intel_ringbuffer.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. bool intel_engine_stopped(struct intel_engine_cs *engine)
  56. {
  57. struct drm_i915_private *dev_priv = engine->i915;
  58. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  59. }
  60. static void __intel_ring_advance(struct intel_engine_cs *engine)
  61. {
  62. struct intel_ringbuffer *ringbuf = engine->buffer;
  63. ringbuf->tail &= ringbuf->size - 1;
  64. if (intel_engine_stopped(engine))
  65. return;
  66. engine->write_tail(engine, ringbuf->tail);
  67. }
  68. static int
  69. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  70. u32 invalidate_domains,
  71. u32 flush_domains)
  72. {
  73. struct intel_engine_cs *engine = req->engine;
  74. u32 cmd;
  75. int ret;
  76. cmd = MI_FLUSH;
  77. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  78. cmd |= MI_NO_WRITE_FLUSH;
  79. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  80. cmd |= MI_READ_FLUSH;
  81. ret = intel_ring_begin(req, 2);
  82. if (ret)
  83. return ret;
  84. intel_ring_emit(engine, cmd);
  85. intel_ring_emit(engine, MI_NOOP);
  86. intel_ring_advance(engine);
  87. return 0;
  88. }
  89. static int
  90. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  91. u32 invalidate_domains,
  92. u32 flush_domains)
  93. {
  94. struct intel_engine_cs *engine = req->engine;
  95. u32 cmd;
  96. int ret;
  97. /*
  98. * read/write caches:
  99. *
  100. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  101. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  102. * also flushed at 2d versus 3d pipeline switches.
  103. *
  104. * read-only caches:
  105. *
  106. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  107. * MI_READ_FLUSH is set, and is always flushed on 965.
  108. *
  109. * I915_GEM_DOMAIN_COMMAND may not exist?
  110. *
  111. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  112. * invalidated when MI_EXE_FLUSH is set.
  113. *
  114. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  115. * invalidated with every MI_FLUSH.
  116. *
  117. * TLBs:
  118. *
  119. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  120. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  121. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  122. * are flushed at any MI_FLUSH.
  123. */
  124. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  125. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  126. cmd &= ~MI_NO_WRITE_FLUSH;
  127. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  128. cmd |= MI_EXE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  130. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  131. cmd |= MI_INVALIDATE_ISP;
  132. ret = intel_ring_begin(req, 2);
  133. if (ret)
  134. return ret;
  135. intel_ring_emit(engine, cmd);
  136. intel_ring_emit(engine, MI_NOOP);
  137. intel_ring_advance(engine);
  138. return 0;
  139. }
  140. /**
  141. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  142. * implementing two workarounds on gen6. From section 1.4.7.1
  143. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  144. *
  145. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  146. * produced by non-pipelined state commands), software needs to first
  147. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  148. * 0.
  149. *
  150. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  151. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  152. *
  153. * And the workaround for these two requires this workaround first:
  154. *
  155. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  156. * BEFORE the pipe-control with a post-sync op and no write-cache
  157. * flushes.
  158. *
  159. * And this last workaround is tricky because of the requirements on
  160. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  161. * volume 2 part 1:
  162. *
  163. * "1 of the following must also be set:
  164. * - Render Target Cache Flush Enable ([12] of DW1)
  165. * - Depth Cache Flush Enable ([0] of DW1)
  166. * - Stall at Pixel Scoreboard ([1] of DW1)
  167. * - Depth Stall ([13] of DW1)
  168. * - Post-Sync Operation ([13] of DW1)
  169. * - Notify Enable ([8] of DW1)"
  170. *
  171. * The cache flushes require the workaround flush that triggered this
  172. * one, so we can't use it. Depth stall would trigger the same.
  173. * Post-sync nonzero is what triggered this second workaround, so we
  174. * can't use that one either. Notify enable is IRQs, which aren't
  175. * really our business. That leaves only stall at scoreboard.
  176. */
  177. static int
  178. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  179. {
  180. struct intel_engine_cs *engine = req->engine;
  181. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  182. int ret;
  183. ret = intel_ring_begin(req, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  188. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  189. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  190. intel_ring_emit(engine, 0); /* low dword */
  191. intel_ring_emit(engine, 0); /* high dword */
  192. intel_ring_emit(engine, MI_NOOP);
  193. intel_ring_advance(engine);
  194. ret = intel_ring_begin(req, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  199. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  200. intel_ring_emit(engine, 0);
  201. intel_ring_emit(engine, 0);
  202. intel_ring_emit(engine, MI_NOOP);
  203. intel_ring_advance(engine);
  204. return 0;
  205. }
  206. static int
  207. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  208. u32 invalidate_domains, u32 flush_domains)
  209. {
  210. struct intel_engine_cs *engine = req->engine;
  211. u32 flags = 0;
  212. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  213. int ret;
  214. /* Force SNB workarounds for PIPE_CONTROL flushes */
  215. ret = intel_emit_post_sync_nonzero_flush(req);
  216. if (ret)
  217. return ret;
  218. /* Just flush everything. Experiments have shown that reducing the
  219. * number of bits based on the write domains has little performance
  220. * impact.
  221. */
  222. if (flush_domains) {
  223. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  224. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  225. /*
  226. * Ensure that any following seqno writes only happen
  227. * when the render cache is indeed flushed.
  228. */
  229. flags |= PIPE_CONTROL_CS_STALL;
  230. }
  231. if (invalidate_domains) {
  232. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  233. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  238. /*
  239. * TLB invalidate requires a post-sync write.
  240. */
  241. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  242. }
  243. ret = intel_ring_begin(req, 4);
  244. if (ret)
  245. return ret;
  246. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  247. intel_ring_emit(engine, flags);
  248. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  249. intel_ring_emit(engine, 0);
  250. intel_ring_advance(engine);
  251. return 0;
  252. }
  253. static int
  254. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  255. {
  256. struct intel_engine_cs *engine = req->engine;
  257. int ret;
  258. ret = intel_ring_begin(req, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(engine, 0);
  265. intel_ring_emit(engine, 0);
  266. intel_ring_advance(engine);
  267. return 0;
  268. }
  269. static int
  270. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  271. u32 invalidate_domains, u32 flush_domains)
  272. {
  273. struct intel_engine_cs *engine = req->engine;
  274. u32 flags = 0;
  275. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  276. int ret;
  277. /*
  278. * Ensure that any following seqno writes only happen when the render
  279. * cache is indeed flushed.
  280. *
  281. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  282. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  283. * don't try to be clever and just set it unconditionally.
  284. */
  285. flags |= PIPE_CONTROL_CS_STALL;
  286. /* Just flush everything. Experiments have shown that reducing the
  287. * number of bits based on the write domains has little performance
  288. * impact.
  289. */
  290. if (flush_domains) {
  291. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  292. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  293. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  294. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  295. }
  296. if (invalidate_domains) {
  297. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  298. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  304. /*
  305. * TLB invalidate requires a post-sync write.
  306. */
  307. flags |= PIPE_CONTROL_QW_WRITE;
  308. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  309. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  310. /* Workaround: we must issue a pipe_control with CS-stall bit
  311. * set before a pipe_control command that has the state cache
  312. * invalidate bit set. */
  313. gen7_render_ring_cs_stall_wa(req);
  314. }
  315. ret = intel_ring_begin(req, 4);
  316. if (ret)
  317. return ret;
  318. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  319. intel_ring_emit(engine, flags);
  320. intel_ring_emit(engine, scratch_addr);
  321. intel_ring_emit(engine, 0);
  322. intel_ring_advance(engine);
  323. return 0;
  324. }
  325. static int
  326. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  327. u32 flags, u32 scratch_addr)
  328. {
  329. struct intel_engine_cs *engine = req->engine;
  330. int ret;
  331. ret = intel_ring_begin(req, 6);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  335. intel_ring_emit(engine, flags);
  336. intel_ring_emit(engine, scratch_addr);
  337. intel_ring_emit(engine, 0);
  338. intel_ring_emit(engine, 0);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_advance(engine);
  341. return 0;
  342. }
  343. static int
  344. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  345. u32 invalidate_domains, u32 flush_domains)
  346. {
  347. u32 flags = 0;
  348. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  349. int ret;
  350. flags |= PIPE_CONTROL_CS_STALL;
  351. if (flush_domains) {
  352. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  353. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  354. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  355. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  356. }
  357. if (invalidate_domains) {
  358. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  359. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_QW_WRITE;
  365. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  366. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  367. ret = gen8_emit_pipe_control(req,
  368. PIPE_CONTROL_CS_STALL |
  369. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  370. 0);
  371. if (ret)
  372. return ret;
  373. }
  374. return gen8_emit_pipe_control(req, flags, scratch_addr);
  375. }
  376. static void ring_write_tail(struct intel_engine_cs *engine,
  377. u32 value)
  378. {
  379. struct drm_i915_private *dev_priv = engine->i915;
  380. I915_WRITE_TAIL(engine, value);
  381. }
  382. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  383. {
  384. struct drm_i915_private *dev_priv = engine->i915;
  385. u64 acthd;
  386. if (INTEL_GEN(dev_priv) >= 8)
  387. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  388. RING_ACTHD_UDW(engine->mmio_base));
  389. else if (INTEL_GEN(dev_priv) >= 4)
  390. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  391. else
  392. acthd = I915_READ(ACTHD);
  393. return acthd;
  394. }
  395. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  396. {
  397. struct drm_i915_private *dev_priv = engine->i915;
  398. u32 addr;
  399. addr = dev_priv->status_page_dmah->busaddr;
  400. if (INTEL_GEN(dev_priv) >= 4)
  401. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  402. I915_WRITE(HWS_PGA, addr);
  403. }
  404. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  405. {
  406. struct drm_i915_private *dev_priv = engine->i915;
  407. i915_reg_t mmio;
  408. /* The ring status page addresses are no longer next to the rest of
  409. * the ring registers as of gen7.
  410. */
  411. if (IS_GEN7(dev_priv)) {
  412. switch (engine->id) {
  413. case RCS:
  414. mmio = RENDER_HWS_PGA_GEN7;
  415. break;
  416. case BCS:
  417. mmio = BLT_HWS_PGA_GEN7;
  418. break;
  419. /*
  420. * VCS2 actually doesn't exist on Gen7. Only shut up
  421. * gcc switch check warning
  422. */
  423. case VCS2:
  424. case VCS:
  425. mmio = BSD_HWS_PGA_GEN7;
  426. break;
  427. case VECS:
  428. mmio = VEBOX_HWS_PGA_GEN7;
  429. break;
  430. }
  431. } else if (IS_GEN6(dev_priv)) {
  432. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  433. } else {
  434. /* XXX: gen8 returns to sanity */
  435. mmio = RING_HWS_PGA(engine->mmio_base);
  436. }
  437. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  438. POSTING_READ(mmio);
  439. /*
  440. * Flush the TLB for this page
  441. *
  442. * FIXME: These two bits have disappeared on gen8, so a question
  443. * arises: do we still need this and if so how should we go about
  444. * invalidating the TLB?
  445. */
  446. if (IS_GEN(dev_priv, 6, 7)) {
  447. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  448. /* ring should be idle before issuing a sync flush*/
  449. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  450. I915_WRITE(reg,
  451. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  452. INSTPM_SYNC_FLUSH));
  453. if (intel_wait_for_register(dev_priv,
  454. reg, INSTPM_SYNC_FLUSH, 0,
  455. 1000))
  456. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  457. engine->name);
  458. }
  459. }
  460. static bool stop_ring(struct intel_engine_cs *engine)
  461. {
  462. struct drm_i915_private *dev_priv = engine->i915;
  463. if (!IS_GEN2(dev_priv)) {
  464. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  465. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  466. DRM_ERROR("%s : timed out trying to stop ring\n",
  467. engine->name);
  468. /* Sometimes we observe that the idle flag is not
  469. * set even though the ring is empty. So double
  470. * check before giving up.
  471. */
  472. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  473. return false;
  474. }
  475. }
  476. I915_WRITE_CTL(engine, 0);
  477. I915_WRITE_HEAD(engine, 0);
  478. engine->write_tail(engine, 0);
  479. if (!IS_GEN2(dev_priv)) {
  480. (void)I915_READ_CTL(engine);
  481. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  482. }
  483. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  484. }
  485. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  486. {
  487. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  488. }
  489. static int init_ring_common(struct intel_engine_cs *engine)
  490. {
  491. struct drm_i915_private *dev_priv = engine->i915;
  492. struct intel_ringbuffer *ringbuf = engine->buffer;
  493. struct drm_i915_gem_object *obj = ringbuf->obj;
  494. int ret = 0;
  495. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  496. if (!stop_ring(engine)) {
  497. /* G45 ring initialization often fails to reset head to zero */
  498. DRM_DEBUG_KMS("%s head not reset to zero "
  499. "ctl %08x head %08x tail %08x start %08x\n",
  500. engine->name,
  501. I915_READ_CTL(engine),
  502. I915_READ_HEAD(engine),
  503. I915_READ_TAIL(engine),
  504. I915_READ_START(engine));
  505. if (!stop_ring(engine)) {
  506. DRM_ERROR("failed to set %s head to zero "
  507. "ctl %08x head %08x tail %08x start %08x\n",
  508. engine->name,
  509. I915_READ_CTL(engine),
  510. I915_READ_HEAD(engine),
  511. I915_READ_TAIL(engine),
  512. I915_READ_START(engine));
  513. ret = -EIO;
  514. goto out;
  515. }
  516. }
  517. if (I915_NEED_GFX_HWS(dev_priv))
  518. intel_ring_setup_status_page(engine);
  519. else
  520. ring_setup_phys_status_page(engine);
  521. /* Enforce ordering by reading HEAD register back */
  522. I915_READ_HEAD(engine);
  523. /* Initialize the ring. This must happen _after_ we've cleared the ring
  524. * registers with the above sequence (the readback of the HEAD registers
  525. * also enforces ordering), otherwise the hw might lose the new ring
  526. * register values. */
  527. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  528. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  529. if (I915_READ_HEAD(engine))
  530. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  531. engine->name, I915_READ_HEAD(engine));
  532. I915_WRITE_HEAD(engine, 0);
  533. (void)I915_READ_HEAD(engine);
  534. I915_WRITE_CTL(engine,
  535. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  536. | RING_VALID);
  537. /* If the head is still not zero, the ring is dead */
  538. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  539. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  540. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  541. DRM_ERROR("%s initialization failed "
  542. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  543. engine->name,
  544. I915_READ_CTL(engine),
  545. I915_READ_CTL(engine) & RING_VALID,
  546. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  547. I915_READ_START(engine),
  548. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  549. ret = -EIO;
  550. goto out;
  551. }
  552. ringbuf->last_retired_head = -1;
  553. ringbuf->head = I915_READ_HEAD(engine);
  554. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  555. intel_ring_update_space(ringbuf);
  556. intel_engine_init_hangcheck(engine);
  557. out:
  558. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  559. return ret;
  560. }
  561. void
  562. intel_fini_pipe_control(struct intel_engine_cs *engine)
  563. {
  564. if (engine->scratch.obj == NULL)
  565. return;
  566. if (INTEL_GEN(engine->i915) >= 5) {
  567. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  568. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  569. }
  570. drm_gem_object_unreference(&engine->scratch.obj->base);
  571. engine->scratch.obj = NULL;
  572. }
  573. int
  574. intel_init_pipe_control(struct intel_engine_cs *engine)
  575. {
  576. int ret;
  577. WARN_ON(engine->scratch.obj);
  578. engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
  579. if (IS_ERR(engine->scratch.obj)) {
  580. DRM_ERROR("Failed to allocate seqno page\n");
  581. ret = PTR_ERR(engine->scratch.obj);
  582. engine->scratch.obj = NULL;
  583. goto err;
  584. }
  585. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  586. I915_CACHE_LLC);
  587. if (ret)
  588. goto err_unref;
  589. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  590. if (ret)
  591. goto err_unref;
  592. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  593. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  594. if (engine->scratch.cpu_page == NULL) {
  595. ret = -ENOMEM;
  596. goto err_unpin;
  597. }
  598. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  599. engine->name, engine->scratch.gtt_offset);
  600. return 0;
  601. err_unpin:
  602. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  603. err_unref:
  604. drm_gem_object_unreference(&engine->scratch.obj->base);
  605. err:
  606. return ret;
  607. }
  608. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  609. {
  610. struct intel_engine_cs *engine = req->engine;
  611. struct i915_workarounds *w = &req->i915->workarounds;
  612. int ret, i;
  613. if (w->count == 0)
  614. return 0;
  615. engine->gpu_caches_dirty = true;
  616. ret = intel_ring_flush_all_caches(req);
  617. if (ret)
  618. return ret;
  619. ret = intel_ring_begin(req, (w->count * 2 + 2));
  620. if (ret)
  621. return ret;
  622. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  623. for (i = 0; i < w->count; i++) {
  624. intel_ring_emit_reg(engine, w->reg[i].addr);
  625. intel_ring_emit(engine, w->reg[i].value);
  626. }
  627. intel_ring_emit(engine, MI_NOOP);
  628. intel_ring_advance(engine);
  629. engine->gpu_caches_dirty = true;
  630. ret = intel_ring_flush_all_caches(req);
  631. if (ret)
  632. return ret;
  633. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  634. return 0;
  635. }
  636. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  637. {
  638. int ret;
  639. ret = intel_ring_workarounds_emit(req);
  640. if (ret != 0)
  641. return ret;
  642. ret = i915_gem_render_state_init(req);
  643. if (ret)
  644. return ret;
  645. return 0;
  646. }
  647. static int wa_add(struct drm_i915_private *dev_priv,
  648. i915_reg_t addr,
  649. const u32 mask, const u32 val)
  650. {
  651. const u32 idx = dev_priv->workarounds.count;
  652. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  653. return -ENOSPC;
  654. dev_priv->workarounds.reg[idx].addr = addr;
  655. dev_priv->workarounds.reg[idx].value = val;
  656. dev_priv->workarounds.reg[idx].mask = mask;
  657. dev_priv->workarounds.count++;
  658. return 0;
  659. }
  660. #define WA_REG(addr, mask, val) do { \
  661. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  662. if (r) \
  663. return r; \
  664. } while (0)
  665. #define WA_SET_BIT_MASKED(addr, mask) \
  666. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  667. #define WA_CLR_BIT_MASKED(addr, mask) \
  668. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  669. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  670. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  671. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  672. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  673. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  674. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  675. i915_reg_t reg)
  676. {
  677. struct drm_i915_private *dev_priv = engine->i915;
  678. struct i915_workarounds *wa = &dev_priv->workarounds;
  679. const uint32_t index = wa->hw_whitelist_count[engine->id];
  680. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  681. return -EINVAL;
  682. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  683. i915_mmio_reg_offset(reg));
  684. wa->hw_whitelist_count[engine->id]++;
  685. return 0;
  686. }
  687. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  688. {
  689. struct drm_i915_private *dev_priv = engine->i915;
  690. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  691. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  692. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  693. /* WaDisablePartialInstShootdown:bdw,chv */
  694. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  695. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  696. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  697. * workaround for for a possible hang in the unlikely event a TLB
  698. * invalidation occurs during a PSD flush.
  699. */
  700. /* WaForceEnableNonCoherent:bdw,chv */
  701. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  702. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  703. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  704. HDC_FORCE_NON_COHERENT);
  705. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  706. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  707. * polygons in the same 8x4 pixel/sample area to be processed without
  708. * stalling waiting for the earlier ones to write to Hierarchical Z
  709. * buffer."
  710. *
  711. * This optimization is off by default for BDW and CHV; turn it on.
  712. */
  713. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  714. /* Wa4x4STCOptimizationDisable:bdw,chv */
  715. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  716. /*
  717. * BSpec recommends 8x4 when MSAA is used,
  718. * however in practice 16x4 seems fastest.
  719. *
  720. * Note that PS/WM thread counts depend on the WIZ hashing
  721. * disable bit, which we don't touch here, but it's good
  722. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  723. */
  724. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  725. GEN6_WIZ_HASHING_MASK,
  726. GEN6_WIZ_HASHING_16x4);
  727. return 0;
  728. }
  729. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  730. {
  731. struct drm_i915_private *dev_priv = engine->i915;
  732. int ret;
  733. ret = gen8_init_workarounds(engine);
  734. if (ret)
  735. return ret;
  736. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  737. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  738. /* WaDisableDopClockGating:bdw */
  739. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  740. DOP_CLOCK_GATING_DISABLE);
  741. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  742. GEN8_SAMPLER_POWER_BYPASS_DIS);
  743. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  744. /* WaForceContextSaveRestoreNonCoherent:bdw */
  745. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  746. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  747. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  748. return 0;
  749. }
  750. static int chv_init_workarounds(struct intel_engine_cs *engine)
  751. {
  752. struct drm_i915_private *dev_priv = engine->i915;
  753. int ret;
  754. ret = gen8_init_workarounds(engine);
  755. if (ret)
  756. return ret;
  757. /* WaDisableThreadStallDopClockGating:chv */
  758. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  759. /* Improve HiZ throughput on CHV. */
  760. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  761. return 0;
  762. }
  763. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  764. {
  765. struct drm_i915_private *dev_priv = engine->i915;
  766. int ret;
  767. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  768. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  769. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  770. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  771. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  772. /* WaDisableKillLogic:bxt,skl,kbl */
  773. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  774. ECOCHK_DIS_TLB);
  775. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  776. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  777. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  778. FLOW_CONTROL_ENABLE |
  779. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  780. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  781. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  782. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  783. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  784. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  785. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  786. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  787. GEN9_DG_MIRROR_FIX_ENABLE);
  788. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  789. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  790. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  791. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  792. GEN9_RHWO_OPTIMIZATION_DISABLE);
  793. /*
  794. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  795. * but we do that in per ctx batchbuffer as there is an issue
  796. * with this register not getting restored on ctx restore
  797. */
  798. }
  799. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  800. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  801. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  802. GEN9_ENABLE_YV12_BUGFIX |
  803. GEN9_ENABLE_GPGPU_PREEMPTION);
  804. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  805. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  806. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  807. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  808. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  809. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  810. GEN9_CCS_TLB_PREFETCH_ENABLE);
  811. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  812. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  813. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  814. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  815. PIXEL_MASK_CAMMING_DISABLE);
  816. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  817. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  818. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  819. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  820. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  821. * both tied to WaForceContextSaveRestoreNonCoherent
  822. * in some hsds for skl. We keep the tie for all gen9. The
  823. * documentation is a bit hazy and so we want to get common behaviour,
  824. * even though there is no clear evidence we would need both on kbl/bxt.
  825. * This area has been source of system hangs so we play it safe
  826. * and mimic the skl regardless of what bspec says.
  827. *
  828. * Use Force Non-Coherent whenever executing a 3D context. This
  829. * is a workaround for a possible hang in the unlikely event
  830. * a TLB invalidation occurs during a PSD flush.
  831. */
  832. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  833. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  834. HDC_FORCE_NON_COHERENT);
  835. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  836. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  837. BDW_DISABLE_HDC_INVALIDATION);
  838. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  839. if (IS_SKYLAKE(dev_priv) ||
  840. IS_KABYLAKE(dev_priv) ||
  841. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  842. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  843. GEN8_SAMPLER_POWER_BYPASS_DIS);
  844. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  845. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  846. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  847. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  848. GEN8_LQSC_FLUSH_COHERENT_LINES));
  849. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  850. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  851. if (ret)
  852. return ret;
  853. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  854. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  855. if (ret)
  856. return ret;
  857. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  858. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  859. if (ret)
  860. return ret;
  861. return 0;
  862. }
  863. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  864. {
  865. struct drm_i915_private *dev_priv = engine->i915;
  866. u8 vals[3] = { 0, 0, 0 };
  867. unsigned int i;
  868. for (i = 0; i < 3; i++) {
  869. u8 ss;
  870. /*
  871. * Only consider slices where one, and only one, subslice has 7
  872. * EUs
  873. */
  874. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  875. continue;
  876. /*
  877. * subslice_7eu[i] != 0 (because of the check above) and
  878. * ss_max == 4 (maximum number of subslices possible per slice)
  879. *
  880. * -> 0 <= ss <= 3;
  881. */
  882. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  883. vals[i] = 3 - ss;
  884. }
  885. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  886. return 0;
  887. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  888. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  889. GEN9_IZ_HASHING_MASK(2) |
  890. GEN9_IZ_HASHING_MASK(1) |
  891. GEN9_IZ_HASHING_MASK(0),
  892. GEN9_IZ_HASHING(2, vals[2]) |
  893. GEN9_IZ_HASHING(1, vals[1]) |
  894. GEN9_IZ_HASHING(0, vals[0]));
  895. return 0;
  896. }
  897. static int skl_init_workarounds(struct intel_engine_cs *engine)
  898. {
  899. struct drm_i915_private *dev_priv = engine->i915;
  900. int ret;
  901. ret = gen9_init_workarounds(engine);
  902. if (ret)
  903. return ret;
  904. /*
  905. * Actual WA is to disable percontext preemption granularity control
  906. * until D0 which is the default case so this is equivalent to
  907. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  908. */
  909. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  910. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  911. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  912. }
  913. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  914. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  915. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  916. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  917. }
  918. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  919. * involving this register should also be added to WA batch as required.
  920. */
  921. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  922. /* WaDisableLSQCROPERFforOCL:skl */
  923. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  924. GEN8_LQSC_RO_PERF_DIS);
  925. /* WaEnableGapsTsvCreditFix:skl */
  926. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  927. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  928. GEN9_GAPS_TSV_CREDIT_DISABLE));
  929. }
  930. /* WaDisablePowerCompilerClockGating:skl */
  931. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  932. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  933. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  934. /* WaBarrierPerformanceFixDisable:skl */
  935. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  936. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  937. HDC_FENCE_DEST_SLM_DISABLE |
  938. HDC_BARRIER_PERFORMANCE_DISABLE);
  939. /* WaDisableSbeCacheDispatchPortSharing:skl */
  940. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  941. WA_SET_BIT_MASKED(
  942. GEN7_HALF_SLICE_CHICKEN1,
  943. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  944. /* WaDisableGafsUnitClkGating:skl */
  945. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  946. /* WaDisableLSQCROPERFforOCL:skl */
  947. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  948. if (ret)
  949. return ret;
  950. return skl_tune_iz_hashing(engine);
  951. }
  952. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  953. {
  954. struct drm_i915_private *dev_priv = engine->i915;
  955. int ret;
  956. ret = gen9_init_workarounds(engine);
  957. if (ret)
  958. return ret;
  959. /* WaStoreMultiplePTEenable:bxt */
  960. /* This is a requirement according to Hardware specification */
  961. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  962. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  963. /* WaSetClckGatingDisableMedia:bxt */
  964. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  965. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  966. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  967. }
  968. /* WaDisableThreadStallDopClockGating:bxt */
  969. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  970. STALL_DOP_GATING_DISABLE);
  971. /* WaDisablePooledEuLoadBalancingFix:bxt */
  972. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  973. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  974. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  975. }
  976. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  977. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  978. WA_SET_BIT_MASKED(
  979. GEN7_HALF_SLICE_CHICKEN1,
  980. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  981. }
  982. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  983. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  984. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  985. /* WaDisableLSQCROPERFforOCL:bxt */
  986. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  987. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  988. if (ret)
  989. return ret;
  990. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  991. if (ret)
  992. return ret;
  993. }
  994. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  995. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  996. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  997. L3_HIGH_PRIO_CREDITS(2));
  998. /* WaInsertDummyPushConstPs:bxt */
  999. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  1000. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1001. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1002. return 0;
  1003. }
  1004. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  1005. {
  1006. struct drm_i915_private *dev_priv = engine->i915;
  1007. int ret;
  1008. ret = gen9_init_workarounds(engine);
  1009. if (ret)
  1010. return ret;
  1011. /* WaEnableGapsTsvCreditFix:kbl */
  1012. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  1013. GEN9_GAPS_TSV_CREDIT_DISABLE));
  1014. /* WaDisableDynamicCreditSharing:kbl */
  1015. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1016. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  1017. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  1018. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  1019. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  1020. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1021. HDC_FENCE_DEST_SLM_DISABLE);
  1022. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1023. * involving this register should also be added to WA batch as required.
  1024. */
  1025. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1026. /* WaDisableLSQCROPERFforOCL:kbl */
  1027. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1028. GEN8_LQSC_RO_PERF_DIS);
  1029. /* WaInsertDummyPushConstPs:kbl */
  1030. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1031. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1032. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1033. /* WaDisableGafsUnitClkGating:kbl */
  1034. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1035. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1036. WA_SET_BIT_MASKED(
  1037. GEN7_HALF_SLICE_CHICKEN1,
  1038. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1039. /* WaDisableLSQCROPERFforOCL:kbl */
  1040. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1041. if (ret)
  1042. return ret;
  1043. return 0;
  1044. }
  1045. int init_workarounds_ring(struct intel_engine_cs *engine)
  1046. {
  1047. struct drm_i915_private *dev_priv = engine->i915;
  1048. WARN_ON(engine->id != RCS);
  1049. dev_priv->workarounds.count = 0;
  1050. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1051. if (IS_BROADWELL(dev_priv))
  1052. return bdw_init_workarounds(engine);
  1053. if (IS_CHERRYVIEW(dev_priv))
  1054. return chv_init_workarounds(engine);
  1055. if (IS_SKYLAKE(dev_priv))
  1056. return skl_init_workarounds(engine);
  1057. if (IS_BROXTON(dev_priv))
  1058. return bxt_init_workarounds(engine);
  1059. if (IS_KABYLAKE(dev_priv))
  1060. return kbl_init_workarounds(engine);
  1061. return 0;
  1062. }
  1063. static int init_render_ring(struct intel_engine_cs *engine)
  1064. {
  1065. struct drm_i915_private *dev_priv = engine->i915;
  1066. int ret = init_ring_common(engine);
  1067. if (ret)
  1068. return ret;
  1069. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1070. if (IS_GEN(dev_priv, 4, 6))
  1071. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1072. /* We need to disable the AsyncFlip performance optimisations in order
  1073. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1074. * programmed to '1' on all products.
  1075. *
  1076. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1077. */
  1078. if (IS_GEN(dev_priv, 6, 7))
  1079. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1080. /* Required for the hardware to program scanline values for waiting */
  1081. /* WaEnableFlushTlbInvalidationMode:snb */
  1082. if (IS_GEN6(dev_priv))
  1083. I915_WRITE(GFX_MODE,
  1084. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1085. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1086. if (IS_GEN7(dev_priv))
  1087. I915_WRITE(GFX_MODE_GEN7,
  1088. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1089. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1090. if (IS_GEN6(dev_priv)) {
  1091. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1092. * "If this bit is set, STCunit will have LRA as replacement
  1093. * policy. [...] This bit must be reset. LRA replacement
  1094. * policy is not supported."
  1095. */
  1096. I915_WRITE(CACHE_MODE_0,
  1097. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1098. }
  1099. if (IS_GEN(dev_priv, 6, 7))
  1100. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1101. if (HAS_L3_DPF(dev_priv))
  1102. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1103. return init_workarounds_ring(engine);
  1104. }
  1105. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1106. {
  1107. struct drm_i915_private *dev_priv = engine->i915;
  1108. if (dev_priv->semaphore_obj) {
  1109. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1110. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1111. dev_priv->semaphore_obj = NULL;
  1112. }
  1113. intel_fini_pipe_control(engine);
  1114. }
  1115. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1116. unsigned int num_dwords)
  1117. {
  1118. #define MBOX_UPDATE_DWORDS 8
  1119. struct intel_engine_cs *signaller = signaller_req->engine;
  1120. struct drm_i915_private *dev_priv = signaller_req->i915;
  1121. struct intel_engine_cs *waiter;
  1122. enum intel_engine_id id;
  1123. int ret, num_rings;
  1124. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1125. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1126. #undef MBOX_UPDATE_DWORDS
  1127. ret = intel_ring_begin(signaller_req, num_dwords);
  1128. if (ret)
  1129. return ret;
  1130. for_each_engine_id(waiter, dev_priv, id) {
  1131. u32 seqno;
  1132. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1133. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1134. continue;
  1135. seqno = i915_gem_request_get_seqno(signaller_req);
  1136. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1137. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1138. PIPE_CONTROL_QW_WRITE |
  1139. PIPE_CONTROL_CS_STALL);
  1140. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1141. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1142. intel_ring_emit(signaller, seqno);
  1143. intel_ring_emit(signaller, 0);
  1144. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1145. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1146. intel_ring_emit(signaller, 0);
  1147. }
  1148. return 0;
  1149. }
  1150. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1151. unsigned int num_dwords)
  1152. {
  1153. #define MBOX_UPDATE_DWORDS 6
  1154. struct intel_engine_cs *signaller = signaller_req->engine;
  1155. struct drm_i915_private *dev_priv = signaller_req->i915;
  1156. struct intel_engine_cs *waiter;
  1157. enum intel_engine_id id;
  1158. int ret, num_rings;
  1159. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1160. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1161. #undef MBOX_UPDATE_DWORDS
  1162. ret = intel_ring_begin(signaller_req, num_dwords);
  1163. if (ret)
  1164. return ret;
  1165. for_each_engine_id(waiter, dev_priv, id) {
  1166. u32 seqno;
  1167. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1168. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1169. continue;
  1170. seqno = i915_gem_request_get_seqno(signaller_req);
  1171. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1172. MI_FLUSH_DW_OP_STOREDW);
  1173. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1174. MI_FLUSH_DW_USE_GTT);
  1175. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1176. intel_ring_emit(signaller, seqno);
  1177. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1178. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1179. intel_ring_emit(signaller, 0);
  1180. }
  1181. return 0;
  1182. }
  1183. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1184. unsigned int num_dwords)
  1185. {
  1186. struct intel_engine_cs *signaller = signaller_req->engine;
  1187. struct drm_i915_private *dev_priv = signaller_req->i915;
  1188. struct intel_engine_cs *useless;
  1189. enum intel_engine_id id;
  1190. int ret, num_rings;
  1191. #define MBOX_UPDATE_DWORDS 3
  1192. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1193. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1194. #undef MBOX_UPDATE_DWORDS
  1195. ret = intel_ring_begin(signaller_req, num_dwords);
  1196. if (ret)
  1197. return ret;
  1198. for_each_engine_id(useless, dev_priv, id) {
  1199. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1200. if (i915_mmio_reg_valid(mbox_reg)) {
  1201. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1202. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1203. intel_ring_emit_reg(signaller, mbox_reg);
  1204. intel_ring_emit(signaller, seqno);
  1205. }
  1206. }
  1207. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1208. if (num_rings % 2 == 0)
  1209. intel_ring_emit(signaller, MI_NOOP);
  1210. return 0;
  1211. }
  1212. /**
  1213. * gen6_add_request - Update the semaphore mailbox registers
  1214. *
  1215. * @request - request to write to the ring
  1216. *
  1217. * Update the mailbox registers in the *other* rings with the current seqno.
  1218. * This acts like a signal in the canonical semaphore.
  1219. */
  1220. static int
  1221. gen6_add_request(struct drm_i915_gem_request *req)
  1222. {
  1223. struct intel_engine_cs *engine = req->engine;
  1224. int ret;
  1225. if (engine->semaphore.signal)
  1226. ret = engine->semaphore.signal(req, 4);
  1227. else
  1228. ret = intel_ring_begin(req, 4);
  1229. if (ret)
  1230. return ret;
  1231. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1232. intel_ring_emit(engine,
  1233. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1234. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1235. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1236. __intel_ring_advance(engine);
  1237. return 0;
  1238. }
  1239. static int
  1240. gen8_render_add_request(struct drm_i915_gem_request *req)
  1241. {
  1242. struct intel_engine_cs *engine = req->engine;
  1243. int ret;
  1244. if (engine->semaphore.signal)
  1245. ret = engine->semaphore.signal(req, 8);
  1246. else
  1247. ret = intel_ring_begin(req, 8);
  1248. if (ret)
  1249. return ret;
  1250. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1251. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1252. PIPE_CONTROL_CS_STALL |
  1253. PIPE_CONTROL_QW_WRITE));
  1254. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1255. intel_ring_emit(engine, 0);
  1256. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1257. /* We're thrashing one dword of HWS. */
  1258. intel_ring_emit(engine, 0);
  1259. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1260. intel_ring_emit(engine, MI_NOOP);
  1261. __intel_ring_advance(engine);
  1262. return 0;
  1263. }
  1264. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1265. u32 seqno)
  1266. {
  1267. return dev_priv->last_seqno < seqno;
  1268. }
  1269. /**
  1270. * intel_ring_sync - sync the waiter to the signaller on seqno
  1271. *
  1272. * @waiter - ring that is waiting
  1273. * @signaller - ring which has, or will signal
  1274. * @seqno - seqno which the waiter will block on
  1275. */
  1276. static int
  1277. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1278. struct intel_engine_cs *signaller,
  1279. u32 seqno)
  1280. {
  1281. struct intel_engine_cs *waiter = waiter_req->engine;
  1282. struct drm_i915_private *dev_priv = waiter_req->i915;
  1283. struct i915_hw_ppgtt *ppgtt;
  1284. int ret;
  1285. ret = intel_ring_begin(waiter_req, 4);
  1286. if (ret)
  1287. return ret;
  1288. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1289. MI_SEMAPHORE_GLOBAL_GTT |
  1290. MI_SEMAPHORE_SAD_GTE_SDD);
  1291. intel_ring_emit(waiter, seqno);
  1292. intel_ring_emit(waiter,
  1293. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1294. intel_ring_emit(waiter,
  1295. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1296. intel_ring_advance(waiter);
  1297. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1298. * pagetables and we must reload them before executing the batch.
  1299. * We do this on the i915_switch_context() following the wait and
  1300. * before the dispatch.
  1301. */
  1302. ppgtt = waiter_req->ctx->ppgtt;
  1303. if (ppgtt && waiter_req->engine->id != RCS)
  1304. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1305. return 0;
  1306. }
  1307. static int
  1308. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1309. struct intel_engine_cs *signaller,
  1310. u32 seqno)
  1311. {
  1312. struct intel_engine_cs *waiter = waiter_req->engine;
  1313. u32 dw1 = MI_SEMAPHORE_MBOX |
  1314. MI_SEMAPHORE_COMPARE |
  1315. MI_SEMAPHORE_REGISTER;
  1316. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1317. int ret;
  1318. /* Throughout all of the GEM code, seqno passed implies our current
  1319. * seqno is >= the last seqno executed. However for hardware the
  1320. * comparison is strictly greater than.
  1321. */
  1322. seqno -= 1;
  1323. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1324. ret = intel_ring_begin(waiter_req, 4);
  1325. if (ret)
  1326. return ret;
  1327. /* If seqno wrap happened, omit the wait with no-ops */
  1328. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1329. intel_ring_emit(waiter, dw1 | wait_mbox);
  1330. intel_ring_emit(waiter, seqno);
  1331. intel_ring_emit(waiter, 0);
  1332. intel_ring_emit(waiter, MI_NOOP);
  1333. } else {
  1334. intel_ring_emit(waiter, MI_NOOP);
  1335. intel_ring_emit(waiter, MI_NOOP);
  1336. intel_ring_emit(waiter, MI_NOOP);
  1337. intel_ring_emit(waiter, MI_NOOP);
  1338. }
  1339. intel_ring_advance(waiter);
  1340. return 0;
  1341. }
  1342. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1343. do { \
  1344. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1345. PIPE_CONTROL_DEPTH_STALL); \
  1346. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1347. intel_ring_emit(ring__, 0); \
  1348. intel_ring_emit(ring__, 0); \
  1349. } while (0)
  1350. static int
  1351. pc_render_add_request(struct drm_i915_gem_request *req)
  1352. {
  1353. struct intel_engine_cs *engine = req->engine;
  1354. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1355. int ret;
  1356. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1357. * incoherent with writes to memory, i.e. completely fubar,
  1358. * so we need to use PIPE_NOTIFY instead.
  1359. *
  1360. * However, we also need to workaround the qword write
  1361. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1362. * memory before requesting an interrupt.
  1363. */
  1364. ret = intel_ring_begin(req, 32);
  1365. if (ret)
  1366. return ret;
  1367. intel_ring_emit(engine,
  1368. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1369. PIPE_CONTROL_WRITE_FLUSH |
  1370. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1371. intel_ring_emit(engine,
  1372. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1373. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1374. intel_ring_emit(engine, 0);
  1375. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1376. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1377. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1378. scratch_addr += 2 * CACHELINE_BYTES;
  1379. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1380. scratch_addr += 2 * CACHELINE_BYTES;
  1381. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1382. scratch_addr += 2 * CACHELINE_BYTES;
  1383. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1384. scratch_addr += 2 * CACHELINE_BYTES;
  1385. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1386. intel_ring_emit(engine,
  1387. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1388. PIPE_CONTROL_WRITE_FLUSH |
  1389. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1390. PIPE_CONTROL_NOTIFY);
  1391. intel_ring_emit(engine,
  1392. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1393. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1394. intel_ring_emit(engine, 0);
  1395. __intel_ring_advance(engine);
  1396. return 0;
  1397. }
  1398. static void
  1399. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1400. {
  1401. struct drm_i915_private *dev_priv = engine->i915;
  1402. /* Workaround to force correct ordering between irq and seqno writes on
  1403. * ivb (and maybe also on snb) by reading from a CS register (like
  1404. * ACTHD) before reading the status page.
  1405. *
  1406. * Note that this effectively stalls the read by the time it takes to
  1407. * do a memory transaction, which more or less ensures that the write
  1408. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1409. * Alternatively we could delay the interrupt from the CS ring to give
  1410. * the write time to land, but that would incur a delay after every
  1411. * batch i.e. much more frequent than a delay when waiting for the
  1412. * interrupt (with the same net latency).
  1413. *
  1414. * Also note that to prevent whole machine hangs on gen7, we have to
  1415. * take the spinlock to guard against concurrent cacheline access.
  1416. */
  1417. spin_lock_irq(&dev_priv->uncore.lock);
  1418. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1419. spin_unlock_irq(&dev_priv->uncore.lock);
  1420. }
  1421. static u32
  1422. ring_get_seqno(struct intel_engine_cs *engine)
  1423. {
  1424. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1425. }
  1426. static void
  1427. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1428. {
  1429. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1430. }
  1431. static u32
  1432. pc_render_get_seqno(struct intel_engine_cs *engine)
  1433. {
  1434. return engine->scratch.cpu_page[0];
  1435. }
  1436. static void
  1437. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1438. {
  1439. engine->scratch.cpu_page[0] = seqno;
  1440. }
  1441. static bool
  1442. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1443. {
  1444. struct drm_i915_private *dev_priv = engine->i915;
  1445. unsigned long flags;
  1446. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1447. return false;
  1448. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1449. if (engine->irq_refcount++ == 0)
  1450. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1451. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1452. return true;
  1453. }
  1454. static void
  1455. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1456. {
  1457. struct drm_i915_private *dev_priv = engine->i915;
  1458. unsigned long flags;
  1459. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1460. if (--engine->irq_refcount == 0)
  1461. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1462. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1463. }
  1464. static bool
  1465. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1466. {
  1467. struct drm_i915_private *dev_priv = engine->i915;
  1468. unsigned long flags;
  1469. if (!intel_irqs_enabled(dev_priv))
  1470. return false;
  1471. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1472. if (engine->irq_refcount++ == 0) {
  1473. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1474. I915_WRITE(IMR, dev_priv->irq_mask);
  1475. POSTING_READ(IMR);
  1476. }
  1477. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1478. return true;
  1479. }
  1480. static void
  1481. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1482. {
  1483. struct drm_i915_private *dev_priv = engine->i915;
  1484. unsigned long flags;
  1485. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1486. if (--engine->irq_refcount == 0) {
  1487. dev_priv->irq_mask |= engine->irq_enable_mask;
  1488. I915_WRITE(IMR, dev_priv->irq_mask);
  1489. POSTING_READ(IMR);
  1490. }
  1491. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1492. }
  1493. static bool
  1494. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1495. {
  1496. struct drm_i915_private *dev_priv = engine->i915;
  1497. unsigned long flags;
  1498. if (!intel_irqs_enabled(dev_priv))
  1499. return false;
  1500. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1501. if (engine->irq_refcount++ == 0) {
  1502. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1503. I915_WRITE16(IMR, dev_priv->irq_mask);
  1504. POSTING_READ16(IMR);
  1505. }
  1506. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1507. return true;
  1508. }
  1509. static void
  1510. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1511. {
  1512. struct drm_i915_private *dev_priv = engine->i915;
  1513. unsigned long flags;
  1514. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1515. if (--engine->irq_refcount == 0) {
  1516. dev_priv->irq_mask |= engine->irq_enable_mask;
  1517. I915_WRITE16(IMR, dev_priv->irq_mask);
  1518. POSTING_READ16(IMR);
  1519. }
  1520. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1521. }
  1522. static int
  1523. bsd_ring_flush(struct drm_i915_gem_request *req,
  1524. u32 invalidate_domains,
  1525. u32 flush_domains)
  1526. {
  1527. struct intel_engine_cs *engine = req->engine;
  1528. int ret;
  1529. ret = intel_ring_begin(req, 2);
  1530. if (ret)
  1531. return ret;
  1532. intel_ring_emit(engine, MI_FLUSH);
  1533. intel_ring_emit(engine, MI_NOOP);
  1534. intel_ring_advance(engine);
  1535. return 0;
  1536. }
  1537. static int
  1538. i9xx_add_request(struct drm_i915_gem_request *req)
  1539. {
  1540. struct intel_engine_cs *engine = req->engine;
  1541. int ret;
  1542. ret = intel_ring_begin(req, 4);
  1543. if (ret)
  1544. return ret;
  1545. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1546. intel_ring_emit(engine,
  1547. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1548. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1549. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1550. __intel_ring_advance(engine);
  1551. return 0;
  1552. }
  1553. static bool
  1554. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1555. {
  1556. struct drm_i915_private *dev_priv = engine->i915;
  1557. unsigned long flags;
  1558. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1559. return false;
  1560. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1561. if (engine->irq_refcount++ == 0) {
  1562. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1563. I915_WRITE_IMR(engine,
  1564. ~(engine->irq_enable_mask |
  1565. GT_PARITY_ERROR(dev_priv)));
  1566. else
  1567. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1568. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1569. }
  1570. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1571. return true;
  1572. }
  1573. static void
  1574. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1575. {
  1576. struct drm_i915_private *dev_priv = engine->i915;
  1577. unsigned long flags;
  1578. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1579. if (--engine->irq_refcount == 0) {
  1580. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1581. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1582. else
  1583. I915_WRITE_IMR(engine, ~0);
  1584. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1585. }
  1586. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1587. }
  1588. static bool
  1589. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1590. {
  1591. struct drm_i915_private *dev_priv = engine->i915;
  1592. unsigned long flags;
  1593. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1594. return false;
  1595. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1596. if (engine->irq_refcount++ == 0) {
  1597. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1598. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1599. }
  1600. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1601. return true;
  1602. }
  1603. static void
  1604. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1605. {
  1606. struct drm_i915_private *dev_priv = engine->i915;
  1607. unsigned long flags;
  1608. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1609. if (--engine->irq_refcount == 0) {
  1610. I915_WRITE_IMR(engine, ~0);
  1611. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1612. }
  1613. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1614. }
  1615. static bool
  1616. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1617. {
  1618. struct drm_i915_private *dev_priv = engine->i915;
  1619. unsigned long flags;
  1620. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1621. return false;
  1622. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1623. if (engine->irq_refcount++ == 0) {
  1624. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1625. I915_WRITE_IMR(engine,
  1626. ~(engine->irq_enable_mask |
  1627. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1628. } else {
  1629. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1630. }
  1631. POSTING_READ(RING_IMR(engine->mmio_base));
  1632. }
  1633. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1634. return true;
  1635. }
  1636. static void
  1637. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1638. {
  1639. struct drm_i915_private *dev_priv = engine->i915;
  1640. unsigned long flags;
  1641. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1642. if (--engine->irq_refcount == 0) {
  1643. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1644. I915_WRITE_IMR(engine,
  1645. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1646. } else {
  1647. I915_WRITE_IMR(engine, ~0);
  1648. }
  1649. POSTING_READ(RING_IMR(engine->mmio_base));
  1650. }
  1651. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1652. }
  1653. static int
  1654. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1655. u64 offset, u32 length,
  1656. unsigned dispatch_flags)
  1657. {
  1658. struct intel_engine_cs *engine = req->engine;
  1659. int ret;
  1660. ret = intel_ring_begin(req, 2);
  1661. if (ret)
  1662. return ret;
  1663. intel_ring_emit(engine,
  1664. MI_BATCH_BUFFER_START |
  1665. MI_BATCH_GTT |
  1666. (dispatch_flags & I915_DISPATCH_SECURE ?
  1667. 0 : MI_BATCH_NON_SECURE_I965));
  1668. intel_ring_emit(engine, offset);
  1669. intel_ring_advance(engine);
  1670. return 0;
  1671. }
  1672. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1673. #define I830_BATCH_LIMIT (256*1024)
  1674. #define I830_TLB_ENTRIES (2)
  1675. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1676. static int
  1677. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1678. u64 offset, u32 len,
  1679. unsigned dispatch_flags)
  1680. {
  1681. struct intel_engine_cs *engine = req->engine;
  1682. u32 cs_offset = engine->scratch.gtt_offset;
  1683. int ret;
  1684. ret = intel_ring_begin(req, 6);
  1685. if (ret)
  1686. return ret;
  1687. /* Evict the invalid PTE TLBs */
  1688. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1689. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1690. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1691. intel_ring_emit(engine, cs_offset);
  1692. intel_ring_emit(engine, 0xdeadbeef);
  1693. intel_ring_emit(engine, MI_NOOP);
  1694. intel_ring_advance(engine);
  1695. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1696. if (len > I830_BATCH_LIMIT)
  1697. return -ENOSPC;
  1698. ret = intel_ring_begin(req, 6 + 2);
  1699. if (ret)
  1700. return ret;
  1701. /* Blit the batch (which has now all relocs applied) to the
  1702. * stable batch scratch bo area (so that the CS never
  1703. * stumbles over its tlb invalidation bug) ...
  1704. */
  1705. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1706. intel_ring_emit(engine,
  1707. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1708. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1709. intel_ring_emit(engine, cs_offset);
  1710. intel_ring_emit(engine, 4096);
  1711. intel_ring_emit(engine, offset);
  1712. intel_ring_emit(engine, MI_FLUSH);
  1713. intel_ring_emit(engine, MI_NOOP);
  1714. intel_ring_advance(engine);
  1715. /* ... and execute it. */
  1716. offset = cs_offset;
  1717. }
  1718. ret = intel_ring_begin(req, 2);
  1719. if (ret)
  1720. return ret;
  1721. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1722. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1723. 0 : MI_BATCH_NON_SECURE));
  1724. intel_ring_advance(engine);
  1725. return 0;
  1726. }
  1727. static int
  1728. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1729. u64 offset, u32 len,
  1730. unsigned dispatch_flags)
  1731. {
  1732. struct intel_engine_cs *engine = req->engine;
  1733. int ret;
  1734. ret = intel_ring_begin(req, 2);
  1735. if (ret)
  1736. return ret;
  1737. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1738. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1739. 0 : MI_BATCH_NON_SECURE));
  1740. intel_ring_advance(engine);
  1741. return 0;
  1742. }
  1743. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1744. {
  1745. struct drm_i915_private *dev_priv = engine->i915;
  1746. if (!dev_priv->status_page_dmah)
  1747. return;
  1748. drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
  1749. engine->status_page.page_addr = NULL;
  1750. }
  1751. static void cleanup_status_page(struct intel_engine_cs *engine)
  1752. {
  1753. struct drm_i915_gem_object *obj;
  1754. obj = engine->status_page.obj;
  1755. if (obj == NULL)
  1756. return;
  1757. kunmap(sg_page(obj->pages->sgl));
  1758. i915_gem_object_ggtt_unpin(obj);
  1759. drm_gem_object_unreference(&obj->base);
  1760. engine->status_page.obj = NULL;
  1761. }
  1762. static int init_status_page(struct intel_engine_cs *engine)
  1763. {
  1764. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1765. if (obj == NULL) {
  1766. unsigned flags;
  1767. int ret;
  1768. obj = i915_gem_object_create(engine->i915->dev, 4096);
  1769. if (IS_ERR(obj)) {
  1770. DRM_ERROR("Failed to allocate status page\n");
  1771. return PTR_ERR(obj);
  1772. }
  1773. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1774. if (ret)
  1775. goto err_unref;
  1776. flags = 0;
  1777. if (!HAS_LLC(engine->i915))
  1778. /* On g33, we cannot place HWS above 256MiB, so
  1779. * restrict its pinning to the low mappable arena.
  1780. * Though this restriction is not documented for
  1781. * gen4, gen5, or byt, they also behave similarly
  1782. * and hang if the HWS is placed at the top of the
  1783. * GTT. To generalise, it appears that all !llc
  1784. * platforms have issues with us placing the HWS
  1785. * above the mappable region (even though we never
  1786. * actualy map it).
  1787. */
  1788. flags |= PIN_MAPPABLE;
  1789. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1790. if (ret) {
  1791. err_unref:
  1792. drm_gem_object_unreference(&obj->base);
  1793. return ret;
  1794. }
  1795. engine->status_page.obj = obj;
  1796. }
  1797. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1798. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1799. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1800. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1801. engine->name, engine->status_page.gfx_addr);
  1802. return 0;
  1803. }
  1804. static int init_phys_status_page(struct intel_engine_cs *engine)
  1805. {
  1806. struct drm_i915_private *dev_priv = engine->i915;
  1807. if (!dev_priv->status_page_dmah) {
  1808. dev_priv->status_page_dmah =
  1809. drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
  1810. if (!dev_priv->status_page_dmah)
  1811. return -ENOMEM;
  1812. }
  1813. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1814. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1815. return 0;
  1816. }
  1817. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1818. {
  1819. GEM_BUG_ON(ringbuf->vma == NULL);
  1820. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1821. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1822. i915_gem_object_unpin_map(ringbuf->obj);
  1823. else
  1824. i915_vma_unpin_iomap(ringbuf->vma);
  1825. ringbuf->virtual_start = NULL;
  1826. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1827. ringbuf->vma = NULL;
  1828. }
  1829. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1830. struct intel_ringbuffer *ringbuf)
  1831. {
  1832. struct drm_i915_gem_object *obj = ringbuf->obj;
  1833. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1834. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1835. void *addr;
  1836. int ret;
  1837. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1838. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1839. if (ret)
  1840. return ret;
  1841. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1842. if (ret)
  1843. goto err_unpin;
  1844. addr = i915_gem_object_pin_map(obj);
  1845. if (IS_ERR(addr)) {
  1846. ret = PTR_ERR(addr);
  1847. goto err_unpin;
  1848. }
  1849. } else {
  1850. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1851. flags | PIN_MAPPABLE);
  1852. if (ret)
  1853. return ret;
  1854. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1855. if (ret)
  1856. goto err_unpin;
  1857. /* Access through the GTT requires the device to be awake. */
  1858. assert_rpm_wakelock_held(dev_priv);
  1859. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1860. if (IS_ERR(addr)) {
  1861. ret = PTR_ERR(addr);
  1862. goto err_unpin;
  1863. }
  1864. }
  1865. ringbuf->virtual_start = addr;
  1866. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1867. return 0;
  1868. err_unpin:
  1869. i915_gem_object_ggtt_unpin(obj);
  1870. return ret;
  1871. }
  1872. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1873. {
  1874. drm_gem_object_unreference(&ringbuf->obj->base);
  1875. ringbuf->obj = NULL;
  1876. }
  1877. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1878. struct intel_ringbuffer *ringbuf)
  1879. {
  1880. struct drm_i915_gem_object *obj;
  1881. obj = NULL;
  1882. if (!HAS_LLC(dev))
  1883. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1884. if (obj == NULL)
  1885. obj = i915_gem_object_create(dev, ringbuf->size);
  1886. if (IS_ERR(obj))
  1887. return PTR_ERR(obj);
  1888. /* mark ring buffers as read-only from GPU side by default */
  1889. obj->gt_ro = 1;
  1890. ringbuf->obj = obj;
  1891. return 0;
  1892. }
  1893. struct intel_ringbuffer *
  1894. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1895. {
  1896. struct intel_ringbuffer *ring;
  1897. int ret;
  1898. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1899. if (ring == NULL) {
  1900. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1901. engine->name);
  1902. return ERR_PTR(-ENOMEM);
  1903. }
  1904. ring->engine = engine;
  1905. list_add(&ring->link, &engine->buffers);
  1906. ring->size = size;
  1907. /* Workaround an erratum on the i830 which causes a hang if
  1908. * the TAIL pointer points to within the last 2 cachelines
  1909. * of the buffer.
  1910. */
  1911. ring->effective_size = size;
  1912. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1913. ring->effective_size -= 2 * CACHELINE_BYTES;
  1914. ring->last_retired_head = -1;
  1915. intel_ring_update_space(ring);
  1916. ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
  1917. if (ret) {
  1918. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1919. engine->name, ret);
  1920. list_del(&ring->link);
  1921. kfree(ring);
  1922. return ERR_PTR(ret);
  1923. }
  1924. return ring;
  1925. }
  1926. void
  1927. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1928. {
  1929. intel_destroy_ringbuffer_obj(ring);
  1930. list_del(&ring->link);
  1931. kfree(ring);
  1932. }
  1933. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1934. struct intel_engine_cs *engine)
  1935. {
  1936. struct intel_context *ce = &ctx->engine[engine->id];
  1937. int ret;
  1938. lockdep_assert_held(&ctx->i915->dev->struct_mutex);
  1939. if (ce->pin_count++)
  1940. return 0;
  1941. if (ce->state) {
  1942. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1943. if (ret)
  1944. goto error;
  1945. }
  1946. /* The kernel context is only used as a placeholder for flushing the
  1947. * active context. It is never used for submitting user rendering and
  1948. * as such never requires the golden render context, and so we can skip
  1949. * emitting it when we switch to the kernel context. This is required
  1950. * as during eviction we cannot allocate and pin the renderstate in
  1951. * order to initialise the context.
  1952. */
  1953. if (ctx == ctx->i915->kernel_context)
  1954. ce->initialised = true;
  1955. i915_gem_context_reference(ctx);
  1956. return 0;
  1957. error:
  1958. ce->pin_count = 0;
  1959. return ret;
  1960. }
  1961. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1962. struct intel_engine_cs *engine)
  1963. {
  1964. struct intel_context *ce = &ctx->engine[engine->id];
  1965. lockdep_assert_held(&ctx->i915->dev->struct_mutex);
  1966. if (--ce->pin_count)
  1967. return;
  1968. if (ce->state)
  1969. i915_gem_object_ggtt_unpin(ce->state);
  1970. i915_gem_context_unreference(ctx);
  1971. }
  1972. static int intel_init_ring_buffer(struct drm_device *dev,
  1973. struct intel_engine_cs *engine)
  1974. {
  1975. struct drm_i915_private *dev_priv = to_i915(dev);
  1976. struct intel_ringbuffer *ringbuf;
  1977. int ret;
  1978. WARN_ON(engine->buffer);
  1979. engine->i915 = dev_priv;
  1980. INIT_LIST_HEAD(&engine->active_list);
  1981. INIT_LIST_HEAD(&engine->request_list);
  1982. INIT_LIST_HEAD(&engine->execlist_queue);
  1983. INIT_LIST_HEAD(&engine->buffers);
  1984. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1985. memset(engine->semaphore.sync_seqno, 0,
  1986. sizeof(engine->semaphore.sync_seqno));
  1987. init_waitqueue_head(&engine->irq_queue);
  1988. /* We may need to do things with the shrinker which
  1989. * require us to immediately switch back to the default
  1990. * context. This can cause a problem as pinning the
  1991. * default context also requires GTT space which may not
  1992. * be available. To avoid this we always pin the default
  1993. * context.
  1994. */
  1995. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1996. if (ret)
  1997. goto error;
  1998. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1999. if (IS_ERR(ringbuf)) {
  2000. ret = PTR_ERR(ringbuf);
  2001. goto error;
  2002. }
  2003. engine->buffer = ringbuf;
  2004. if (I915_NEED_GFX_HWS(dev_priv)) {
  2005. ret = init_status_page(engine);
  2006. if (ret)
  2007. goto error;
  2008. } else {
  2009. WARN_ON(engine->id != RCS);
  2010. ret = init_phys_status_page(engine);
  2011. if (ret)
  2012. goto error;
  2013. }
  2014. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  2015. if (ret) {
  2016. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  2017. engine->name, ret);
  2018. intel_destroy_ringbuffer_obj(ringbuf);
  2019. goto error;
  2020. }
  2021. ret = i915_cmd_parser_init_ring(engine);
  2022. if (ret)
  2023. goto error;
  2024. return 0;
  2025. error:
  2026. intel_cleanup_engine(engine);
  2027. return ret;
  2028. }
  2029. void intel_cleanup_engine(struct intel_engine_cs *engine)
  2030. {
  2031. struct drm_i915_private *dev_priv;
  2032. if (!intel_engine_initialized(engine))
  2033. return;
  2034. dev_priv = engine->i915;
  2035. if (engine->buffer) {
  2036. intel_stop_engine(engine);
  2037. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  2038. intel_unpin_ringbuffer_obj(engine->buffer);
  2039. intel_ringbuffer_free(engine->buffer);
  2040. engine->buffer = NULL;
  2041. }
  2042. if (engine->cleanup)
  2043. engine->cleanup(engine);
  2044. if (I915_NEED_GFX_HWS(dev_priv)) {
  2045. cleanup_status_page(engine);
  2046. } else {
  2047. WARN_ON(engine->id != RCS);
  2048. cleanup_phys_status_page(engine);
  2049. }
  2050. i915_cmd_parser_fini_ring(engine);
  2051. i915_gem_batch_pool_fini(&engine->batch_pool);
  2052. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  2053. engine->i915 = NULL;
  2054. }
  2055. int intel_engine_idle(struct intel_engine_cs *engine)
  2056. {
  2057. struct drm_i915_gem_request *req;
  2058. /* Wait upon the last request to be completed */
  2059. if (list_empty(&engine->request_list))
  2060. return 0;
  2061. req = list_entry(engine->request_list.prev,
  2062. struct drm_i915_gem_request,
  2063. list);
  2064. /* Make sure we do not trigger any retires */
  2065. return __i915_wait_request(req,
  2066. req->i915->mm.interruptible,
  2067. NULL, NULL);
  2068. }
  2069. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  2070. {
  2071. int ret;
  2072. /* Flush enough space to reduce the likelihood of waiting after
  2073. * we start building the request - in which case we will just
  2074. * have to repeat work.
  2075. */
  2076. request->reserved_space += LEGACY_REQUEST_SIZE;
  2077. request->ringbuf = request->engine->buffer;
  2078. ret = intel_ring_begin(request, 0);
  2079. if (ret)
  2080. return ret;
  2081. request->reserved_space -= LEGACY_REQUEST_SIZE;
  2082. return 0;
  2083. }
  2084. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  2085. {
  2086. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2087. struct intel_engine_cs *engine = req->engine;
  2088. struct drm_i915_gem_request *target;
  2089. intel_ring_update_space(ringbuf);
  2090. if (ringbuf->space >= bytes)
  2091. return 0;
  2092. /*
  2093. * Space is reserved in the ringbuffer for finalising the request,
  2094. * as that cannot be allowed to fail. During request finalisation,
  2095. * reserved_space is set to 0 to stop the overallocation and the
  2096. * assumption is that then we never need to wait (which has the
  2097. * risk of failing with EINTR).
  2098. *
  2099. * See also i915_gem_request_alloc() and i915_add_request().
  2100. */
  2101. GEM_BUG_ON(!req->reserved_space);
  2102. list_for_each_entry(target, &engine->request_list, list) {
  2103. unsigned space;
  2104. /*
  2105. * The request queue is per-engine, so can contain requests
  2106. * from multiple ringbuffers. Here, we must ignore any that
  2107. * aren't from the ringbuffer we're considering.
  2108. */
  2109. if (target->ringbuf != ringbuf)
  2110. continue;
  2111. /* Would completion of this request free enough space? */
  2112. space = __intel_ring_space(target->postfix, ringbuf->tail,
  2113. ringbuf->size);
  2114. if (space >= bytes)
  2115. break;
  2116. }
  2117. if (WARN_ON(&target->list == &engine->request_list))
  2118. return -ENOSPC;
  2119. return i915_wait_request(target);
  2120. }
  2121. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2122. {
  2123. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2124. int remain_actual = ringbuf->size - ringbuf->tail;
  2125. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2126. int bytes = num_dwords * sizeof(u32);
  2127. int total_bytes, wait_bytes;
  2128. bool need_wrap = false;
  2129. total_bytes = bytes + req->reserved_space;
  2130. if (unlikely(bytes > remain_usable)) {
  2131. /*
  2132. * Not enough space for the basic request. So need to flush
  2133. * out the remainder and then wait for base + reserved.
  2134. */
  2135. wait_bytes = remain_actual + total_bytes;
  2136. need_wrap = true;
  2137. } else if (unlikely(total_bytes > remain_usable)) {
  2138. /*
  2139. * The base request will fit but the reserved space
  2140. * falls off the end. So we don't need an immediate wrap
  2141. * and only need to effectively wait for the reserved
  2142. * size space from the start of ringbuffer.
  2143. */
  2144. wait_bytes = remain_actual + req->reserved_space;
  2145. } else {
  2146. /* No wrapping required, just waiting. */
  2147. wait_bytes = total_bytes;
  2148. }
  2149. if (wait_bytes > ringbuf->space) {
  2150. int ret = wait_for_space(req, wait_bytes);
  2151. if (unlikely(ret))
  2152. return ret;
  2153. intel_ring_update_space(ringbuf);
  2154. if (unlikely(ringbuf->space < wait_bytes))
  2155. return -EAGAIN;
  2156. }
  2157. if (unlikely(need_wrap)) {
  2158. GEM_BUG_ON(remain_actual > ringbuf->space);
  2159. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2160. /* Fill the tail with MI_NOOP */
  2161. memset(ringbuf->virtual_start + ringbuf->tail,
  2162. 0, remain_actual);
  2163. ringbuf->tail = 0;
  2164. ringbuf->space -= remain_actual;
  2165. }
  2166. ringbuf->space -= bytes;
  2167. GEM_BUG_ON(ringbuf->space < 0);
  2168. return 0;
  2169. }
  2170. /* Align the ring tail to a cacheline boundary */
  2171. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2172. {
  2173. struct intel_engine_cs *engine = req->engine;
  2174. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2175. int ret;
  2176. if (num_dwords == 0)
  2177. return 0;
  2178. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2179. ret = intel_ring_begin(req, num_dwords);
  2180. if (ret)
  2181. return ret;
  2182. while (num_dwords--)
  2183. intel_ring_emit(engine, MI_NOOP);
  2184. intel_ring_advance(engine);
  2185. return 0;
  2186. }
  2187. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2188. {
  2189. struct drm_i915_private *dev_priv = engine->i915;
  2190. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2191. * so long as the semaphore value in the register/page is greater
  2192. * than the sync value), so whenever we reset the seqno,
  2193. * so long as we reset the tracking semaphore value to 0, it will
  2194. * always be before the next request's seqno. If we don't reset
  2195. * the semaphore value, then when the seqno moves backwards all
  2196. * future waits will complete instantly (causing rendering corruption).
  2197. */
  2198. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2199. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2200. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2201. if (HAS_VEBOX(dev_priv))
  2202. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2203. }
  2204. if (dev_priv->semaphore_obj) {
  2205. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2206. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2207. void *semaphores = kmap(page);
  2208. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2209. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2210. kunmap(page);
  2211. }
  2212. memset(engine->semaphore.sync_seqno, 0,
  2213. sizeof(engine->semaphore.sync_seqno));
  2214. engine->set_seqno(engine, seqno);
  2215. engine->last_submitted_seqno = seqno;
  2216. engine->hangcheck.seqno = seqno;
  2217. }
  2218. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2219. u32 value)
  2220. {
  2221. struct drm_i915_private *dev_priv = engine->i915;
  2222. /* Every tail move must follow the sequence below */
  2223. /* Disable notification that the ring is IDLE. The GT
  2224. * will then assume that it is busy and bring it out of rc6.
  2225. */
  2226. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2227. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2228. /* Clear the context id. Here be magic! */
  2229. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2230. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2231. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2232. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2233. 50))
  2234. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2235. /* Now that the ring is fully powered up, update the tail */
  2236. I915_WRITE_TAIL(engine, value);
  2237. POSTING_READ(RING_TAIL(engine->mmio_base));
  2238. /* Let the ring send IDLE messages to the GT again,
  2239. * and so let it sleep to conserve power when idle.
  2240. */
  2241. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2242. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2243. }
  2244. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2245. u32 invalidate, u32 flush)
  2246. {
  2247. struct intel_engine_cs *engine = req->engine;
  2248. uint32_t cmd;
  2249. int ret;
  2250. ret = intel_ring_begin(req, 4);
  2251. if (ret)
  2252. return ret;
  2253. cmd = MI_FLUSH_DW;
  2254. if (INTEL_GEN(req->i915) >= 8)
  2255. cmd += 1;
  2256. /* We always require a command barrier so that subsequent
  2257. * commands, such as breadcrumb interrupts, are strictly ordered
  2258. * wrt the contents of the write cache being flushed to memory
  2259. * (and thus being coherent from the CPU).
  2260. */
  2261. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2262. /*
  2263. * Bspec vol 1c.5 - video engine command streamer:
  2264. * "If ENABLED, all TLBs will be invalidated once the flush
  2265. * operation is complete. This bit is only valid when the
  2266. * Post-Sync Operation field is a value of 1h or 3h."
  2267. */
  2268. if (invalidate & I915_GEM_GPU_DOMAINS)
  2269. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2270. intel_ring_emit(engine, cmd);
  2271. intel_ring_emit(engine,
  2272. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2273. if (INTEL_GEN(req->i915) >= 8) {
  2274. intel_ring_emit(engine, 0); /* upper addr */
  2275. intel_ring_emit(engine, 0); /* value */
  2276. } else {
  2277. intel_ring_emit(engine, 0);
  2278. intel_ring_emit(engine, MI_NOOP);
  2279. }
  2280. intel_ring_advance(engine);
  2281. return 0;
  2282. }
  2283. static int
  2284. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2285. u64 offset, u32 len,
  2286. unsigned dispatch_flags)
  2287. {
  2288. struct intel_engine_cs *engine = req->engine;
  2289. bool ppgtt = USES_PPGTT(engine->dev) &&
  2290. !(dispatch_flags & I915_DISPATCH_SECURE);
  2291. int ret;
  2292. ret = intel_ring_begin(req, 4);
  2293. if (ret)
  2294. return ret;
  2295. /* FIXME(BDW): Address space and security selectors. */
  2296. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2297. (dispatch_flags & I915_DISPATCH_RS ?
  2298. MI_BATCH_RESOURCE_STREAMER : 0));
  2299. intel_ring_emit(engine, lower_32_bits(offset));
  2300. intel_ring_emit(engine, upper_32_bits(offset));
  2301. intel_ring_emit(engine, MI_NOOP);
  2302. intel_ring_advance(engine);
  2303. return 0;
  2304. }
  2305. static int
  2306. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2307. u64 offset, u32 len,
  2308. unsigned dispatch_flags)
  2309. {
  2310. struct intel_engine_cs *engine = req->engine;
  2311. int ret;
  2312. ret = intel_ring_begin(req, 2);
  2313. if (ret)
  2314. return ret;
  2315. intel_ring_emit(engine,
  2316. MI_BATCH_BUFFER_START |
  2317. (dispatch_flags & I915_DISPATCH_SECURE ?
  2318. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2319. (dispatch_flags & I915_DISPATCH_RS ?
  2320. MI_BATCH_RESOURCE_STREAMER : 0));
  2321. /* bit0-7 is the length on GEN6+ */
  2322. intel_ring_emit(engine, offset);
  2323. intel_ring_advance(engine);
  2324. return 0;
  2325. }
  2326. static int
  2327. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2328. u64 offset, u32 len,
  2329. unsigned dispatch_flags)
  2330. {
  2331. struct intel_engine_cs *engine = req->engine;
  2332. int ret;
  2333. ret = intel_ring_begin(req, 2);
  2334. if (ret)
  2335. return ret;
  2336. intel_ring_emit(engine,
  2337. MI_BATCH_BUFFER_START |
  2338. (dispatch_flags & I915_DISPATCH_SECURE ?
  2339. 0 : MI_BATCH_NON_SECURE_I965));
  2340. /* bit0-7 is the length on GEN6+ */
  2341. intel_ring_emit(engine, offset);
  2342. intel_ring_advance(engine);
  2343. return 0;
  2344. }
  2345. /* Blitter support (SandyBridge+) */
  2346. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2347. u32 invalidate, u32 flush)
  2348. {
  2349. struct intel_engine_cs *engine = req->engine;
  2350. uint32_t cmd;
  2351. int ret;
  2352. ret = intel_ring_begin(req, 4);
  2353. if (ret)
  2354. return ret;
  2355. cmd = MI_FLUSH_DW;
  2356. if (INTEL_GEN(req->i915) >= 8)
  2357. cmd += 1;
  2358. /* We always require a command barrier so that subsequent
  2359. * commands, such as breadcrumb interrupts, are strictly ordered
  2360. * wrt the contents of the write cache being flushed to memory
  2361. * (and thus being coherent from the CPU).
  2362. */
  2363. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2364. /*
  2365. * Bspec vol 1c.3 - blitter engine command streamer:
  2366. * "If ENABLED, all TLBs will be invalidated once the flush
  2367. * operation is complete. This bit is only valid when the
  2368. * Post-Sync Operation field is a value of 1h or 3h."
  2369. */
  2370. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2371. cmd |= MI_INVALIDATE_TLB;
  2372. intel_ring_emit(engine, cmd);
  2373. intel_ring_emit(engine,
  2374. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2375. if (INTEL_GEN(req->i915) >= 8) {
  2376. intel_ring_emit(engine, 0); /* upper addr */
  2377. intel_ring_emit(engine, 0); /* value */
  2378. } else {
  2379. intel_ring_emit(engine, 0);
  2380. intel_ring_emit(engine, MI_NOOP);
  2381. }
  2382. intel_ring_advance(engine);
  2383. return 0;
  2384. }
  2385. int intel_init_render_ring_buffer(struct drm_device *dev)
  2386. {
  2387. struct drm_i915_private *dev_priv = dev->dev_private;
  2388. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2389. struct drm_i915_gem_object *obj;
  2390. int ret;
  2391. engine->name = "render ring";
  2392. engine->id = RCS;
  2393. engine->exec_id = I915_EXEC_RENDER;
  2394. engine->hw_id = 0;
  2395. engine->mmio_base = RENDER_RING_BASE;
  2396. if (INTEL_GEN(dev_priv) >= 8) {
  2397. if (i915_semaphore_is_enabled(dev_priv)) {
  2398. obj = i915_gem_object_create(dev, 4096);
  2399. if (IS_ERR(obj)) {
  2400. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2401. i915.semaphores = 0;
  2402. } else {
  2403. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2404. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2405. if (ret != 0) {
  2406. drm_gem_object_unreference(&obj->base);
  2407. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2408. i915.semaphores = 0;
  2409. } else
  2410. dev_priv->semaphore_obj = obj;
  2411. }
  2412. }
  2413. engine->init_context = intel_rcs_ctx_init;
  2414. engine->add_request = gen8_render_add_request;
  2415. engine->flush = gen8_render_ring_flush;
  2416. engine->irq_get = gen8_ring_get_irq;
  2417. engine->irq_put = gen8_ring_put_irq;
  2418. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2419. engine->get_seqno = ring_get_seqno;
  2420. engine->set_seqno = ring_set_seqno;
  2421. if (i915_semaphore_is_enabled(dev_priv)) {
  2422. WARN_ON(!dev_priv->semaphore_obj);
  2423. engine->semaphore.sync_to = gen8_ring_sync;
  2424. engine->semaphore.signal = gen8_rcs_signal;
  2425. GEN8_RING_SEMAPHORE_INIT(engine);
  2426. }
  2427. } else if (INTEL_GEN(dev_priv) >= 6) {
  2428. engine->init_context = intel_rcs_ctx_init;
  2429. engine->add_request = gen6_add_request;
  2430. engine->flush = gen7_render_ring_flush;
  2431. if (IS_GEN6(dev_priv))
  2432. engine->flush = gen6_render_ring_flush;
  2433. engine->irq_get = gen6_ring_get_irq;
  2434. engine->irq_put = gen6_ring_put_irq;
  2435. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2436. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2437. engine->get_seqno = ring_get_seqno;
  2438. engine->set_seqno = ring_set_seqno;
  2439. if (i915_semaphore_is_enabled(dev_priv)) {
  2440. engine->semaphore.sync_to = gen6_ring_sync;
  2441. engine->semaphore.signal = gen6_signal;
  2442. /*
  2443. * The current semaphore is only applied on pre-gen8
  2444. * platform. And there is no VCS2 ring on the pre-gen8
  2445. * platform. So the semaphore between RCS and VCS2 is
  2446. * initialized as INVALID. Gen8 will initialize the
  2447. * sema between VCS2 and RCS later.
  2448. */
  2449. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2450. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2451. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2452. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2453. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2454. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2455. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2456. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2457. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2458. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2459. }
  2460. } else if (IS_GEN5(dev_priv)) {
  2461. engine->add_request = pc_render_add_request;
  2462. engine->flush = gen4_render_ring_flush;
  2463. engine->get_seqno = pc_render_get_seqno;
  2464. engine->set_seqno = pc_render_set_seqno;
  2465. engine->irq_get = gen5_ring_get_irq;
  2466. engine->irq_put = gen5_ring_put_irq;
  2467. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2468. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2469. } else {
  2470. engine->add_request = i9xx_add_request;
  2471. if (INTEL_GEN(dev_priv) < 4)
  2472. engine->flush = gen2_render_ring_flush;
  2473. else
  2474. engine->flush = gen4_render_ring_flush;
  2475. engine->get_seqno = ring_get_seqno;
  2476. engine->set_seqno = ring_set_seqno;
  2477. if (IS_GEN2(dev_priv)) {
  2478. engine->irq_get = i8xx_ring_get_irq;
  2479. engine->irq_put = i8xx_ring_put_irq;
  2480. } else {
  2481. engine->irq_get = i9xx_ring_get_irq;
  2482. engine->irq_put = i9xx_ring_put_irq;
  2483. }
  2484. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2485. }
  2486. engine->write_tail = ring_write_tail;
  2487. if (IS_HASWELL(dev_priv))
  2488. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2489. else if (IS_GEN8(dev_priv))
  2490. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2491. else if (INTEL_GEN(dev_priv) >= 6)
  2492. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2493. else if (INTEL_GEN(dev_priv) >= 4)
  2494. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2495. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2496. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2497. else
  2498. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2499. engine->init_hw = init_render_ring;
  2500. engine->cleanup = render_ring_cleanup;
  2501. /* Workaround batchbuffer to combat CS tlb bug. */
  2502. if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2503. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2504. if (IS_ERR(obj)) {
  2505. DRM_ERROR("Failed to allocate batch bo\n");
  2506. return PTR_ERR(obj);
  2507. }
  2508. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2509. if (ret != 0) {
  2510. drm_gem_object_unreference(&obj->base);
  2511. DRM_ERROR("Failed to ping batch bo\n");
  2512. return ret;
  2513. }
  2514. engine->scratch.obj = obj;
  2515. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2516. }
  2517. ret = intel_init_ring_buffer(dev, engine);
  2518. if (ret)
  2519. return ret;
  2520. if (INTEL_GEN(dev_priv) >= 5) {
  2521. ret = intel_init_pipe_control(engine);
  2522. if (ret)
  2523. return ret;
  2524. }
  2525. return 0;
  2526. }
  2527. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2528. {
  2529. struct drm_i915_private *dev_priv = dev->dev_private;
  2530. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2531. engine->name = "bsd ring";
  2532. engine->id = VCS;
  2533. engine->exec_id = I915_EXEC_BSD;
  2534. engine->hw_id = 1;
  2535. engine->write_tail = ring_write_tail;
  2536. if (INTEL_GEN(dev_priv) >= 6) {
  2537. engine->mmio_base = GEN6_BSD_RING_BASE;
  2538. /* gen6 bsd needs a special wa for tail updates */
  2539. if (IS_GEN6(dev_priv))
  2540. engine->write_tail = gen6_bsd_ring_write_tail;
  2541. engine->flush = gen6_bsd_ring_flush;
  2542. engine->add_request = gen6_add_request;
  2543. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2544. engine->get_seqno = ring_get_seqno;
  2545. engine->set_seqno = ring_set_seqno;
  2546. if (INTEL_GEN(dev_priv) >= 8) {
  2547. engine->irq_enable_mask =
  2548. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2549. engine->irq_get = gen8_ring_get_irq;
  2550. engine->irq_put = gen8_ring_put_irq;
  2551. engine->dispatch_execbuffer =
  2552. gen8_ring_dispatch_execbuffer;
  2553. if (i915_semaphore_is_enabled(dev_priv)) {
  2554. engine->semaphore.sync_to = gen8_ring_sync;
  2555. engine->semaphore.signal = gen8_xcs_signal;
  2556. GEN8_RING_SEMAPHORE_INIT(engine);
  2557. }
  2558. } else {
  2559. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2560. engine->irq_get = gen6_ring_get_irq;
  2561. engine->irq_put = gen6_ring_put_irq;
  2562. engine->dispatch_execbuffer =
  2563. gen6_ring_dispatch_execbuffer;
  2564. if (i915_semaphore_is_enabled(dev_priv)) {
  2565. engine->semaphore.sync_to = gen6_ring_sync;
  2566. engine->semaphore.signal = gen6_signal;
  2567. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2568. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2569. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2570. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2571. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2572. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2573. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2574. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2575. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2576. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2577. }
  2578. }
  2579. } else {
  2580. engine->mmio_base = BSD_RING_BASE;
  2581. engine->flush = bsd_ring_flush;
  2582. engine->add_request = i9xx_add_request;
  2583. engine->get_seqno = ring_get_seqno;
  2584. engine->set_seqno = ring_set_seqno;
  2585. if (IS_GEN5(dev_priv)) {
  2586. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2587. engine->irq_get = gen5_ring_get_irq;
  2588. engine->irq_put = gen5_ring_put_irq;
  2589. } else {
  2590. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2591. engine->irq_get = i9xx_ring_get_irq;
  2592. engine->irq_put = i9xx_ring_put_irq;
  2593. }
  2594. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2595. }
  2596. engine->init_hw = init_ring_common;
  2597. return intel_init_ring_buffer(dev, engine);
  2598. }
  2599. /**
  2600. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2601. */
  2602. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2603. {
  2604. struct drm_i915_private *dev_priv = dev->dev_private;
  2605. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2606. engine->name = "bsd2 ring";
  2607. engine->id = VCS2;
  2608. engine->exec_id = I915_EXEC_BSD;
  2609. engine->hw_id = 4;
  2610. engine->write_tail = ring_write_tail;
  2611. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2612. engine->flush = gen6_bsd_ring_flush;
  2613. engine->add_request = gen6_add_request;
  2614. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2615. engine->get_seqno = ring_get_seqno;
  2616. engine->set_seqno = ring_set_seqno;
  2617. engine->irq_enable_mask =
  2618. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2619. engine->irq_get = gen8_ring_get_irq;
  2620. engine->irq_put = gen8_ring_put_irq;
  2621. engine->dispatch_execbuffer =
  2622. gen8_ring_dispatch_execbuffer;
  2623. if (i915_semaphore_is_enabled(dev_priv)) {
  2624. engine->semaphore.sync_to = gen8_ring_sync;
  2625. engine->semaphore.signal = gen8_xcs_signal;
  2626. GEN8_RING_SEMAPHORE_INIT(engine);
  2627. }
  2628. engine->init_hw = init_ring_common;
  2629. return intel_init_ring_buffer(dev, engine);
  2630. }
  2631. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2632. {
  2633. struct drm_i915_private *dev_priv = dev->dev_private;
  2634. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2635. engine->name = "blitter ring";
  2636. engine->id = BCS;
  2637. engine->exec_id = I915_EXEC_BLT;
  2638. engine->hw_id = 2;
  2639. engine->mmio_base = BLT_RING_BASE;
  2640. engine->write_tail = ring_write_tail;
  2641. engine->flush = gen6_ring_flush;
  2642. engine->add_request = gen6_add_request;
  2643. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2644. engine->get_seqno = ring_get_seqno;
  2645. engine->set_seqno = ring_set_seqno;
  2646. if (INTEL_GEN(dev_priv) >= 8) {
  2647. engine->irq_enable_mask =
  2648. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2649. engine->irq_get = gen8_ring_get_irq;
  2650. engine->irq_put = gen8_ring_put_irq;
  2651. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2652. if (i915_semaphore_is_enabled(dev_priv)) {
  2653. engine->semaphore.sync_to = gen8_ring_sync;
  2654. engine->semaphore.signal = gen8_xcs_signal;
  2655. GEN8_RING_SEMAPHORE_INIT(engine);
  2656. }
  2657. } else {
  2658. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2659. engine->irq_get = gen6_ring_get_irq;
  2660. engine->irq_put = gen6_ring_put_irq;
  2661. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2662. if (i915_semaphore_is_enabled(dev_priv)) {
  2663. engine->semaphore.signal = gen6_signal;
  2664. engine->semaphore.sync_to = gen6_ring_sync;
  2665. /*
  2666. * The current semaphore is only applied on pre-gen8
  2667. * platform. And there is no VCS2 ring on the pre-gen8
  2668. * platform. So the semaphore between BCS and VCS2 is
  2669. * initialized as INVALID. Gen8 will initialize the
  2670. * sema between BCS and VCS2 later.
  2671. */
  2672. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2673. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2674. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2675. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2676. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2677. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2678. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2679. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2680. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2681. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2682. }
  2683. }
  2684. engine->init_hw = init_ring_common;
  2685. return intel_init_ring_buffer(dev, engine);
  2686. }
  2687. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2688. {
  2689. struct drm_i915_private *dev_priv = dev->dev_private;
  2690. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2691. engine->name = "video enhancement ring";
  2692. engine->id = VECS;
  2693. engine->exec_id = I915_EXEC_VEBOX;
  2694. engine->hw_id = 3;
  2695. engine->mmio_base = VEBOX_RING_BASE;
  2696. engine->write_tail = ring_write_tail;
  2697. engine->flush = gen6_ring_flush;
  2698. engine->add_request = gen6_add_request;
  2699. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2700. engine->get_seqno = ring_get_seqno;
  2701. engine->set_seqno = ring_set_seqno;
  2702. if (INTEL_GEN(dev_priv) >= 8) {
  2703. engine->irq_enable_mask =
  2704. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2705. engine->irq_get = gen8_ring_get_irq;
  2706. engine->irq_put = gen8_ring_put_irq;
  2707. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2708. if (i915_semaphore_is_enabled(dev_priv)) {
  2709. engine->semaphore.sync_to = gen8_ring_sync;
  2710. engine->semaphore.signal = gen8_xcs_signal;
  2711. GEN8_RING_SEMAPHORE_INIT(engine);
  2712. }
  2713. } else {
  2714. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2715. engine->irq_get = hsw_vebox_get_irq;
  2716. engine->irq_put = hsw_vebox_put_irq;
  2717. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2718. if (i915_semaphore_is_enabled(dev_priv)) {
  2719. engine->semaphore.sync_to = gen6_ring_sync;
  2720. engine->semaphore.signal = gen6_signal;
  2721. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2722. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2723. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2724. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2725. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2726. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2727. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2728. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2729. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2730. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2731. }
  2732. }
  2733. engine->init_hw = init_ring_common;
  2734. return intel_init_ring_buffer(dev, engine);
  2735. }
  2736. int
  2737. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2738. {
  2739. struct intel_engine_cs *engine = req->engine;
  2740. int ret;
  2741. if (!engine->gpu_caches_dirty)
  2742. return 0;
  2743. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2744. if (ret)
  2745. return ret;
  2746. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2747. engine->gpu_caches_dirty = false;
  2748. return 0;
  2749. }
  2750. int
  2751. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2752. {
  2753. struct intel_engine_cs *engine = req->engine;
  2754. uint32_t flush_domains;
  2755. int ret;
  2756. flush_domains = 0;
  2757. if (engine->gpu_caches_dirty)
  2758. flush_domains = I915_GEM_GPU_DOMAINS;
  2759. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2760. if (ret)
  2761. return ret;
  2762. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2763. engine->gpu_caches_dirty = false;
  2764. return 0;
  2765. }
  2766. void
  2767. intel_stop_engine(struct intel_engine_cs *engine)
  2768. {
  2769. int ret;
  2770. if (!intel_engine_initialized(engine))
  2771. return;
  2772. ret = intel_engine_idle(engine);
  2773. if (ret)
  2774. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2775. engine->name, ret);
  2776. stop_ring(engine);
  2777. }