rdma.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102
  1. /*
  2. * NVMe over Fabrics RDMA host code.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <rdma/mr_pool.h>
  19. #include <linux/err.h>
  20. #include <linux/string.h>
  21. #include <linux/atomic.h>
  22. #include <linux/blk-mq.h>
  23. #include <linux/blk-mq-rdma.h>
  24. #include <linux/types.h>
  25. #include <linux/list.h>
  26. #include <linux/mutex.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/nvme.h>
  29. #include <asm/unaligned.h>
  30. #include <rdma/ib_verbs.h>
  31. #include <rdma/rdma_cm.h>
  32. #include <linux/nvme-rdma.h>
  33. #include "nvme.h"
  34. #include "fabrics.h"
  35. #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
  36. #define NVME_RDMA_MAX_SEGMENTS 256
  37. #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
  38. struct nvme_rdma_device {
  39. struct ib_device *dev;
  40. struct ib_pd *pd;
  41. struct kref ref;
  42. struct list_head entry;
  43. };
  44. struct nvme_rdma_qe {
  45. struct ib_cqe cqe;
  46. void *data;
  47. u64 dma;
  48. };
  49. struct nvme_rdma_queue;
  50. struct nvme_rdma_request {
  51. struct nvme_request req;
  52. struct ib_mr *mr;
  53. struct nvme_rdma_qe sqe;
  54. union nvme_result result;
  55. __le16 status;
  56. refcount_t ref;
  57. struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  58. u32 num_sge;
  59. int nents;
  60. struct ib_reg_wr reg_wr;
  61. struct ib_cqe reg_cqe;
  62. struct nvme_rdma_queue *queue;
  63. struct sg_table sg_table;
  64. struct scatterlist first_sgl[];
  65. };
  66. enum nvme_rdma_queue_flags {
  67. NVME_RDMA_Q_ALLOCATED = 0,
  68. NVME_RDMA_Q_LIVE = 1,
  69. NVME_RDMA_Q_TR_READY = 2,
  70. };
  71. struct nvme_rdma_queue {
  72. struct nvme_rdma_qe *rsp_ring;
  73. int queue_size;
  74. size_t cmnd_capsule_len;
  75. struct nvme_rdma_ctrl *ctrl;
  76. struct nvme_rdma_device *device;
  77. struct ib_cq *ib_cq;
  78. struct ib_qp *qp;
  79. unsigned long flags;
  80. struct rdma_cm_id *cm_id;
  81. int cm_error;
  82. struct completion cm_done;
  83. };
  84. struct nvme_rdma_ctrl {
  85. /* read only in the hot path */
  86. struct nvme_rdma_queue *queues;
  87. /* other member variables */
  88. struct blk_mq_tag_set tag_set;
  89. struct work_struct err_work;
  90. struct nvme_rdma_qe async_event_sqe;
  91. struct delayed_work reconnect_work;
  92. struct list_head list;
  93. struct blk_mq_tag_set admin_tag_set;
  94. struct nvme_rdma_device *device;
  95. u32 max_fr_pages;
  96. struct sockaddr_storage addr;
  97. struct sockaddr_storage src_addr;
  98. struct nvme_ctrl ctrl;
  99. };
  100. static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
  101. {
  102. return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
  103. }
  104. static LIST_HEAD(device_list);
  105. static DEFINE_MUTEX(device_list_mutex);
  106. static LIST_HEAD(nvme_rdma_ctrl_list);
  107. static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
  108. /*
  109. * Disabling this option makes small I/O goes faster, but is fundamentally
  110. * unsafe. With it turned off we will have to register a global rkey that
  111. * allows read and write access to all physical memory.
  112. */
  113. static bool register_always = true;
  114. module_param(register_always, bool, 0444);
  115. MODULE_PARM_DESC(register_always,
  116. "Use memory registration even for contiguous memory regions");
  117. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  118. struct rdma_cm_event *event);
  119. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  120. static const struct blk_mq_ops nvme_rdma_mq_ops;
  121. static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
  122. /* XXX: really should move to a generic header sooner or later.. */
  123. static inline void put_unaligned_le24(u32 val, u8 *p)
  124. {
  125. *p++ = val;
  126. *p++ = val >> 8;
  127. *p++ = val >> 16;
  128. }
  129. static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
  130. {
  131. return queue - queue->ctrl->queues;
  132. }
  133. static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
  134. {
  135. return queue->cmnd_capsule_len - sizeof(struct nvme_command);
  136. }
  137. static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  138. size_t capsule_size, enum dma_data_direction dir)
  139. {
  140. ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
  141. kfree(qe->data);
  142. }
  143. static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  144. size_t capsule_size, enum dma_data_direction dir)
  145. {
  146. qe->data = kzalloc(capsule_size, GFP_KERNEL);
  147. if (!qe->data)
  148. return -ENOMEM;
  149. qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
  150. if (ib_dma_mapping_error(ibdev, qe->dma)) {
  151. kfree(qe->data);
  152. return -ENOMEM;
  153. }
  154. return 0;
  155. }
  156. static void nvme_rdma_free_ring(struct ib_device *ibdev,
  157. struct nvme_rdma_qe *ring, size_t ib_queue_size,
  158. size_t capsule_size, enum dma_data_direction dir)
  159. {
  160. int i;
  161. for (i = 0; i < ib_queue_size; i++)
  162. nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
  163. kfree(ring);
  164. }
  165. static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
  166. size_t ib_queue_size, size_t capsule_size,
  167. enum dma_data_direction dir)
  168. {
  169. struct nvme_rdma_qe *ring;
  170. int i;
  171. ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
  172. if (!ring)
  173. return NULL;
  174. for (i = 0; i < ib_queue_size; i++) {
  175. if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
  176. goto out_free_ring;
  177. }
  178. return ring;
  179. out_free_ring:
  180. nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
  181. return NULL;
  182. }
  183. static void nvme_rdma_qp_event(struct ib_event *event, void *context)
  184. {
  185. pr_debug("QP event %s (%d)\n",
  186. ib_event_msg(event->event), event->event);
  187. }
  188. static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
  189. {
  190. wait_for_completion_interruptible_timeout(&queue->cm_done,
  191. msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
  192. return queue->cm_error;
  193. }
  194. static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
  195. {
  196. struct nvme_rdma_device *dev = queue->device;
  197. struct ib_qp_init_attr init_attr;
  198. int ret;
  199. memset(&init_attr, 0, sizeof(init_attr));
  200. init_attr.event_handler = nvme_rdma_qp_event;
  201. /* +1 for drain */
  202. init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
  203. /* +1 for drain */
  204. init_attr.cap.max_recv_wr = queue->queue_size + 1;
  205. init_attr.cap.max_recv_sge = 1;
  206. init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
  207. init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  208. init_attr.qp_type = IB_QPT_RC;
  209. init_attr.send_cq = queue->ib_cq;
  210. init_attr.recv_cq = queue->ib_cq;
  211. ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
  212. queue->qp = queue->cm_id->qp;
  213. return ret;
  214. }
  215. static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
  216. struct request *rq, unsigned int hctx_idx)
  217. {
  218. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  219. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  220. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  221. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  222. struct nvme_rdma_device *dev = queue->device;
  223. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  224. DMA_TO_DEVICE);
  225. }
  226. static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
  227. struct request *rq, unsigned int hctx_idx,
  228. unsigned int numa_node)
  229. {
  230. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  231. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  232. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  233. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  234. struct nvme_rdma_device *dev = queue->device;
  235. struct ib_device *ibdev = dev->dev;
  236. int ret;
  237. ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
  238. DMA_TO_DEVICE);
  239. if (ret)
  240. return ret;
  241. req->queue = queue;
  242. return 0;
  243. }
  244. static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  245. unsigned int hctx_idx)
  246. {
  247. struct nvme_rdma_ctrl *ctrl = data;
  248. struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
  249. BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
  250. hctx->driver_data = queue;
  251. return 0;
  252. }
  253. static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  254. unsigned int hctx_idx)
  255. {
  256. struct nvme_rdma_ctrl *ctrl = data;
  257. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  258. BUG_ON(hctx_idx != 0);
  259. hctx->driver_data = queue;
  260. return 0;
  261. }
  262. static void nvme_rdma_free_dev(struct kref *ref)
  263. {
  264. struct nvme_rdma_device *ndev =
  265. container_of(ref, struct nvme_rdma_device, ref);
  266. mutex_lock(&device_list_mutex);
  267. list_del(&ndev->entry);
  268. mutex_unlock(&device_list_mutex);
  269. ib_dealloc_pd(ndev->pd);
  270. kfree(ndev);
  271. }
  272. static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
  273. {
  274. kref_put(&dev->ref, nvme_rdma_free_dev);
  275. }
  276. static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
  277. {
  278. return kref_get_unless_zero(&dev->ref);
  279. }
  280. static struct nvme_rdma_device *
  281. nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
  282. {
  283. struct nvme_rdma_device *ndev;
  284. mutex_lock(&device_list_mutex);
  285. list_for_each_entry(ndev, &device_list, entry) {
  286. if (ndev->dev->node_guid == cm_id->device->node_guid &&
  287. nvme_rdma_dev_get(ndev))
  288. goto out_unlock;
  289. }
  290. ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
  291. if (!ndev)
  292. goto out_err;
  293. ndev->dev = cm_id->device;
  294. kref_init(&ndev->ref);
  295. ndev->pd = ib_alloc_pd(ndev->dev,
  296. register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
  297. if (IS_ERR(ndev->pd))
  298. goto out_free_dev;
  299. if (!(ndev->dev->attrs.device_cap_flags &
  300. IB_DEVICE_MEM_MGT_EXTENSIONS)) {
  301. dev_err(&ndev->dev->dev,
  302. "Memory registrations not supported.\n");
  303. goto out_free_pd;
  304. }
  305. list_add(&ndev->entry, &device_list);
  306. out_unlock:
  307. mutex_unlock(&device_list_mutex);
  308. return ndev;
  309. out_free_pd:
  310. ib_dealloc_pd(ndev->pd);
  311. out_free_dev:
  312. kfree(ndev);
  313. out_err:
  314. mutex_unlock(&device_list_mutex);
  315. return NULL;
  316. }
  317. static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
  318. {
  319. struct nvme_rdma_device *dev;
  320. struct ib_device *ibdev;
  321. if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
  322. return;
  323. dev = queue->device;
  324. ibdev = dev->dev;
  325. ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
  326. /*
  327. * The cm_id object might have been destroyed during RDMA connection
  328. * establishment error flow to avoid getting other cma events, thus
  329. * the destruction of the QP shouldn't use rdma_cm API.
  330. */
  331. ib_destroy_qp(queue->qp);
  332. ib_free_cq(queue->ib_cq);
  333. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  334. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  335. nvme_rdma_dev_put(dev);
  336. }
  337. static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
  338. {
  339. return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
  340. ibdev->attrs.max_fast_reg_page_list_len);
  341. }
  342. static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
  343. {
  344. struct ib_device *ibdev;
  345. const int send_wr_factor = 3; /* MR, SEND, INV */
  346. const int cq_factor = send_wr_factor + 1; /* + RECV */
  347. int comp_vector, idx = nvme_rdma_queue_idx(queue);
  348. int ret;
  349. queue->device = nvme_rdma_find_get_device(queue->cm_id);
  350. if (!queue->device) {
  351. dev_err(queue->cm_id->device->dev.parent,
  352. "no client data found!\n");
  353. return -ECONNREFUSED;
  354. }
  355. ibdev = queue->device->dev;
  356. /*
  357. * Spread I/O queues completion vectors according their queue index.
  358. * Admin queues can always go on completion vector 0.
  359. */
  360. comp_vector = idx == 0 ? idx : idx - 1;
  361. /* +1 for ib_stop_cq */
  362. queue->ib_cq = ib_alloc_cq(ibdev, queue,
  363. cq_factor * queue->queue_size + 1,
  364. comp_vector, IB_POLL_SOFTIRQ);
  365. if (IS_ERR(queue->ib_cq)) {
  366. ret = PTR_ERR(queue->ib_cq);
  367. goto out_put_dev;
  368. }
  369. ret = nvme_rdma_create_qp(queue, send_wr_factor);
  370. if (ret)
  371. goto out_destroy_ib_cq;
  372. queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
  373. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  374. if (!queue->rsp_ring) {
  375. ret = -ENOMEM;
  376. goto out_destroy_qp;
  377. }
  378. ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
  379. queue->queue_size,
  380. IB_MR_TYPE_MEM_REG,
  381. nvme_rdma_get_max_fr_pages(ibdev));
  382. if (ret) {
  383. dev_err(queue->ctrl->ctrl.device,
  384. "failed to initialize MR pool sized %d for QID %d\n",
  385. queue->queue_size, idx);
  386. goto out_destroy_ring;
  387. }
  388. set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
  389. return 0;
  390. out_destroy_ring:
  391. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  392. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  393. out_destroy_qp:
  394. rdma_destroy_qp(queue->cm_id);
  395. out_destroy_ib_cq:
  396. ib_free_cq(queue->ib_cq);
  397. out_put_dev:
  398. nvme_rdma_dev_put(queue->device);
  399. return ret;
  400. }
  401. static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
  402. int idx, size_t queue_size)
  403. {
  404. struct nvme_rdma_queue *queue;
  405. struct sockaddr *src_addr = NULL;
  406. int ret;
  407. queue = &ctrl->queues[idx];
  408. queue->ctrl = ctrl;
  409. init_completion(&queue->cm_done);
  410. if (idx > 0)
  411. queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
  412. else
  413. queue->cmnd_capsule_len = sizeof(struct nvme_command);
  414. queue->queue_size = queue_size;
  415. queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
  416. RDMA_PS_TCP, IB_QPT_RC);
  417. if (IS_ERR(queue->cm_id)) {
  418. dev_info(ctrl->ctrl.device,
  419. "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
  420. return PTR_ERR(queue->cm_id);
  421. }
  422. if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  423. src_addr = (struct sockaddr *)&ctrl->src_addr;
  424. queue->cm_error = -ETIMEDOUT;
  425. ret = rdma_resolve_addr(queue->cm_id, src_addr,
  426. (struct sockaddr *)&ctrl->addr,
  427. NVME_RDMA_CONNECT_TIMEOUT_MS);
  428. if (ret) {
  429. dev_info(ctrl->ctrl.device,
  430. "rdma_resolve_addr failed (%d).\n", ret);
  431. goto out_destroy_cm_id;
  432. }
  433. ret = nvme_rdma_wait_for_cm(queue);
  434. if (ret) {
  435. dev_info(ctrl->ctrl.device,
  436. "rdma connection establishment failed (%d)\n", ret);
  437. goto out_destroy_cm_id;
  438. }
  439. set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
  440. return 0;
  441. out_destroy_cm_id:
  442. rdma_destroy_id(queue->cm_id);
  443. nvme_rdma_destroy_queue_ib(queue);
  444. return ret;
  445. }
  446. static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
  447. {
  448. if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
  449. return;
  450. rdma_disconnect(queue->cm_id);
  451. ib_drain_qp(queue->qp);
  452. }
  453. static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
  454. {
  455. if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
  456. return;
  457. if (nvme_rdma_queue_idx(queue) == 0) {
  458. nvme_rdma_free_qe(queue->device->dev,
  459. &queue->ctrl->async_event_sqe,
  460. sizeof(struct nvme_command), DMA_TO_DEVICE);
  461. }
  462. nvme_rdma_destroy_queue_ib(queue);
  463. rdma_destroy_id(queue->cm_id);
  464. }
  465. static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
  466. {
  467. int i;
  468. for (i = 1; i < ctrl->ctrl.queue_count; i++)
  469. nvme_rdma_free_queue(&ctrl->queues[i]);
  470. }
  471. static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
  472. {
  473. int i;
  474. for (i = 1; i < ctrl->ctrl.queue_count; i++)
  475. nvme_rdma_stop_queue(&ctrl->queues[i]);
  476. }
  477. static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
  478. {
  479. int ret;
  480. if (idx)
  481. ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
  482. else
  483. ret = nvmf_connect_admin_queue(&ctrl->ctrl);
  484. if (!ret)
  485. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
  486. else
  487. dev_info(ctrl->ctrl.device,
  488. "failed to connect queue: %d ret=%d\n", idx, ret);
  489. return ret;
  490. }
  491. static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
  492. {
  493. int i, ret = 0;
  494. for (i = 1; i < ctrl->ctrl.queue_count; i++) {
  495. ret = nvme_rdma_start_queue(ctrl, i);
  496. if (ret)
  497. goto out_stop_queues;
  498. }
  499. return 0;
  500. out_stop_queues:
  501. for (i--; i >= 1; i--)
  502. nvme_rdma_stop_queue(&ctrl->queues[i]);
  503. return ret;
  504. }
  505. static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
  506. {
  507. struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
  508. struct ib_device *ibdev = ctrl->device->dev;
  509. unsigned int nr_io_queues;
  510. int i, ret;
  511. nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
  512. /*
  513. * we map queues according to the device irq vectors for
  514. * optimal locality so we don't need more queues than
  515. * completion vectors.
  516. */
  517. nr_io_queues = min_t(unsigned int, nr_io_queues,
  518. ibdev->num_comp_vectors);
  519. ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
  520. if (ret)
  521. return ret;
  522. ctrl->ctrl.queue_count = nr_io_queues + 1;
  523. if (ctrl->ctrl.queue_count < 2)
  524. return 0;
  525. dev_info(ctrl->ctrl.device,
  526. "creating %d I/O queues.\n", nr_io_queues);
  527. for (i = 1; i < ctrl->ctrl.queue_count; i++) {
  528. ret = nvme_rdma_alloc_queue(ctrl, i,
  529. ctrl->ctrl.sqsize + 1);
  530. if (ret)
  531. goto out_free_queues;
  532. }
  533. return 0;
  534. out_free_queues:
  535. for (i--; i >= 1; i--)
  536. nvme_rdma_free_queue(&ctrl->queues[i]);
  537. return ret;
  538. }
  539. static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
  540. struct blk_mq_tag_set *set)
  541. {
  542. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  543. blk_mq_free_tag_set(set);
  544. nvme_rdma_dev_put(ctrl->device);
  545. }
  546. static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
  547. bool admin)
  548. {
  549. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  550. struct blk_mq_tag_set *set;
  551. int ret;
  552. if (admin) {
  553. set = &ctrl->admin_tag_set;
  554. memset(set, 0, sizeof(*set));
  555. set->ops = &nvme_rdma_admin_mq_ops;
  556. set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
  557. set->reserved_tags = 2; /* connect + keep-alive */
  558. set->numa_node = NUMA_NO_NODE;
  559. set->cmd_size = sizeof(struct nvme_rdma_request) +
  560. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  561. set->driver_data = ctrl;
  562. set->nr_hw_queues = 1;
  563. set->timeout = ADMIN_TIMEOUT;
  564. set->flags = BLK_MQ_F_NO_SCHED;
  565. } else {
  566. set = &ctrl->tag_set;
  567. memset(set, 0, sizeof(*set));
  568. set->ops = &nvme_rdma_mq_ops;
  569. set->queue_depth = nctrl->opts->queue_size;
  570. set->reserved_tags = 1; /* fabric connect */
  571. set->numa_node = NUMA_NO_NODE;
  572. set->flags = BLK_MQ_F_SHOULD_MERGE;
  573. set->cmd_size = sizeof(struct nvme_rdma_request) +
  574. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  575. set->driver_data = ctrl;
  576. set->nr_hw_queues = nctrl->queue_count - 1;
  577. set->timeout = NVME_IO_TIMEOUT;
  578. }
  579. ret = blk_mq_alloc_tag_set(set);
  580. if (ret)
  581. goto out;
  582. /*
  583. * We need a reference on the device as long as the tag_set is alive,
  584. * as the MRs in the request structures need a valid ib_device.
  585. */
  586. ret = nvme_rdma_dev_get(ctrl->device);
  587. if (!ret) {
  588. ret = -EINVAL;
  589. goto out_free_tagset;
  590. }
  591. return set;
  592. out_free_tagset:
  593. blk_mq_free_tag_set(set);
  594. out:
  595. return ERR_PTR(ret);
  596. }
  597. static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
  598. bool remove)
  599. {
  600. nvme_rdma_stop_queue(&ctrl->queues[0]);
  601. if (remove) {
  602. blk_cleanup_queue(ctrl->ctrl.admin_q);
  603. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
  604. }
  605. nvme_rdma_free_queue(&ctrl->queues[0]);
  606. }
  607. static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
  608. bool new)
  609. {
  610. int error;
  611. error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
  612. if (error)
  613. return error;
  614. ctrl->device = ctrl->queues[0].device;
  615. ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
  616. if (new) {
  617. ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
  618. if (IS_ERR(ctrl->ctrl.admin_tagset)) {
  619. error = PTR_ERR(ctrl->ctrl.admin_tagset);
  620. goto out_free_queue;
  621. }
  622. ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
  623. if (IS_ERR(ctrl->ctrl.admin_q)) {
  624. error = PTR_ERR(ctrl->ctrl.admin_q);
  625. goto out_free_tagset;
  626. }
  627. }
  628. error = nvme_rdma_start_queue(ctrl, 0);
  629. if (error)
  630. goto out_cleanup_queue;
  631. error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
  632. &ctrl->ctrl.cap);
  633. if (error) {
  634. dev_err(ctrl->ctrl.device,
  635. "prop_get NVME_REG_CAP failed\n");
  636. goto out_stop_queue;
  637. }
  638. ctrl->ctrl.sqsize =
  639. min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
  640. error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
  641. if (error)
  642. goto out_stop_queue;
  643. ctrl->ctrl.max_hw_sectors =
  644. (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
  645. error = nvme_init_identify(&ctrl->ctrl);
  646. if (error)
  647. goto out_stop_queue;
  648. error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
  649. &ctrl->async_event_sqe, sizeof(struct nvme_command),
  650. DMA_TO_DEVICE);
  651. if (error)
  652. goto out_stop_queue;
  653. return 0;
  654. out_stop_queue:
  655. nvme_rdma_stop_queue(&ctrl->queues[0]);
  656. out_cleanup_queue:
  657. if (new)
  658. blk_cleanup_queue(ctrl->ctrl.admin_q);
  659. out_free_tagset:
  660. if (new)
  661. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
  662. out_free_queue:
  663. nvme_rdma_free_queue(&ctrl->queues[0]);
  664. return error;
  665. }
  666. static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
  667. bool remove)
  668. {
  669. nvme_rdma_stop_io_queues(ctrl);
  670. if (remove) {
  671. blk_cleanup_queue(ctrl->ctrl.connect_q);
  672. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
  673. }
  674. nvme_rdma_free_io_queues(ctrl);
  675. }
  676. static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
  677. {
  678. int ret;
  679. ret = nvme_rdma_alloc_io_queues(ctrl);
  680. if (ret)
  681. return ret;
  682. if (new) {
  683. ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
  684. if (IS_ERR(ctrl->ctrl.tagset)) {
  685. ret = PTR_ERR(ctrl->ctrl.tagset);
  686. goto out_free_io_queues;
  687. }
  688. ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
  689. if (IS_ERR(ctrl->ctrl.connect_q)) {
  690. ret = PTR_ERR(ctrl->ctrl.connect_q);
  691. goto out_free_tag_set;
  692. }
  693. } else {
  694. blk_mq_update_nr_hw_queues(&ctrl->tag_set,
  695. ctrl->ctrl.queue_count - 1);
  696. }
  697. ret = nvme_rdma_start_io_queues(ctrl);
  698. if (ret)
  699. goto out_cleanup_connect_q;
  700. return 0;
  701. out_cleanup_connect_q:
  702. if (new)
  703. blk_cleanup_queue(ctrl->ctrl.connect_q);
  704. out_free_tag_set:
  705. if (new)
  706. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
  707. out_free_io_queues:
  708. nvme_rdma_free_io_queues(ctrl);
  709. return ret;
  710. }
  711. static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
  712. {
  713. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  714. cancel_work_sync(&ctrl->err_work);
  715. cancel_delayed_work_sync(&ctrl->reconnect_work);
  716. }
  717. static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
  718. {
  719. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  720. if (list_empty(&ctrl->list))
  721. goto free_ctrl;
  722. mutex_lock(&nvme_rdma_ctrl_mutex);
  723. list_del(&ctrl->list);
  724. mutex_unlock(&nvme_rdma_ctrl_mutex);
  725. kfree(ctrl->queues);
  726. nvmf_free_options(nctrl->opts);
  727. free_ctrl:
  728. kfree(ctrl);
  729. }
  730. static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
  731. {
  732. /* If we are resetting/deleting then do nothing */
  733. if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
  734. WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
  735. ctrl->ctrl.state == NVME_CTRL_LIVE);
  736. return;
  737. }
  738. if (nvmf_should_reconnect(&ctrl->ctrl)) {
  739. dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
  740. ctrl->ctrl.opts->reconnect_delay);
  741. queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
  742. ctrl->ctrl.opts->reconnect_delay * HZ);
  743. } else {
  744. nvme_delete_ctrl(&ctrl->ctrl);
  745. }
  746. }
  747. static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
  748. {
  749. struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
  750. struct nvme_rdma_ctrl, reconnect_work);
  751. bool changed;
  752. int ret;
  753. ++ctrl->ctrl.nr_reconnects;
  754. ret = nvme_rdma_configure_admin_queue(ctrl, false);
  755. if (ret)
  756. goto requeue;
  757. if (ctrl->ctrl.queue_count > 1) {
  758. ret = nvme_rdma_configure_io_queues(ctrl, false);
  759. if (ret)
  760. goto destroy_admin;
  761. }
  762. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  763. if (!changed) {
  764. /* state change failure is ok if we're in DELETING state */
  765. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  766. return;
  767. }
  768. nvme_start_ctrl(&ctrl->ctrl);
  769. dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
  770. ctrl->ctrl.nr_reconnects);
  771. ctrl->ctrl.nr_reconnects = 0;
  772. return;
  773. destroy_admin:
  774. nvme_rdma_destroy_admin_queue(ctrl, false);
  775. requeue:
  776. dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
  777. ctrl->ctrl.nr_reconnects);
  778. nvme_rdma_reconnect_or_remove(ctrl);
  779. }
  780. static void nvme_rdma_error_recovery_work(struct work_struct *work)
  781. {
  782. struct nvme_rdma_ctrl *ctrl = container_of(work,
  783. struct nvme_rdma_ctrl, err_work);
  784. nvme_stop_keep_alive(&ctrl->ctrl);
  785. if (ctrl->ctrl.queue_count > 1) {
  786. nvme_stop_queues(&ctrl->ctrl);
  787. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  788. nvme_cancel_request, &ctrl->ctrl);
  789. nvme_rdma_destroy_io_queues(ctrl, false);
  790. }
  791. blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
  792. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  793. nvme_cancel_request, &ctrl->ctrl);
  794. nvme_rdma_destroy_admin_queue(ctrl, false);
  795. /*
  796. * queues are not a live anymore, so restart the queues to fail fast
  797. * new IO
  798. */
  799. blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
  800. nvme_start_queues(&ctrl->ctrl);
  801. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
  802. /* state change failure is ok if we're in DELETING state */
  803. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  804. return;
  805. }
  806. nvme_rdma_reconnect_or_remove(ctrl);
  807. }
  808. static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
  809. {
  810. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
  811. return;
  812. queue_work(nvme_wq, &ctrl->err_work);
  813. }
  814. static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
  815. const char *op)
  816. {
  817. struct nvme_rdma_queue *queue = cq->cq_context;
  818. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  819. if (ctrl->ctrl.state == NVME_CTRL_LIVE)
  820. dev_info(ctrl->ctrl.device,
  821. "%s for CQE 0x%p failed with status %s (%d)\n",
  822. op, wc->wr_cqe,
  823. ib_wc_status_msg(wc->status), wc->status);
  824. nvme_rdma_error_recovery(ctrl);
  825. }
  826. static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
  827. {
  828. if (unlikely(wc->status != IB_WC_SUCCESS))
  829. nvme_rdma_wr_error(cq, wc, "MEMREG");
  830. }
  831. static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
  832. {
  833. struct nvme_rdma_request *req =
  834. container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
  835. struct request *rq = blk_mq_rq_from_pdu(req);
  836. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  837. nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
  838. return;
  839. }
  840. if (refcount_dec_and_test(&req->ref))
  841. nvme_end_request(rq, req->status, req->result);
  842. }
  843. static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
  844. struct nvme_rdma_request *req)
  845. {
  846. struct ib_send_wr *bad_wr;
  847. struct ib_send_wr wr = {
  848. .opcode = IB_WR_LOCAL_INV,
  849. .next = NULL,
  850. .num_sge = 0,
  851. .send_flags = IB_SEND_SIGNALED,
  852. .ex.invalidate_rkey = req->mr->rkey,
  853. };
  854. req->reg_cqe.done = nvme_rdma_inv_rkey_done;
  855. wr.wr_cqe = &req->reg_cqe;
  856. return ib_post_send(queue->qp, &wr, &bad_wr);
  857. }
  858. static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
  859. struct request *rq)
  860. {
  861. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  862. struct nvme_rdma_device *dev = queue->device;
  863. struct ib_device *ibdev = dev->dev;
  864. if (!blk_rq_payload_bytes(rq))
  865. return;
  866. if (req->mr) {
  867. ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
  868. req->mr = NULL;
  869. }
  870. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  871. req->nents, rq_data_dir(rq) ==
  872. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  873. nvme_cleanup_cmd(rq);
  874. sg_free_table_chained(&req->sg_table, true);
  875. }
  876. static int nvme_rdma_set_sg_null(struct nvme_command *c)
  877. {
  878. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  879. sg->addr = 0;
  880. put_unaligned_le24(0, sg->length);
  881. put_unaligned_le32(0, sg->key);
  882. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  883. return 0;
  884. }
  885. static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
  886. struct nvme_rdma_request *req, struct nvme_command *c)
  887. {
  888. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  889. req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
  890. req->sge[1].length = sg_dma_len(req->sg_table.sgl);
  891. req->sge[1].lkey = queue->device->pd->local_dma_lkey;
  892. sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
  893. sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
  894. sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
  895. req->num_sge++;
  896. return 0;
  897. }
  898. static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
  899. struct nvme_rdma_request *req, struct nvme_command *c)
  900. {
  901. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  902. sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
  903. put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
  904. put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
  905. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  906. return 0;
  907. }
  908. static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
  909. struct nvme_rdma_request *req, struct nvme_command *c,
  910. int count)
  911. {
  912. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  913. int nr;
  914. req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
  915. if (WARN_ON_ONCE(!req->mr))
  916. return -EAGAIN;
  917. /*
  918. * Align the MR to a 4K page size to match the ctrl page size and
  919. * the block virtual boundary.
  920. */
  921. nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
  922. if (unlikely(nr < count)) {
  923. ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
  924. req->mr = NULL;
  925. if (nr < 0)
  926. return nr;
  927. return -EINVAL;
  928. }
  929. ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
  930. req->reg_cqe.done = nvme_rdma_memreg_done;
  931. memset(&req->reg_wr, 0, sizeof(req->reg_wr));
  932. req->reg_wr.wr.opcode = IB_WR_REG_MR;
  933. req->reg_wr.wr.wr_cqe = &req->reg_cqe;
  934. req->reg_wr.wr.num_sge = 0;
  935. req->reg_wr.mr = req->mr;
  936. req->reg_wr.key = req->mr->rkey;
  937. req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
  938. IB_ACCESS_REMOTE_READ |
  939. IB_ACCESS_REMOTE_WRITE;
  940. sg->addr = cpu_to_le64(req->mr->iova);
  941. put_unaligned_le24(req->mr->length, sg->length);
  942. put_unaligned_le32(req->mr->rkey, sg->key);
  943. sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
  944. NVME_SGL_FMT_INVALIDATE;
  945. return 0;
  946. }
  947. static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
  948. struct request *rq, struct nvme_command *c)
  949. {
  950. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  951. struct nvme_rdma_device *dev = queue->device;
  952. struct ib_device *ibdev = dev->dev;
  953. int count, ret;
  954. req->num_sge = 1;
  955. refcount_set(&req->ref, 2); /* send and recv completions */
  956. c->common.flags |= NVME_CMD_SGL_METABUF;
  957. if (!blk_rq_payload_bytes(rq))
  958. return nvme_rdma_set_sg_null(c);
  959. req->sg_table.sgl = req->first_sgl;
  960. ret = sg_alloc_table_chained(&req->sg_table,
  961. blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
  962. if (ret)
  963. return -ENOMEM;
  964. req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
  965. count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
  966. rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  967. if (unlikely(count <= 0)) {
  968. ret = -EIO;
  969. goto out_free_table;
  970. }
  971. if (count == 1) {
  972. if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
  973. blk_rq_payload_bytes(rq) <=
  974. nvme_rdma_inline_data_size(queue)) {
  975. ret = nvme_rdma_map_sg_inline(queue, req, c);
  976. goto out;
  977. }
  978. if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  979. ret = nvme_rdma_map_sg_single(queue, req, c);
  980. goto out;
  981. }
  982. }
  983. ret = nvme_rdma_map_sg_fr(queue, req, c, count);
  984. out:
  985. if (unlikely(ret))
  986. goto out_unmap_sg;
  987. return 0;
  988. out_unmap_sg:
  989. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  990. req->nents, rq_data_dir(rq) ==
  991. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  992. out_free_table:
  993. sg_free_table_chained(&req->sg_table, true);
  994. return ret;
  995. }
  996. static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
  997. {
  998. struct nvme_rdma_qe *qe =
  999. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  1000. struct nvme_rdma_request *req =
  1001. container_of(qe, struct nvme_rdma_request, sqe);
  1002. struct request *rq = blk_mq_rq_from_pdu(req);
  1003. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  1004. nvme_rdma_wr_error(cq, wc, "SEND");
  1005. return;
  1006. }
  1007. if (refcount_dec_and_test(&req->ref))
  1008. nvme_end_request(rq, req->status, req->result);
  1009. }
  1010. static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
  1011. struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
  1012. struct ib_send_wr *first)
  1013. {
  1014. struct ib_send_wr wr, *bad_wr;
  1015. int ret;
  1016. sge->addr = qe->dma;
  1017. sge->length = sizeof(struct nvme_command),
  1018. sge->lkey = queue->device->pd->local_dma_lkey;
  1019. wr.next = NULL;
  1020. wr.wr_cqe = &qe->cqe;
  1021. wr.sg_list = sge;
  1022. wr.num_sge = num_sge;
  1023. wr.opcode = IB_WR_SEND;
  1024. wr.send_flags = IB_SEND_SIGNALED;
  1025. if (first)
  1026. first->next = &wr;
  1027. else
  1028. first = &wr;
  1029. ret = ib_post_send(queue->qp, first, &bad_wr);
  1030. if (unlikely(ret)) {
  1031. dev_err(queue->ctrl->ctrl.device,
  1032. "%s failed with error code %d\n", __func__, ret);
  1033. }
  1034. return ret;
  1035. }
  1036. static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
  1037. struct nvme_rdma_qe *qe)
  1038. {
  1039. struct ib_recv_wr wr, *bad_wr;
  1040. struct ib_sge list;
  1041. int ret;
  1042. list.addr = qe->dma;
  1043. list.length = sizeof(struct nvme_completion);
  1044. list.lkey = queue->device->pd->local_dma_lkey;
  1045. qe->cqe.done = nvme_rdma_recv_done;
  1046. wr.next = NULL;
  1047. wr.wr_cqe = &qe->cqe;
  1048. wr.sg_list = &list;
  1049. wr.num_sge = 1;
  1050. ret = ib_post_recv(queue->qp, &wr, &bad_wr);
  1051. if (unlikely(ret)) {
  1052. dev_err(queue->ctrl->ctrl.device,
  1053. "%s failed with error code %d\n", __func__, ret);
  1054. }
  1055. return ret;
  1056. }
  1057. static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
  1058. {
  1059. u32 queue_idx = nvme_rdma_queue_idx(queue);
  1060. if (queue_idx == 0)
  1061. return queue->ctrl->admin_tag_set.tags[queue_idx];
  1062. return queue->ctrl->tag_set.tags[queue_idx - 1];
  1063. }
  1064. static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
  1065. {
  1066. if (unlikely(wc->status != IB_WC_SUCCESS))
  1067. nvme_rdma_wr_error(cq, wc, "ASYNC");
  1068. }
  1069. static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
  1070. {
  1071. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
  1072. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  1073. struct ib_device *dev = queue->device->dev;
  1074. struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
  1075. struct nvme_command *cmd = sqe->data;
  1076. struct ib_sge sge;
  1077. int ret;
  1078. ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
  1079. memset(cmd, 0, sizeof(*cmd));
  1080. cmd->common.opcode = nvme_admin_async_event;
  1081. cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  1082. cmd->common.flags |= NVME_CMD_SGL_METABUF;
  1083. nvme_rdma_set_sg_null(cmd);
  1084. sqe->cqe.done = nvme_rdma_async_done;
  1085. ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
  1086. DMA_TO_DEVICE);
  1087. ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
  1088. WARN_ON_ONCE(ret);
  1089. }
  1090. static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
  1091. struct nvme_completion *cqe, struct ib_wc *wc, int tag)
  1092. {
  1093. struct request *rq;
  1094. struct nvme_rdma_request *req;
  1095. int ret = 0;
  1096. rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
  1097. if (!rq) {
  1098. dev_err(queue->ctrl->ctrl.device,
  1099. "tag 0x%x on QP %#x not found\n",
  1100. cqe->command_id, queue->qp->qp_num);
  1101. nvme_rdma_error_recovery(queue->ctrl);
  1102. return ret;
  1103. }
  1104. req = blk_mq_rq_to_pdu(rq);
  1105. req->status = cqe->status;
  1106. req->result = cqe->result;
  1107. if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
  1108. if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
  1109. dev_err(queue->ctrl->ctrl.device,
  1110. "Bogus remote invalidation for rkey %#x\n",
  1111. req->mr->rkey);
  1112. nvme_rdma_error_recovery(queue->ctrl);
  1113. }
  1114. } else if (req->mr) {
  1115. ret = nvme_rdma_inv_rkey(queue, req);
  1116. if (unlikely(ret < 0)) {
  1117. dev_err(queue->ctrl->ctrl.device,
  1118. "Queueing INV WR for rkey %#x failed (%d)\n",
  1119. req->mr->rkey, ret);
  1120. nvme_rdma_error_recovery(queue->ctrl);
  1121. }
  1122. /* the local invalidation completion will end the request */
  1123. return 0;
  1124. }
  1125. if (refcount_dec_and_test(&req->ref)) {
  1126. if (rq->tag == tag)
  1127. ret = 1;
  1128. nvme_end_request(rq, req->status, req->result);
  1129. }
  1130. return ret;
  1131. }
  1132. static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
  1133. {
  1134. struct nvme_rdma_qe *qe =
  1135. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  1136. struct nvme_rdma_queue *queue = cq->cq_context;
  1137. struct ib_device *ibdev = queue->device->dev;
  1138. struct nvme_completion *cqe = qe->data;
  1139. const size_t len = sizeof(struct nvme_completion);
  1140. int ret = 0;
  1141. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  1142. nvme_rdma_wr_error(cq, wc, "RECV");
  1143. return 0;
  1144. }
  1145. ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  1146. /*
  1147. * AEN requests are special as they don't time out and can
  1148. * survive any kind of queue freeze and often don't respond to
  1149. * aborts. We don't even bother to allocate a struct request
  1150. * for them but rather special case them here.
  1151. */
  1152. if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
  1153. cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
  1154. nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
  1155. &cqe->result);
  1156. else
  1157. ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
  1158. ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  1159. nvme_rdma_post_recv(queue, qe);
  1160. return ret;
  1161. }
  1162. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
  1163. {
  1164. __nvme_rdma_recv_done(cq, wc, -1);
  1165. }
  1166. static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
  1167. {
  1168. int ret, i;
  1169. for (i = 0; i < queue->queue_size; i++) {
  1170. ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
  1171. if (ret)
  1172. goto out_destroy_queue_ib;
  1173. }
  1174. return 0;
  1175. out_destroy_queue_ib:
  1176. nvme_rdma_destroy_queue_ib(queue);
  1177. return ret;
  1178. }
  1179. static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
  1180. struct rdma_cm_event *ev)
  1181. {
  1182. struct rdma_cm_id *cm_id = queue->cm_id;
  1183. int status = ev->status;
  1184. const char *rej_msg;
  1185. const struct nvme_rdma_cm_rej *rej_data;
  1186. u8 rej_data_len;
  1187. rej_msg = rdma_reject_msg(cm_id, status);
  1188. rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
  1189. if (rej_data && rej_data_len >= sizeof(u16)) {
  1190. u16 sts = le16_to_cpu(rej_data->sts);
  1191. dev_err(queue->ctrl->ctrl.device,
  1192. "Connect rejected: status %d (%s) nvme status %d (%s).\n",
  1193. status, rej_msg, sts, nvme_rdma_cm_msg(sts));
  1194. } else {
  1195. dev_err(queue->ctrl->ctrl.device,
  1196. "Connect rejected: status %d (%s).\n", status, rej_msg);
  1197. }
  1198. return -ECONNRESET;
  1199. }
  1200. static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
  1201. {
  1202. int ret;
  1203. ret = nvme_rdma_create_queue_ib(queue);
  1204. if (ret)
  1205. return ret;
  1206. ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
  1207. if (ret) {
  1208. dev_err(queue->ctrl->ctrl.device,
  1209. "rdma_resolve_route failed (%d).\n",
  1210. queue->cm_error);
  1211. goto out_destroy_queue;
  1212. }
  1213. return 0;
  1214. out_destroy_queue:
  1215. nvme_rdma_destroy_queue_ib(queue);
  1216. return ret;
  1217. }
  1218. static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
  1219. {
  1220. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1221. struct rdma_conn_param param = { };
  1222. struct nvme_rdma_cm_req priv = { };
  1223. int ret;
  1224. param.qp_num = queue->qp->qp_num;
  1225. param.flow_control = 1;
  1226. param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
  1227. /* maximum retry count */
  1228. param.retry_count = 7;
  1229. param.rnr_retry_count = 7;
  1230. param.private_data = &priv;
  1231. param.private_data_len = sizeof(priv);
  1232. priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  1233. priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
  1234. /*
  1235. * set the admin queue depth to the minimum size
  1236. * specified by the Fabrics standard.
  1237. */
  1238. if (priv.qid == 0) {
  1239. priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
  1240. priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
  1241. } else {
  1242. /*
  1243. * current interpretation of the fabrics spec
  1244. * is at minimum you make hrqsize sqsize+1, or a
  1245. * 1's based representation of sqsize.
  1246. */
  1247. priv.hrqsize = cpu_to_le16(queue->queue_size);
  1248. priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
  1249. }
  1250. ret = rdma_connect(queue->cm_id, &param);
  1251. if (ret) {
  1252. dev_err(ctrl->ctrl.device,
  1253. "rdma_connect failed (%d).\n", ret);
  1254. goto out_destroy_queue_ib;
  1255. }
  1256. return 0;
  1257. out_destroy_queue_ib:
  1258. nvme_rdma_destroy_queue_ib(queue);
  1259. return ret;
  1260. }
  1261. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  1262. struct rdma_cm_event *ev)
  1263. {
  1264. struct nvme_rdma_queue *queue = cm_id->context;
  1265. int cm_error = 0;
  1266. dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
  1267. rdma_event_msg(ev->event), ev->event,
  1268. ev->status, cm_id);
  1269. switch (ev->event) {
  1270. case RDMA_CM_EVENT_ADDR_RESOLVED:
  1271. cm_error = nvme_rdma_addr_resolved(queue);
  1272. break;
  1273. case RDMA_CM_EVENT_ROUTE_RESOLVED:
  1274. cm_error = nvme_rdma_route_resolved(queue);
  1275. break;
  1276. case RDMA_CM_EVENT_ESTABLISHED:
  1277. queue->cm_error = nvme_rdma_conn_established(queue);
  1278. /* complete cm_done regardless of success/failure */
  1279. complete(&queue->cm_done);
  1280. return 0;
  1281. case RDMA_CM_EVENT_REJECTED:
  1282. nvme_rdma_destroy_queue_ib(queue);
  1283. cm_error = nvme_rdma_conn_rejected(queue, ev);
  1284. break;
  1285. case RDMA_CM_EVENT_ROUTE_ERROR:
  1286. case RDMA_CM_EVENT_CONNECT_ERROR:
  1287. case RDMA_CM_EVENT_UNREACHABLE:
  1288. nvme_rdma_destroy_queue_ib(queue);
  1289. case RDMA_CM_EVENT_ADDR_ERROR:
  1290. dev_dbg(queue->ctrl->ctrl.device,
  1291. "CM error event %d\n", ev->event);
  1292. cm_error = -ECONNRESET;
  1293. break;
  1294. case RDMA_CM_EVENT_DISCONNECTED:
  1295. case RDMA_CM_EVENT_ADDR_CHANGE:
  1296. case RDMA_CM_EVENT_TIMEWAIT_EXIT:
  1297. dev_dbg(queue->ctrl->ctrl.device,
  1298. "disconnect received - connection closed\n");
  1299. nvme_rdma_error_recovery(queue->ctrl);
  1300. break;
  1301. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  1302. /* device removal is handled via the ib_client API */
  1303. break;
  1304. default:
  1305. dev_err(queue->ctrl->ctrl.device,
  1306. "Unexpected RDMA CM event (%d)\n", ev->event);
  1307. nvme_rdma_error_recovery(queue->ctrl);
  1308. break;
  1309. }
  1310. if (cm_error) {
  1311. queue->cm_error = cm_error;
  1312. complete(&queue->cm_done);
  1313. }
  1314. return 0;
  1315. }
  1316. static enum blk_eh_timer_return
  1317. nvme_rdma_timeout(struct request *rq, bool reserved)
  1318. {
  1319. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1320. dev_warn(req->queue->ctrl->ctrl.device,
  1321. "I/O %d QID %d timeout, reset controller\n",
  1322. rq->tag, nvme_rdma_queue_idx(req->queue));
  1323. /* queue error recovery */
  1324. nvme_rdma_error_recovery(req->queue->ctrl);
  1325. /* fail with DNR on cmd timeout */
  1326. nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
  1327. return BLK_EH_DONE;
  1328. }
  1329. static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
  1330. const struct blk_mq_queue_data *bd)
  1331. {
  1332. struct nvme_ns *ns = hctx->queue->queuedata;
  1333. struct nvme_rdma_queue *queue = hctx->driver_data;
  1334. struct request *rq = bd->rq;
  1335. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1336. struct nvme_rdma_qe *sqe = &req->sqe;
  1337. struct nvme_command *c = sqe->data;
  1338. struct ib_device *dev;
  1339. bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
  1340. blk_status_t ret;
  1341. int err;
  1342. WARN_ON_ONCE(rq->tag < 0);
  1343. if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
  1344. return nvmf_fail_nonready_command(rq);
  1345. dev = queue->device->dev;
  1346. ib_dma_sync_single_for_cpu(dev, sqe->dma,
  1347. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1348. ret = nvme_setup_cmd(ns, rq, c);
  1349. if (ret)
  1350. return ret;
  1351. blk_mq_start_request(rq);
  1352. err = nvme_rdma_map_data(queue, rq, c);
  1353. if (unlikely(err < 0)) {
  1354. dev_err(queue->ctrl->ctrl.device,
  1355. "Failed to map data (%d)\n", err);
  1356. nvme_cleanup_cmd(rq);
  1357. goto err;
  1358. }
  1359. sqe->cqe.done = nvme_rdma_send_done;
  1360. ib_dma_sync_single_for_device(dev, sqe->dma,
  1361. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1362. err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
  1363. req->mr ? &req->reg_wr.wr : NULL);
  1364. if (unlikely(err)) {
  1365. nvme_rdma_unmap_data(queue, rq);
  1366. goto err;
  1367. }
  1368. return BLK_STS_OK;
  1369. err:
  1370. if (err == -ENOMEM || err == -EAGAIN)
  1371. return BLK_STS_RESOURCE;
  1372. return BLK_STS_IOERR;
  1373. }
  1374. static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  1375. {
  1376. struct nvme_rdma_queue *queue = hctx->driver_data;
  1377. struct ib_cq *cq = queue->ib_cq;
  1378. struct ib_wc wc;
  1379. int found = 0;
  1380. while (ib_poll_cq(cq, 1, &wc) > 0) {
  1381. struct ib_cqe *cqe = wc.wr_cqe;
  1382. if (cqe) {
  1383. if (cqe->done == nvme_rdma_recv_done)
  1384. found |= __nvme_rdma_recv_done(cq, &wc, tag);
  1385. else
  1386. cqe->done(cq, &wc);
  1387. }
  1388. }
  1389. return found;
  1390. }
  1391. static void nvme_rdma_complete_rq(struct request *rq)
  1392. {
  1393. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1394. nvme_rdma_unmap_data(req->queue, rq);
  1395. nvme_complete_rq(rq);
  1396. }
  1397. static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
  1398. {
  1399. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  1400. return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
  1401. }
  1402. static const struct blk_mq_ops nvme_rdma_mq_ops = {
  1403. .queue_rq = nvme_rdma_queue_rq,
  1404. .complete = nvme_rdma_complete_rq,
  1405. .init_request = nvme_rdma_init_request,
  1406. .exit_request = nvme_rdma_exit_request,
  1407. .init_hctx = nvme_rdma_init_hctx,
  1408. .poll = nvme_rdma_poll,
  1409. .timeout = nvme_rdma_timeout,
  1410. .map_queues = nvme_rdma_map_queues,
  1411. };
  1412. static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
  1413. .queue_rq = nvme_rdma_queue_rq,
  1414. .complete = nvme_rdma_complete_rq,
  1415. .init_request = nvme_rdma_init_request,
  1416. .exit_request = nvme_rdma_exit_request,
  1417. .init_hctx = nvme_rdma_init_admin_hctx,
  1418. .timeout = nvme_rdma_timeout,
  1419. };
  1420. static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
  1421. {
  1422. if (ctrl->ctrl.queue_count > 1) {
  1423. nvme_stop_queues(&ctrl->ctrl);
  1424. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  1425. nvme_cancel_request, &ctrl->ctrl);
  1426. nvme_rdma_destroy_io_queues(ctrl, shutdown);
  1427. }
  1428. if (shutdown)
  1429. nvme_shutdown_ctrl(&ctrl->ctrl);
  1430. else
  1431. nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
  1432. blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
  1433. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  1434. nvme_cancel_request, &ctrl->ctrl);
  1435. blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
  1436. nvme_rdma_destroy_admin_queue(ctrl, shutdown);
  1437. }
  1438. static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
  1439. {
  1440. nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
  1441. }
  1442. static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
  1443. {
  1444. struct nvme_rdma_ctrl *ctrl =
  1445. container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
  1446. int ret;
  1447. bool changed;
  1448. nvme_stop_ctrl(&ctrl->ctrl);
  1449. nvme_rdma_shutdown_ctrl(ctrl, false);
  1450. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
  1451. /* state change failure should never happen */
  1452. WARN_ON_ONCE(1);
  1453. return;
  1454. }
  1455. ret = nvme_rdma_configure_admin_queue(ctrl, false);
  1456. if (ret)
  1457. goto out_fail;
  1458. if (ctrl->ctrl.queue_count > 1) {
  1459. ret = nvme_rdma_configure_io_queues(ctrl, false);
  1460. if (ret)
  1461. goto out_fail;
  1462. }
  1463. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1464. if (!changed) {
  1465. /* state change failure is ok if we're in DELETING state */
  1466. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  1467. return;
  1468. }
  1469. nvme_start_ctrl(&ctrl->ctrl);
  1470. return;
  1471. out_fail:
  1472. ++ctrl->ctrl.nr_reconnects;
  1473. nvme_rdma_reconnect_or_remove(ctrl);
  1474. }
  1475. static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
  1476. .name = "rdma",
  1477. .module = THIS_MODULE,
  1478. .flags = NVME_F_FABRICS,
  1479. .reg_read32 = nvmf_reg_read32,
  1480. .reg_read64 = nvmf_reg_read64,
  1481. .reg_write32 = nvmf_reg_write32,
  1482. .free_ctrl = nvme_rdma_free_ctrl,
  1483. .submit_async_event = nvme_rdma_submit_async_event,
  1484. .delete_ctrl = nvme_rdma_delete_ctrl,
  1485. .get_address = nvmf_get_address,
  1486. .stop_ctrl = nvme_rdma_stop_ctrl,
  1487. };
  1488. static inline bool
  1489. __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
  1490. struct nvmf_ctrl_options *opts)
  1491. {
  1492. char *stdport = __stringify(NVME_RDMA_IP_PORT);
  1493. if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
  1494. strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
  1495. return false;
  1496. if (opts->mask & NVMF_OPT_TRSVCID &&
  1497. ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
  1498. if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
  1499. return false;
  1500. } else if (opts->mask & NVMF_OPT_TRSVCID) {
  1501. if (strcmp(opts->trsvcid, stdport))
  1502. return false;
  1503. } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
  1504. if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
  1505. return false;
  1506. }
  1507. /* else, it's a match as both have stdport. Fall to next checks */
  1508. /*
  1509. * checking the local address is rough. In most cases, one
  1510. * is not specified and the host port is selected by the stack.
  1511. *
  1512. * Assume no match if:
  1513. * local address is specified and address is not the same
  1514. * local address is not specified but remote is, or vice versa
  1515. * (admin using specific host_traddr when it matters).
  1516. */
  1517. if (opts->mask & NVMF_OPT_HOST_TRADDR &&
  1518. ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
  1519. if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
  1520. return false;
  1521. } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
  1522. ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  1523. return false;
  1524. /*
  1525. * if neither controller had an host port specified, assume it's
  1526. * a match as everything else matched.
  1527. */
  1528. return true;
  1529. }
  1530. /*
  1531. * Fails a connection request if it matches an existing controller
  1532. * (association) with the same tuple:
  1533. * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
  1534. *
  1535. * if local address is not specified in the request, it will match an
  1536. * existing controller with all the other parameters the same and no
  1537. * local port address specified as well.
  1538. *
  1539. * The ports don't need to be compared as they are intrinsically
  1540. * already matched by the port pointers supplied.
  1541. */
  1542. static bool
  1543. nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
  1544. {
  1545. struct nvme_rdma_ctrl *ctrl;
  1546. bool found = false;
  1547. mutex_lock(&nvme_rdma_ctrl_mutex);
  1548. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1549. found = __nvme_rdma_options_match(ctrl, opts);
  1550. if (found)
  1551. break;
  1552. }
  1553. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1554. return found;
  1555. }
  1556. static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
  1557. struct nvmf_ctrl_options *opts)
  1558. {
  1559. struct nvme_rdma_ctrl *ctrl;
  1560. int ret;
  1561. bool changed;
  1562. char *port;
  1563. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  1564. if (!ctrl)
  1565. return ERR_PTR(-ENOMEM);
  1566. ctrl->ctrl.opts = opts;
  1567. INIT_LIST_HEAD(&ctrl->list);
  1568. if (opts->mask & NVMF_OPT_TRSVCID)
  1569. port = opts->trsvcid;
  1570. else
  1571. port = __stringify(NVME_RDMA_IP_PORT);
  1572. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1573. opts->traddr, port, &ctrl->addr);
  1574. if (ret) {
  1575. pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
  1576. goto out_free_ctrl;
  1577. }
  1578. if (opts->mask & NVMF_OPT_HOST_TRADDR) {
  1579. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1580. opts->host_traddr, NULL, &ctrl->src_addr);
  1581. if (ret) {
  1582. pr_err("malformed src address passed: %s\n",
  1583. opts->host_traddr);
  1584. goto out_free_ctrl;
  1585. }
  1586. }
  1587. if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
  1588. ret = -EALREADY;
  1589. goto out_free_ctrl;
  1590. }
  1591. ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
  1592. 0 /* no quirks, we're perfect! */);
  1593. if (ret)
  1594. goto out_free_ctrl;
  1595. INIT_DELAYED_WORK(&ctrl->reconnect_work,
  1596. nvme_rdma_reconnect_ctrl_work);
  1597. INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
  1598. INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
  1599. ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
  1600. ctrl->ctrl.sqsize = opts->queue_size - 1;
  1601. ctrl->ctrl.kato = opts->kato;
  1602. ret = -ENOMEM;
  1603. ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
  1604. GFP_KERNEL);
  1605. if (!ctrl->queues)
  1606. goto out_uninit_ctrl;
  1607. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
  1608. WARN_ON_ONCE(!changed);
  1609. ret = nvme_rdma_configure_admin_queue(ctrl, true);
  1610. if (ret)
  1611. goto out_kfree_queues;
  1612. /* sanity check icdoff */
  1613. if (ctrl->ctrl.icdoff) {
  1614. dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
  1615. ret = -EINVAL;
  1616. goto out_remove_admin_queue;
  1617. }
  1618. /* sanity check keyed sgls */
  1619. if (!(ctrl->ctrl.sgls & (1 << 2))) {
  1620. dev_err(ctrl->ctrl.device,
  1621. "Mandatory keyed sgls are not supported!\n");
  1622. ret = -EINVAL;
  1623. goto out_remove_admin_queue;
  1624. }
  1625. if (opts->queue_size > ctrl->ctrl.maxcmd) {
  1626. /* warn if maxcmd is lower than queue_size */
  1627. dev_warn(ctrl->ctrl.device,
  1628. "queue_size %zu > ctrl maxcmd %u, clamping down\n",
  1629. opts->queue_size, ctrl->ctrl.maxcmd);
  1630. opts->queue_size = ctrl->ctrl.maxcmd;
  1631. }
  1632. if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
  1633. /* warn if sqsize is lower than queue_size */
  1634. dev_warn(ctrl->ctrl.device,
  1635. "queue_size %zu > ctrl sqsize %u, clamping down\n",
  1636. opts->queue_size, ctrl->ctrl.sqsize + 1);
  1637. opts->queue_size = ctrl->ctrl.sqsize + 1;
  1638. }
  1639. if (opts->nr_io_queues) {
  1640. ret = nvme_rdma_configure_io_queues(ctrl, true);
  1641. if (ret)
  1642. goto out_remove_admin_queue;
  1643. }
  1644. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1645. WARN_ON_ONCE(!changed);
  1646. dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
  1647. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1648. nvme_get_ctrl(&ctrl->ctrl);
  1649. mutex_lock(&nvme_rdma_ctrl_mutex);
  1650. list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
  1651. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1652. nvme_start_ctrl(&ctrl->ctrl);
  1653. return &ctrl->ctrl;
  1654. out_remove_admin_queue:
  1655. nvme_rdma_destroy_admin_queue(ctrl, true);
  1656. out_kfree_queues:
  1657. kfree(ctrl->queues);
  1658. out_uninit_ctrl:
  1659. nvme_uninit_ctrl(&ctrl->ctrl);
  1660. nvme_put_ctrl(&ctrl->ctrl);
  1661. if (ret > 0)
  1662. ret = -EIO;
  1663. return ERR_PTR(ret);
  1664. out_free_ctrl:
  1665. kfree(ctrl);
  1666. return ERR_PTR(ret);
  1667. }
  1668. static struct nvmf_transport_ops nvme_rdma_transport = {
  1669. .name = "rdma",
  1670. .module = THIS_MODULE,
  1671. .required_opts = NVMF_OPT_TRADDR,
  1672. .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
  1673. NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
  1674. .create_ctrl = nvme_rdma_create_ctrl,
  1675. };
  1676. static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
  1677. {
  1678. struct nvme_rdma_ctrl *ctrl;
  1679. struct nvme_rdma_device *ndev;
  1680. bool found = false;
  1681. mutex_lock(&device_list_mutex);
  1682. list_for_each_entry(ndev, &device_list, entry) {
  1683. if (ndev->dev == ib_device) {
  1684. found = true;
  1685. break;
  1686. }
  1687. }
  1688. mutex_unlock(&device_list_mutex);
  1689. if (!found)
  1690. return;
  1691. /* Delete all controllers using this device */
  1692. mutex_lock(&nvme_rdma_ctrl_mutex);
  1693. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1694. if (ctrl->device->dev != ib_device)
  1695. continue;
  1696. nvme_delete_ctrl(&ctrl->ctrl);
  1697. }
  1698. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1699. flush_workqueue(nvme_delete_wq);
  1700. }
  1701. static struct ib_client nvme_rdma_ib_client = {
  1702. .name = "nvme_rdma",
  1703. .remove = nvme_rdma_remove_one
  1704. };
  1705. static int __init nvme_rdma_init_module(void)
  1706. {
  1707. int ret;
  1708. ret = ib_register_client(&nvme_rdma_ib_client);
  1709. if (ret)
  1710. return ret;
  1711. ret = nvmf_register_transport(&nvme_rdma_transport);
  1712. if (ret)
  1713. goto err_unreg_client;
  1714. return 0;
  1715. err_unreg_client:
  1716. ib_unregister_client(&nvme_rdma_ib_client);
  1717. return ret;
  1718. }
  1719. static void __exit nvme_rdma_cleanup_module(void)
  1720. {
  1721. nvmf_unregister_transport(&nvme_rdma_transport);
  1722. ib_unregister_client(&nvme_rdma_ib_client);
  1723. }
  1724. module_init(nvme_rdma_init_module);
  1725. module_exit(nvme_rdma_cleanup_module);
  1726. MODULE_LICENSE("GPL v2");