;
  7541. struct task_group *child;
  7542. unsigned long total, sum = 0;
  7543. u64 period, runtime;
  7544. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7545. runtime = tg->rt_bandwidth.rt_runtime;
  7546. if (tg == d->tg) {
  7547. period = d->rt_period;
  7548. runtime = d->rt_runtime;
  7549. }
  7550. /*
  7551. * Cannot have more runtime than the period.
  7552. */
  7553. if (runtime > period && runtime != RUNTIME_INF)
  7554. return -EINVAL;
  7555. /*
  7556. * Ensure we don't starve existing RT tasks.
  7557. */
  7558. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7559. return -EBUSY;
  7560. total = to_ratio(period, runtime);
  7561. /*
  7562. * Nobody can have more than the global setting allows.
  7563. */
  7564. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7565. return -EINVAL;
  7566. /*
  7567. * The sum of our children's runtime should not exceed our own.
  7568. */
  7569. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7570. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7571. runtime = child->rt_bandwidth.rt_runtime;
  7572. if (child == d->tg) {
  7573. period = d->rt_period;
  7574. runtime = d->rt_runtime;
  7575. }
  7576. sum += to_ratio(period, runtime);
  7577. }
  7578. if (sum > total)
  7579. return -EINVAL;
  7580. return 0;
  7581. }
  7582. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7583. {
  7584. struct rt_schedulable_data data = {
  7585. .tg = tg,
  7586. .rt_period = period,
  7587. .rt_runtime = runtime,
  7588. };
  7589. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7590. }
  7591. static int tg_set_bandwidth(struct task_group *tg,
  7592. u64 rt_period, u64 rt_runtime)
  7593. {
  7594. int i, err = 0;
  7595. mutex_lock(&rt_constraints_mutex);
  7596. read_lock(&tasklist_lock);
  7597. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7598. if (err)
  7599. goto unlock;
  7600. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7601. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7602. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7603. for_each_possible_cpu(i) {
  7604. struct rt_rq *rt_rq = tg->rt_rq[i];
  7605. spin_lock(&rt_rq->rt_runtime_lock);
  7606. rt_rq->rt_runtime = rt_runtime;
  7607. spin_unlock(&rt_rq->rt_runtime_lock);
  7608. }
  7609. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7610. unlock:
  7611. read_unlock(&tasklist_lock);
  7612. mutex_unlock(&rt_constraints_mutex);
  7613. return err;
  7614. }
  7615. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7616. {
  7617. u64 rt_runtime, rt_period;
  7618. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7619. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7620. if (rt_runtime_us < 0)
  7621. rt_runtime = RUNTIME_INF;
  7622. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7623. }
  7624. long sched_group_rt_runtime(struct task_group *tg)
  7625. {
  7626. u64 rt_runtime_us;
  7627. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7628. return -1;
  7629. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7630. do_div(rt_runtime_us, NSEC_PER_USEC);
  7631. return rt_runtime_us;
  7632. }
  7633. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7634. {
  7635. u64 rt_runtime, rt_period;
  7636. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7637. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7638. if (rt_period == 0)
  7639. return -EINVAL;
  7640. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7641. }
  7642. long sched_group_rt_period(struct task_group *tg)
  7643. {
  7644. u64 rt_period_us;
  7645. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7646. do_div(rt_period_us, NSEC_PER_USEC);
  7647. return rt_period_us;
  7648. }
  7649. static int sched_rt_global_constraints(void)
  7650. {
  7651. u64 runtime, period;
  7652. int ret = 0;
  7653. if (sysctl_sched_rt_period <= 0)
  7654. return -EINVAL;
  7655. runtime = global_rt_runtime();
  7656. period = global_rt_period();
  7657. /*
  7658. * Sanity check on the sysctl variables.
  7659. */
  7660. if (runtime > period && runtime != RUNTIME_INF)
  7661. return -EINVAL;
  7662. mutex_lock(&rt_constraints_mutex);
  7663. read_lock(&tasklist_lock);
  7664. ret = __rt_schedulable(NULL, 0, 0);
  7665. read_unlock(&tasklist_lock);
  7666. mutex_unlock(&rt_constraints_mutex);
  7667. return ret;
  7668. }
  7669. #else /* !CONFIG_RT_GROUP_SCHED */
  7670. static int sched_rt_global_constraints(void)
  7671. {
  7672. unsigned long flags;
  7673. int i;
  7674. if (sysctl_sched_rt_period <= 0)
  7675. return -EINVAL;
  7676. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7677. for_each_possible_cpu(i) {
  7678. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7679. spin_lock(&rt_rq->rt_runtime_lock);
  7680. rt_rq->rt_runtime = global_rt_runtime();
  7681. spin_unlock(&rt_rq->rt_runtime_lock);
  7682. }
  7683. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7684. return 0;
  7685. }
  7686. #endif /* CONFIG_RT_GROUP_SCHED */
  7687. int sched_rt_handler(struct ctl_table *table, int write,
  7688. struct file *filp, void __user *buffer, size_t *lenp,
  7689. loff_t *ppos)
  7690. {
  7691. int ret;
  7692. int old_period, old_runtime;
  7693. static DEFINE_MUTEX(mutex);
  7694. mutex_lock(&mutex);
  7695. old_period = sysctl_sched_rt_period;
  7696. old_runtime = sysctl_sched_rt_runtime;
  7697. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7698. if (!ret && write) {
  7699. ret = sched_rt_global_constraints();
  7700. if (ret) {
  7701. sysctl_sched_rt_period = old_period;
  7702. sysctl_sched_rt_runtime = old_runtime;
  7703. } else {
  7704. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7705. def_rt_bandwidth.rt_period =
  7706. ns_to_ktime(global_rt_period());
  7707. }
  7708. }
  7709. mutex_unlock(&mutex);
  7710. return ret;
  7711. }
  7712. #ifdef CONFIG_CGROUP_SCHED
  7713. /* return corresponding task_group object of a cgroup */
  7714. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7715. {
  7716. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7717. struct task_group, css);
  7718. }
  7719. static struct cgroup_subsys_state *
  7720. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7721. {
  7722. struct task_group *tg, *parent;
  7723. if (!cgrp->parent) {
  7724. /* This is early initialization for the top cgroup */
  7725. return &init_task_group.css;
  7726. }
  7727. parent = cgroup_tg(cgrp->parent);
  7728. tg = sched_create_group(parent);
  7729. if (IS_ERR(tg))
  7730. return ERR_PTR(-ENOMEM);
  7731. return &tg->css;
  7732. }
  7733. static void
  7734. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7735. {
  7736. struct task_group *tg = cgroup_tg(cgrp);
  7737. sched_destroy_group(tg);
  7738. }
  7739. static int
  7740. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7741. struct task_struct *tsk)
  7742. {
  7743. #ifdef CONFIG_RT_GROUP_SCHED
  7744. /* Don't accept realtime tasks when there is no way for them to run */
  7745. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7746. return -EINVAL;
  7747. #else
  7748. /* We don't support RT-tasks being in separate groups */
  7749. if (tsk->sched_class != &fair_sched_class)
  7750. return -EINVAL;
  7751. #endif
  7752. return 0;
  7753. }
  7754. static void
  7755. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7756. struct cgroup *old_cont, struct task_struct *tsk)
  7757. {
  7758. sched_move_task(tsk);
  7759. }
  7760. #ifdef CONFIG_FAIR_GROUP_SCHED
  7761. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7762. u64 shareval)
  7763. {
  7764. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7765. }
  7766. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7767. {
  7768. struct task_group *tg = cgroup_tg(cgrp);
  7769. return (u64) tg->shares;
  7770. }
  7771. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7772. #ifdef CONFIG_RT_GROUP_SCHED
  7773. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7774. s64 val)
  7775. {
  7776. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7777. }
  7778. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7779. {
  7780. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7781. }
  7782. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7783. u64 rt_period_us)
  7784. {
  7785. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7786. }
  7787. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7788. {
  7789. return sched_group_rt_period(cgroup_tg(cgrp));
  7790. }
  7791. #endif /* CONFIG_RT_GROUP_SCHED */
  7792. static struct cftype cpu_files[] = {
  7793. #ifdef CONFIG_FAIR_GROUP_SCHED
  7794. {
  7795. .name = "shares",
  7796. .read_u64 = cpu_shares_read_u64,
  7797. .write_u64 = cpu_shares_write_u64,
  7798. },
  7799. #endif
  7800. #ifdef CONFIG_RT_GROUP_SCHED
  7801. {
  7802. .name = "rt_runtime_us",
  7803. .read_s64 = cpu_rt_runtime_read,
  7804. .write_s64 = cpu_rt_runtime_write,
  7805. },
  7806. {
  7807. .name = "rt_period_us",
  7808. .read_u64 = cpu_rt_period_read_uint,
  7809. .write_u64 = cpu_rt_period_write_uint,
  7810. },
  7811. #endif
  7812. };
  7813. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7814. {
  7815. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7816. }
  7817. struct cgroup_subsys cpu_cgroup_subsys = {
  7818. .name = "cpu",
  7819. .create = cpu_cgroup_create,
  7820. .destroy = cpu_cgroup_destroy,
  7821. .can_attach = cpu_cgroup_can_attach,
  7822. .attach = cpu_cgroup_attach,
  7823. .populate = cpu_cgroup_populate,
  7824. .subsys_id = cpu_cgroup_subsys_id,
  7825. .early_init = 1,
  7826. };
  7827. #endif /* CONFIG_CGROUP_SCHED */
  7828. #ifdef CONFIG_CGROUP_CPUACCT
  7829. /*
  7830. * CPU accounting code for task groups.
  7831. *
  7832. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7833. * (balbir@in.ibm.com).
  7834. */
  7835. /* track cpu usage of a group of tasks */
  7836. struct cpuacct {
  7837. struct cgroup_subsys_state css;
  7838. /* cpuusage holds pointer to a u64-type object on every cpu */
  7839. u64 *cpuusage;
  7840. };
  7841. struct cgroup_subsys cpuacct_subsys;
  7842. /* return cpu accounting group corresponding to this container */
  7843. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7844. {
  7845. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7846. struct cpuacct, css);
  7847. }
  7848. /* return cpu accounting group to which this task belongs */
  7849. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7850. {
  7851. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7852. struct cpuacct, css);
  7853. }
  7854. /* create a new cpu accounting group */
  7855. static struct cgroup_subsys_state *cpuacct_create(
  7856. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7857. {
  7858. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7859. if (!ca)
  7860. return ERR_PTR(-ENOMEM);
  7861. ca->cpuusage = alloc_percpu(u64);
  7862. if (!ca->cpuusage) {
  7863. kfree(ca);
  7864. return ERR_PTR(-ENOMEM);
  7865. }
  7866. return &ca->css;
  7867. }
  7868. /* destroy an existing cpu accounting group */
  7869. static void
  7870. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7871. {
  7872. struct cpuacct *ca = cgroup_ca(cgrp);
  7873. free_percpu(ca->cpuusage);
  7874. kfree(ca);
  7875. }
  7876. /* return total cpu usage (in nanoseconds) of a group */
  7877. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7878. {
  7879. struct cpuacct *ca = cgroup_ca(cgrp);
  7880. u64 totalcpuusage = 0;
  7881. int i;
  7882. for_each_possible_cpu(i) {
  7883. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7884. /*
  7885. * Take rq->lock to make 64-bit addition safe on 32-bit
  7886. * platforms.
  7887. */
  7888. spin_lock_irq(&cpu_rq(i)->lock);
  7889. totalcpuusage += *cpuusage;
  7890. spin_unlock_irq(&cpu_rq(i)->lock);
  7891. }
  7892. return totalcpuusage;
  7893. }
  7894. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7895. u64 reset)
  7896. {
  7897. struct cpuacct *ca = cgroup_ca(cgrp);
  7898. int err = 0;
  7899. int i;
  7900. if (reset) {
  7901. err = -EINVAL;
  7902. goto out;
  7903. }
  7904. for_each_possible_cpu(i) {
  7905. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7906. spin_lock_irq(&cpu_rq(i)->lock);
  7907. *cpuusage = 0;
  7908. spin_unlock_irq(&cpu_rq(i)->lock);
  7909. }
  7910. out:
  7911. return err;
  7912. }
  7913. static struct cftype files[] = {
  7914. {
  7915. .name = "usage",
  7916. .read_u64 = cpuusage_read,
  7917. .write_u64 = cpuusage_write,
  7918. },
  7919. };
  7920. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7921. {
  7922. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7923. }
  7924. /*
  7925. * charge this task's execution time to its accounting group.
  7926. *
  7927. * called with rq->lock held.
  7928. */
  7929. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7930. {
  7931. struct cpuacct *ca;
  7932. if (!cpuacct_subsys.active)
  7933. return;
  7934. ca = task_ca(tsk);
  7935. if (ca) {
  7936. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7937. *cpuusage += cputime;
  7938. }
  7939. }
  7940. struct cgroup_subsys cpuacct_subsys = {
  7941. .name = "cpuacct",
  7942. .create = cpuacct_create,
  7943. .destroy = cpuacct_destroy,
  7944. .populate = cpuacct_populate,
  7945. .subsys_id = cpuacct_subsys_id,
  7946. };
  7947. #endif /* CONFIG_CGROUP_CPUACCT */