core.c 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Core kernel scheduler code and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. */
  8. #include <linux/sched.h>
  9. #include <linux/sched/clock.h>
  10. #include <uapi/linux/sched/types.h>
  11. #include <linux/sched/loadavg.h>
  12. #include <linux/sched/hotplug.h>
  13. #include <linux/wait_bit.h>
  14. #include <linux/cpuset.h>
  15. #include <linux/delayacct.h>
  16. #include <linux/init_task.h>
  17. #include <linux/context_tracking.h>
  18. #include <linux/rcupdate_wait.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/kprobes.h>
  21. #include <linux/mmu_context.h>
  22. #include <linux/module.h>
  23. #include <linux/nmi.h>
  24. #include <linux/prefetch.h>
  25. #include <linux/profile.h>
  26. #include <linux/security.h>
  27. #include <linux/syscalls.h>
  28. #include <asm/switch_to.h>
  29. #include <asm/tlb.h>
  30. #ifdef CONFIG_PARAVIRT
  31. #include <asm/paravirt.h>
  32. #endif
  33. #include "sched.h"
  34. #include "../workqueue_internal.h"
  35. #include "../smpboot.h"
  36. #define CREATE_TRACE_POINTS
  37. #include <trace/events/sched.h>
  38. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  39. /*
  40. * Debugging: various feature bits
  41. */
  42. #define SCHED_FEAT(name, enabled) \
  43. (1UL << __SCHED_FEAT_##name) * enabled |
  44. const_debug unsigned int sysctl_sched_features =
  45. #include "features.h"
  46. 0;
  47. #undef SCHED_FEAT
  48. /*
  49. * Number of tasks to iterate in a single balance run.
  50. * Limited because this is done with IRQs disabled.
  51. */
  52. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  53. /*
  54. * period over which we average the RT time consumption, measured
  55. * in ms.
  56. *
  57. * default: 1s
  58. */
  59. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  60. /*
  61. * period over which we measure -rt task CPU usage in us.
  62. * default: 1s
  63. */
  64. unsigned int sysctl_sched_rt_period = 1000000;
  65. __read_mostly int scheduler_running;
  66. /*
  67. * part of the period that we allow rt tasks to run in us.
  68. * default: 0.95s
  69. */
  70. int sysctl_sched_rt_runtime = 950000;
  71. /* CPUs with isolated domains */
  72. cpumask_var_t cpu_isolated_map;
  73. /*
  74. * __task_rq_lock - lock the rq @p resides on.
  75. */
  76. struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  77. __acquires(rq->lock)
  78. {
  79. struct rq *rq;
  80. lockdep_assert_held(&p->pi_lock);
  81. for (;;) {
  82. rq = task_rq(p);
  83. raw_spin_lock(&rq->lock);
  84. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  85. rq_pin_lock(rq, rf);
  86. return rq;
  87. }
  88. raw_spin_unlock(&rq->lock);
  89. while (unlikely(task_on_rq_migrating(p)))
  90. cpu_relax();
  91. }
  92. }
  93. /*
  94. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  95. */
  96. struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  97. __acquires(p->pi_lock)
  98. __acquires(rq->lock)
  99. {
  100. struct rq *rq;
  101. for (;;) {
  102. raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  103. rq = task_rq(p);
  104. raw_spin_lock(&rq->lock);
  105. /*
  106. * move_queued_task() task_rq_lock()
  107. *
  108. * ACQUIRE (rq->lock)
  109. * [S] ->on_rq = MIGRATING [L] rq = task_rq()
  110. * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
  111. * [S] ->cpu = new_cpu [L] task_rq()
  112. * [L] ->on_rq
  113. * RELEASE (rq->lock)
  114. *
  115. * If we observe the old cpu in task_rq_lock, the acquire of
  116. * the old rq->lock will fully serialize against the stores.
  117. *
  118. * If we observe the new CPU in task_rq_lock, the acquire will
  119. * pair with the WMB to ensure we must then also see migrating.
  120. */
  121. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  122. rq_pin_lock(rq, rf);
  123. return rq;
  124. }
  125. raw_spin_unlock(&rq->lock);
  126. raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  127. while (unlikely(task_on_rq_migrating(p)))
  128. cpu_relax();
  129. }
  130. }
  131. /*
  132. * RQ-clock updating methods:
  133. */
  134. static void update_rq_clock_task(struct rq *rq, s64 delta)
  135. {
  136. /*
  137. * In theory, the compile should just see 0 here, and optimize out the call
  138. * to sched_rt_avg_update. But I don't trust it...
  139. */
  140. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  141. s64 steal = 0, irq_delta = 0;
  142. #endif
  143. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  144. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  145. /*
  146. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  147. * this case when a previous update_rq_clock() happened inside a
  148. * {soft,}irq region.
  149. *
  150. * When this happens, we stop ->clock_task and only update the
  151. * prev_irq_time stamp to account for the part that fit, so that a next
  152. * update will consume the rest. This ensures ->clock_task is
  153. * monotonic.
  154. *
  155. * It does however cause some slight miss-attribution of {soft,}irq
  156. * time, a more accurate solution would be to update the irq_time using
  157. * the current rq->clock timestamp, except that would require using
  158. * atomic ops.
  159. */
  160. if (irq_delta > delta)
  161. irq_delta = delta;
  162. rq->prev_irq_time += irq_delta;
  163. delta -= irq_delta;
  164. #endif
  165. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  166. if (static_key_false((&paravirt_steal_rq_enabled))) {
  167. steal = paravirt_steal_clock(cpu_of(rq));
  168. steal -= rq->prev_steal_time_rq;
  169. if (unlikely(steal > delta))
  170. steal = delta;
  171. rq->prev_steal_time_rq += steal;
  172. delta -= steal;
  173. }
  174. #endif
  175. rq->clock_task += delta;
  176. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  177. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  178. sched_rt_avg_update(rq, irq_delta + steal);
  179. #endif
  180. }
  181. void update_rq_clock(struct rq *rq)
  182. {
  183. s64 delta;
  184. lockdep_assert_held(&rq->lock);
  185. if (rq->clock_update_flags & RQCF_ACT_SKIP)
  186. return;
  187. #ifdef CONFIG_SCHED_DEBUG
  188. if (sched_feat(WARN_DOUBLE_CLOCK))
  189. SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  190. rq->clock_update_flags |= RQCF_UPDATED;
  191. #endif
  192. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  193. if (delta < 0)
  194. return;
  195. rq->clock += delta;
  196. update_rq_clock_task(rq, delta);
  197. }
  198. #ifdef CONFIG_SCHED_HRTICK
  199. /*
  200. * Use HR-timers to deliver accurate preemption points.
  201. */
  202. static void hrtick_clear(struct rq *rq)
  203. {
  204. if (hrtimer_active(&rq->hrtick_timer))
  205. hrtimer_cancel(&rq->hrtick_timer);
  206. }
  207. /*
  208. * High-resolution timer tick.
  209. * Runs from hardirq context with interrupts disabled.
  210. */
  211. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  212. {
  213. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  214. struct rq_flags rf;
  215. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  216. rq_lock(rq, &rf);
  217. update_rq_clock(rq);
  218. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  219. rq_unlock(rq, &rf);
  220. return HRTIMER_NORESTART;
  221. }
  222. #ifdef CONFIG_SMP
  223. static void __hrtick_restart(struct rq *rq)
  224. {
  225. struct hrtimer *timer = &rq->hrtick_timer;
  226. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  227. }
  228. /*
  229. * called from hardirq (IPI) context
  230. */
  231. static void __hrtick_start(void *arg)
  232. {
  233. struct rq *rq = arg;
  234. struct rq_flags rf;
  235. rq_lock(rq, &rf);
  236. __hrtick_restart(rq);
  237. rq->hrtick_csd_pending = 0;
  238. rq_unlock(rq, &rf);
  239. }
  240. /*
  241. * Called to set the hrtick timer state.
  242. *
  243. * called with rq->lock held and irqs disabled
  244. */
  245. void hrtick_start(struct rq *rq, u64 delay)
  246. {
  247. struct hrtimer *timer = &rq->hrtick_timer;
  248. ktime_t time;
  249. s64 delta;
  250. /*
  251. * Don't schedule slices shorter than 10000ns, that just
  252. * doesn't make sense and can cause timer DoS.
  253. */
  254. delta = max_t(s64, delay, 10000LL);
  255. time = ktime_add_ns(timer->base->get_time(), delta);
  256. hrtimer_set_expires(timer, time);
  257. if (rq == this_rq()) {
  258. __hrtick_restart(rq);
  259. } else if (!rq->hrtick_csd_pending) {
  260. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  261. rq->hrtick_csd_pending = 1;
  262. }
  263. }
  264. #else
  265. /*
  266. * Called to set the hrtick timer state.
  267. *
  268. * called with rq->lock held and irqs disabled
  269. */
  270. void hrtick_start(struct rq *rq, u64 delay)
  271. {
  272. /*
  273. * Don't schedule slices shorter than 10000ns, that just
  274. * doesn't make sense. Rely on vruntime for fairness.
  275. */
  276. delay = max_t(u64, delay, 10000LL);
  277. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  278. HRTIMER_MODE_REL_PINNED);
  279. }
  280. #endif /* CONFIG_SMP */
  281. static void init_rq_hrtick(struct rq *rq)
  282. {
  283. #ifdef CONFIG_SMP
  284. rq->hrtick_csd_pending = 0;
  285. rq->hrtick_csd.flags = 0;
  286. rq->hrtick_csd.func = __hrtick_start;
  287. rq->hrtick_csd.info = rq;
  288. #endif
  289. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  290. rq->hrtick_timer.function = hrtick;
  291. }
  292. #else /* CONFIG_SCHED_HRTICK */
  293. static inline void hrtick_clear(struct rq *rq)
  294. {
  295. }
  296. static inline void init_rq_hrtick(struct rq *rq)
  297. {
  298. }
  299. #endif /* CONFIG_SCHED_HRTICK */
  300. /*
  301. * cmpxchg based fetch_or, macro so it works for different integer types
  302. */
  303. #define fetch_or(ptr, mask) \
  304. ({ \
  305. typeof(ptr) _ptr = (ptr); \
  306. typeof(mask) _mask = (mask); \
  307. typeof(*_ptr) _old, _val = *_ptr; \
  308. \
  309. for (;;) { \
  310. _old = cmpxchg(_ptr, _val, _val | _mask); \
  311. if (_old == _val) \
  312. break; \
  313. _val = _old; \
  314. } \
  315. _old; \
  316. })
  317. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  318. /*
  319. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  320. * this avoids any races wrt polling state changes and thereby avoids
  321. * spurious IPIs.
  322. */
  323. static bool set_nr_and_not_polling(struct task_struct *p)
  324. {
  325. struct thread_info *ti = task_thread_info(p);
  326. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  327. }
  328. /*
  329. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  330. *
  331. * If this returns true, then the idle task promises to call
  332. * sched_ttwu_pending() and reschedule soon.
  333. */
  334. static bool set_nr_if_polling(struct task_struct *p)
  335. {
  336. struct thread_info *ti = task_thread_info(p);
  337. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  338. for (;;) {
  339. if (!(val & _TIF_POLLING_NRFLAG))
  340. return false;
  341. if (val & _TIF_NEED_RESCHED)
  342. return true;
  343. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  344. if (old == val)
  345. break;
  346. val = old;
  347. }
  348. return true;
  349. }
  350. #else
  351. static bool set_nr_and_not_polling(struct task_struct *p)
  352. {
  353. set_tsk_need_resched(p);
  354. return true;
  355. }
  356. #ifdef CONFIG_SMP
  357. static bool set_nr_if_polling(struct task_struct *p)
  358. {
  359. return false;
  360. }
  361. #endif
  362. #endif
  363. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  364. {
  365. struct wake_q_node *node = &task->wake_q;
  366. /*
  367. * Atomically grab the task, if ->wake_q is !nil already it means
  368. * its already queued (either by us or someone else) and will get the
  369. * wakeup due to that.
  370. *
  371. * This cmpxchg() implies a full barrier, which pairs with the write
  372. * barrier implied by the wakeup in wake_up_q().
  373. */
  374. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  375. return;
  376. get_task_struct(task);
  377. /*
  378. * The head is context local, there can be no concurrency.
  379. */
  380. *head->lastp = node;
  381. head->lastp = &node->next;
  382. }
  383. void wake_up_q(struct wake_q_head *head)
  384. {
  385. struct wake_q_node *node = head->first;
  386. while (node != WAKE_Q_TAIL) {
  387. struct task_struct *task;
  388. task = container_of(node, struct task_struct, wake_q);
  389. BUG_ON(!task);
  390. /* Task can safely be re-inserted now: */
  391. node = node->next;
  392. task->wake_q.next = NULL;
  393. /*
  394. * wake_up_process() implies a wmb() to pair with the queueing
  395. * in wake_q_add() so as not to miss wakeups.
  396. */
  397. wake_up_process(task);
  398. put_task_struct(task);
  399. }
  400. }
  401. /*
  402. * resched_curr - mark rq's current task 'to be rescheduled now'.
  403. *
  404. * On UP this means the setting of the need_resched flag, on SMP it
  405. * might also involve a cross-CPU call to trigger the scheduler on
  406. * the target CPU.
  407. */
  408. void resched_curr(struct rq *rq)
  409. {
  410. struct task_struct *curr = rq->curr;
  411. int cpu;
  412. lockdep_assert_held(&rq->lock);
  413. if (test_tsk_need_resched(curr))
  414. return;
  415. cpu = cpu_of(rq);
  416. if (cpu == smp_processor_id()) {
  417. set_tsk_need_resched(curr);
  418. set_preempt_need_resched();
  419. return;
  420. }
  421. if (set_nr_and_not_polling(curr))
  422. smp_send_reschedule(cpu);
  423. else
  424. trace_sched_wake_idle_without_ipi(cpu);
  425. }
  426. void resched_cpu(int cpu)
  427. {
  428. struct rq *rq = cpu_rq(cpu);
  429. unsigned long flags;
  430. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  431. return;
  432. resched_curr(rq);
  433. raw_spin_unlock_irqrestore(&rq->lock, flags);
  434. }
  435. #ifdef CONFIG_SMP
  436. #ifdef CONFIG_NO_HZ_COMMON
  437. /*
  438. * In the semi idle case, use the nearest busy CPU for migrating timers
  439. * from an idle CPU. This is good for power-savings.
  440. *
  441. * We don't do similar optimization for completely idle system, as
  442. * selecting an idle CPU will add more delays to the timers than intended
  443. * (as that CPU's timer base may not be uptodate wrt jiffies etc).
  444. */
  445. int get_nohz_timer_target(void)
  446. {
  447. int i, cpu = smp_processor_id();
  448. struct sched_domain *sd;
  449. if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
  450. return cpu;
  451. rcu_read_lock();
  452. for_each_domain(cpu, sd) {
  453. for_each_cpu(i, sched_domain_span(sd)) {
  454. if (cpu == i)
  455. continue;
  456. if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
  457. cpu = i;
  458. goto unlock;
  459. }
  460. }
  461. }
  462. if (!is_housekeeping_cpu(cpu))
  463. cpu = housekeeping_any_cpu();
  464. unlock:
  465. rcu_read_unlock();
  466. return cpu;
  467. }
  468. /*
  469. * When add_timer_on() enqueues a timer into the timer wheel of an
  470. * idle CPU then this timer might expire before the next timer event
  471. * which is scheduled to wake up that CPU. In case of a completely
  472. * idle system the next event might even be infinite time into the
  473. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  474. * leaves the inner idle loop so the newly added timer is taken into
  475. * account when the CPU goes back to idle and evaluates the timer
  476. * wheel for the next timer event.
  477. */
  478. static void wake_up_idle_cpu(int cpu)
  479. {
  480. struct rq *rq = cpu_rq(cpu);
  481. if (cpu == smp_processor_id())
  482. return;
  483. if (set_nr_and_not_polling(rq->idle))
  484. smp_send_reschedule(cpu);
  485. else
  486. trace_sched_wake_idle_without_ipi(cpu);
  487. }
  488. static bool wake_up_full_nohz_cpu(int cpu)
  489. {
  490. /*
  491. * We just need the target to call irq_exit() and re-evaluate
  492. * the next tick. The nohz full kick at least implies that.
  493. * If needed we can still optimize that later with an
  494. * empty IRQ.
  495. */
  496. if (cpu_is_offline(cpu))
  497. return true; /* Don't try to wake offline CPUs. */
  498. if (tick_nohz_full_cpu(cpu)) {
  499. if (cpu != smp_processor_id() ||
  500. tick_nohz_tick_stopped())
  501. tick_nohz_full_kick_cpu(cpu);
  502. return true;
  503. }
  504. return false;
  505. }
  506. /*
  507. * Wake up the specified CPU. If the CPU is going offline, it is the
  508. * caller's responsibility to deal with the lost wakeup, for example,
  509. * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
  510. */
  511. void wake_up_nohz_cpu(int cpu)
  512. {
  513. if (!wake_up_full_nohz_cpu(cpu))
  514. wake_up_idle_cpu(cpu);
  515. }
  516. static inline bool got_nohz_idle_kick(void)
  517. {
  518. int cpu = smp_processor_id();
  519. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  520. return false;
  521. if (idle_cpu(cpu) && !need_resched())
  522. return true;
  523. /*
  524. * We can't run Idle Load Balance on this CPU for this time so we
  525. * cancel it and clear NOHZ_BALANCE_KICK
  526. */
  527. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  528. return false;
  529. }
  530. #else /* CONFIG_NO_HZ_COMMON */
  531. static inline bool got_nohz_idle_kick(void)
  532. {
  533. return false;
  534. }
  535. #endif /* CONFIG_NO_HZ_COMMON */
  536. #ifdef CONFIG_NO_HZ_FULL
  537. bool sched_can_stop_tick(struct rq *rq)
  538. {
  539. int fifo_nr_running;
  540. /* Deadline tasks, even if single, need the tick */
  541. if (rq->dl.dl_nr_running)
  542. return false;
  543. /*
  544. * If there are more than one RR tasks, we need the tick to effect the
  545. * actual RR behaviour.
  546. */
  547. if (rq->rt.rr_nr_running) {
  548. if (rq->rt.rr_nr_running == 1)
  549. return true;
  550. else
  551. return false;
  552. }
  553. /*
  554. * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
  555. * forced preemption between FIFO tasks.
  556. */
  557. fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
  558. if (fifo_nr_running)
  559. return true;
  560. /*
  561. * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
  562. * if there's more than one we need the tick for involuntary
  563. * preemption.
  564. */
  565. if (rq->nr_running > 1)
  566. return false;
  567. return true;
  568. }
  569. #endif /* CONFIG_NO_HZ_FULL */
  570. void sched_avg_update(struct rq *rq)
  571. {
  572. s64 period = sched_avg_period();
  573. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  574. /*
  575. * Inline assembly required to prevent the compiler
  576. * optimising this loop into a divmod call.
  577. * See __iter_div_u64_rem() for another example of this.
  578. */
  579. asm("" : "+rm" (rq->age_stamp));
  580. rq->age_stamp += period;
  581. rq->rt_avg /= 2;
  582. }
  583. }
  584. #endif /* CONFIG_SMP */
  585. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  586. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  587. /*
  588. * Iterate task_group tree rooted at *from, calling @down when first entering a
  589. * node and @up when leaving it for the final time.
  590. *
  591. * Caller must hold rcu_lock or sufficient equivalent.
  592. */
  593. int walk_tg_tree_from(struct task_group *from,
  594. tg_visitor down, tg_visitor up, void *data)
  595. {
  596. struct task_group *parent, *child;
  597. int ret;
  598. parent = from;
  599. down:
  600. ret = (*down)(parent, data);
  601. if (ret)
  602. goto out;
  603. list_for_each_entry_rcu(child, &parent->children, siblings) {
  604. parent = child;
  605. goto down;
  606. up:
  607. continue;
  608. }
  609. ret = (*up)(parent, data);
  610. if (ret || parent == from)
  611. goto out;
  612. child = parent;
  613. parent = parent->parent;
  614. if (parent)
  615. goto up;
  616. out:
  617. return ret;
  618. }
  619. int tg_nop(struct task_group *tg, void *data)
  620. {
  621. return 0;
  622. }
  623. #endif
  624. static void set_load_weight(struct task_struct *p)
  625. {
  626. int prio = p->static_prio - MAX_RT_PRIO;
  627. struct load_weight *load = &p->se.load;
  628. /*
  629. * SCHED_IDLE tasks get minimal weight:
  630. */
  631. if (idle_policy(p->policy)) {
  632. load->weight = scale_load(WEIGHT_IDLEPRIO);
  633. load->inv_weight = WMULT_IDLEPRIO;
  634. return;
  635. }
  636. load->weight = scale_load(sched_prio_to_weight[prio]);
  637. load->inv_weight = sched_prio_to_wmult[prio];
  638. }
  639. static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  640. {
  641. if (!(flags & ENQUEUE_NOCLOCK))
  642. update_rq_clock(rq);
  643. if (!(flags & ENQUEUE_RESTORE))
  644. sched_info_queued(rq, p);
  645. p->sched_class->enqueue_task(rq, p, flags);
  646. }
  647. static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (!(flags & DEQUEUE_NOCLOCK))
  650. update_rq_clock(rq);
  651. if (!(flags & DEQUEUE_SAVE))
  652. sched_info_dequeued(rq, p);
  653. p->sched_class->dequeue_task(rq, p, flags);
  654. }
  655. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  656. {
  657. if (task_contributes_to_load(p))
  658. rq->nr_uninterruptible--;
  659. enqueue_task(rq, p, flags);
  660. }
  661. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  662. {
  663. if (task_contributes_to_load(p))
  664. rq->nr_uninterruptible++;
  665. dequeue_task(rq, p, flags);
  666. }
  667. /*
  668. * __normal_prio - return the priority that is based on the static prio
  669. */
  670. static inline int __normal_prio(struct task_struct *p)
  671. {
  672. return p->static_prio;
  673. }
  674. /*
  675. * Calculate the expected normal priority: i.e. priority
  676. * without taking RT-inheritance into account. Might be
  677. * boosted by interactivity modifiers. Changes upon fork,
  678. * setprio syscalls, and whenever the interactivity
  679. * estimator recalculates.
  680. */
  681. static inline int normal_prio(struct task_struct *p)
  682. {
  683. int prio;
  684. if (task_has_dl_policy(p))
  685. prio = MAX_DL_PRIO-1;
  686. else if (task_has_rt_policy(p))
  687. prio = MAX_RT_PRIO-1 - p->rt_priority;
  688. else
  689. prio = __normal_prio(p);
  690. return prio;
  691. }
  692. /*
  693. * Calculate the current priority, i.e. the priority
  694. * taken into account by the scheduler. This value might
  695. * be boosted by RT tasks, or might be boosted by
  696. * interactivity modifiers. Will be RT if the task got
  697. * RT-boosted. If not then it returns p->normal_prio.
  698. */
  699. static int effective_prio(struct task_struct *p)
  700. {
  701. p->normal_prio = normal_prio(p);
  702. /*
  703. * If we are RT tasks or we were boosted to RT priority,
  704. * keep the priority unchanged. Otherwise, update priority
  705. * to the normal priority:
  706. */
  707. if (!rt_prio(p->prio))
  708. return p->normal_prio;
  709. return p->prio;
  710. }
  711. /**
  712. * task_curr - is this task currently executing on a CPU?
  713. * @p: the task in question.
  714. *
  715. * Return: 1 if the task is currently executing. 0 otherwise.
  716. */
  717. inline int task_curr(const struct task_struct *p)
  718. {
  719. return cpu_curr(task_cpu(p)) == p;
  720. }
  721. /*
  722. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  723. * use the balance_callback list if you want balancing.
  724. *
  725. * this means any call to check_class_changed() must be followed by a call to
  726. * balance_callback().
  727. */
  728. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  729. const struct sched_class *prev_class,
  730. int oldprio)
  731. {
  732. if (prev_class != p->sched_class) {
  733. if (prev_class->switched_from)
  734. prev_class->switched_from(rq, p);
  735. p->sched_class->switched_to(rq, p);
  736. } else if (oldprio != p->prio || dl_task(p))
  737. p->sched_class->prio_changed(rq, p, oldprio);
  738. }
  739. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  740. {
  741. const struct sched_class *class;
  742. if (p->sched_class == rq->curr->sched_class) {
  743. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  744. } else {
  745. for_each_class(class) {
  746. if (class == rq->curr->sched_class)
  747. break;
  748. if (class == p->sched_class) {
  749. resched_curr(rq);
  750. break;
  751. }
  752. }
  753. }
  754. /*
  755. * A queue event has occurred, and we're going to schedule. In
  756. * this case, we can save a useless back to back clock update.
  757. */
  758. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  759. rq_clock_skip_update(rq, true);
  760. }
  761. #ifdef CONFIG_SMP
  762. /*
  763. * This is how migration works:
  764. *
  765. * 1) we invoke migration_cpu_stop() on the target CPU using
  766. * stop_one_cpu().
  767. * 2) stopper starts to run (implicitly forcing the migrated thread
  768. * off the CPU)
  769. * 3) it checks whether the migrated task is still in the wrong runqueue.
  770. * 4) if it's in the wrong runqueue then the migration thread removes
  771. * it and puts it into the right queue.
  772. * 5) stopper completes and stop_one_cpu() returns and the migration
  773. * is done.
  774. */
  775. /*
  776. * move_queued_task - move a queued task to new rq.
  777. *
  778. * Returns (locked) new rq. Old rq's lock is released.
  779. */
  780. static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
  781. struct task_struct *p, int new_cpu)
  782. {
  783. lockdep_assert_held(&rq->lock);
  784. p->on_rq = TASK_ON_RQ_MIGRATING;
  785. dequeue_task(rq, p, DEQUEUE_NOCLOCK);
  786. set_task_cpu(p, new_cpu);
  787. rq_unlock(rq, rf);
  788. rq = cpu_rq(new_cpu);
  789. rq_lock(rq, rf);
  790. BUG_ON(task_cpu(p) != new_cpu);
  791. enqueue_task(rq, p, 0);
  792. p->on_rq = TASK_ON_RQ_QUEUED;
  793. check_preempt_curr(rq, p, 0);
  794. return rq;
  795. }
  796. struct migration_arg {
  797. struct task_struct *task;
  798. int dest_cpu;
  799. };
  800. /*
  801. * Move (not current) task off this CPU, onto the destination CPU. We're doing
  802. * this because either it can't run here any more (set_cpus_allowed()
  803. * away from this CPU, or CPU going down), or because we're
  804. * attempting to rebalance this task on exec (sched_exec).
  805. *
  806. * So we race with normal scheduler movements, but that's OK, as long
  807. * as the task is no longer on this CPU.
  808. */
  809. static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
  810. struct task_struct *p, int dest_cpu)
  811. {
  812. if (unlikely(!cpu_active(dest_cpu)))
  813. return rq;
  814. /* Affinity changed (again). */
  815. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  816. return rq;
  817. update_rq_clock(rq);
  818. rq = move_queued_task(rq, rf, p, dest_cpu);
  819. return rq;
  820. }
  821. /*
  822. * migration_cpu_stop - this will be executed by a highprio stopper thread
  823. * and performs thread migration by bumping thread off CPU then
  824. * 'pushing' onto another runqueue.
  825. */
  826. static int migration_cpu_stop(void *data)
  827. {
  828. struct migration_arg *arg = data;
  829. struct task_struct *p = arg->task;
  830. struct rq *rq = this_rq();
  831. struct rq_flags rf;
  832. /*
  833. * The original target CPU might have gone down and we might
  834. * be on another CPU but it doesn't matter.
  835. */
  836. local_irq_disable();
  837. /*
  838. * We need to explicitly wake pending tasks before running
  839. * __migrate_task() such that we will not miss enforcing cpus_allowed
  840. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  841. */
  842. sched_ttwu_pending();
  843. raw_spin_lock(&p->pi_lock);
  844. rq_lock(rq, &rf);
  845. /*
  846. * If task_rq(p) != rq, it cannot be migrated here, because we're
  847. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  848. * we're holding p->pi_lock.
  849. */
  850. if (task_rq(p) == rq) {
  851. if (task_on_rq_queued(p))
  852. rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
  853. else
  854. p->wake_cpu = arg->dest_cpu;
  855. }
  856. rq_unlock(rq, &rf);
  857. raw_spin_unlock(&p->pi_lock);
  858. local_irq_enable();
  859. return 0;
  860. }
  861. /*
  862. * sched_class::set_cpus_allowed must do the below, but is not required to
  863. * actually call this function.
  864. */
  865. void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
  866. {
  867. cpumask_copy(&p->cpus_allowed, new_mask);
  868. p->nr_cpus_allowed = cpumask_weight(new_mask);
  869. }
  870. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  871. {
  872. struct rq *rq = task_rq(p);
  873. bool queued, running;
  874. lockdep_assert_held(&p->pi_lock);
  875. queued = task_on_rq_queued(p);
  876. running = task_current(rq, p);
  877. if (queued) {
  878. /*
  879. * Because __kthread_bind() calls this on blocked tasks without
  880. * holding rq->lock.
  881. */
  882. lockdep_assert_held(&rq->lock);
  883. dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
  884. }
  885. if (running)
  886. put_prev_task(rq, p);
  887. p->sched_class->set_cpus_allowed(p, new_mask);
  888. if (queued)
  889. enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
  890. if (running)
  891. set_curr_task(rq, p);
  892. }
  893. /*
  894. * Change a given task's CPU affinity. Migrate the thread to a
  895. * proper CPU and schedule it away if the CPU it's executing on
  896. * is removed from the allowed bitmask.
  897. *
  898. * NOTE: the caller must have a valid reference to the task, the
  899. * task must not exit() & deallocate itself prematurely. The
  900. * call is not atomic; no spinlocks may be held.
  901. */
  902. static int __set_cpus_allowed_ptr(struct task_struct *p,
  903. const struct cpumask *new_mask, bool check)
  904. {
  905. const struct cpumask *cpu_valid_mask = cpu_active_mask;
  906. unsigned int dest_cpu;
  907. struct rq_flags rf;
  908. struct rq *rq;
  909. int ret = 0;
  910. rq = task_rq_lock(p, &rf);
  911. update_rq_clock(rq);
  912. if (p->flags & PF_KTHREAD) {
  913. /*
  914. * Kernel threads are allowed on online && !active CPUs
  915. */
  916. cpu_valid_mask = cpu_online_mask;
  917. }
  918. /*
  919. * Must re-check here, to close a race against __kthread_bind(),
  920. * sched_setaffinity() is not guaranteed to observe the flag.
  921. */
  922. if (check && (p->flags & PF_NO_SETAFFINITY)) {
  923. ret = -EINVAL;
  924. goto out;
  925. }
  926. if (cpumask_equal(&p->cpus_allowed, new_mask))
  927. goto out;
  928. if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
  929. ret = -EINVAL;
  930. goto out;
  931. }
  932. do_set_cpus_allowed(p, new_mask);
  933. if (p->flags & PF_KTHREAD) {
  934. /*
  935. * For kernel threads that do indeed end up on online &&
  936. * !active we want to ensure they are strict per-CPU threads.
  937. */
  938. WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
  939. !cpumask_intersects(new_mask, cpu_active_mask) &&
  940. p->nr_cpus_allowed != 1);
  941. }
  942. /* Can the task run on the task's current CPU? If so, we're done */
  943. if (cpumask_test_cpu(task_cpu(p), new_mask))
  944. goto out;
  945. dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
  946. if (task_running(rq, p) || p->state == TASK_WAKING) {
  947. struct migration_arg arg = { p, dest_cpu };
  948. /* Need help from migration thread: drop lock and wait. */
  949. task_rq_unlock(rq, p, &rf);
  950. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  951. tlb_migrate_finish(p->mm);
  952. return 0;
  953. } else if (task_on_rq_queued(p)) {
  954. /*
  955. * OK, since we're going to drop the lock immediately
  956. * afterwards anyway.
  957. */
  958. rq = move_queued_task(rq, &rf, p, dest_cpu);
  959. }
  960. out:
  961. task_rq_unlock(rq, p, &rf);
  962. return ret;
  963. }
  964. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  965. {
  966. return __set_cpus_allowed_ptr(p, new_mask, false);
  967. }
  968. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  969. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  970. {
  971. #ifdef CONFIG_SCHED_DEBUG
  972. /*
  973. * We should never call set_task_cpu() on a blocked task,
  974. * ttwu() will sort out the placement.
  975. */
  976. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  977. !p->on_rq);
  978. /*
  979. * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
  980. * because schedstat_wait_{start,end} rebase migrating task's wait_start
  981. * time relying on p->on_rq.
  982. */
  983. WARN_ON_ONCE(p->state == TASK_RUNNING &&
  984. p->sched_class == &fair_sched_class &&
  985. (p->on_rq && !task_on_rq_migrating(p)));
  986. #ifdef CONFIG_LOCKDEP
  987. /*
  988. * The caller should hold either p->pi_lock or rq->lock, when changing
  989. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  990. *
  991. * sched_move_task() holds both and thus holding either pins the cgroup,
  992. * see task_group().
  993. *
  994. * Furthermore, all task_rq users should acquire both locks, see
  995. * task_rq_lock().
  996. */
  997. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  998. lockdep_is_held(&task_rq(p)->lock)));
  999. #endif
  1000. #endif
  1001. trace_sched_migrate_task(p, new_cpu);
  1002. if (task_cpu(p) != new_cpu) {
  1003. if (p->sched_class->migrate_task_rq)
  1004. p->sched_class->migrate_task_rq(p);
  1005. p->se.nr_migrations++;
  1006. perf_event_task_migrate(p);
  1007. }
  1008. __set_task_cpu(p, new_cpu);
  1009. }
  1010. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1011. {
  1012. if (task_on_rq_queued(p)) {
  1013. struct rq *src_rq, *dst_rq;
  1014. struct rq_flags srf, drf;
  1015. src_rq = task_rq(p);
  1016. dst_rq = cpu_rq(cpu);
  1017. rq_pin_lock(src_rq, &srf);
  1018. rq_pin_lock(dst_rq, &drf);
  1019. p->on_rq = TASK_ON_RQ_MIGRATING;
  1020. deactivate_task(src_rq, p, 0);
  1021. set_task_cpu(p, cpu);
  1022. activate_task(dst_rq, p, 0);
  1023. p->on_rq = TASK_ON_RQ_QUEUED;
  1024. check_preempt_curr(dst_rq, p, 0);
  1025. rq_unpin_lock(dst_rq, &drf);
  1026. rq_unpin_lock(src_rq, &srf);
  1027. } else {
  1028. /*
  1029. * Task isn't running anymore; make it appear like we migrated
  1030. * it before it went to sleep. This means on wakeup we make the
  1031. * previous CPU our target instead of where it really is.
  1032. */
  1033. p->wake_cpu = cpu;
  1034. }
  1035. }
  1036. struct migration_swap_arg {
  1037. struct task_struct *src_task, *dst_task;
  1038. int src_cpu, dst_cpu;
  1039. };
  1040. static int migrate_swap_stop(void *data)
  1041. {
  1042. struct migration_swap_arg *arg = data;
  1043. struct rq *src_rq, *dst_rq;
  1044. int ret = -EAGAIN;
  1045. if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
  1046. return -EAGAIN;
  1047. src_rq = cpu_rq(arg->src_cpu);
  1048. dst_rq = cpu_rq(arg->dst_cpu);
  1049. double_raw_lock(&arg->src_task->pi_lock,
  1050. &arg->dst_task->pi_lock);
  1051. double_rq_lock(src_rq, dst_rq);
  1052. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1053. goto unlock;
  1054. if (task_cpu(arg->src_task) != arg->src_cpu)
  1055. goto unlock;
  1056. if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
  1057. goto unlock;
  1058. if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
  1059. goto unlock;
  1060. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1061. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1062. ret = 0;
  1063. unlock:
  1064. double_rq_unlock(src_rq, dst_rq);
  1065. raw_spin_unlock(&arg->dst_task->pi_lock);
  1066. raw_spin_unlock(&arg->src_task->pi_lock);
  1067. return ret;
  1068. }
  1069. /*
  1070. * Cross migrate two tasks
  1071. */
  1072. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1073. {
  1074. struct migration_swap_arg arg;
  1075. int ret = -EINVAL;
  1076. arg = (struct migration_swap_arg){
  1077. .src_task = cur,
  1078. .src_cpu = task_cpu(cur),
  1079. .dst_task = p,
  1080. .dst_cpu = task_cpu(p),
  1081. };
  1082. if (arg.src_cpu == arg.dst_cpu)
  1083. goto out;
  1084. /*
  1085. * These three tests are all lockless; this is OK since all of them
  1086. * will be re-checked with proper locks held further down the line.
  1087. */
  1088. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1089. goto out;
  1090. if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
  1091. goto out;
  1092. if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
  1093. goto out;
  1094. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1095. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1096. out:
  1097. return ret;
  1098. }
  1099. /*
  1100. * wait_task_inactive - wait for a thread to unschedule.
  1101. *
  1102. * If @match_state is nonzero, it's the @p->state value just checked and
  1103. * not expected to change. If it changes, i.e. @p might have woken up,
  1104. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1105. * we return a positive number (its total switch count). If a second call
  1106. * a short while later returns the same number, the caller can be sure that
  1107. * @p has remained unscheduled the whole time.
  1108. *
  1109. * The caller must ensure that the task *will* unschedule sometime soon,
  1110. * else this function might spin for a *long* time. This function can't
  1111. * be called with interrupts off, or it may introduce deadlock with
  1112. * smp_call_function() if an IPI is sent by the same process we are
  1113. * waiting to become inactive.
  1114. */
  1115. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1116. {
  1117. int running, queued;
  1118. struct rq_flags rf;
  1119. unsigned long ncsw;
  1120. struct rq *rq;
  1121. for (;;) {
  1122. /*
  1123. * We do the initial early heuristics without holding
  1124. * any task-queue locks at all. We'll only try to get
  1125. * the runqueue lock when things look like they will
  1126. * work out!
  1127. */
  1128. rq = task_rq(p);
  1129. /*
  1130. * If the task is actively running on another CPU
  1131. * still, just relax and busy-wait without holding
  1132. * any locks.
  1133. *
  1134. * NOTE! Since we don't hold any locks, it's not
  1135. * even sure that "rq" stays as the right runqueue!
  1136. * But we don't care, since "task_running()" will
  1137. * return false if the runqueue has changed and p
  1138. * is actually now running somewhere else!
  1139. */
  1140. while (task_running(rq, p)) {
  1141. if (match_state && unlikely(p->state != match_state))
  1142. return 0;
  1143. cpu_relax();
  1144. }
  1145. /*
  1146. * Ok, time to look more closely! We need the rq
  1147. * lock now, to be *sure*. If we're wrong, we'll
  1148. * just go back and repeat.
  1149. */
  1150. rq = task_rq_lock(p, &rf);
  1151. trace_sched_wait_task(p);
  1152. running = task_running(rq, p);
  1153. queued = task_on_rq_queued(p);
  1154. ncsw = 0;
  1155. if (!match_state || p->state == match_state)
  1156. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1157. task_rq_unlock(rq, p, &rf);
  1158. /*
  1159. * If it changed from the expected state, bail out now.
  1160. */
  1161. if (unlikely(!ncsw))
  1162. break;
  1163. /*
  1164. * Was it really running after all now that we
  1165. * checked with the proper locks actually held?
  1166. *
  1167. * Oops. Go back and try again..
  1168. */
  1169. if (unlikely(running)) {
  1170. cpu_relax();
  1171. continue;
  1172. }
  1173. /*
  1174. * It's not enough that it's not actively running,
  1175. * it must be off the runqueue _entirely_, and not
  1176. * preempted!
  1177. *
  1178. * So if it was still runnable (but just not actively
  1179. * running right now), it's preempted, and we should
  1180. * yield - it could be a while.
  1181. */
  1182. if (unlikely(queued)) {
  1183. ktime_t to = NSEC_PER_SEC / HZ;
  1184. set_current_state(TASK_UNINTERRUPTIBLE);
  1185. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1186. continue;
  1187. }
  1188. /*
  1189. * Ahh, all good. It wasn't running, and it wasn't
  1190. * runnable, which means that it will never become
  1191. * running in the future either. We're all done!
  1192. */
  1193. break;
  1194. }
  1195. return ncsw;
  1196. }
  1197. /***
  1198. * kick_process - kick a running thread to enter/exit the kernel
  1199. * @p: the to-be-kicked thread
  1200. *
  1201. * Cause a process which is running on another CPU to enter
  1202. * kernel-mode, without any delay. (to get signals handled.)
  1203. *
  1204. * NOTE: this function doesn't have to take the runqueue lock,
  1205. * because all it wants to ensure is that the remote task enters
  1206. * the kernel. If the IPI races and the task has been migrated
  1207. * to another CPU then no harm is done and the purpose has been
  1208. * achieved as well.
  1209. */
  1210. void kick_process(struct task_struct *p)
  1211. {
  1212. int cpu;
  1213. preempt_disable();
  1214. cpu = task_cpu(p);
  1215. if ((cpu != smp_processor_id()) && task_curr(p))
  1216. smp_send_reschedule(cpu);
  1217. preempt_enable();
  1218. }
  1219. EXPORT_SYMBOL_GPL(kick_process);
  1220. /*
  1221. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1222. *
  1223. * A few notes on cpu_active vs cpu_online:
  1224. *
  1225. * - cpu_active must be a subset of cpu_online
  1226. *
  1227. * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
  1228. * see __set_cpus_allowed_ptr(). At this point the newly online
  1229. * CPU isn't yet part of the sched domains, and balancing will not
  1230. * see it.
  1231. *
  1232. * - on CPU-down we clear cpu_active() to mask the sched domains and
  1233. * avoid the load balancer to place new tasks on the to be removed
  1234. * CPU. Existing tasks will remain running there and will be taken
  1235. * off.
  1236. *
  1237. * This means that fallback selection must not select !active CPUs.
  1238. * And can assume that any active CPU must be online. Conversely
  1239. * select_task_rq() below may allow selection of !active CPUs in order
  1240. * to satisfy the above rules.
  1241. */
  1242. static int select_fallback_rq(int cpu, struct task_struct *p)
  1243. {
  1244. int nid = cpu_to_node(cpu);
  1245. const struct cpumask *nodemask = NULL;
  1246. enum { cpuset, possible, fail } state = cpuset;
  1247. int dest_cpu;
  1248. /*
  1249. * If the node that the CPU is on has been offlined, cpu_to_node()
  1250. * will return -1. There is no CPU on the node, and we should
  1251. * select the CPU on the other node.
  1252. */
  1253. if (nid != -1) {
  1254. nodemask = cpumask_of_node(nid);
  1255. /* Look for allowed, online CPU in same node. */
  1256. for_each_cpu(dest_cpu, nodemask) {
  1257. if (!cpu_active(dest_cpu))
  1258. continue;
  1259. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1260. return dest_cpu;
  1261. }
  1262. }
  1263. for (;;) {
  1264. /* Any allowed, online CPU? */
  1265. for_each_cpu(dest_cpu, &p->cpus_allowed) {
  1266. if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
  1267. continue;
  1268. if (!cpu_online(dest_cpu))
  1269. continue;
  1270. goto out;
  1271. }
  1272. /* No more Mr. Nice Guy. */
  1273. switch (state) {
  1274. case cpuset:
  1275. if (IS_ENABLED(CONFIG_CPUSETS)) {
  1276. cpuset_cpus_allowed_fallback(p);
  1277. state = possible;
  1278. break;
  1279. }
  1280. /* Fall-through */
  1281. case possible:
  1282. do_set_cpus_allowed(p, cpu_possible_mask);
  1283. state = fail;
  1284. break;
  1285. case fail:
  1286. BUG();
  1287. break;
  1288. }
  1289. }
  1290. out:
  1291. if (state != cpuset) {
  1292. /*
  1293. * Don't tell them about moving exiting tasks or
  1294. * kernel threads (both mm NULL), since they never
  1295. * leave kernel.
  1296. */
  1297. if (p->mm && printk_ratelimit()) {
  1298. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1299. task_pid_nr(p), p->comm, cpu);
  1300. }
  1301. }
  1302. return dest_cpu;
  1303. }
  1304. /*
  1305. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1306. */
  1307. static inline
  1308. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1309. {
  1310. lockdep_assert_held(&p->pi_lock);
  1311. if (p->nr_cpus_allowed > 1)
  1312. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1313. else
  1314. cpu = cpumask_any(&p->cpus_allowed);
  1315. /*
  1316. * In order not to call set_task_cpu() on a blocking task we need
  1317. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1318. * CPU.
  1319. *
  1320. * Since this is common to all placement strategies, this lives here.
  1321. *
  1322. * [ this allows ->select_task() to simply return task_cpu(p) and
  1323. * not worry about this generic constraint ]
  1324. */
  1325. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1326. !cpu_online(cpu)))
  1327. cpu = select_fallback_rq(task_cpu(p), p);
  1328. return cpu;
  1329. }
  1330. static void update_avg(u64 *avg, u64 sample)
  1331. {
  1332. s64 diff = sample - *avg;
  1333. *avg += diff >> 3;
  1334. }
  1335. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1336. {
  1337. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1338. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1339. if (stop) {
  1340. /*
  1341. * Make it appear like a SCHED_FIFO task, its something
  1342. * userspace knows about and won't get confused about.
  1343. *
  1344. * Also, it will make PI more or less work without too
  1345. * much confusion -- but then, stop work should not
  1346. * rely on PI working anyway.
  1347. */
  1348. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1349. stop->sched_class = &stop_sched_class;
  1350. }
  1351. cpu_rq(cpu)->stop = stop;
  1352. if (old_stop) {
  1353. /*
  1354. * Reset it back to a normal scheduling class so that
  1355. * it can die in pieces.
  1356. */
  1357. old_stop->sched_class = &rt_sched_class;
  1358. }
  1359. }
  1360. #else
  1361. static inline int __set_cpus_allowed_ptr(struct task_struct *p,
  1362. const struct cpumask *new_mask, bool check)
  1363. {
  1364. return set_cpus_allowed_ptr(p, new_mask);
  1365. }
  1366. #endif /* CONFIG_SMP */
  1367. static void
  1368. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1369. {
  1370. struct rq *rq;
  1371. if (!schedstat_enabled())
  1372. return;
  1373. rq = this_rq();
  1374. #ifdef CONFIG_SMP
  1375. if (cpu == rq->cpu) {
  1376. schedstat_inc(rq->ttwu_local);
  1377. schedstat_inc(p->se.statistics.nr_wakeups_local);
  1378. } else {
  1379. struct sched_domain *sd;
  1380. schedstat_inc(p->se.statistics.nr_wakeups_remote);
  1381. rcu_read_lock();
  1382. for_each_domain(rq->cpu, sd) {
  1383. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1384. schedstat_inc(sd->ttwu_wake_remote);
  1385. break;
  1386. }
  1387. }
  1388. rcu_read_unlock();
  1389. }
  1390. if (wake_flags & WF_MIGRATED)
  1391. schedstat_inc(p->se.statistics.nr_wakeups_migrate);
  1392. #endif /* CONFIG_SMP */
  1393. schedstat_inc(rq->ttwu_count);
  1394. schedstat_inc(p->se.statistics.nr_wakeups);
  1395. if (wake_flags & WF_SYNC)
  1396. schedstat_inc(p->se.statistics.nr_wakeups_sync);
  1397. }
  1398. static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1399. {
  1400. activate_task(rq, p, en_flags);
  1401. p->on_rq = TASK_ON_RQ_QUEUED;
  1402. /* If a worker is waking up, notify the workqueue: */
  1403. if (p->flags & PF_WQ_WORKER)
  1404. wq_worker_waking_up(p, cpu_of(rq));
  1405. }
  1406. /*
  1407. * Mark the task runnable and perform wakeup-preemption.
  1408. */
  1409. static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
  1410. struct rq_flags *rf)
  1411. {
  1412. check_preempt_curr(rq, p, wake_flags);
  1413. p->state = TASK_RUNNING;
  1414. trace_sched_wakeup(p);
  1415. #ifdef CONFIG_SMP
  1416. if (p->sched_class->task_woken) {
  1417. /*
  1418. * Our task @p is fully woken up and running; so its safe to
  1419. * drop the rq->lock, hereafter rq is only used for statistics.
  1420. */
  1421. rq_unpin_lock(rq, rf);
  1422. p->sched_class->task_woken(rq, p);
  1423. rq_repin_lock(rq, rf);
  1424. }
  1425. if (rq->idle_stamp) {
  1426. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1427. u64 max = 2*rq->max_idle_balance_cost;
  1428. update_avg(&rq->avg_idle, delta);
  1429. if (rq->avg_idle > max)
  1430. rq->avg_idle = max;
  1431. rq->idle_stamp = 0;
  1432. }
  1433. #endif
  1434. }
  1435. static void
  1436. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
  1437. struct rq_flags *rf)
  1438. {
  1439. int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
  1440. lockdep_assert_held(&rq->lock);
  1441. #ifdef CONFIG_SMP
  1442. if (p->sched_contributes_to_load)
  1443. rq->nr_uninterruptible--;
  1444. if (wake_flags & WF_MIGRATED)
  1445. en_flags |= ENQUEUE_MIGRATED;
  1446. #endif
  1447. ttwu_activate(rq, p, en_flags);
  1448. ttwu_do_wakeup(rq, p, wake_flags, rf);
  1449. }
  1450. /*
  1451. * Called in case the task @p isn't fully descheduled from its runqueue,
  1452. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1453. * since all we need to do is flip p->state to TASK_RUNNING, since
  1454. * the task is still ->on_rq.
  1455. */
  1456. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1457. {
  1458. struct rq_flags rf;
  1459. struct rq *rq;
  1460. int ret = 0;
  1461. rq = __task_rq_lock(p, &rf);
  1462. if (task_on_rq_queued(p)) {
  1463. /* check_preempt_curr() may use rq clock */
  1464. update_rq_clock(rq);
  1465. ttwu_do_wakeup(rq, p, wake_flags, &rf);
  1466. ret = 1;
  1467. }
  1468. __task_rq_unlock(rq, &rf);
  1469. return ret;
  1470. }
  1471. #ifdef CONFIG_SMP
  1472. void sched_ttwu_pending(void)
  1473. {
  1474. struct rq *rq = this_rq();
  1475. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1476. struct task_struct *p, *t;
  1477. struct rq_flags rf;
  1478. if (!llist)
  1479. return;
  1480. rq_lock_irqsave(rq, &rf);
  1481. update_rq_clock(rq);
  1482. llist_for_each_entry_safe(p, t, llist, wake_entry)
  1483. ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
  1484. rq_unlock_irqrestore(rq, &rf);
  1485. }
  1486. void scheduler_ipi(void)
  1487. {
  1488. /*
  1489. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1490. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1491. * this IPI.
  1492. */
  1493. preempt_fold_need_resched();
  1494. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1495. return;
  1496. /*
  1497. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1498. * traditionally all their work was done from the interrupt return
  1499. * path. Now that we actually do some work, we need to make sure
  1500. * we do call them.
  1501. *
  1502. * Some archs already do call them, luckily irq_enter/exit nest
  1503. * properly.
  1504. *
  1505. * Arguably we should visit all archs and update all handlers,
  1506. * however a fair share of IPIs are still resched only so this would
  1507. * somewhat pessimize the simple resched case.
  1508. */
  1509. irq_enter();
  1510. sched_ttwu_pending();
  1511. /*
  1512. * Check if someone kicked us for doing the nohz idle load balance.
  1513. */
  1514. if (unlikely(got_nohz_idle_kick())) {
  1515. this_rq()->idle_balance = 1;
  1516. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1517. }
  1518. irq_exit();
  1519. }
  1520. static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
  1521. {
  1522. struct rq *rq = cpu_rq(cpu);
  1523. p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
  1524. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1525. if (!set_nr_if_polling(rq->idle))
  1526. smp_send_reschedule(cpu);
  1527. else
  1528. trace_sched_wake_idle_without_ipi(cpu);
  1529. }
  1530. }
  1531. void wake_up_if_idle(int cpu)
  1532. {
  1533. struct rq *rq = cpu_rq(cpu);
  1534. struct rq_flags rf;
  1535. rcu_read_lock();
  1536. if (!is_idle_task(rcu_dereference(rq->curr)))
  1537. goto out;
  1538. if (set_nr_if_polling(rq->idle)) {
  1539. trace_sched_wake_idle_without_ipi(cpu);
  1540. } else {
  1541. rq_lock_irqsave(rq, &rf);
  1542. if (is_idle_task(rq->curr))
  1543. smp_send_reschedule(cpu);
  1544. /* Else CPU is not idle, do nothing here: */
  1545. rq_unlock_irqrestore(rq, &rf);
  1546. }
  1547. out:
  1548. rcu_read_unlock();
  1549. }
  1550. bool cpus_share_cache(int this_cpu, int that_cpu)
  1551. {
  1552. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1553. }
  1554. #endif /* CONFIG_SMP */
  1555. static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
  1556. {
  1557. struct rq *rq = cpu_rq(cpu);
  1558. struct rq_flags rf;
  1559. #if defined(CONFIG_SMP)
  1560. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1561. sched_clock_cpu(cpu); /* Sync clocks across CPUs */
  1562. ttwu_queue_remote(p, cpu, wake_flags);
  1563. return;
  1564. }
  1565. #endif
  1566. rq_lock(rq, &rf);
  1567. update_rq_clock(rq);
  1568. ttwu_do_activate(rq, p, wake_flags, &rf);
  1569. rq_unlock(rq, &rf);
  1570. }
  1571. /*
  1572. * Notes on Program-Order guarantees on SMP systems.
  1573. *
  1574. * MIGRATION
  1575. *
  1576. * The basic program-order guarantee on SMP systems is that when a task [t]
  1577. * migrates, all its activity on its old CPU [c0] happens-before any subsequent
  1578. * execution on its new CPU [c1].
  1579. *
  1580. * For migration (of runnable tasks) this is provided by the following means:
  1581. *
  1582. * A) UNLOCK of the rq(c0)->lock scheduling out task t
  1583. * B) migration for t is required to synchronize *both* rq(c0)->lock and
  1584. * rq(c1)->lock (if not at the same time, then in that order).
  1585. * C) LOCK of the rq(c1)->lock scheduling in task
  1586. *
  1587. * Transitivity guarantees that B happens after A and C after B.
  1588. * Note: we only require RCpc transitivity.
  1589. * Note: the CPU doing B need not be c0 or c1
  1590. *
  1591. * Example:
  1592. *
  1593. * CPU0 CPU1 CPU2
  1594. *
  1595. * LOCK rq(0)->lock
  1596. * sched-out X
  1597. * sched-in Y
  1598. * UNLOCK rq(0)->lock
  1599. *
  1600. * LOCK rq(0)->lock // orders against CPU0
  1601. * dequeue X
  1602. * UNLOCK rq(0)->lock
  1603. *
  1604. * LOCK rq(1)->lock
  1605. * enqueue X
  1606. * UNLOCK rq(1)->lock
  1607. *
  1608. * LOCK rq(1)->lock // orders against CPU2
  1609. * sched-out Z
  1610. * sched-in X
  1611. * UNLOCK rq(1)->lock
  1612. *
  1613. *
  1614. * BLOCKING -- aka. SLEEP + WAKEUP
  1615. *
  1616. * For blocking we (obviously) need to provide the same guarantee as for
  1617. * migration. However the means are completely different as there is no lock
  1618. * chain to provide order. Instead we do:
  1619. *
  1620. * 1) smp_store_release(X->on_cpu, 0)
  1621. * 2) smp_cond_load_acquire(!X->on_cpu)
  1622. *
  1623. * Example:
  1624. *
  1625. * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
  1626. *
  1627. * LOCK rq(0)->lock LOCK X->pi_lock
  1628. * dequeue X
  1629. * sched-out X
  1630. * smp_store_release(X->on_cpu, 0);
  1631. *
  1632. * smp_cond_load_acquire(&X->on_cpu, !VAL);
  1633. * X->state = WAKING
  1634. * set_task_cpu(X,2)
  1635. *
  1636. * LOCK rq(2)->lock
  1637. * enqueue X
  1638. * X->state = RUNNING
  1639. * UNLOCK rq(2)->lock
  1640. *
  1641. * LOCK rq(2)->lock // orders against CPU1
  1642. * sched-out Z
  1643. * sched-in X
  1644. * UNLOCK rq(2)->lock
  1645. *
  1646. * UNLOCK X->pi_lock
  1647. * UNLOCK rq(0)->lock
  1648. *
  1649. *
  1650. * However; for wakeups there is a second guarantee we must provide, namely we
  1651. * must observe the state that lead to our wakeup. That is, not only must our
  1652. * task observe its own prior state, it must also observe the stores prior to
  1653. * its wakeup.
  1654. *
  1655. * This means that any means of doing remote wakeups must order the CPU doing
  1656. * the wakeup against the CPU the task is going to end up running on. This,
  1657. * however, is already required for the regular Program-Order guarantee above,
  1658. * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
  1659. *
  1660. */
  1661. /**
  1662. * try_to_wake_up - wake up a thread
  1663. * @p: the thread to be awakened
  1664. * @state: the mask of task states that can be woken
  1665. * @wake_flags: wake modifier flags (WF_*)
  1666. *
  1667. * If (@state & @p->state) @p->state = TASK_RUNNING.
  1668. *
  1669. * If the task was not queued/runnable, also place it back on a runqueue.
  1670. *
  1671. * Atomic against schedule() which would dequeue a task, also see
  1672. * set_current_state().
  1673. *
  1674. * Return: %true if @p->state changes (an actual wakeup was done),
  1675. * %false otherwise.
  1676. */
  1677. static int
  1678. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1679. {
  1680. unsigned long flags;
  1681. int cpu, success = 0;
  1682. /*
  1683. * If we are going to wake up a thread waiting for CONDITION we
  1684. * need to ensure that CONDITION=1 done by the caller can not be
  1685. * reordered with p->state check below. This pairs with mb() in
  1686. * set_current_state() the waiting thread does.
  1687. */
  1688. smp_mb__before_spinlock();
  1689. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1690. if (!(p->state & state))
  1691. goto out;
  1692. trace_sched_waking(p);
  1693. /* We're going to change ->state: */
  1694. success = 1;
  1695. cpu = task_cpu(p);
  1696. /*
  1697. * Ensure we load p->on_rq _after_ p->state, otherwise it would
  1698. * be possible to, falsely, observe p->on_rq == 0 and get stuck
  1699. * in smp_cond_load_acquire() below.
  1700. *
  1701. * sched_ttwu_pending() try_to_wake_up()
  1702. * [S] p->on_rq = 1; [L] P->state
  1703. * UNLOCK rq->lock -----.
  1704. * \
  1705. * +--- RMB
  1706. * schedule() /
  1707. * LOCK rq->lock -----'
  1708. * UNLOCK rq->lock
  1709. *
  1710. * [task p]
  1711. * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
  1712. *
  1713. * Pairs with the UNLOCK+LOCK on rq->lock from the
  1714. * last wakeup of our task and the schedule that got our task
  1715. * current.
  1716. */
  1717. smp_rmb();
  1718. if (p->on_rq && ttwu_remote(p, wake_flags))
  1719. goto stat;
  1720. #ifdef CONFIG_SMP
  1721. /*
  1722. * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
  1723. * possible to, falsely, observe p->on_cpu == 0.
  1724. *
  1725. * One must be running (->on_cpu == 1) in order to remove oneself
  1726. * from the runqueue.
  1727. *
  1728. * [S] ->on_cpu = 1; [L] ->on_rq
  1729. * UNLOCK rq->lock
  1730. * RMB
  1731. * LOCK rq->lock
  1732. * [S] ->on_rq = 0; [L] ->on_cpu
  1733. *
  1734. * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
  1735. * from the consecutive calls to schedule(); the first switching to our
  1736. * task, the second putting it to sleep.
  1737. */
  1738. smp_rmb();
  1739. /*
  1740. * If the owning (remote) CPU is still in the middle of schedule() with
  1741. * this task as prev, wait until its done referencing the task.
  1742. *
  1743. * Pairs with the smp_store_release() in finish_lock_switch().
  1744. *
  1745. * This ensures that tasks getting woken will be fully ordered against
  1746. * their previous state and preserve Program Order.
  1747. */
  1748. smp_cond_load_acquire(&p->on_cpu, !VAL);
  1749. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1750. p->state = TASK_WAKING;
  1751. if (p->in_iowait) {
  1752. delayacct_blkio_end();
  1753. atomic_dec(&task_rq(p)->nr_iowait);
  1754. }
  1755. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1756. if (task_cpu(p) != cpu) {
  1757. wake_flags |= WF_MIGRATED;
  1758. set_task_cpu(p, cpu);
  1759. }
  1760. #else /* CONFIG_SMP */
  1761. if (p->in_iowait) {
  1762. delayacct_blkio_end();
  1763. atomic_dec(&task_rq(p)->nr_iowait);
  1764. }
  1765. #endif /* CONFIG_SMP */
  1766. ttwu_queue(p, cpu, wake_flags);
  1767. stat:
  1768. ttwu_stat(p, cpu, wake_flags);
  1769. out:
  1770. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1771. return success;
  1772. }
  1773. /**
  1774. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1775. * @p: the thread to be awakened
  1776. * @rf: request-queue flags for pinning
  1777. *
  1778. * Put @p on the run-queue if it's not already there. The caller must
  1779. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1780. * the current task.
  1781. */
  1782. static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
  1783. {
  1784. struct rq *rq = task_rq(p);
  1785. if (WARN_ON_ONCE(rq != this_rq()) ||
  1786. WARN_ON_ONCE(p == current))
  1787. return;
  1788. lockdep_assert_held(&rq->lock);
  1789. if (!raw_spin_trylock(&p->pi_lock)) {
  1790. /*
  1791. * This is OK, because current is on_cpu, which avoids it being
  1792. * picked for load-balance and preemption/IRQs are still
  1793. * disabled avoiding further scheduler activity on it and we've
  1794. * not yet picked a replacement task.
  1795. */
  1796. rq_unlock(rq, rf);
  1797. raw_spin_lock(&p->pi_lock);
  1798. rq_relock(rq, rf);
  1799. }
  1800. if (!(p->state & TASK_NORMAL))
  1801. goto out;
  1802. trace_sched_waking(p);
  1803. if (!task_on_rq_queued(p)) {
  1804. if (p->in_iowait) {
  1805. delayacct_blkio_end();
  1806. atomic_dec(&rq->nr_iowait);
  1807. }
  1808. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
  1809. }
  1810. ttwu_do_wakeup(rq, p, 0, rf);
  1811. ttwu_stat(p, smp_processor_id(), 0);
  1812. out:
  1813. raw_spin_unlock(&p->pi_lock);
  1814. }
  1815. /**
  1816. * wake_up_process - Wake up a specific process
  1817. * @p: The process to be woken up.
  1818. *
  1819. * Attempt to wake up the nominated process and move it to the set of runnable
  1820. * processes.
  1821. *
  1822. * Return: 1 if the process was woken up, 0 if it was already running.
  1823. *
  1824. * It may be assumed that this function implies a write memory barrier before
  1825. * changing the task state if and only if any tasks are woken up.
  1826. */
  1827. int wake_up_process(struct task_struct *p)
  1828. {
  1829. return try_to_wake_up(p, TASK_NORMAL, 0);
  1830. }
  1831. EXPORT_SYMBOL(wake_up_process);
  1832. int wake_up_state(struct task_struct *p, unsigned int state)
  1833. {
  1834. return try_to_wake_up(p, state, 0);
  1835. }
  1836. /*
  1837. * Perform scheduler related setup for a newly forked process p.
  1838. * p is forked by current.
  1839. *
  1840. * __sched_fork() is basic setup used by init_idle() too:
  1841. */
  1842. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1843. {
  1844. p->on_rq = 0;
  1845. p->se.on_rq = 0;
  1846. p->se.exec_start = 0;
  1847. p->se.sum_exec_runtime = 0;
  1848. p->se.prev_sum_exec_runtime = 0;
  1849. p->se.nr_migrations = 0;
  1850. p->se.vruntime = 0;
  1851. INIT_LIST_HEAD(&p->se.group_node);
  1852. #ifdef CONFIG_FAIR_GROUP_SCHED
  1853. p->se.cfs_rq = NULL;
  1854. #endif
  1855. #ifdef CONFIG_SCHEDSTATS
  1856. /* Even if schedstat is disabled, there should not be garbage */
  1857. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1858. #endif
  1859. RB_CLEAR_NODE(&p->dl.rb_node);
  1860. init_dl_task_timer(&p->dl);
  1861. init_dl_inactive_task_timer(&p->dl);
  1862. __dl_clear_params(p);
  1863. INIT_LIST_HEAD(&p->rt.run_list);
  1864. p->rt.timeout = 0;
  1865. p->rt.time_slice = sched_rr_timeslice;
  1866. p->rt.on_rq = 0;
  1867. p->rt.on_list = 0;
  1868. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1869. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1870. #endif
  1871. #ifdef CONFIG_NUMA_BALANCING
  1872. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1873. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1874. p->mm->numa_scan_seq = 0;
  1875. }
  1876. if (clone_flags & CLONE_VM)
  1877. p->numa_preferred_nid = current->numa_preferred_nid;
  1878. else
  1879. p->numa_preferred_nid = -1;
  1880. p->node_stamp = 0ULL;
  1881. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1882. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1883. p->numa_work.next = &p->numa_work;
  1884. p->numa_faults = NULL;
  1885. p->last_task_numa_placement = 0;
  1886. p->last_sum_exec_runtime = 0;
  1887. p->numa_group = NULL;
  1888. #endif /* CONFIG_NUMA_BALANCING */
  1889. }
  1890. DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
  1891. #ifdef CONFIG_NUMA_BALANCING
  1892. void set_numabalancing_state(bool enabled)
  1893. {
  1894. if (enabled)
  1895. static_branch_enable(&sched_numa_balancing);
  1896. else
  1897. static_branch_disable(&sched_numa_balancing);
  1898. }
  1899. #ifdef CONFIG_PROC_SYSCTL
  1900. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1901. void __user *buffer, size_t *lenp, loff_t *ppos)
  1902. {
  1903. struct ctl_table t;
  1904. int err;
  1905. int state = static_branch_likely(&sched_numa_balancing);
  1906. if (write && !capable(CAP_SYS_ADMIN))
  1907. return -EPERM;
  1908. t = *table;
  1909. t.data = &state;
  1910. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1911. if (err < 0)
  1912. return err;
  1913. if (write)
  1914. set_numabalancing_state(state);
  1915. return err;
  1916. }
  1917. #endif
  1918. #endif
  1919. #ifdef CONFIG_SCHEDSTATS
  1920. DEFINE_STATIC_KEY_FALSE(sched_schedstats);
  1921. static bool __initdata __sched_schedstats = false;
  1922. static void set_schedstats(bool enabled)
  1923. {
  1924. if (enabled)
  1925. static_branch_enable(&sched_schedstats);
  1926. else
  1927. static_branch_disable(&sched_schedstats);
  1928. }
  1929. void force_schedstat_enabled(void)
  1930. {
  1931. if (!schedstat_enabled()) {
  1932. pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
  1933. static_branch_enable(&sched_schedstats);
  1934. }
  1935. }
  1936. static int __init setup_schedstats(char *str)
  1937. {
  1938. int ret = 0;
  1939. if (!str)
  1940. goto out;
  1941. /*
  1942. * This code is called before jump labels have been set up, so we can't
  1943. * change the static branch directly just yet. Instead set a temporary
  1944. * variable so init_schedstats() can do it later.
  1945. */
  1946. if (!strcmp(str, "enable")) {
  1947. __sched_schedstats = true;
  1948. ret = 1;
  1949. } else if (!strcmp(str, "disable")) {
  1950. __sched_schedstats = false;
  1951. ret = 1;
  1952. }
  1953. out:
  1954. if (!ret)
  1955. pr_warn("Unable to parse schedstats=\n");
  1956. return ret;
  1957. }
  1958. __setup("schedstats=", setup_schedstats);
  1959. static void __init init_schedstats(void)
  1960. {
  1961. set_schedstats(__sched_schedstats);
  1962. }
  1963. #ifdef CONFIG_PROC_SYSCTL
  1964. int sysctl_schedstats(struct ctl_table *table, int write,
  1965. void __user *buffer, size_t *lenp, loff_t *ppos)
  1966. {
  1967. struct ctl_table t;
  1968. int err;
  1969. int state = static_branch_likely(&sched_schedstats);
  1970. if (write && !capable(CAP_SYS_ADMIN))
  1971. return -EPERM;
  1972. t = *table;
  1973. t.data = &state;
  1974. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1975. if (err < 0)
  1976. return err;
  1977. if (write)
  1978. set_schedstats(state);
  1979. return err;
  1980. }
  1981. #endif /* CONFIG_PROC_SYSCTL */
  1982. #else /* !CONFIG_SCHEDSTATS */
  1983. static inline void init_schedstats(void) {}
  1984. #endif /* CONFIG_SCHEDSTATS */
  1985. /*
  1986. * fork()/clone()-time setup:
  1987. */
  1988. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1989. {
  1990. unsigned long flags;
  1991. int cpu = get_cpu();
  1992. __sched_fork(clone_flags, p);
  1993. /*
  1994. * We mark the process as NEW here. This guarantees that
  1995. * nobody will actually run it, and a signal or other external
  1996. * event cannot wake it up and insert it on the runqueue either.
  1997. */
  1998. p->state = TASK_NEW;
  1999. /*
  2000. * Make sure we do not leak PI boosting priority to the child.
  2001. */
  2002. p->prio = current->normal_prio;
  2003. /*
  2004. * Revert to default priority/policy on fork if requested.
  2005. */
  2006. if (unlikely(p->sched_reset_on_fork)) {
  2007. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2008. p->policy = SCHED_NORMAL;
  2009. p->static_prio = NICE_TO_PRIO(0);
  2010. p->rt_priority = 0;
  2011. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2012. p->static_prio = NICE_TO_PRIO(0);
  2013. p->prio = p->normal_prio = __normal_prio(p);
  2014. set_load_weight(p);
  2015. /*
  2016. * We don't need the reset flag anymore after the fork. It has
  2017. * fulfilled its duty:
  2018. */
  2019. p->sched_reset_on_fork = 0;
  2020. }
  2021. if (dl_prio(p->prio)) {
  2022. put_cpu();
  2023. return -EAGAIN;
  2024. } else if (rt_prio(p->prio)) {
  2025. p->sched_class = &rt_sched_class;
  2026. } else {
  2027. p->sched_class = &fair_sched_class;
  2028. }
  2029. init_entity_runnable_average(&p->se);
  2030. /*
  2031. * The child is not yet in the pid-hash so no cgroup attach races,
  2032. * and the cgroup is pinned to this child due to cgroup_fork()
  2033. * is ran before sched_fork().
  2034. *
  2035. * Silence PROVE_RCU.
  2036. */
  2037. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2038. /*
  2039. * We're setting the CPU for the first time, we don't migrate,
  2040. * so use __set_task_cpu().
  2041. */
  2042. __set_task_cpu(p, cpu);
  2043. if (p->sched_class->task_fork)
  2044. p->sched_class->task_fork(p);
  2045. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2046. #ifdef CONFIG_SCHED_INFO
  2047. if (likely(sched_info_on()))
  2048. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2049. #endif
  2050. #if defined(CONFIG_SMP)
  2051. p->on_cpu = 0;
  2052. #endif
  2053. init_task_preempt_count(p);
  2054. #ifdef CONFIG_SMP
  2055. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2056. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  2057. #endif
  2058. put_cpu();
  2059. return 0;
  2060. }
  2061. unsigned long to_ratio(u64 period, u64 runtime)
  2062. {
  2063. if (runtime == RUNTIME_INF)
  2064. return BW_UNIT;
  2065. /*
  2066. * Doing this here saves a lot of checks in all
  2067. * the calling paths, and returning zero seems
  2068. * safe for them anyway.
  2069. */
  2070. if (period == 0)
  2071. return 0;
  2072. return div64_u64(runtime << BW_SHIFT, period);
  2073. }
  2074. /*
  2075. * wake_up_new_task - wake up a newly created task for the first time.
  2076. *
  2077. * This function will do some initial scheduler statistics housekeeping
  2078. * that must be done for every newly created context, then puts the task
  2079. * on the runqueue and wakes it.
  2080. */
  2081. void wake_up_new_task(struct task_struct *p)
  2082. {
  2083. struct rq_flags rf;
  2084. struct rq *rq;
  2085. raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
  2086. p->state = TASK_RUNNING;
  2087. #ifdef CONFIG_SMP
  2088. /*
  2089. * Fork balancing, do it here and not earlier because:
  2090. * - cpus_allowed can change in the fork path
  2091. * - any previously selected CPU might disappear through hotplug
  2092. *
  2093. * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
  2094. * as we're not fully set-up yet.
  2095. */
  2096. __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  2097. #endif
  2098. rq = __task_rq_lock(p, &rf);
  2099. update_rq_clock(rq);
  2100. post_init_entity_util_avg(&p->se);
  2101. activate_task(rq, p, ENQUEUE_NOCLOCK);
  2102. p->on_rq = TASK_ON_RQ_QUEUED;
  2103. trace_sched_wakeup_new(p);
  2104. check_preempt_curr(rq, p, WF_FORK);
  2105. #ifdef CONFIG_SMP
  2106. if (p->sched_class->task_woken) {
  2107. /*
  2108. * Nothing relies on rq->lock after this, so its fine to
  2109. * drop it.
  2110. */
  2111. rq_unpin_lock(rq, &rf);
  2112. p->sched_class->task_woken(rq, p);
  2113. rq_repin_lock(rq, &rf);
  2114. }
  2115. #endif
  2116. task_rq_unlock(rq, p, &rf);
  2117. }
  2118. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2119. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  2120. void preempt_notifier_inc(void)
  2121. {
  2122. static_key_slow_inc(&preempt_notifier_key);
  2123. }
  2124. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  2125. void preempt_notifier_dec(void)
  2126. {
  2127. static_key_slow_dec(&preempt_notifier_key);
  2128. }
  2129. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  2130. /**
  2131. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2132. * @notifier: notifier struct to register
  2133. */
  2134. void preempt_notifier_register(struct preempt_notifier *notifier)
  2135. {
  2136. if (!static_key_false(&preempt_notifier_key))
  2137. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  2138. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2139. }
  2140. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2141. /**
  2142. * preempt_notifier_unregister - no longer interested in preemption notifications
  2143. * @notifier: notifier struct to unregister
  2144. *
  2145. * This is *not* safe to call from within a preemption notifier.
  2146. */
  2147. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2148. {
  2149. hlist_del(&notifier->link);
  2150. }
  2151. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2152. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2153. {
  2154. struct preempt_notifier *notifier;
  2155. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2156. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2157. }
  2158. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2159. {
  2160. if (static_key_false(&preempt_notifier_key))
  2161. __fire_sched_in_preempt_notifiers(curr);
  2162. }
  2163. static void
  2164. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2165. struct task_struct *next)
  2166. {
  2167. struct preempt_notifier *notifier;
  2168. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2169. notifier->ops->sched_out(notifier, next);
  2170. }
  2171. static __always_inline void
  2172. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2173. struct task_struct *next)
  2174. {
  2175. if (static_key_false(&preempt_notifier_key))
  2176. __fire_sched_out_preempt_notifiers(curr, next);
  2177. }
  2178. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2179. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2180. {
  2181. }
  2182. static inline void
  2183. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2184. struct task_struct *next)
  2185. {
  2186. }
  2187. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2188. /**
  2189. * prepare_task_switch - prepare to switch tasks
  2190. * @rq: the runqueue preparing to switch
  2191. * @prev: the current task that is being switched out
  2192. * @next: the task we are going to switch to.
  2193. *
  2194. * This is called with the rq lock held and interrupts off. It must
  2195. * be paired with a subsequent finish_task_switch after the context
  2196. * switch.
  2197. *
  2198. * prepare_task_switch sets up locking and calls architecture specific
  2199. * hooks.
  2200. */
  2201. static inline void
  2202. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2203. struct task_struct *next)
  2204. {
  2205. sched_info_switch(rq, prev, next);
  2206. perf_event_task_sched_out(prev, next);
  2207. fire_sched_out_preempt_notifiers(prev, next);
  2208. prepare_lock_switch(rq, next);
  2209. prepare_arch_switch(next);
  2210. }
  2211. /**
  2212. * finish_task_switch - clean up after a task-switch
  2213. * @prev: the thread we just switched away from.
  2214. *
  2215. * finish_task_switch must be called after the context switch, paired
  2216. * with a prepare_task_switch call before the context switch.
  2217. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2218. * and do any other architecture-specific cleanup actions.
  2219. *
  2220. * Note that we may have delayed dropping an mm in context_switch(). If
  2221. * so, we finish that here outside of the runqueue lock. (Doing it
  2222. * with the lock held can cause deadlocks; see schedule() for
  2223. * details.)
  2224. *
  2225. * The context switch have flipped the stack from under us and restored the
  2226. * local variables which were saved when this task called schedule() in the
  2227. * past. prev == current is still correct but we need to recalculate this_rq
  2228. * because prev may have moved to another CPU.
  2229. */
  2230. static struct rq *finish_task_switch(struct task_struct *prev)
  2231. __releases(rq->lock)
  2232. {
  2233. struct rq *rq = this_rq();
  2234. struct mm_struct *mm = rq->prev_mm;
  2235. long prev_state;
  2236. /*
  2237. * The previous task will have left us with a preempt_count of 2
  2238. * because it left us after:
  2239. *
  2240. * schedule()
  2241. * preempt_disable(); // 1
  2242. * __schedule()
  2243. * raw_spin_lock_irq(&rq->lock) // 2
  2244. *
  2245. * Also, see FORK_PREEMPT_COUNT.
  2246. */
  2247. if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
  2248. "corrupted preempt_count: %s/%d/0x%x\n",
  2249. current->comm, current->pid, preempt_count()))
  2250. preempt_count_set(FORK_PREEMPT_COUNT);
  2251. rq->prev_mm = NULL;
  2252. /*
  2253. * A task struct has one reference for the use as "current".
  2254. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2255. * schedule one last time. The schedule call will never return, and
  2256. * the scheduled task must drop that reference.
  2257. *
  2258. * We must observe prev->state before clearing prev->on_cpu (in
  2259. * finish_lock_switch), otherwise a concurrent wakeup can get prev
  2260. * running on another CPU and we could rave with its RUNNING -> DEAD
  2261. * transition, resulting in a double drop.
  2262. */
  2263. prev_state = prev->state;
  2264. vtime_task_switch(prev);
  2265. perf_event_task_sched_in(prev, current);
  2266. finish_lock_switch(rq, prev);
  2267. finish_arch_post_lock_switch();
  2268. fire_sched_in_preempt_notifiers(current);
  2269. if (mm)
  2270. mmdrop(mm);
  2271. if (unlikely(prev_state == TASK_DEAD)) {
  2272. if (prev->sched_class->task_dead)
  2273. prev->sched_class->task_dead(prev);
  2274. /*
  2275. * Remove function-return probe instances associated with this
  2276. * task and put them back on the free list.
  2277. */
  2278. kprobe_flush_task(prev);
  2279. /* Task is done with its stack. */
  2280. put_task_stack(prev);
  2281. put_task_struct(prev);
  2282. }
  2283. tick_nohz_task_switch();
  2284. return rq;
  2285. }
  2286. #ifdef CONFIG_SMP
  2287. /* rq->lock is NOT held, but preemption is disabled */
  2288. static void __balance_callback(struct rq *rq)
  2289. {
  2290. struct callback_head *head, *next;
  2291. void (*func)(struct rq *rq);
  2292. unsigned long flags;
  2293. raw_spin_lock_irqsave(&rq->lock, flags);
  2294. head = rq->balance_callback;
  2295. rq->balance_callback = NULL;
  2296. while (head) {
  2297. func = (void (*)(struct rq *))head->func;
  2298. next = head->next;
  2299. head->next = NULL;
  2300. head = next;
  2301. func(rq);
  2302. }
  2303. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2304. }
  2305. static inline void balance_callback(struct rq *rq)
  2306. {
  2307. if (unlikely(rq->balance_callback))
  2308. __balance_callback(rq);
  2309. }
  2310. #else
  2311. static inline void balance_callback(struct rq *rq)
  2312. {
  2313. }
  2314. #endif
  2315. /**
  2316. * schedule_tail - first thing a freshly forked thread must call.
  2317. * @prev: the thread we just switched away from.
  2318. */
  2319. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2320. __releases(rq->lock)
  2321. {
  2322. struct rq *rq;
  2323. /*
  2324. * New tasks start with FORK_PREEMPT_COUNT, see there and
  2325. * finish_task_switch() for details.
  2326. *
  2327. * finish_task_switch() will drop rq->lock() and lower preempt_count
  2328. * and the preempt_enable() will end up enabling preemption (on
  2329. * PREEMPT_COUNT kernels).
  2330. */
  2331. rq = finish_task_switch(prev);
  2332. balance_callback(rq);
  2333. preempt_enable();
  2334. if (current->set_child_tid)
  2335. put_user(task_pid_vnr(current), current->set_child_tid);
  2336. }
  2337. /*
  2338. * context_switch - switch to the new MM and the new thread's register state.
  2339. */
  2340. static __always_inline struct rq *
  2341. context_switch(struct rq *rq, struct task_struct *prev,
  2342. struct task_struct *next, struct rq_flags *rf)
  2343. {
  2344. struct mm_struct *mm, *oldmm;
  2345. prepare_task_switch(rq, prev, next);
  2346. mm = next->mm;
  2347. oldmm = prev->active_mm;
  2348. /*
  2349. * For paravirt, this is coupled with an exit in switch_to to
  2350. * combine the page table reload and the switch backend into
  2351. * one hypercall.
  2352. */
  2353. arch_start_context_switch(prev);
  2354. if (!mm) {
  2355. next->active_mm = oldmm;
  2356. mmgrab(oldmm);
  2357. enter_lazy_tlb(oldmm, next);
  2358. } else
  2359. switch_mm_irqs_off(oldmm, mm, next);
  2360. if (!prev->mm) {
  2361. prev->active_mm = NULL;
  2362. rq->prev_mm = oldmm;
  2363. }
  2364. rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
  2365. /*
  2366. * Since the runqueue lock will be released by the next
  2367. * task (which is an invalid locking op but in the case
  2368. * of the scheduler it's an obvious special-case), so we
  2369. * do an early lockdep release here:
  2370. */
  2371. rq_unpin_lock(rq, rf);
  2372. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2373. /* Here we just switch the register state and the stack. */
  2374. switch_to(prev, next, prev);
  2375. barrier();
  2376. return finish_task_switch(prev);
  2377. }
  2378. /*
  2379. * nr_running and nr_context_switches:
  2380. *
  2381. * externally visible scheduler statistics: current number of runnable
  2382. * threads, total number of context switches performed since bootup.
  2383. */
  2384. unsigned long nr_running(void)
  2385. {
  2386. unsigned long i, sum = 0;
  2387. for_each_online_cpu(i)
  2388. sum += cpu_rq(i)->nr_running;
  2389. return sum;
  2390. }
  2391. /*
  2392. * Check if only the current task is running on the CPU.
  2393. *
  2394. * Caution: this function does not check that the caller has disabled
  2395. * preemption, thus the result might have a time-of-check-to-time-of-use
  2396. * race. The caller is responsible to use it correctly, for example:
  2397. *
  2398. * - from a non-preemptable section (of course)
  2399. *
  2400. * - from a thread that is bound to a single CPU
  2401. *
  2402. * - in a loop with very short iterations (e.g. a polling loop)
  2403. */
  2404. bool single_task_running(void)
  2405. {
  2406. return raw_rq()->nr_running == 1;
  2407. }
  2408. EXPORT_SYMBOL(single_task_running);
  2409. unsigned long long nr_context_switches(void)
  2410. {
  2411. int i;
  2412. unsigned long long sum = 0;
  2413. for_each_possible_cpu(i)
  2414. sum += cpu_rq(i)->nr_switches;
  2415. return sum;
  2416. }
  2417. /*
  2418. * IO-wait accounting, and how its mostly bollocks (on SMP).
  2419. *
  2420. * The idea behind IO-wait account is to account the idle time that we could
  2421. * have spend running if it were not for IO. That is, if we were to improve the
  2422. * storage performance, we'd have a proportional reduction in IO-wait time.
  2423. *
  2424. * This all works nicely on UP, where, when a task blocks on IO, we account
  2425. * idle time as IO-wait, because if the storage were faster, it could've been
  2426. * running and we'd not be idle.
  2427. *
  2428. * This has been extended to SMP, by doing the same for each CPU. This however
  2429. * is broken.
  2430. *
  2431. * Imagine for instance the case where two tasks block on one CPU, only the one
  2432. * CPU will have IO-wait accounted, while the other has regular idle. Even
  2433. * though, if the storage were faster, both could've ran at the same time,
  2434. * utilising both CPUs.
  2435. *
  2436. * This means, that when looking globally, the current IO-wait accounting on
  2437. * SMP is a lower bound, by reason of under accounting.
  2438. *
  2439. * Worse, since the numbers are provided per CPU, they are sometimes
  2440. * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
  2441. * associated with any one particular CPU, it can wake to another CPU than it
  2442. * blocked on. This means the per CPU IO-wait number is meaningless.
  2443. *
  2444. * Task CPU affinities can make all that even more 'interesting'.
  2445. */
  2446. unsigned long nr_iowait(void)
  2447. {
  2448. unsigned long i, sum = 0;
  2449. for_each_possible_cpu(i)
  2450. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2451. return sum;
  2452. }
  2453. /*
  2454. * Consumers of these two interfaces, like for example the cpufreq menu
  2455. * governor are using nonsensical data. Boosting frequency for a CPU that has
  2456. * IO-wait which might not even end up running the task when it does become
  2457. * runnable.
  2458. */
  2459. unsigned long nr_iowait_cpu(int cpu)
  2460. {
  2461. struct rq *this = cpu_rq(cpu);
  2462. return atomic_read(&this->nr_iowait);
  2463. }
  2464. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2465. {
  2466. struct rq *rq = this_rq();
  2467. *nr_waiters = atomic_read(&rq->nr_iowait);
  2468. *load = rq->load.weight;
  2469. }
  2470. #ifdef CONFIG_SMP
  2471. /*
  2472. * sched_exec - execve() is a valuable balancing opportunity, because at
  2473. * this point the task has the smallest effective memory and cache footprint.
  2474. */
  2475. void sched_exec(void)
  2476. {
  2477. struct task_struct *p = current;
  2478. unsigned long flags;
  2479. int dest_cpu;
  2480. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2481. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2482. if (dest_cpu == smp_processor_id())
  2483. goto unlock;
  2484. if (likely(cpu_active(dest_cpu))) {
  2485. struct migration_arg arg = { p, dest_cpu };
  2486. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2487. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2488. return;
  2489. }
  2490. unlock:
  2491. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2492. }
  2493. #endif
  2494. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2495. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2496. EXPORT_PER_CPU_SYMBOL(kstat);
  2497. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2498. /*
  2499. * The function fair_sched_class.update_curr accesses the struct curr
  2500. * and its field curr->exec_start; when called from task_sched_runtime(),
  2501. * we observe a high rate of cache misses in practice.
  2502. * Prefetching this data results in improved performance.
  2503. */
  2504. static inline void prefetch_curr_exec_start(struct task_struct *p)
  2505. {
  2506. #ifdef CONFIG_FAIR_GROUP_SCHED
  2507. struct sched_entity *curr = (&p->se)->cfs_rq->curr;
  2508. #else
  2509. struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
  2510. #endif
  2511. prefetch(curr);
  2512. prefetch(&curr->exec_start);
  2513. }
  2514. /*
  2515. * Return accounted runtime for the task.
  2516. * In case the task is currently running, return the runtime plus current's
  2517. * pending runtime that have not been accounted yet.
  2518. */
  2519. unsigned long long task_sched_runtime(struct task_struct *p)
  2520. {
  2521. struct rq_flags rf;
  2522. struct rq *rq;
  2523. u64 ns;
  2524. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2525. /*
  2526. * 64-bit doesn't need locks to atomically read a 64bit value.
  2527. * So we have a optimization chance when the task's delta_exec is 0.
  2528. * Reading ->on_cpu is racy, but this is ok.
  2529. *
  2530. * If we race with it leaving CPU, we'll take a lock. So we're correct.
  2531. * If we race with it entering CPU, unaccounted time is 0. This is
  2532. * indistinguishable from the read occurring a few cycles earlier.
  2533. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2534. * been accounted, so we're correct here as well.
  2535. */
  2536. if (!p->on_cpu || !task_on_rq_queued(p))
  2537. return p->se.sum_exec_runtime;
  2538. #endif
  2539. rq = task_rq_lock(p, &rf);
  2540. /*
  2541. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2542. * project cycles that may never be accounted to this
  2543. * thread, breaking clock_gettime().
  2544. */
  2545. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2546. prefetch_curr_exec_start(p);
  2547. update_rq_clock(rq);
  2548. p->sched_class->update_curr(rq);
  2549. }
  2550. ns = p->se.sum_exec_runtime;
  2551. task_rq_unlock(rq, p, &rf);
  2552. return ns;
  2553. }
  2554. /*
  2555. * This function gets called by the timer code, with HZ frequency.
  2556. * We call it with interrupts disabled.
  2557. */
  2558. void scheduler_tick(void)
  2559. {
  2560. int cpu = smp_processor_id();
  2561. struct rq *rq = cpu_rq(cpu);
  2562. struct task_struct *curr = rq->curr;
  2563. struct rq_flags rf;
  2564. sched_clock_tick();
  2565. rq_lock(rq, &rf);
  2566. update_rq_clock(rq);
  2567. curr->sched_class->task_tick(rq, curr, 0);
  2568. cpu_load_update_active(rq);
  2569. calc_global_load_tick(rq);
  2570. rq_unlock(rq, &rf);
  2571. perf_event_task_tick();
  2572. #ifdef CONFIG_SMP
  2573. rq->idle_balance = idle_cpu(cpu);
  2574. trigger_load_balance(rq);
  2575. #endif
  2576. rq_last_tick_reset(rq);
  2577. }
  2578. #ifdef CONFIG_NO_HZ_FULL
  2579. /**
  2580. * scheduler_tick_max_deferment
  2581. *
  2582. * Keep at least one tick per second when a single
  2583. * active task is running because the scheduler doesn't
  2584. * yet completely support full dynticks environment.
  2585. *
  2586. * This makes sure that uptime, CFS vruntime, load
  2587. * balancing, etc... continue to move forward, even
  2588. * with a very low granularity.
  2589. *
  2590. * Return: Maximum deferment in nanoseconds.
  2591. */
  2592. u64 scheduler_tick_max_deferment(void)
  2593. {
  2594. struct rq *rq = this_rq();
  2595. unsigned long next, now = READ_ONCE(jiffies);
  2596. next = rq->last_sched_tick + HZ;
  2597. if (time_before_eq(next, now))
  2598. return 0;
  2599. return jiffies_to_nsecs(next - now);
  2600. }
  2601. #endif
  2602. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2603. defined(CONFIG_PREEMPT_TRACER))
  2604. /*
  2605. * If the value passed in is equal to the current preempt count
  2606. * then we just disabled preemption. Start timing the latency.
  2607. */
  2608. static inline void preempt_latency_start(int val)
  2609. {
  2610. if (preempt_count() == val) {
  2611. unsigned long ip = get_lock_parent_ip();
  2612. #ifdef CONFIG_DEBUG_PREEMPT
  2613. current->preempt_disable_ip = ip;
  2614. #endif
  2615. trace_preempt_off(CALLER_ADDR0, ip);
  2616. }
  2617. }
  2618. void preempt_count_add(int val)
  2619. {
  2620. #ifdef CONFIG_DEBUG_PREEMPT
  2621. /*
  2622. * Underflow?
  2623. */
  2624. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2625. return;
  2626. #endif
  2627. __preempt_count_add(val);
  2628. #ifdef CONFIG_DEBUG_PREEMPT
  2629. /*
  2630. * Spinlock count overflowing soon?
  2631. */
  2632. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2633. PREEMPT_MASK - 10);
  2634. #endif
  2635. preempt_latency_start(val);
  2636. }
  2637. EXPORT_SYMBOL(preempt_count_add);
  2638. NOKPROBE_SYMBOL(preempt_count_add);
  2639. /*
  2640. * If the value passed in equals to the current preempt count
  2641. * then we just enabled preemption. Stop timing the latency.
  2642. */
  2643. static inline void preempt_latency_stop(int val)
  2644. {
  2645. if (preempt_count() == val)
  2646. trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
  2647. }
  2648. void preempt_count_sub(int val)
  2649. {
  2650. #ifdef CONFIG_DEBUG_PREEMPT
  2651. /*
  2652. * Underflow?
  2653. */
  2654. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2655. return;
  2656. /*
  2657. * Is the spinlock portion underflowing?
  2658. */
  2659. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2660. !(preempt_count() & PREEMPT_MASK)))
  2661. return;
  2662. #endif
  2663. preempt_latency_stop(val);
  2664. __preempt_count_sub(val);
  2665. }
  2666. EXPORT_SYMBOL(preempt_count_sub);
  2667. NOKPROBE_SYMBOL(preempt_count_sub);
  2668. #else
  2669. static inline void preempt_latency_start(int val) { }
  2670. static inline void preempt_latency_stop(int val) { }
  2671. #endif
  2672. static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
  2673. {
  2674. #ifdef CONFIG_DEBUG_PREEMPT
  2675. return p->preempt_disable_ip;
  2676. #else
  2677. return 0;
  2678. #endif
  2679. }
  2680. /*
  2681. * Print scheduling while atomic bug:
  2682. */
  2683. static noinline void __schedule_bug(struct task_struct *prev)
  2684. {
  2685. /* Save this before calling printk(), since that will clobber it */
  2686. unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
  2687. if (oops_in_progress)
  2688. return;
  2689. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2690. prev->comm, prev->pid, preempt_count());
  2691. debug_show_held_locks(prev);
  2692. print_modules();
  2693. if (irqs_disabled())
  2694. print_irqtrace_events(prev);
  2695. if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
  2696. && in_atomic_preempt_off()) {
  2697. pr_err("Preemption disabled at:");
  2698. print_ip_sym(preempt_disable_ip);
  2699. pr_cont("\n");
  2700. }
  2701. if (panic_on_warn)
  2702. panic("scheduling while atomic\n");
  2703. dump_stack();
  2704. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2705. }
  2706. /*
  2707. * Various schedule()-time debugging checks and statistics:
  2708. */
  2709. static inline void schedule_debug(struct task_struct *prev)
  2710. {
  2711. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2712. if (task_stack_end_corrupted(prev))
  2713. panic("corrupted stack end detected inside scheduler\n");
  2714. #endif
  2715. if (unlikely(in_atomic_preempt_off())) {
  2716. __schedule_bug(prev);
  2717. preempt_count_set(PREEMPT_DISABLED);
  2718. }
  2719. rcu_sleep_check();
  2720. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2721. schedstat_inc(this_rq()->sched_count);
  2722. }
  2723. /*
  2724. * Pick up the highest-prio task:
  2725. */
  2726. static inline struct task_struct *
  2727. pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
  2728. {
  2729. const struct sched_class *class;
  2730. struct task_struct *p;
  2731. /*
  2732. * Optimization: we know that if all tasks are in the fair class we can
  2733. * call that function directly, but only if the @prev task wasn't of a
  2734. * higher scheduling class, because otherwise those loose the
  2735. * opportunity to pull in more work from other CPUs.
  2736. */
  2737. if (likely((prev->sched_class == &idle_sched_class ||
  2738. prev->sched_class == &fair_sched_class) &&
  2739. rq->nr_running == rq->cfs.h_nr_running)) {
  2740. p = fair_sched_class.pick_next_task(rq, prev, rf);
  2741. if (unlikely(p == RETRY_TASK))
  2742. goto again;
  2743. /* Assumes fair_sched_class->next == idle_sched_class */
  2744. if (unlikely(!p))
  2745. p = idle_sched_class.pick_next_task(rq, prev, rf);
  2746. return p;
  2747. }
  2748. again:
  2749. for_each_class(class) {
  2750. p = class->pick_next_task(rq, prev, rf);
  2751. if (p) {
  2752. if (unlikely(p == RETRY_TASK))
  2753. goto again;
  2754. return p;
  2755. }
  2756. }
  2757. /* The idle class should always have a runnable task: */
  2758. BUG();
  2759. }
  2760. /*
  2761. * __schedule() is the main scheduler function.
  2762. *
  2763. * The main means of driving the scheduler and thus entering this function are:
  2764. *
  2765. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2766. *
  2767. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2768. * paths. For example, see arch/x86/entry_64.S.
  2769. *
  2770. * To drive preemption between tasks, the scheduler sets the flag in timer
  2771. * interrupt handler scheduler_tick().
  2772. *
  2773. * 3. Wakeups don't really cause entry into schedule(). They add a
  2774. * task to the run-queue and that's it.
  2775. *
  2776. * Now, if the new task added to the run-queue preempts the current
  2777. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2778. * called on the nearest possible occasion:
  2779. *
  2780. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2781. *
  2782. * - in syscall or exception context, at the next outmost
  2783. * preempt_enable(). (this might be as soon as the wake_up()'s
  2784. * spin_unlock()!)
  2785. *
  2786. * - in IRQ context, return from interrupt-handler to
  2787. * preemptible context
  2788. *
  2789. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2790. * then at the next:
  2791. *
  2792. * - cond_resched() call
  2793. * - explicit schedule() call
  2794. * - return from syscall or exception to user-space
  2795. * - return from interrupt-handler to user-space
  2796. *
  2797. * WARNING: must be called with preemption disabled!
  2798. */
  2799. static void __sched notrace __schedule(bool preempt)
  2800. {
  2801. struct task_struct *prev, *next;
  2802. unsigned long *switch_count;
  2803. struct rq_flags rf;
  2804. struct rq *rq;
  2805. int cpu;
  2806. cpu = smp_processor_id();
  2807. rq = cpu_rq(cpu);
  2808. prev = rq->curr;
  2809. schedule_debug(prev);
  2810. if (sched_feat(HRTICK))
  2811. hrtick_clear(rq);
  2812. local_irq_disable();
  2813. rcu_note_context_switch(preempt);
  2814. /*
  2815. * Make sure that signal_pending_state()->signal_pending() below
  2816. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2817. * done by the caller to avoid the race with signal_wake_up().
  2818. */
  2819. smp_mb__before_spinlock();
  2820. rq_lock(rq, &rf);
  2821. /* Promote REQ to ACT */
  2822. rq->clock_update_flags <<= 1;
  2823. update_rq_clock(rq);
  2824. switch_count = &prev->nivcsw;
  2825. if (!preempt && prev->state) {
  2826. if (unlikely(signal_pending_state(prev->state, prev))) {
  2827. prev->state = TASK_RUNNING;
  2828. } else {
  2829. deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
  2830. prev->on_rq = 0;
  2831. if (prev->in_iowait) {
  2832. atomic_inc(&rq->nr_iowait);
  2833. delayacct_blkio_start();
  2834. }
  2835. /*
  2836. * If a worker went to sleep, notify and ask workqueue
  2837. * whether it wants to wake up a task to maintain
  2838. * concurrency.
  2839. */
  2840. if (prev->flags & PF_WQ_WORKER) {
  2841. struct task_struct *to_wakeup;
  2842. to_wakeup = wq_worker_sleeping(prev);
  2843. if (to_wakeup)
  2844. try_to_wake_up_local(to_wakeup, &rf);
  2845. }
  2846. }
  2847. switch_count = &prev->nvcsw;
  2848. }
  2849. next = pick_next_task(rq, prev, &rf);
  2850. clear_tsk_need_resched(prev);
  2851. clear_preempt_need_resched();
  2852. if (likely(prev != next)) {
  2853. rq->nr_switches++;
  2854. rq->curr = next;
  2855. ++*switch_count;
  2856. trace_sched_switch(preempt, prev, next);
  2857. /* Also unlocks the rq: */
  2858. rq = context_switch(rq, prev, next, &rf);
  2859. } else {
  2860. rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
  2861. rq_unlock_irq(rq, &rf);
  2862. }
  2863. balance_callback(rq);
  2864. }
  2865. void __noreturn do_task_dead(void)
  2866. {
  2867. /*
  2868. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  2869. * when the following two conditions become true.
  2870. * - There is race condition of mmap_sem (It is acquired by
  2871. * exit_mm()), and
  2872. * - SMI occurs before setting TASK_RUNINNG.
  2873. * (or hypervisor of virtual machine switches to other guest)
  2874. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  2875. *
  2876. * To avoid it, we have to wait for releasing tsk->pi_lock which
  2877. * is held by try_to_wake_up()
  2878. */
  2879. smp_mb();
  2880. raw_spin_unlock_wait(&current->pi_lock);
  2881. /* Causes final put_task_struct in finish_task_switch(): */
  2882. __set_current_state(TASK_DEAD);
  2883. /* Tell freezer to ignore us: */
  2884. current->flags |= PF_NOFREEZE;
  2885. __schedule(false);
  2886. BUG();
  2887. /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
  2888. for (;;)
  2889. cpu_relax();
  2890. }
  2891. static inline void sched_submit_work(struct task_struct *tsk)
  2892. {
  2893. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2894. return;
  2895. /*
  2896. * If we are going to sleep and we have plugged IO queued,
  2897. * make sure to submit it to avoid deadlocks.
  2898. */
  2899. if (blk_needs_flush_plug(tsk))
  2900. blk_schedule_flush_plug(tsk);
  2901. }
  2902. asmlinkage __visible void __sched schedule(void)
  2903. {
  2904. struct task_struct *tsk = current;
  2905. sched_submit_work(tsk);
  2906. do {
  2907. preempt_disable();
  2908. __schedule(false);
  2909. sched_preempt_enable_no_resched();
  2910. } while (need_resched());
  2911. }
  2912. EXPORT_SYMBOL(schedule);
  2913. /*
  2914. * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
  2915. * state (have scheduled out non-voluntarily) by making sure that all
  2916. * tasks have either left the run queue or have gone into user space.
  2917. * As idle tasks do not do either, they must not ever be preempted
  2918. * (schedule out non-voluntarily).
  2919. *
  2920. * schedule_idle() is similar to schedule_preempt_disable() except that it
  2921. * never enables preemption because it does not call sched_submit_work().
  2922. */
  2923. void __sched schedule_idle(void)
  2924. {
  2925. /*
  2926. * As this skips calling sched_submit_work(), which the idle task does
  2927. * regardless because that function is a nop when the task is in a
  2928. * TASK_RUNNING state, make sure this isn't used someplace that the
  2929. * current task can be in any other state. Note, idle is always in the
  2930. * TASK_RUNNING state.
  2931. */
  2932. WARN_ON_ONCE(current->state);
  2933. do {
  2934. __schedule(false);
  2935. } while (need_resched());
  2936. }
  2937. #ifdef CONFIG_CONTEXT_TRACKING
  2938. asmlinkage __visible void __sched schedule_user(void)
  2939. {
  2940. /*
  2941. * If we come here after a random call to set_need_resched(),
  2942. * or we have been woken up remotely but the IPI has not yet arrived,
  2943. * we haven't yet exited the RCU idle mode. Do it here manually until
  2944. * we find a better solution.
  2945. *
  2946. * NB: There are buggy callers of this function. Ideally we
  2947. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2948. * too frequently to make sense yet.
  2949. */
  2950. enum ctx_state prev_state = exception_enter();
  2951. schedule();
  2952. exception_exit(prev_state);
  2953. }
  2954. #endif
  2955. /**
  2956. * schedule_preempt_disabled - called with preemption disabled
  2957. *
  2958. * Returns with preemption disabled. Note: preempt_count must be 1
  2959. */
  2960. void __sched schedule_preempt_disabled(void)
  2961. {
  2962. sched_preempt_enable_no_resched();
  2963. schedule();
  2964. preempt_disable();
  2965. }
  2966. static void __sched notrace preempt_schedule_common(void)
  2967. {
  2968. do {
  2969. /*
  2970. * Because the function tracer can trace preempt_count_sub()
  2971. * and it also uses preempt_enable/disable_notrace(), if
  2972. * NEED_RESCHED is set, the preempt_enable_notrace() called
  2973. * by the function tracer will call this function again and
  2974. * cause infinite recursion.
  2975. *
  2976. * Preemption must be disabled here before the function
  2977. * tracer can trace. Break up preempt_disable() into two
  2978. * calls. One to disable preemption without fear of being
  2979. * traced. The other to still record the preemption latency,
  2980. * which can also be traced by the function tracer.
  2981. */
  2982. preempt_disable_notrace();
  2983. preempt_latency_start(1);
  2984. __schedule(true);
  2985. preempt_latency_stop(1);
  2986. preempt_enable_no_resched_notrace();
  2987. /*
  2988. * Check again in case we missed a preemption opportunity
  2989. * between schedule and now.
  2990. */
  2991. } while (need_resched());
  2992. }
  2993. #ifdef CONFIG_PREEMPT
  2994. /*
  2995. * this is the entry point to schedule() from in-kernel preemption
  2996. * off of preempt_enable. Kernel preemptions off return from interrupt
  2997. * occur there and call schedule directly.
  2998. */
  2999. asmlinkage __visible void __sched notrace preempt_schedule(void)
  3000. {
  3001. /*
  3002. * If there is a non-zero preempt_count or interrupts are disabled,
  3003. * we do not want to preempt the current task. Just return..
  3004. */
  3005. if (likely(!preemptible()))
  3006. return;
  3007. preempt_schedule_common();
  3008. }
  3009. NOKPROBE_SYMBOL(preempt_schedule);
  3010. EXPORT_SYMBOL(preempt_schedule);
  3011. /**
  3012. * preempt_schedule_notrace - preempt_schedule called by tracing
  3013. *
  3014. * The tracing infrastructure uses preempt_enable_notrace to prevent
  3015. * recursion and tracing preempt enabling caused by the tracing
  3016. * infrastructure itself. But as tracing can happen in areas coming
  3017. * from userspace or just about to enter userspace, a preempt enable
  3018. * can occur before user_exit() is called. This will cause the scheduler
  3019. * to be called when the system is still in usermode.
  3020. *
  3021. * To prevent this, the preempt_enable_notrace will use this function
  3022. * instead of preempt_schedule() to exit user context if needed before
  3023. * calling the scheduler.
  3024. */
  3025. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  3026. {
  3027. enum ctx_state prev_ctx;
  3028. if (likely(!preemptible()))
  3029. return;
  3030. do {
  3031. /*
  3032. * Because the function tracer can trace preempt_count_sub()
  3033. * and it also uses preempt_enable/disable_notrace(), if
  3034. * NEED_RESCHED is set, the preempt_enable_notrace() called
  3035. * by the function tracer will call this function again and
  3036. * cause infinite recursion.
  3037. *
  3038. * Preemption must be disabled here before the function
  3039. * tracer can trace. Break up preempt_disable() into two
  3040. * calls. One to disable preemption without fear of being
  3041. * traced. The other to still record the preemption latency,
  3042. * which can also be traced by the function tracer.
  3043. */
  3044. preempt_disable_notrace();
  3045. preempt_latency_start(1);
  3046. /*
  3047. * Needs preempt disabled in case user_exit() is traced
  3048. * and the tracer calls preempt_enable_notrace() causing
  3049. * an infinite recursion.
  3050. */
  3051. prev_ctx = exception_enter();
  3052. __schedule(true);
  3053. exception_exit(prev_ctx);
  3054. preempt_latency_stop(1);
  3055. preempt_enable_no_resched_notrace();
  3056. } while (need_resched());
  3057. }
  3058. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  3059. #endif /* CONFIG_PREEMPT */
  3060. /*
  3061. * this is the entry point to schedule() from kernel preemption
  3062. * off of irq context.
  3063. * Note, that this is called and return with irqs disabled. This will
  3064. * protect us against recursive calling from irq.
  3065. */
  3066. asmlinkage __visible void __sched preempt_schedule_irq(void)
  3067. {
  3068. enum ctx_state prev_state;
  3069. /* Catch callers which need to be fixed */
  3070. BUG_ON(preempt_count() || !irqs_disabled());
  3071. prev_state = exception_enter();
  3072. do {
  3073. preempt_disable();
  3074. local_irq_enable();
  3075. __schedule(true);
  3076. local_irq_disable();
  3077. sched_preempt_enable_no_resched();
  3078. } while (need_resched());
  3079. exception_exit(prev_state);
  3080. }
  3081. int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
  3082. void *key)
  3083. {
  3084. return try_to_wake_up(curr->private, mode, wake_flags);
  3085. }
  3086. EXPORT_SYMBOL(default_wake_function);
  3087. #ifdef CONFIG_RT_MUTEXES
  3088. static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
  3089. {
  3090. if (pi_task)
  3091. prio = min(prio, pi_task->prio);
  3092. return prio;
  3093. }
  3094. static inline int rt_effective_prio(struct task_struct *p, int prio)
  3095. {
  3096. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  3097. return __rt_effective_prio(pi_task, prio);
  3098. }
  3099. /*
  3100. * rt_mutex_setprio - set the current priority of a task
  3101. * @p: task to boost
  3102. * @pi_task: donor task
  3103. *
  3104. * This function changes the 'effective' priority of a task. It does
  3105. * not touch ->normal_prio like __setscheduler().
  3106. *
  3107. * Used by the rt_mutex code to implement priority inheritance
  3108. * logic. Call site only calls if the priority of the task changed.
  3109. */
  3110. void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
  3111. {
  3112. int prio, oldprio, queued, running, queue_flag =
  3113. DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  3114. const struct sched_class *prev_class;
  3115. struct rq_flags rf;
  3116. struct rq *rq;
  3117. /* XXX used to be waiter->prio, not waiter->task->prio */
  3118. prio = __rt_effective_prio(pi_task, p->normal_prio);
  3119. /*
  3120. * If nothing changed; bail early.
  3121. */
  3122. if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
  3123. return;
  3124. rq = __task_rq_lock(p, &rf);
  3125. update_rq_clock(rq);
  3126. /*
  3127. * Set under pi_lock && rq->lock, such that the value can be used under
  3128. * either lock.
  3129. *
  3130. * Note that there is loads of tricky to make this pointer cache work
  3131. * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
  3132. * ensure a task is de-boosted (pi_task is set to NULL) before the
  3133. * task is allowed to run again (and can exit). This ensures the pointer
  3134. * points to a blocked task -- which guaratees the task is present.
  3135. */
  3136. p->pi_top_task = pi_task;
  3137. /*
  3138. * For FIFO/RR we only need to set prio, if that matches we're done.
  3139. */
  3140. if (prio == p->prio && !dl_prio(prio))
  3141. goto out_unlock;
  3142. /*
  3143. * Idle task boosting is a nono in general. There is one
  3144. * exception, when PREEMPT_RT and NOHZ is active:
  3145. *
  3146. * The idle task calls get_next_timer_interrupt() and holds
  3147. * the timer wheel base->lock on the CPU and another CPU wants
  3148. * to access the timer (probably to cancel it). We can safely
  3149. * ignore the boosting request, as the idle CPU runs this code
  3150. * with interrupts disabled and will complete the lock
  3151. * protected section without being interrupted. So there is no
  3152. * real need to boost.
  3153. */
  3154. if (unlikely(p == rq->idle)) {
  3155. WARN_ON(p != rq->curr);
  3156. WARN_ON(p->pi_blocked_on);
  3157. goto out_unlock;
  3158. }
  3159. trace_sched_pi_setprio(p, pi_task);
  3160. oldprio = p->prio;
  3161. if (oldprio == prio)
  3162. queue_flag &= ~DEQUEUE_MOVE;
  3163. prev_class = p->sched_class;
  3164. queued = task_on_rq_queued(p);
  3165. running = task_current(rq, p);
  3166. if (queued)
  3167. dequeue_task(rq, p, queue_flag);
  3168. if (running)
  3169. put_prev_task(rq, p);
  3170. /*
  3171. * Boosting condition are:
  3172. * 1. -rt task is running and holds mutex A
  3173. * --> -dl task blocks on mutex A
  3174. *
  3175. * 2. -dl task is running and holds mutex A
  3176. * --> -dl task blocks on mutex A and could preempt the
  3177. * running task
  3178. */
  3179. if (dl_prio(prio)) {
  3180. if (!dl_prio(p->normal_prio) ||
  3181. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  3182. p->dl.dl_boosted = 1;
  3183. queue_flag |= ENQUEUE_REPLENISH;
  3184. } else
  3185. p->dl.dl_boosted = 0;
  3186. p->sched_class = &dl_sched_class;
  3187. } else if (rt_prio(prio)) {
  3188. if (dl_prio(oldprio))
  3189. p->dl.dl_boosted = 0;
  3190. if (oldprio < prio)
  3191. queue_flag |= ENQUEUE_HEAD;
  3192. p->sched_class = &rt_sched_class;
  3193. } else {
  3194. if (dl_prio(oldprio))
  3195. p->dl.dl_boosted = 0;
  3196. if (rt_prio(oldprio))
  3197. p->rt.timeout = 0;
  3198. p->sched_class = &fair_sched_class;
  3199. }
  3200. p->prio = prio;
  3201. if (queued)
  3202. enqueue_task(rq, p, queue_flag);
  3203. if (running)
  3204. set_curr_task(rq, p);
  3205. check_class_changed(rq, p, prev_class, oldprio);
  3206. out_unlock:
  3207. /* Avoid rq from going away on us: */
  3208. preempt_disable();
  3209. __task_rq_unlock(rq, &rf);
  3210. balance_callback(rq);
  3211. preempt_enable();
  3212. }
  3213. #else
  3214. static inline int rt_effective_prio(struct task_struct *p, int prio)
  3215. {
  3216. return prio;
  3217. }
  3218. #endif
  3219. void set_user_nice(struct task_struct *p, long nice)
  3220. {
  3221. bool queued, running;
  3222. int old_prio, delta;
  3223. struct rq_flags rf;
  3224. struct rq *rq;
  3225. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  3226. return;
  3227. /*
  3228. * We have to be careful, if called from sys_setpriority(),
  3229. * the task might be in the middle of scheduling on another CPU.
  3230. */
  3231. rq = task_rq_lock(p, &rf);
  3232. update_rq_clock(rq);
  3233. /*
  3234. * The RT priorities are set via sched_setscheduler(), but we still
  3235. * allow the 'normal' nice value to be set - but as expected
  3236. * it wont have any effect on scheduling until the task is
  3237. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  3238. */
  3239. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  3240. p->static_prio = NICE_TO_PRIO(nice);
  3241. goto out_unlock;
  3242. }
  3243. queued = task_on_rq_queued(p);
  3244. running = task_current(rq, p);
  3245. if (queued)
  3246. dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
  3247. if (running)
  3248. put_prev_task(rq, p);
  3249. p->static_prio = NICE_TO_PRIO(nice);
  3250. set_load_weight(p);
  3251. old_prio = p->prio;
  3252. p->prio = effective_prio(p);
  3253. delta = p->prio - old_prio;
  3254. if (queued) {
  3255. enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
  3256. /*
  3257. * If the task increased its priority or is running and
  3258. * lowered its priority, then reschedule its CPU:
  3259. */
  3260. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3261. resched_curr(rq);
  3262. }
  3263. if (running)
  3264. set_curr_task(rq, p);
  3265. out_unlock:
  3266. task_rq_unlock(rq, p, &rf);
  3267. }
  3268. EXPORT_SYMBOL(set_user_nice);
  3269. /*
  3270. * can_nice - check if a task can reduce its nice value
  3271. * @p: task
  3272. * @nice: nice value
  3273. */
  3274. int can_nice(const struct task_struct *p, const int nice)
  3275. {
  3276. /* Convert nice value [19,-20] to rlimit style value [1,40]: */
  3277. int nice_rlim = nice_to_rlimit(nice);
  3278. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3279. capable(CAP_SYS_NICE));
  3280. }
  3281. #ifdef __ARCH_WANT_SYS_NICE
  3282. /*
  3283. * sys_nice - change the priority of the current process.
  3284. * @increment: priority increment
  3285. *
  3286. * sys_setpriority is a more generic, but much slower function that
  3287. * does similar things.
  3288. */
  3289. SYSCALL_DEFINE1(nice, int, increment)
  3290. {
  3291. long nice, retval;
  3292. /*
  3293. * Setpriority might change our priority at the same moment.
  3294. * We don't have to worry. Conceptually one call occurs first
  3295. * and we have a single winner.
  3296. */
  3297. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  3298. nice = task_nice(current) + increment;
  3299. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  3300. if (increment < 0 && !can_nice(current, nice))
  3301. return -EPERM;
  3302. retval = security_task_setnice(current, nice);
  3303. if (retval)
  3304. return retval;
  3305. set_user_nice(current, nice);
  3306. return 0;
  3307. }
  3308. #endif
  3309. /**
  3310. * task_prio - return the priority value of a given task.
  3311. * @p: the task in question.
  3312. *
  3313. * Return: The priority value as seen by users in /proc.
  3314. * RT tasks are offset by -200. Normal tasks are centered
  3315. * around 0, value goes from -16 to +15.
  3316. */
  3317. int task_prio(const struct task_struct *p)
  3318. {
  3319. return p->prio - MAX_RT_PRIO;
  3320. }
  3321. /**
  3322. * idle_cpu - is a given CPU idle currently?
  3323. * @cpu: the processor in question.
  3324. *
  3325. * Return: 1 if the CPU is currently idle. 0 otherwise.
  3326. */
  3327. int idle_cpu(int cpu)
  3328. {
  3329. struct rq *rq = cpu_rq(cpu);
  3330. if (rq->curr != rq->idle)
  3331. return 0;
  3332. if (rq->nr_running)
  3333. return 0;
  3334. #ifdef CONFIG_SMP
  3335. if (!llist_empty(&rq->wake_list))
  3336. return 0;
  3337. #endif
  3338. return 1;
  3339. }
  3340. /**
  3341. * idle_task - return the idle task for a given CPU.
  3342. * @cpu: the processor in question.
  3343. *
  3344. * Return: The idle task for the CPU @cpu.
  3345. */
  3346. struct task_struct *idle_task(int cpu)
  3347. {
  3348. return cpu_rq(cpu)->idle;
  3349. }
  3350. /**
  3351. * find_process_by_pid - find a process with a matching PID value.
  3352. * @pid: the pid in question.
  3353. *
  3354. * The task of @pid, if found. %NULL otherwise.
  3355. */
  3356. static struct task_struct *find_process_by_pid(pid_t pid)
  3357. {
  3358. return pid ? find_task_by_vpid(pid) : current;
  3359. }
  3360. /*
  3361. * sched_setparam() passes in -1 for its policy, to let the functions
  3362. * it calls know not to change it.
  3363. */
  3364. #define SETPARAM_POLICY -1
  3365. static void __setscheduler_params(struct task_struct *p,
  3366. const struct sched_attr *attr)
  3367. {
  3368. int policy = attr->sched_policy;
  3369. if (policy == SETPARAM_POLICY)
  3370. policy = p->policy;
  3371. p->policy = policy;
  3372. if (dl_policy(policy))
  3373. __setparam_dl(p, attr);
  3374. else if (fair_policy(policy))
  3375. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3376. /*
  3377. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3378. * !rt_policy. Always setting this ensures that things like
  3379. * getparam()/getattr() don't report silly values for !rt tasks.
  3380. */
  3381. p->rt_priority = attr->sched_priority;
  3382. p->normal_prio = normal_prio(p);
  3383. set_load_weight(p);
  3384. }
  3385. /* Actually do priority change: must hold pi & rq lock. */
  3386. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3387. const struct sched_attr *attr, bool keep_boost)
  3388. {
  3389. __setscheduler_params(p, attr);
  3390. /*
  3391. * Keep a potential priority boosting if called from
  3392. * sched_setscheduler().
  3393. */
  3394. p->prio = normal_prio(p);
  3395. if (keep_boost)
  3396. p->prio = rt_effective_prio(p, p->prio);
  3397. if (dl_prio(p->prio))
  3398. p->sched_class = &dl_sched_class;
  3399. else if (rt_prio(p->prio))
  3400. p->sched_class = &rt_sched_class;
  3401. else
  3402. p->sched_class = &fair_sched_class;
  3403. }
  3404. /*
  3405. * Check the target process has a UID that matches the current process's:
  3406. */
  3407. static bool check_same_owner(struct task_struct *p)
  3408. {
  3409. const struct cred *cred = current_cred(), *pcred;
  3410. bool match;
  3411. rcu_read_lock();
  3412. pcred = __task_cred(p);
  3413. match = (uid_eq(cred->euid, pcred->euid) ||
  3414. uid_eq(cred->euid, pcred->uid));
  3415. rcu_read_unlock();
  3416. return match;
  3417. }
  3418. static int __sched_setscheduler(struct task_struct *p,
  3419. const struct sched_attr *attr,
  3420. bool user, bool pi)
  3421. {
  3422. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3423. MAX_RT_PRIO - 1 - attr->sched_priority;
  3424. int retval, oldprio, oldpolicy = -1, queued, running;
  3425. int new_effective_prio, policy = attr->sched_policy;
  3426. const struct sched_class *prev_class;
  3427. struct rq_flags rf;
  3428. int reset_on_fork;
  3429. int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  3430. struct rq *rq;
  3431. /* The pi code expects interrupts enabled */
  3432. BUG_ON(pi && in_interrupt());
  3433. recheck:
  3434. /* Double check policy once rq lock held: */
  3435. if (policy < 0) {
  3436. reset_on_fork = p->sched_reset_on_fork;
  3437. policy = oldpolicy = p->policy;
  3438. } else {
  3439. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3440. if (!valid_policy(policy))
  3441. return -EINVAL;
  3442. }
  3443. if (attr->sched_flags &
  3444. ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
  3445. return -EINVAL;
  3446. /*
  3447. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3448. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3449. * SCHED_BATCH and SCHED_IDLE is 0.
  3450. */
  3451. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3452. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3453. return -EINVAL;
  3454. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3455. (rt_policy(policy) != (attr->sched_priority != 0)))
  3456. return -EINVAL;
  3457. /*
  3458. * Allow unprivileged RT tasks to decrease priority:
  3459. */
  3460. if (user && !capable(CAP_SYS_NICE)) {
  3461. if (fair_policy(policy)) {
  3462. if (attr->sched_nice < task_nice(p) &&
  3463. !can_nice(p, attr->sched_nice))
  3464. return -EPERM;
  3465. }
  3466. if (rt_policy(policy)) {
  3467. unsigned long rlim_rtprio =
  3468. task_rlimit(p, RLIMIT_RTPRIO);
  3469. /* Can't set/change the rt policy: */
  3470. if (policy != p->policy && !rlim_rtprio)
  3471. return -EPERM;
  3472. /* Can't increase priority: */
  3473. if (attr->sched_priority > p->rt_priority &&
  3474. attr->sched_priority > rlim_rtprio)
  3475. return -EPERM;
  3476. }
  3477. /*
  3478. * Can't set/change SCHED_DEADLINE policy at all for now
  3479. * (safest behavior); in the future we would like to allow
  3480. * unprivileged DL tasks to increase their relative deadline
  3481. * or reduce their runtime (both ways reducing utilization)
  3482. */
  3483. if (dl_policy(policy))
  3484. return -EPERM;
  3485. /*
  3486. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3487. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3488. */
  3489. if (idle_policy(p->policy) && !idle_policy(policy)) {
  3490. if (!can_nice(p, task_nice(p)))
  3491. return -EPERM;
  3492. }
  3493. /* Can't change other user's priorities: */
  3494. if (!check_same_owner(p))
  3495. return -EPERM;
  3496. /* Normal users shall not reset the sched_reset_on_fork flag: */
  3497. if (p->sched_reset_on_fork && !reset_on_fork)
  3498. return -EPERM;
  3499. }
  3500. if (user) {
  3501. retval = security_task_setscheduler(p);
  3502. if (retval)
  3503. return retval;
  3504. }
  3505. /*
  3506. * Make sure no PI-waiters arrive (or leave) while we are
  3507. * changing the priority of the task:
  3508. *
  3509. * To be able to change p->policy safely, the appropriate
  3510. * runqueue lock must be held.
  3511. */
  3512. rq = task_rq_lock(p, &rf);
  3513. update_rq_clock(rq);
  3514. /*
  3515. * Changing the policy of the stop threads its a very bad idea:
  3516. */
  3517. if (p == rq->stop) {
  3518. task_rq_unlock(rq, p, &rf);
  3519. return -EINVAL;
  3520. }
  3521. /*
  3522. * If not changing anything there's no need to proceed further,
  3523. * but store a possible modification of reset_on_fork.
  3524. */
  3525. if (unlikely(policy == p->policy)) {
  3526. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3527. goto change;
  3528. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3529. goto change;
  3530. if (dl_policy(policy) && dl_param_changed(p, attr))
  3531. goto change;
  3532. p->sched_reset_on_fork = reset_on_fork;
  3533. task_rq_unlock(rq, p, &rf);
  3534. return 0;
  3535. }
  3536. change:
  3537. if (user) {
  3538. #ifdef CONFIG_RT_GROUP_SCHED
  3539. /*
  3540. * Do not allow realtime tasks into groups that have no runtime
  3541. * assigned.
  3542. */
  3543. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3544. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3545. !task_group_is_autogroup(task_group(p))) {
  3546. task_rq_unlock(rq, p, &rf);
  3547. return -EPERM;
  3548. }
  3549. #endif
  3550. #ifdef CONFIG_SMP
  3551. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3552. cpumask_t *span = rq->rd->span;
  3553. /*
  3554. * Don't allow tasks with an affinity mask smaller than
  3555. * the entire root_domain to become SCHED_DEADLINE. We
  3556. * will also fail if there's no bandwidth available.
  3557. */
  3558. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3559. rq->rd->dl_bw.bw == 0) {
  3560. task_rq_unlock(rq, p, &rf);
  3561. return -EPERM;
  3562. }
  3563. }
  3564. #endif
  3565. }
  3566. /* Re-check policy now with rq lock held: */
  3567. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3568. policy = oldpolicy = -1;
  3569. task_rq_unlock(rq, p, &rf);
  3570. goto recheck;
  3571. }
  3572. /*
  3573. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3574. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3575. * is available.
  3576. */
  3577. if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
  3578. task_rq_unlock(rq, p, &rf);
  3579. return -EBUSY;
  3580. }
  3581. p->sched_reset_on_fork = reset_on_fork;
  3582. oldprio = p->prio;
  3583. if (pi) {
  3584. /*
  3585. * Take priority boosted tasks into account. If the new
  3586. * effective priority is unchanged, we just store the new
  3587. * normal parameters and do not touch the scheduler class and
  3588. * the runqueue. This will be done when the task deboost
  3589. * itself.
  3590. */
  3591. new_effective_prio = rt_effective_prio(p, newprio);
  3592. if (new_effective_prio == oldprio)
  3593. queue_flags &= ~DEQUEUE_MOVE;
  3594. }
  3595. queued = task_on_rq_queued(p);
  3596. running = task_current(rq, p);
  3597. if (queued)
  3598. dequeue_task(rq, p, queue_flags);
  3599. if (running)
  3600. put_prev_task(rq, p);
  3601. prev_class = p->sched_class;
  3602. __setscheduler(rq, p, attr, pi);
  3603. if (queued) {
  3604. /*
  3605. * We enqueue to tail when the priority of a task is
  3606. * increased (user space view).
  3607. */
  3608. if (oldprio < p->prio)
  3609. queue_flags |= ENQUEUE_HEAD;
  3610. enqueue_task(rq, p, queue_flags);
  3611. }
  3612. if (running)
  3613. set_curr_task(rq, p);
  3614. check_class_changed(rq, p, prev_class, oldprio);
  3615. /* Avoid rq from going away on us: */
  3616. preempt_disable();
  3617. task_rq_unlock(rq, p, &rf);
  3618. if (pi)
  3619. rt_mutex_adjust_pi(p);
  3620. /* Run balance callbacks after we've adjusted the PI chain: */
  3621. balance_callback(rq);
  3622. preempt_enable();
  3623. return 0;
  3624. }
  3625. static int _sched_setscheduler(struct task_struct *p, int policy,
  3626. const struct sched_param *param, bool check)
  3627. {
  3628. struct sched_attr attr = {
  3629. .sched_policy = policy,
  3630. .sched_priority = param->sched_priority,
  3631. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3632. };
  3633. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3634. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3635. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3636. policy &= ~SCHED_RESET_ON_FORK;
  3637. attr.sched_policy = policy;
  3638. }
  3639. return __sched_setscheduler(p, &attr, check, true);
  3640. }
  3641. /**
  3642. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3643. * @p: the task in question.
  3644. * @policy: new policy.
  3645. * @param: structure containing the new RT priority.
  3646. *
  3647. * Return: 0 on success. An error code otherwise.
  3648. *
  3649. * NOTE that the task may be already dead.
  3650. */
  3651. int sched_setscheduler(struct task_struct *p, int policy,
  3652. const struct sched_param *param)
  3653. {
  3654. return _sched_setscheduler(p, policy, param, true);
  3655. }
  3656. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3657. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3658. {
  3659. return __sched_setscheduler(p, attr, true, true);
  3660. }
  3661. EXPORT_SYMBOL_GPL(sched_setattr);
  3662. /**
  3663. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3664. * @p: the task in question.
  3665. * @policy: new policy.
  3666. * @param: structure containing the new RT priority.
  3667. *
  3668. * Just like sched_setscheduler, only don't bother checking if the
  3669. * current context has permission. For example, this is needed in
  3670. * stop_machine(): we create temporary high priority worker threads,
  3671. * but our caller might not have that capability.
  3672. *
  3673. * Return: 0 on success. An error code otherwise.
  3674. */
  3675. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3676. const struct sched_param *param)
  3677. {
  3678. return _sched_setscheduler(p, policy, param, false);
  3679. }
  3680. EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
  3681. static int
  3682. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3683. {
  3684. struct sched_param lparam;
  3685. struct task_struct *p;
  3686. int retval;
  3687. if (!param || pid < 0)
  3688. return -EINVAL;
  3689. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3690. return -EFAULT;
  3691. rcu_read_lock();
  3692. retval = -ESRCH;
  3693. p = find_process_by_pid(pid);
  3694. if (p != NULL)
  3695. retval = sched_setscheduler(p, policy, &lparam);
  3696. rcu_read_unlock();
  3697. return retval;
  3698. }
  3699. /*
  3700. * Mimics kernel/events/core.c perf_copy_attr().
  3701. */
  3702. static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
  3703. {
  3704. u32 size;
  3705. int ret;
  3706. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3707. return -EFAULT;
  3708. /* Zero the full structure, so that a short copy will be nice: */
  3709. memset(attr, 0, sizeof(*attr));
  3710. ret = get_user(size, &uattr->size);
  3711. if (ret)
  3712. return ret;
  3713. /* Bail out on silly large: */
  3714. if (size > PAGE_SIZE)
  3715. goto err_size;
  3716. /* ABI compatibility quirk: */
  3717. if (!size)
  3718. size = SCHED_ATTR_SIZE_VER0;
  3719. if (size < SCHED_ATTR_SIZE_VER0)
  3720. goto err_size;
  3721. /*
  3722. * If we're handed a bigger struct than we know of,
  3723. * ensure all the unknown bits are 0 - i.e. new
  3724. * user-space does not rely on any kernel feature
  3725. * extensions we dont know about yet.
  3726. */
  3727. if (size > sizeof(*attr)) {
  3728. unsigned char __user *addr;
  3729. unsigned char __user *end;
  3730. unsigned char val;
  3731. addr = (void __user *)uattr + sizeof(*attr);
  3732. end = (void __user *)uattr + size;
  3733. for (; addr < end; addr++) {
  3734. ret = get_user(val, addr);
  3735. if (ret)
  3736. return ret;
  3737. if (val)
  3738. goto err_size;
  3739. }
  3740. size = sizeof(*attr);
  3741. }
  3742. ret = copy_from_user(attr, uattr, size);
  3743. if (ret)
  3744. return -EFAULT;
  3745. /*
  3746. * XXX: Do we want to be lenient like existing syscalls; or do we want
  3747. * to be strict and return an error on out-of-bounds values?
  3748. */
  3749. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3750. return 0;
  3751. err_size:
  3752. put_user(sizeof(*attr), &uattr->size);
  3753. return -E2BIG;
  3754. }
  3755. /**
  3756. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3757. * @pid: the pid in question.
  3758. * @policy: new policy.
  3759. * @param: structure containing the new RT priority.
  3760. *
  3761. * Return: 0 on success. An error code otherwise.
  3762. */
  3763. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
  3764. {
  3765. if (policy < 0)
  3766. return -EINVAL;
  3767. return do_sched_setscheduler(pid, policy, param);
  3768. }
  3769. /**
  3770. * sys_sched_setparam - set/change the RT priority of a thread
  3771. * @pid: the pid in question.
  3772. * @param: structure containing the new RT priority.
  3773. *
  3774. * Return: 0 on success. An error code otherwise.
  3775. */
  3776. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3777. {
  3778. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3779. }
  3780. /**
  3781. * sys_sched_setattr - same as above, but with extended sched_attr
  3782. * @pid: the pid in question.
  3783. * @uattr: structure containing the extended parameters.
  3784. * @flags: for future extension.
  3785. */
  3786. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3787. unsigned int, flags)
  3788. {
  3789. struct sched_attr attr;
  3790. struct task_struct *p;
  3791. int retval;
  3792. if (!uattr || pid < 0 || flags)
  3793. return -EINVAL;
  3794. retval = sched_copy_attr(uattr, &attr);
  3795. if (retval)
  3796. return retval;
  3797. if ((int)attr.sched_policy < 0)
  3798. return -EINVAL;
  3799. rcu_read_lock();
  3800. retval = -ESRCH;
  3801. p = find_process_by_pid(pid);
  3802. if (p != NULL)
  3803. retval = sched_setattr(p, &attr);
  3804. rcu_read_unlock();
  3805. return retval;
  3806. }
  3807. /**
  3808. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3809. * @pid: the pid in question.
  3810. *
  3811. * Return: On success, the policy of the thread. Otherwise, a negative error
  3812. * code.
  3813. */
  3814. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3815. {
  3816. struct task_struct *p;
  3817. int retval;
  3818. if (pid < 0)
  3819. return -EINVAL;
  3820. retval = -ESRCH;
  3821. rcu_read_lock();
  3822. p = find_process_by_pid(pid);
  3823. if (p) {
  3824. retval = security_task_getscheduler(p);
  3825. if (!retval)
  3826. retval = p->policy
  3827. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3828. }
  3829. rcu_read_unlock();
  3830. return retval;
  3831. }
  3832. /**
  3833. * sys_sched_getparam - get the RT priority of a thread
  3834. * @pid: the pid in question.
  3835. * @param: structure containing the RT priority.
  3836. *
  3837. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3838. * code.
  3839. */
  3840. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3841. {
  3842. struct sched_param lp = { .sched_priority = 0 };
  3843. struct task_struct *p;
  3844. int retval;
  3845. if (!param || pid < 0)
  3846. return -EINVAL;
  3847. rcu_read_lock();
  3848. p = find_process_by_pid(pid);
  3849. retval = -ESRCH;
  3850. if (!p)
  3851. goto out_unlock;
  3852. retval = security_task_getscheduler(p);
  3853. if (retval)
  3854. goto out_unlock;
  3855. if (task_has_rt_policy(p))
  3856. lp.sched_priority = p->rt_priority;
  3857. rcu_read_unlock();
  3858. /*
  3859. * This one might sleep, we cannot do it with a spinlock held ...
  3860. */
  3861. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3862. return retval;
  3863. out_unlock:
  3864. rcu_read_unlock();
  3865. return retval;
  3866. }
  3867. static int sched_read_attr(struct sched_attr __user *uattr,
  3868. struct sched_attr *attr,
  3869. unsigned int usize)
  3870. {
  3871. int ret;
  3872. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3873. return -EFAULT;
  3874. /*
  3875. * If we're handed a smaller struct than we know of,
  3876. * ensure all the unknown bits are 0 - i.e. old
  3877. * user-space does not get uncomplete information.
  3878. */
  3879. if (usize < sizeof(*attr)) {
  3880. unsigned char *addr;
  3881. unsigned char *end;
  3882. addr = (void *)attr + usize;
  3883. end = (void *)attr + sizeof(*attr);
  3884. for (; addr < end; addr++) {
  3885. if (*addr)
  3886. return -EFBIG;
  3887. }
  3888. attr->size = usize;
  3889. }
  3890. ret = copy_to_user(uattr, attr, attr->size);
  3891. if (ret)
  3892. return -EFAULT;
  3893. return 0;
  3894. }
  3895. /**
  3896. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3897. * @pid: the pid in question.
  3898. * @uattr: structure containing the extended parameters.
  3899. * @size: sizeof(attr) for fwd/bwd comp.
  3900. * @flags: for future extension.
  3901. */
  3902. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3903. unsigned int, size, unsigned int, flags)
  3904. {
  3905. struct sched_attr attr = {
  3906. .size = sizeof(struct sched_attr),
  3907. };
  3908. struct task_struct *p;
  3909. int retval;
  3910. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3911. size < SCHED_ATTR_SIZE_VER0 || flags)
  3912. return -EINVAL;
  3913. rcu_read_lock();
  3914. p = find_process_by_pid(pid);
  3915. retval = -ESRCH;
  3916. if (!p)
  3917. goto out_unlock;
  3918. retval = security_task_getscheduler(p);
  3919. if (retval)
  3920. goto out_unlock;
  3921. attr.sched_policy = p->policy;
  3922. if (p->sched_reset_on_fork)
  3923. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3924. if (task_has_dl_policy(p))
  3925. __getparam_dl(p, &attr);
  3926. else if (task_has_rt_policy(p))
  3927. attr.sched_priority = p->rt_priority;
  3928. else
  3929. attr.sched_nice = task_nice(p);
  3930. rcu_read_unlock();
  3931. retval = sched_read_attr(uattr, &attr, size);
  3932. return retval;
  3933. out_unlock:
  3934. rcu_read_unlock();
  3935. return retval;
  3936. }
  3937. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3938. {
  3939. cpumask_var_t cpus_allowed, new_mask;
  3940. struct task_struct *p;
  3941. int retval;
  3942. rcu_read_lock();
  3943. p = find_process_by_pid(pid);
  3944. if (!p) {
  3945. rcu_read_unlock();
  3946. return -ESRCH;
  3947. }
  3948. /* Prevent p going away */
  3949. get_task_struct(p);
  3950. rcu_read_unlock();
  3951. if (p->flags & PF_NO_SETAFFINITY) {
  3952. retval = -EINVAL;
  3953. goto out_put_task;
  3954. }
  3955. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3956. retval = -ENOMEM;
  3957. goto out_put_task;
  3958. }
  3959. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3960. retval = -ENOMEM;
  3961. goto out_free_cpus_allowed;
  3962. }
  3963. retval = -EPERM;
  3964. if (!check_same_owner(p)) {
  3965. rcu_read_lock();
  3966. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3967. rcu_read_unlock();
  3968. goto out_free_new_mask;
  3969. }
  3970. rcu_read_unlock();
  3971. }
  3972. retval = security_task_setscheduler(p);
  3973. if (retval)
  3974. goto out_free_new_mask;
  3975. cpuset_cpus_allowed(p, cpus_allowed);
  3976. cpumask_and(new_mask, in_mask, cpus_allowed);
  3977. /*
  3978. * Since bandwidth control happens on root_domain basis,
  3979. * if admission test is enabled, we only admit -deadline
  3980. * tasks allowed to run on all the CPUs in the task's
  3981. * root_domain.
  3982. */
  3983. #ifdef CONFIG_SMP
  3984. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3985. rcu_read_lock();
  3986. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3987. retval = -EBUSY;
  3988. rcu_read_unlock();
  3989. goto out_free_new_mask;
  3990. }
  3991. rcu_read_unlock();
  3992. }
  3993. #endif
  3994. again:
  3995. retval = __set_cpus_allowed_ptr(p, new_mask, true);
  3996. if (!retval) {
  3997. cpuset_cpus_allowed(p, cpus_allowed);
  3998. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3999. /*
  4000. * We must have raced with a concurrent cpuset
  4001. * update. Just reset the cpus_allowed to the
  4002. * cpuset's cpus_allowed
  4003. */
  4004. cpumask_copy(new_mask, cpus_allowed);
  4005. goto again;
  4006. }
  4007. }
  4008. out_free_new_mask:
  4009. free_cpumask_var(new_mask);
  4010. out_free_cpus_allowed:
  4011. free_cpumask_var(cpus_allowed);
  4012. out_put_task:
  4013. put_task_struct(p);
  4014. return retval;
  4015. }
  4016. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4017. struct cpumask *new_mask)
  4018. {
  4019. if (len < cpumask_size())
  4020. cpumask_clear(new_mask);
  4021. else if (len > cpumask_size())
  4022. len = cpumask_size();
  4023. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4024. }
  4025. /**
  4026. * sys_sched_setaffinity - set the CPU affinity of a process
  4027. * @pid: pid of the process
  4028. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4029. * @user_mask_ptr: user-space pointer to the new CPU mask
  4030. *
  4031. * Return: 0 on success. An error code otherwise.
  4032. */
  4033. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4034. unsigned long __user *, user_mask_ptr)
  4035. {
  4036. cpumask_var_t new_mask;
  4037. int retval;
  4038. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4039. return -ENOMEM;
  4040. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4041. if (retval == 0)
  4042. retval = sched_setaffinity(pid, new_mask);
  4043. free_cpumask_var(new_mask);
  4044. return retval;
  4045. }
  4046. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4047. {
  4048. struct task_struct *p;
  4049. unsigned long flags;
  4050. int retval;
  4051. rcu_read_lock();
  4052. retval = -ESRCH;
  4053. p = find_process_by_pid(pid);
  4054. if (!p)
  4055. goto out_unlock;
  4056. retval = security_task_getscheduler(p);
  4057. if (retval)
  4058. goto out_unlock;
  4059. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4060. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  4061. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4062. out_unlock:
  4063. rcu_read_unlock();
  4064. return retval;
  4065. }
  4066. /**
  4067. * sys_sched_getaffinity - get the CPU affinity of a process
  4068. * @pid: pid of the process
  4069. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4070. * @user_mask_ptr: user-space pointer to hold the current CPU mask
  4071. *
  4072. * Return: size of CPU mask copied to user_mask_ptr on success. An
  4073. * error code otherwise.
  4074. */
  4075. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4076. unsigned long __user *, user_mask_ptr)
  4077. {
  4078. int ret;
  4079. cpumask_var_t mask;
  4080. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4081. return -EINVAL;
  4082. if (len & (sizeof(unsigned long)-1))
  4083. return -EINVAL;
  4084. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4085. return -ENOMEM;
  4086. ret = sched_getaffinity(pid, mask);
  4087. if (ret == 0) {
  4088. size_t retlen = min_t(size_t, len, cpumask_size());
  4089. if (copy_to_user(user_mask_ptr, mask, retlen))
  4090. ret = -EFAULT;
  4091. else
  4092. ret = retlen;
  4093. }
  4094. free_cpumask_var(mask);
  4095. return ret;
  4096. }
  4097. /**
  4098. * sys_sched_yield - yield the current processor to other threads.
  4099. *
  4100. * This function yields the current CPU to other tasks. If there are no
  4101. * other threads running on this CPU then this function will return.
  4102. *
  4103. * Return: 0.
  4104. */
  4105. SYSCALL_DEFINE0(sched_yield)
  4106. {
  4107. struct rq_flags rf;
  4108. struct rq *rq;
  4109. local_irq_disable();
  4110. rq = this_rq();
  4111. rq_lock(rq, &rf);
  4112. schedstat_inc(rq->yld_count);
  4113. current->sched_class->yield_task(rq);
  4114. /*
  4115. * Since we are going to call schedule() anyway, there's
  4116. * no need to preempt or enable interrupts:
  4117. */
  4118. preempt_disable();
  4119. rq_unlock(rq, &rf);
  4120. sched_preempt_enable_no_resched();
  4121. schedule();
  4122. return 0;
  4123. }
  4124. #ifndef CONFIG_PREEMPT
  4125. int __sched _cond_resched(void)
  4126. {
  4127. if (should_resched(0)) {
  4128. preempt_schedule_common();
  4129. return 1;
  4130. }
  4131. return 0;
  4132. }
  4133. EXPORT_SYMBOL(_cond_resched);
  4134. #endif
  4135. /*
  4136. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4137. * call schedule, and on return reacquire the lock.
  4138. *
  4139. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4140. * operations here to prevent schedule() from being called twice (once via
  4141. * spin_unlock(), once by hand).
  4142. */
  4143. int __cond_resched_lock(spinlock_t *lock)
  4144. {
  4145. int resched = should_resched(PREEMPT_LOCK_OFFSET);
  4146. int ret = 0;
  4147. lockdep_assert_held(lock);
  4148. if (spin_needbreak(lock) || resched) {
  4149. spin_unlock(lock);
  4150. if (resched)
  4151. preempt_schedule_common();
  4152. else
  4153. cpu_relax();
  4154. ret = 1;
  4155. spin_lock(lock);
  4156. }
  4157. return ret;
  4158. }
  4159. EXPORT_SYMBOL(__cond_resched_lock);
  4160. int __sched __cond_resched_softirq(void)
  4161. {
  4162. BUG_ON(!in_softirq());
  4163. if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
  4164. local_bh_enable();
  4165. preempt_schedule_common();
  4166. local_bh_disable();
  4167. return 1;
  4168. }
  4169. return 0;
  4170. }
  4171. EXPORT_SYMBOL(__cond_resched_softirq);
  4172. /**
  4173. * yield - yield the current processor to other threads.
  4174. *
  4175. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  4176. *
  4177. * The scheduler is at all times free to pick the calling task as the most
  4178. * eligible task to run, if removing the yield() call from your code breaks
  4179. * it, its already broken.
  4180. *
  4181. * Typical broken usage is:
  4182. *
  4183. * while (!event)
  4184. * yield();
  4185. *
  4186. * where one assumes that yield() will let 'the other' process run that will
  4187. * make event true. If the current task is a SCHED_FIFO task that will never
  4188. * happen. Never use yield() as a progress guarantee!!
  4189. *
  4190. * If you want to use yield() to wait for something, use wait_event().
  4191. * If you want to use yield() to be 'nice' for others, use cond_resched().
  4192. * If you still want to use yield(), do not!
  4193. */
  4194. void __sched yield(void)
  4195. {
  4196. set_current_state(TASK_RUNNING);
  4197. sys_sched_yield();
  4198. }
  4199. EXPORT_SYMBOL(yield);
  4200. /**
  4201. * yield_to - yield the current processor to another thread in
  4202. * your thread group, or accelerate that thread toward the
  4203. * processor it's on.
  4204. * @p: target task
  4205. * @preempt: whether task preemption is allowed or not
  4206. *
  4207. * It's the caller's job to ensure that the target task struct
  4208. * can't go away on us before we can do any checks.
  4209. *
  4210. * Return:
  4211. * true (>0) if we indeed boosted the target task.
  4212. * false (0) if we failed to boost the target.
  4213. * -ESRCH if there's no task to yield to.
  4214. */
  4215. int __sched yield_to(struct task_struct *p, bool preempt)
  4216. {
  4217. struct task_struct *curr = current;
  4218. struct rq *rq, *p_rq;
  4219. unsigned long flags;
  4220. int yielded = 0;
  4221. local_irq_save(flags);
  4222. rq = this_rq();
  4223. again:
  4224. p_rq = task_rq(p);
  4225. /*
  4226. * If we're the only runnable task on the rq and target rq also
  4227. * has only one task, there's absolutely no point in yielding.
  4228. */
  4229. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  4230. yielded = -ESRCH;
  4231. goto out_irq;
  4232. }
  4233. double_rq_lock(rq, p_rq);
  4234. if (task_rq(p) != p_rq) {
  4235. double_rq_unlock(rq, p_rq);
  4236. goto again;
  4237. }
  4238. if (!curr->sched_class->yield_to_task)
  4239. goto out_unlock;
  4240. if (curr->sched_class != p->sched_class)
  4241. goto out_unlock;
  4242. if (task_running(p_rq, p) || p->state)
  4243. goto out_unlock;
  4244. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4245. if (yielded) {
  4246. schedstat_inc(rq->yld_count);
  4247. /*
  4248. * Make p's CPU reschedule; pick_next_entity takes care of
  4249. * fairness.
  4250. */
  4251. if (preempt && rq != p_rq)
  4252. resched_curr(p_rq);
  4253. }
  4254. out_unlock:
  4255. double_rq_unlock(rq, p_rq);
  4256. out_irq:
  4257. local_irq_restore(flags);
  4258. if (yielded > 0)
  4259. schedule();
  4260. return yielded;
  4261. }
  4262. EXPORT_SYMBOL_GPL(yield_to);
  4263. int io_schedule_prepare(void)
  4264. {
  4265. int old_iowait = current->in_iowait;
  4266. current->in_iowait = 1;
  4267. blk_schedule_flush_plug(current);
  4268. return old_iowait;
  4269. }
  4270. void io_schedule_finish(int token)
  4271. {
  4272. current->in_iowait = token;
  4273. }
  4274. /*
  4275. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4276. * that process accounting knows that this is a task in IO wait state.
  4277. */
  4278. long __sched io_schedule_timeout(long timeout)
  4279. {
  4280. int token;
  4281. long ret;
  4282. token = io_schedule_prepare();
  4283. ret = schedule_timeout(timeout);
  4284. io_schedule_finish(token);
  4285. return ret;
  4286. }
  4287. EXPORT_SYMBOL(io_schedule_timeout);
  4288. void io_schedule(void)
  4289. {
  4290. int token;
  4291. token = io_schedule_prepare();
  4292. schedule();
  4293. io_schedule_finish(token);
  4294. }
  4295. EXPORT_SYMBOL(io_schedule);
  4296. /**
  4297. * sys_sched_get_priority_max - return maximum RT priority.
  4298. * @policy: scheduling class.
  4299. *
  4300. * Return: On success, this syscall returns the maximum
  4301. * rt_priority that can be used by a given scheduling class.
  4302. * On failure, a negative error code is returned.
  4303. */
  4304. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4305. {
  4306. int ret = -EINVAL;
  4307. switch (policy) {
  4308. case SCHED_FIFO:
  4309. case SCHED_RR:
  4310. ret = MAX_USER_RT_PRIO-1;
  4311. break;
  4312. case SCHED_DEADLINE:
  4313. case SCHED_NORMAL:
  4314. case SCHED_BATCH:
  4315. case SCHED_IDLE:
  4316. ret = 0;
  4317. break;
  4318. }
  4319. return ret;
  4320. }
  4321. /**
  4322. * sys_sched_get_priority_min - return minimum RT priority.
  4323. * @policy: scheduling class.
  4324. *
  4325. * Return: On success, this syscall returns the minimum
  4326. * rt_priority that can be used by a given scheduling class.
  4327. * On failure, a negative error code is returned.
  4328. */
  4329. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4330. {
  4331. int ret = -EINVAL;
  4332. switch (policy) {
  4333. case SCHED_FIFO:
  4334. case SCHED_RR:
  4335. ret = 1;
  4336. break;
  4337. case SCHED_DEADLINE:
  4338. case SCHED_NORMAL:
  4339. case SCHED_BATCH:
  4340. case SCHED_IDLE:
  4341. ret = 0;
  4342. }
  4343. return ret;
  4344. }
  4345. /**
  4346. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4347. * @pid: pid of the process.
  4348. * @interval: userspace pointer to the timeslice value.
  4349. *
  4350. * this syscall writes the default timeslice value of a given process
  4351. * into the user-space timespec buffer. A value of '0' means infinity.
  4352. *
  4353. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4354. * an error code.
  4355. */
  4356. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4357. struct timespec __user *, interval)
  4358. {
  4359. struct task_struct *p;
  4360. unsigned int time_slice;
  4361. struct rq_flags rf;
  4362. struct timespec t;
  4363. struct rq *rq;
  4364. int retval;
  4365. if (pid < 0)
  4366. return -EINVAL;
  4367. retval = -ESRCH;
  4368. rcu_read_lock();
  4369. p = find_process_by_pid(pid);
  4370. if (!p)
  4371. goto out_unlock;
  4372. retval = security_task_getscheduler(p);
  4373. if (retval)
  4374. goto out_unlock;
  4375. rq = task_rq_lock(p, &rf);
  4376. time_slice = 0;
  4377. if (p->sched_class->get_rr_interval)
  4378. time_slice = p->sched_class->get_rr_interval(rq, p);
  4379. task_rq_unlock(rq, p, &rf);
  4380. rcu_read_unlock();
  4381. jiffies_to_timespec(time_slice, &t);
  4382. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4383. return retval;
  4384. out_unlock:
  4385. rcu_read_unlock();
  4386. return retval;
  4387. }
  4388. void sched_show_task(struct task_struct *p)
  4389. {
  4390. unsigned long free = 0;
  4391. int ppid;
  4392. if (!try_get_task_stack(p))
  4393. return;
  4394. printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
  4395. if (p->state == TASK_RUNNING)
  4396. printk(KERN_CONT " running task ");
  4397. #ifdef CONFIG_DEBUG_STACK_USAGE
  4398. free = stack_not_used(p);
  4399. #endif
  4400. ppid = 0;
  4401. rcu_read_lock();
  4402. if (pid_alive(p))
  4403. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4404. rcu_read_unlock();
  4405. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4406. task_pid_nr(p), ppid,
  4407. (unsigned long)task_thread_info(p)->flags);
  4408. print_worker_info(KERN_INFO, p);
  4409. show_stack(p, NULL);
  4410. put_task_stack(p);
  4411. }
  4412. void show_state_filter(unsigned long state_filter)
  4413. {
  4414. struct task_struct *g, *p;
  4415. #if BITS_PER_LONG == 32
  4416. printk(KERN_INFO
  4417. " task PC stack pid father\n");
  4418. #else
  4419. printk(KERN_INFO
  4420. " task PC stack pid father\n");
  4421. #endif
  4422. rcu_read_lock();
  4423. for_each_process_thread(g, p) {
  4424. /*
  4425. * reset the NMI-timeout, listing all files on a slow
  4426. * console might take a lot of time:
  4427. * Also, reset softlockup watchdogs on all CPUs, because
  4428. * another CPU might be blocked waiting for us to process
  4429. * an IPI.
  4430. */
  4431. touch_nmi_watchdog();
  4432. touch_all_softlockup_watchdogs();
  4433. if (!state_filter || (p->state & state_filter))
  4434. sched_show_task(p);
  4435. }
  4436. #ifdef CONFIG_SCHED_DEBUG
  4437. if (!state_filter)
  4438. sysrq_sched_debug_show();
  4439. #endif
  4440. rcu_read_unlock();
  4441. /*
  4442. * Only show locks if all tasks are dumped:
  4443. */
  4444. if (!state_filter)
  4445. debug_show_all_locks();
  4446. }
  4447. /**
  4448. * init_idle - set up an idle thread for a given CPU
  4449. * @idle: task in question
  4450. * @cpu: CPU the idle task belongs to
  4451. *
  4452. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4453. * flag, to make booting more robust.
  4454. */
  4455. void init_idle(struct task_struct *idle, int cpu)
  4456. {
  4457. struct rq *rq = cpu_rq(cpu);
  4458. unsigned long flags;
  4459. raw_spin_lock_irqsave(&idle->pi_lock, flags);
  4460. raw_spin_lock(&rq->lock);
  4461. __sched_fork(0, idle);
  4462. idle->state = TASK_RUNNING;
  4463. idle->se.exec_start = sched_clock();
  4464. idle->flags |= PF_IDLE;
  4465. kasan_unpoison_task_stack(idle);
  4466. #ifdef CONFIG_SMP
  4467. /*
  4468. * Its possible that init_idle() gets called multiple times on a task,
  4469. * in that case do_set_cpus_allowed() will not do the right thing.
  4470. *
  4471. * And since this is boot we can forgo the serialization.
  4472. */
  4473. set_cpus_allowed_common(idle, cpumask_of(cpu));
  4474. #endif
  4475. /*
  4476. * We're having a chicken and egg problem, even though we are
  4477. * holding rq->lock, the CPU isn't yet set to this CPU so the
  4478. * lockdep check in task_group() will fail.
  4479. *
  4480. * Similar case to sched_fork(). / Alternatively we could
  4481. * use task_rq_lock() here and obtain the other rq->lock.
  4482. *
  4483. * Silence PROVE_RCU
  4484. */
  4485. rcu_read_lock();
  4486. __set_task_cpu(idle, cpu);
  4487. rcu_read_unlock();
  4488. rq->curr = rq->idle = idle;
  4489. idle->on_rq = TASK_ON_RQ_QUEUED;
  4490. #ifdef CONFIG_SMP
  4491. idle->on_cpu = 1;
  4492. #endif
  4493. raw_spin_unlock(&rq->lock);
  4494. raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
  4495. /* Set the preempt count _outside_ the spinlocks! */
  4496. init_idle_preempt_count(idle, cpu);
  4497. /*
  4498. * The idle tasks have their own, simple scheduling class:
  4499. */
  4500. idle->sched_class = &idle_sched_class;
  4501. ftrace_graph_init_idle_task(idle, cpu);
  4502. vtime_init_idle(idle, cpu);
  4503. #ifdef CONFIG_SMP
  4504. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4505. #endif
  4506. }
  4507. #ifdef CONFIG_SMP
  4508. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4509. const struct cpumask *trial)
  4510. {
  4511. int ret = 1;
  4512. if (!cpumask_weight(cur))
  4513. return ret;
  4514. ret = dl_cpuset_cpumask_can_shrink(cur, trial);
  4515. return ret;
  4516. }
  4517. int task_can_attach(struct task_struct *p,
  4518. const struct cpumask *cs_cpus_allowed)
  4519. {
  4520. int ret = 0;
  4521. /*
  4522. * Kthreads which disallow setaffinity shouldn't be moved
  4523. * to a new cpuset; we don't want to change their CPU
  4524. * affinity and isolating such threads by their set of
  4525. * allowed nodes is unnecessary. Thus, cpusets are not
  4526. * applicable for such threads. This prevents checking for
  4527. * success of set_cpus_allowed_ptr() on all attached tasks
  4528. * before cpus_allowed may be changed.
  4529. */
  4530. if (p->flags & PF_NO_SETAFFINITY) {
  4531. ret = -EINVAL;
  4532. goto out;
  4533. }
  4534. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4535. cs_cpus_allowed))
  4536. ret = dl_task_can_attach(p, cs_cpus_allowed);
  4537. out:
  4538. return ret;
  4539. }
  4540. bool sched_smp_initialized __read_mostly;
  4541. #ifdef CONFIG_NUMA_BALANCING
  4542. /* Migrate current task p to target_cpu */
  4543. int migrate_task_to(struct task_struct *p, int target_cpu)
  4544. {
  4545. struct migration_arg arg = { p, target_cpu };
  4546. int curr_cpu = task_cpu(p);
  4547. if (curr_cpu == target_cpu)
  4548. return 0;
  4549. if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
  4550. return -EINVAL;
  4551. /* TODO: This is not properly updating schedstats */
  4552. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4553. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4554. }
  4555. /*
  4556. * Requeue a task on a given node and accurately track the number of NUMA
  4557. * tasks on the runqueues
  4558. */
  4559. void sched_setnuma(struct task_struct *p, int nid)
  4560. {
  4561. bool queued, running;
  4562. struct rq_flags rf;
  4563. struct rq *rq;
  4564. rq = task_rq_lock(p, &rf);
  4565. queued = task_on_rq_queued(p);
  4566. running = task_current(rq, p);
  4567. if (queued)
  4568. dequeue_task(rq, p, DEQUEUE_SAVE);
  4569. if (running)
  4570. put_prev_task(rq, p);
  4571. p->numa_preferred_nid = nid;
  4572. if (queued)
  4573. enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
  4574. if (running)
  4575. set_curr_task(rq, p);
  4576. task_rq_unlock(rq, p, &rf);
  4577. }
  4578. #endif /* CONFIG_NUMA_BALANCING */
  4579. #ifdef CONFIG_HOTPLUG_CPU
  4580. /*
  4581. * Ensure that the idle task is using init_mm right before its CPU goes
  4582. * offline.
  4583. */
  4584. void idle_task_exit(void)
  4585. {
  4586. struct mm_struct *mm = current->active_mm;
  4587. BUG_ON(cpu_online(smp_processor_id()));
  4588. if (mm != &init_mm) {
  4589. switch_mm(mm, &init_mm, current);
  4590. finish_arch_post_lock_switch();
  4591. }
  4592. mmdrop(mm);
  4593. }
  4594. /*
  4595. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4596. * we might have. Assumes we're called after migrate_tasks() so that the
  4597. * nr_active count is stable. We need to take the teardown thread which
  4598. * is calling this into account, so we hand in adjust = 1 to the load
  4599. * calculation.
  4600. *
  4601. * Also see the comment "Global load-average calculations".
  4602. */
  4603. static void calc_load_migrate(struct rq *rq)
  4604. {
  4605. long delta = calc_load_fold_active(rq, 1);
  4606. if (delta)
  4607. atomic_long_add(delta, &calc_load_tasks);
  4608. }
  4609. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4610. {
  4611. }
  4612. static const struct sched_class fake_sched_class = {
  4613. .put_prev_task = put_prev_task_fake,
  4614. };
  4615. static struct task_struct fake_task = {
  4616. /*
  4617. * Avoid pull_{rt,dl}_task()
  4618. */
  4619. .prio = MAX_PRIO + 1,
  4620. .sched_class = &fake_sched_class,
  4621. };
  4622. /*
  4623. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4624. * try_to_wake_up()->select_task_rq().
  4625. *
  4626. * Called with rq->lock held even though we'er in stop_machine() and
  4627. * there's no concurrency possible, we hold the required locks anyway
  4628. * because of lock validation efforts.
  4629. */
  4630. static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
  4631. {
  4632. struct rq *rq = dead_rq;
  4633. struct task_struct *next, *stop = rq->stop;
  4634. struct rq_flags orf = *rf;
  4635. int dest_cpu;
  4636. /*
  4637. * Fudge the rq selection such that the below task selection loop
  4638. * doesn't get stuck on the currently eligible stop task.
  4639. *
  4640. * We're currently inside stop_machine() and the rq is either stuck
  4641. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4642. * either way we should never end up calling schedule() until we're
  4643. * done here.
  4644. */
  4645. rq->stop = NULL;
  4646. /*
  4647. * put_prev_task() and pick_next_task() sched
  4648. * class method both need to have an up-to-date
  4649. * value of rq->clock[_task]
  4650. */
  4651. update_rq_clock(rq);
  4652. for (;;) {
  4653. /*
  4654. * There's this thread running, bail when that's the only
  4655. * remaining thread:
  4656. */
  4657. if (rq->nr_running == 1)
  4658. break;
  4659. /*
  4660. * pick_next_task() assumes pinned rq->lock:
  4661. */
  4662. next = pick_next_task(rq, &fake_task, rf);
  4663. BUG_ON(!next);
  4664. put_prev_task(rq, next);
  4665. /*
  4666. * Rules for changing task_struct::cpus_allowed are holding
  4667. * both pi_lock and rq->lock, such that holding either
  4668. * stabilizes the mask.
  4669. *
  4670. * Drop rq->lock is not quite as disastrous as it usually is
  4671. * because !cpu_active at this point, which means load-balance
  4672. * will not interfere. Also, stop-machine.
  4673. */
  4674. rq_unlock(rq, rf);
  4675. raw_spin_lock(&next->pi_lock);
  4676. rq_relock(rq, rf);
  4677. /*
  4678. * Since we're inside stop-machine, _nothing_ should have
  4679. * changed the task, WARN if weird stuff happened, because in
  4680. * that case the above rq->lock drop is a fail too.
  4681. */
  4682. if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
  4683. raw_spin_unlock(&next->pi_lock);
  4684. continue;
  4685. }
  4686. /* Find suitable destination for @next, with force if needed. */
  4687. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4688. rq = __migrate_task(rq, rf, next, dest_cpu);
  4689. if (rq != dead_rq) {
  4690. rq_unlock(rq, rf);
  4691. rq = dead_rq;
  4692. *rf = orf;
  4693. rq_relock(rq, rf);
  4694. }
  4695. raw_spin_unlock(&next->pi_lock);
  4696. }
  4697. rq->stop = stop;
  4698. }
  4699. #endif /* CONFIG_HOTPLUG_CPU */
  4700. void set_rq_online(struct rq *rq)
  4701. {
  4702. if (!rq->online) {
  4703. const struct sched_class *class;
  4704. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4705. rq->online = 1;
  4706. for_each_class(class) {
  4707. if (class->rq_online)
  4708. class->rq_online(rq);
  4709. }
  4710. }
  4711. }
  4712. void set_rq_offline(struct rq *rq)
  4713. {
  4714. if (rq->online) {
  4715. const struct sched_class *class;
  4716. for_each_class(class) {
  4717. if (class->rq_offline)
  4718. class->rq_offline(rq);
  4719. }
  4720. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4721. rq->online = 0;
  4722. }
  4723. }
  4724. static void set_cpu_rq_start_time(unsigned int cpu)
  4725. {
  4726. struct rq *rq = cpu_rq(cpu);
  4727. rq->age_stamp = sched_clock_cpu(cpu);
  4728. }
  4729. /*
  4730. * used to mark begin/end of suspend/resume:
  4731. */
  4732. static int num_cpus_frozen;
  4733. /*
  4734. * Update cpusets according to cpu_active mask. If cpusets are
  4735. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  4736. * around partition_sched_domains().
  4737. *
  4738. * If we come here as part of a suspend/resume, don't touch cpusets because we
  4739. * want to restore it back to its original state upon resume anyway.
  4740. */
  4741. static void cpuset_cpu_active(void)
  4742. {
  4743. if (cpuhp_tasks_frozen) {
  4744. /*
  4745. * num_cpus_frozen tracks how many CPUs are involved in suspend
  4746. * resume sequence. As long as this is not the last online
  4747. * operation in the resume sequence, just build a single sched
  4748. * domain, ignoring cpusets.
  4749. */
  4750. num_cpus_frozen--;
  4751. if (likely(num_cpus_frozen)) {
  4752. partition_sched_domains(1, NULL, NULL);
  4753. return;
  4754. }
  4755. /*
  4756. * This is the last CPU online operation. So fall through and
  4757. * restore the original sched domains by considering the
  4758. * cpuset configurations.
  4759. */
  4760. }
  4761. cpuset_update_active_cpus();
  4762. }
  4763. static int cpuset_cpu_inactive(unsigned int cpu)
  4764. {
  4765. if (!cpuhp_tasks_frozen) {
  4766. if (dl_cpu_busy(cpu))
  4767. return -EBUSY;
  4768. cpuset_update_active_cpus();
  4769. } else {
  4770. num_cpus_frozen++;
  4771. partition_sched_domains(1, NULL, NULL);
  4772. }
  4773. return 0;
  4774. }
  4775. int sched_cpu_activate(unsigned int cpu)
  4776. {
  4777. struct rq *rq = cpu_rq(cpu);
  4778. struct rq_flags rf;
  4779. set_cpu_active(cpu, true);
  4780. if (sched_smp_initialized) {
  4781. sched_domains_numa_masks_set(cpu);
  4782. cpuset_cpu_active();
  4783. }
  4784. /*
  4785. * Put the rq online, if not already. This happens:
  4786. *
  4787. * 1) In the early boot process, because we build the real domains
  4788. * after all CPUs have been brought up.
  4789. *
  4790. * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
  4791. * domains.
  4792. */
  4793. rq_lock_irqsave(rq, &rf);
  4794. if (rq->rd) {
  4795. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4796. set_rq_online(rq);
  4797. }
  4798. rq_unlock_irqrestore(rq, &rf);
  4799. update_max_interval();
  4800. return 0;
  4801. }
  4802. int sched_cpu_deactivate(unsigned int cpu)
  4803. {
  4804. int ret;
  4805. set_cpu_active(cpu, false);
  4806. /*
  4807. * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
  4808. * users of this state to go away such that all new such users will
  4809. * observe it.
  4810. *
  4811. * Do sync before park smpboot threads to take care the rcu boost case.
  4812. */
  4813. synchronize_rcu_mult(call_rcu, call_rcu_sched);
  4814. if (!sched_smp_initialized)
  4815. return 0;
  4816. ret = cpuset_cpu_inactive(cpu);
  4817. if (ret) {
  4818. set_cpu_active(cpu, true);
  4819. return ret;
  4820. }
  4821. sched_domains_numa_masks_clear(cpu);
  4822. return 0;
  4823. }
  4824. static void sched_rq_cpu_starting(unsigned int cpu)
  4825. {
  4826. struct rq *rq = cpu_rq(cpu);
  4827. rq->calc_load_update = calc_load_update;
  4828. update_max_interval();
  4829. }
  4830. int sched_cpu_starting(unsigned int cpu)
  4831. {
  4832. set_cpu_rq_start_time(cpu);
  4833. sched_rq_cpu_starting(cpu);
  4834. return 0;
  4835. }
  4836. #ifdef CONFIG_HOTPLUG_CPU
  4837. int sched_cpu_dying(unsigned int cpu)
  4838. {
  4839. struct rq *rq = cpu_rq(cpu);
  4840. struct rq_flags rf;
  4841. /* Handle pending wakeups and then migrate everything off */
  4842. sched_ttwu_pending();
  4843. rq_lock_irqsave(rq, &rf);
  4844. if (rq->rd) {
  4845. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4846. set_rq_offline(rq);
  4847. }
  4848. migrate_tasks(rq, &rf);
  4849. BUG_ON(rq->nr_running != 1);
  4850. rq_unlock_irqrestore(rq, &rf);
  4851. calc_load_migrate(rq);
  4852. update_max_interval();
  4853. nohz_balance_exit_idle(cpu);
  4854. hrtick_clear(rq);
  4855. return 0;
  4856. }
  4857. #endif
  4858. #ifdef CONFIG_SCHED_SMT
  4859. DEFINE_STATIC_KEY_FALSE(sched_smt_present);
  4860. static void sched_init_smt(void)
  4861. {
  4862. /*
  4863. * We've enumerated all CPUs and will assume that if any CPU
  4864. * has SMT siblings, CPU0 will too.
  4865. */
  4866. if (cpumask_weight(cpu_smt_mask(0)) > 1)
  4867. static_branch_enable(&sched_smt_present);
  4868. }
  4869. #else
  4870. static inline void sched_init_smt(void) { }
  4871. #endif
  4872. void __init sched_init_smp(void)
  4873. {
  4874. cpumask_var_t non_isolated_cpus;
  4875. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  4876. sched_init_numa();
  4877. /*
  4878. * There's no userspace yet to cause hotplug operations; hence all the
  4879. * CPU masks are stable and all blatant races in the below code cannot
  4880. * happen.
  4881. */
  4882. mutex_lock(&sched_domains_mutex);
  4883. sched_init_domains(cpu_active_mask);
  4884. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  4885. if (cpumask_empty(non_isolated_cpus))
  4886. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  4887. mutex_unlock(&sched_domains_mutex);
  4888. /* Move init over to a non-isolated CPU */
  4889. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  4890. BUG();
  4891. sched_init_granularity();
  4892. free_cpumask_var(non_isolated_cpus);
  4893. init_sched_rt_class();
  4894. init_sched_dl_class();
  4895. sched_init_smt();
  4896. sched_smp_initialized = true;
  4897. }
  4898. static int __init migration_init(void)
  4899. {
  4900. sched_rq_cpu_starting(smp_processor_id());
  4901. return 0;
  4902. }
  4903. early_initcall(migration_init);
  4904. #else
  4905. void __init sched_init_smp(void)
  4906. {
  4907. sched_init_granularity();
  4908. }
  4909. #endif /* CONFIG_SMP */
  4910. int in_sched_functions(unsigned long addr)
  4911. {
  4912. return in_lock_functions(addr) ||
  4913. (addr >= (unsigned long)__sched_text_start
  4914. && addr < (unsigned long)__sched_text_end);
  4915. }
  4916. #ifdef CONFIG_CGROUP_SCHED
  4917. /*
  4918. * Default task group.
  4919. * Every task in system belongs to this group at bootup.
  4920. */
  4921. struct task_group root_task_group;
  4922. LIST_HEAD(task_groups);
  4923. /* Cacheline aligned slab cache for task_group */
  4924. static struct kmem_cache *task_group_cache __read_mostly;
  4925. #endif
  4926. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  4927. DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
  4928. void __init sched_init(void)
  4929. {
  4930. int i, j;
  4931. unsigned long alloc_size = 0, ptr;
  4932. sched_clock_init();
  4933. wait_bit_init();
  4934. #ifdef CONFIG_FAIR_GROUP_SCHED
  4935. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  4936. #endif
  4937. #ifdef CONFIG_RT_GROUP_SCHED
  4938. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  4939. #endif
  4940. if (alloc_size) {
  4941. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  4942. #ifdef CONFIG_FAIR_GROUP_SCHED
  4943. root_task_group.se = (struct sched_entity **)ptr;
  4944. ptr += nr_cpu_ids * sizeof(void **);
  4945. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  4946. ptr += nr_cpu_ids * sizeof(void **);
  4947. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4948. #ifdef CONFIG_RT_GROUP_SCHED
  4949. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  4950. ptr += nr_cpu_ids * sizeof(void **);
  4951. root_task_group.rt_rq = (struct rt_rq **)ptr;
  4952. ptr += nr_cpu_ids * sizeof(void **);
  4953. #endif /* CONFIG_RT_GROUP_SCHED */
  4954. }
  4955. #ifdef CONFIG_CPUMASK_OFFSTACK
  4956. for_each_possible_cpu(i) {
  4957. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  4958. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  4959. per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
  4960. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  4961. }
  4962. #endif /* CONFIG_CPUMASK_OFFSTACK */
  4963. init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
  4964. init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
  4965. #ifdef CONFIG_SMP
  4966. init_defrootdomain();
  4967. #endif
  4968. #ifdef CONFIG_RT_GROUP_SCHED
  4969. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  4970. global_rt_period(), global_rt_runtime());
  4971. #endif /* CONFIG_RT_GROUP_SCHED */
  4972. #ifdef CONFIG_CGROUP_SCHED
  4973. task_group_cache = KMEM_CACHE(task_group, 0);
  4974. list_add(&root_task_group.list, &task_groups);
  4975. INIT_LIST_HEAD(&root_task_group.children);
  4976. INIT_LIST_HEAD(&root_task_group.siblings);
  4977. autogroup_init(&init_task);
  4978. #endif /* CONFIG_CGROUP_SCHED */
  4979. for_each_possible_cpu(i) {
  4980. struct rq *rq;
  4981. rq = cpu_rq(i);
  4982. raw_spin_lock_init(&rq->lock);
  4983. rq->nr_running = 0;
  4984. rq->calc_load_active = 0;
  4985. rq->calc_load_update = jiffies + LOAD_FREQ;
  4986. init_cfs_rq(&rq->cfs);
  4987. init_rt_rq(&rq->rt);
  4988. init_dl_rq(&rq->dl);
  4989. #ifdef CONFIG_FAIR_GROUP_SCHED
  4990. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  4991. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  4992. rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  4993. /*
  4994. * How much CPU bandwidth does root_task_group get?
  4995. *
  4996. * In case of task-groups formed thr' the cgroup filesystem, it
  4997. * gets 100% of the CPU resources in the system. This overall
  4998. * system CPU resource is divided among the tasks of
  4999. * root_task_group and its child task-groups in a fair manner,
  5000. * based on each entity's (task or task-group's) weight
  5001. * (se->load.weight).
  5002. *
  5003. * In other words, if root_task_group has 10 tasks of weight
  5004. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5005. * then A0's share of the CPU resource is:
  5006. *
  5007. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5008. *
  5009. * We achieve this by letting root_task_group's tasks sit
  5010. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5011. */
  5012. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5013. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5014. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5015. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5016. #ifdef CONFIG_RT_GROUP_SCHED
  5017. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5018. #endif
  5019. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5020. rq->cpu_load[j] = 0;
  5021. #ifdef CONFIG_SMP
  5022. rq->sd = NULL;
  5023. rq->rd = NULL;
  5024. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  5025. rq->balance_callback = NULL;
  5026. rq->active_balance = 0;
  5027. rq->next_balance = jiffies;
  5028. rq->push_cpu = 0;
  5029. rq->cpu = i;
  5030. rq->online = 0;
  5031. rq->idle_stamp = 0;
  5032. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5033. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5034. INIT_LIST_HEAD(&rq->cfs_tasks);
  5035. rq_attach_root(rq, &def_root_domain);
  5036. #ifdef CONFIG_NO_HZ_COMMON
  5037. rq->last_load_update_tick = jiffies;
  5038. rq->nohz_flags = 0;
  5039. #endif
  5040. #ifdef CONFIG_NO_HZ_FULL
  5041. rq->last_sched_tick = 0;
  5042. #endif
  5043. #endif /* CONFIG_SMP */
  5044. init_rq_hrtick(rq);
  5045. atomic_set(&rq->nr_iowait, 0);
  5046. }
  5047. set_load_weight(&init_task);
  5048. /*
  5049. * The boot idle thread does lazy MMU switching as well:
  5050. */
  5051. mmgrab(&init_mm);
  5052. enter_lazy_tlb(&init_mm, current);
  5053. /*
  5054. * Make us the idle thread. Technically, schedule() should not be
  5055. * called from this thread, however somewhere below it might be,
  5056. * but because we are the idle thread, we just pick up running again
  5057. * when this runqueue becomes "idle".
  5058. */
  5059. init_idle(current, smp_processor_id());
  5060. calc_load_update = jiffies + LOAD_FREQ;
  5061. #ifdef CONFIG_SMP
  5062. /* May be allocated at isolcpus cmdline parse time */
  5063. if (cpu_isolated_map == NULL)
  5064. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5065. idle_thread_set_boot_cpu();
  5066. set_cpu_rq_start_time(smp_processor_id());
  5067. #endif
  5068. init_sched_fair_class();
  5069. init_schedstats();
  5070. scheduler_running = 1;
  5071. }
  5072. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5073. static inline int preempt_count_equals(int preempt_offset)
  5074. {
  5075. int nested = preempt_count() + rcu_preempt_depth();
  5076. return (nested == preempt_offset);
  5077. }
  5078. void __might_sleep(const char *file, int line, int preempt_offset)
  5079. {
  5080. /*
  5081. * Blocking primitives will set (and therefore destroy) current->state,
  5082. * since we will exit with TASK_RUNNING make sure we enter with it,
  5083. * otherwise we will destroy state.
  5084. */
  5085. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  5086. "do not call blocking ops when !TASK_RUNNING; "
  5087. "state=%lx set at [<%p>] %pS\n",
  5088. current->state,
  5089. (void *)current->task_state_change,
  5090. (void *)current->task_state_change);
  5091. ___might_sleep(file, line, preempt_offset);
  5092. }
  5093. EXPORT_SYMBOL(__might_sleep);
  5094. void ___might_sleep(const char *file, int line, int preempt_offset)
  5095. {
  5096. /* Ratelimiting timestamp: */
  5097. static unsigned long prev_jiffy;
  5098. unsigned long preempt_disable_ip;
  5099. /* WARN_ON_ONCE() by default, no rate limit required: */
  5100. rcu_sleep_check();
  5101. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  5102. !is_idle_task(current)) ||
  5103. system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
  5104. oops_in_progress)
  5105. return;
  5106. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5107. return;
  5108. prev_jiffy = jiffies;
  5109. /* Save this before calling printk(), since that will clobber it: */
  5110. preempt_disable_ip = get_preempt_disable_ip(current);
  5111. printk(KERN_ERR
  5112. "BUG: sleeping function called from invalid context at %s:%d\n",
  5113. file, line);
  5114. printk(KERN_ERR
  5115. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5116. in_atomic(), irqs_disabled(),
  5117. current->pid, current->comm);
  5118. if (task_stack_end_corrupted(current))
  5119. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  5120. debug_show_held_locks(current);
  5121. if (irqs_disabled())
  5122. print_irqtrace_events(current);
  5123. if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
  5124. && !preempt_count_equals(preempt_offset)) {
  5125. pr_err("Preemption disabled at:");
  5126. print_ip_sym(preempt_disable_ip);
  5127. pr_cont("\n");
  5128. }
  5129. dump_stack();
  5130. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  5131. }
  5132. EXPORT_SYMBOL(___might_sleep);
  5133. #endif
  5134. #ifdef CONFIG_MAGIC_SYSRQ
  5135. void normalize_rt_tasks(void)
  5136. {
  5137. struct task_struct *g, *p;
  5138. struct sched_attr attr = {
  5139. .sched_policy = SCHED_NORMAL,
  5140. };
  5141. read_lock(&tasklist_lock);
  5142. for_each_process_thread(g, p) {
  5143. /*
  5144. * Only normalize user tasks:
  5145. */
  5146. if (p->flags & PF_KTHREAD)
  5147. continue;
  5148. p->se.exec_start = 0;
  5149. schedstat_set(p->se.statistics.wait_start, 0);
  5150. schedstat_set(p->se.statistics.sleep_start, 0);
  5151. schedstat_set(p->se.statistics.block_start, 0);
  5152. if (!dl_task(p) && !rt_task(p)) {
  5153. /*
  5154. * Renice negative nice level userspace
  5155. * tasks back to 0:
  5156. */
  5157. if (task_nice(p) < 0)
  5158. set_user_nice(p, 0);
  5159. continue;
  5160. }
  5161. __sched_setscheduler(p, &attr, false, false);
  5162. }
  5163. read_unlock(&tasklist_lock);
  5164. }
  5165. #endif /* CONFIG_MAGIC_SYSRQ */
  5166. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5167. /*
  5168. * These functions are only useful for the IA64 MCA handling, or kdb.
  5169. *
  5170. * They can only be called when the whole system has been
  5171. * stopped - every CPU needs to be quiescent, and no scheduling
  5172. * activity can take place. Using them for anything else would
  5173. * be a serious bug, and as a result, they aren't even visible
  5174. * under any other configuration.
  5175. */
  5176. /**
  5177. * curr_task - return the current task for a given CPU.
  5178. * @cpu: the processor in question.
  5179. *
  5180. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5181. *
  5182. * Return: The current task for @cpu.
  5183. */
  5184. struct task_struct *curr_task(int cpu)
  5185. {
  5186. return cpu_curr(cpu);
  5187. }
  5188. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5189. #ifdef CONFIG_IA64
  5190. /**
  5191. * set_curr_task - set the current task for a given CPU.
  5192. * @cpu: the processor in question.
  5193. * @p: the task pointer to set.
  5194. *
  5195. * Description: This function must only be used when non-maskable interrupts
  5196. * are serviced on a separate stack. It allows the architecture to switch the
  5197. * notion of the current task on a CPU in a non-blocking manner. This function
  5198. * must be called with all CPU's synchronized, and interrupts disabled, the
  5199. * and caller must save the original value of the current task (see
  5200. * curr_task() above) and restore that value before reenabling interrupts and
  5201. * re-starting the system.
  5202. *
  5203. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5204. */
  5205. void ia64_set_curr_task(int cpu, struct task_struct *p)
  5206. {
  5207. cpu_curr(cpu) = p;
  5208. }
  5209. #endif
  5210. #ifdef CONFIG_CGROUP_SCHED
  5211. /* task_group_lock serializes the addition/removal of task groups */
  5212. static DEFINE_SPINLOCK(task_group_lock);
  5213. static void sched_free_group(struct task_group *tg)
  5214. {
  5215. free_fair_sched_group(tg);
  5216. free_rt_sched_group(tg);
  5217. autogroup_free(tg);
  5218. kmem_cache_free(task_group_cache, tg);
  5219. }
  5220. /* allocate runqueue etc for a new task group */
  5221. struct task_group *sched_create_group(struct task_group *parent)
  5222. {
  5223. struct task_group *tg;
  5224. tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
  5225. if (!tg)
  5226. return ERR_PTR(-ENOMEM);
  5227. if (!alloc_fair_sched_group(tg, parent))
  5228. goto err;
  5229. if (!alloc_rt_sched_group(tg, parent))
  5230. goto err;
  5231. return tg;
  5232. err:
  5233. sched_free_group(tg);
  5234. return ERR_PTR(-ENOMEM);
  5235. }
  5236. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5237. {
  5238. unsigned long flags;
  5239. spin_lock_irqsave(&task_group_lock, flags);
  5240. list_add_rcu(&tg->list, &task_groups);
  5241. /* Root should already exist: */
  5242. WARN_ON(!parent);
  5243. tg->parent = parent;
  5244. INIT_LIST_HEAD(&tg->children);
  5245. list_add_rcu(&tg->siblings, &parent->children);
  5246. spin_unlock_irqrestore(&task_group_lock, flags);
  5247. online_fair_sched_group(tg);
  5248. }
  5249. /* rcu callback to free various structures associated with a task group */
  5250. static void sched_free_group_rcu(struct rcu_head *rhp)
  5251. {
  5252. /* Now it should be safe to free those cfs_rqs: */
  5253. sched_free_group(container_of(rhp, struct task_group, rcu));
  5254. }
  5255. void sched_destroy_group(struct task_group *tg)
  5256. {
  5257. /* Wait for possible concurrent references to cfs_rqs complete: */
  5258. call_rcu(&tg->rcu, sched_free_group_rcu);
  5259. }
  5260. void sched_offline_group(struct task_group *tg)
  5261. {
  5262. unsigned long flags;
  5263. /* End participation in shares distribution: */
  5264. unregister_fair_sched_group(tg);
  5265. spin_lock_irqsave(&task_group_lock, flags);
  5266. list_del_rcu(&tg->list);
  5267. list_del_rcu(&tg->siblings);
  5268. spin_unlock_irqrestore(&task_group_lock, flags);
  5269. }
  5270. static void sched_change_group(struct task_struct *tsk, int type)
  5271. {
  5272. struct task_group *tg;
  5273. /*
  5274. * All callers are synchronized by task_rq_lock(); we do not use RCU
  5275. * which is pointless here. Thus, we pass "true" to task_css_check()
  5276. * to prevent lockdep warnings.
  5277. */
  5278. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  5279. struct task_group, css);
  5280. tg = autogroup_task_group(tsk, tg);
  5281. tsk->sched_task_group = tg;
  5282. #ifdef CONFIG_FAIR_GROUP_SCHED
  5283. if (tsk->sched_class->task_change_group)
  5284. tsk->sched_class->task_change_group(tsk, type);
  5285. else
  5286. #endif
  5287. set_task_rq(tsk, task_cpu(tsk));
  5288. }
  5289. /*
  5290. * Change task's runqueue when it moves between groups.
  5291. *
  5292. * The caller of this function should have put the task in its new group by
  5293. * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
  5294. * its new group.
  5295. */
  5296. void sched_move_task(struct task_struct *tsk)
  5297. {
  5298. int queued, running, queue_flags =
  5299. DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  5300. struct rq_flags rf;
  5301. struct rq *rq;
  5302. rq = task_rq_lock(tsk, &rf);
  5303. update_rq_clock(rq);
  5304. running = task_current(rq, tsk);
  5305. queued = task_on_rq_queued(tsk);
  5306. if (queued)
  5307. dequeue_task(rq, tsk, queue_flags);
  5308. if (running)
  5309. put_prev_task(rq, tsk);
  5310. sched_change_group(tsk, TASK_MOVE_GROUP);
  5311. if (queued)
  5312. enqueue_task(rq, tsk, queue_flags);
  5313. if (running)
  5314. set_curr_task(rq, tsk);
  5315. task_rq_unlock(rq, tsk, &rf);
  5316. }
  5317. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  5318. {
  5319. return css ? container_of(css, struct task_group, css) : NULL;
  5320. }
  5321. static struct cgroup_subsys_state *
  5322. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  5323. {
  5324. struct task_group *parent = css_tg(parent_css);
  5325. struct task_group *tg;
  5326. if (!parent) {
  5327. /* This is early initialization for the top cgroup */
  5328. return &root_task_group.css;
  5329. }
  5330. tg = sched_create_group(parent);
  5331. if (IS_ERR(tg))
  5332. return ERR_PTR(-ENOMEM);
  5333. return &tg->css;
  5334. }
  5335. /* Expose task group only after completing cgroup initialization */
  5336. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  5337. {
  5338. struct task_group *tg = css_tg(css);
  5339. struct task_group *parent = css_tg(css->parent);
  5340. if (parent)
  5341. sched_online_group(tg, parent);
  5342. return 0;
  5343. }
  5344. static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
  5345. {
  5346. struct task_group *tg = css_tg(css);
  5347. sched_offline_group(tg);
  5348. }
  5349. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  5350. {
  5351. struct task_group *tg = css_tg(css);
  5352. /*
  5353. * Relies on the RCU grace period between css_released() and this.
  5354. */
  5355. sched_free_group(tg);
  5356. }
  5357. /*
  5358. * This is called before wake_up_new_task(), therefore we really only
  5359. * have to set its group bits, all the other stuff does not apply.
  5360. */
  5361. static void cpu_cgroup_fork(struct task_struct *task)
  5362. {
  5363. struct rq_flags rf;
  5364. struct rq *rq;
  5365. rq = task_rq_lock(task, &rf);
  5366. update_rq_clock(rq);
  5367. sched_change_group(task, TASK_SET_GROUP);
  5368. task_rq_unlock(rq, task, &rf);
  5369. }
  5370. static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
  5371. {
  5372. struct task_struct *task;
  5373. struct cgroup_subsys_state *css;
  5374. int ret = 0;
  5375. cgroup_taskset_for_each(task, css, tset) {
  5376. #ifdef CONFIG_RT_GROUP_SCHED
  5377. if (!sched_rt_can_attach(css_tg(css), task))
  5378. return -EINVAL;
  5379. #else
  5380. /* We don't support RT-tasks being in separate groups */
  5381. if (task->sched_class != &fair_sched_class)
  5382. return -EINVAL;
  5383. #endif
  5384. /*
  5385. * Serialize against wake_up_new_task() such that if its
  5386. * running, we're sure to observe its full state.
  5387. */
  5388. raw_spin_lock_irq(&task->pi_lock);
  5389. /*
  5390. * Avoid calling sched_move_task() before wake_up_new_task()
  5391. * has happened. This would lead to problems with PELT, due to
  5392. * move wanting to detach+attach while we're not attached yet.
  5393. */
  5394. if (task->state == TASK_NEW)
  5395. ret = -EINVAL;
  5396. raw_spin_unlock_irq(&task->pi_lock);
  5397. if (ret)
  5398. break;
  5399. }
  5400. return ret;
  5401. }
  5402. static void cpu_cgroup_attach(struct cgroup_taskset *tset)
  5403. {
  5404. struct task_struct *task;
  5405. struct cgroup_subsys_state *css;
  5406. cgroup_taskset_for_each(task, css, tset)
  5407. sched_move_task(task);
  5408. }
  5409. #ifdef CONFIG_FAIR_GROUP_SCHED
  5410. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  5411. struct cftype *cftype, u64 shareval)
  5412. {
  5413. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  5414. }
  5415. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  5416. struct cftype *cft)
  5417. {
  5418. struct task_group *tg = css_tg(css);
  5419. return (u64) scale_load_down(tg->shares);
  5420. }
  5421. #ifdef CONFIG_CFS_BANDWIDTH
  5422. static DEFINE_MUTEX(cfs_constraints_mutex);
  5423. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  5424. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  5425. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  5426. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  5427. {
  5428. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  5429. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5430. if (tg == &root_task_group)
  5431. return -EINVAL;
  5432. /*
  5433. * Ensure we have at some amount of bandwidth every period. This is
  5434. * to prevent reaching a state of large arrears when throttled via
  5435. * entity_tick() resulting in prolonged exit starvation.
  5436. */
  5437. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  5438. return -EINVAL;
  5439. /*
  5440. * Likewise, bound things on the otherside by preventing insane quota
  5441. * periods. This also allows us to normalize in computing quota
  5442. * feasibility.
  5443. */
  5444. if (period > max_cfs_quota_period)
  5445. return -EINVAL;
  5446. /*
  5447. * Prevent race between setting of cfs_rq->runtime_enabled and
  5448. * unthrottle_offline_cfs_rqs().
  5449. */
  5450. get_online_cpus();
  5451. mutex_lock(&cfs_constraints_mutex);
  5452. ret = __cfs_schedulable(tg, period, quota);
  5453. if (ret)
  5454. goto out_unlock;
  5455. runtime_enabled = quota != RUNTIME_INF;
  5456. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  5457. /*
  5458. * If we need to toggle cfs_bandwidth_used, off->on must occur
  5459. * before making related changes, and on->off must occur afterwards
  5460. */
  5461. if (runtime_enabled && !runtime_was_enabled)
  5462. cfs_bandwidth_usage_inc();
  5463. raw_spin_lock_irq(&cfs_b->lock);
  5464. cfs_b->period = ns_to_ktime(period);
  5465. cfs_b->quota = quota;
  5466. __refill_cfs_bandwidth_runtime(cfs_b);
  5467. /* Restart the period timer (if active) to handle new period expiry: */
  5468. if (runtime_enabled)
  5469. start_cfs_bandwidth(cfs_b);
  5470. raw_spin_unlock_irq(&cfs_b->lock);
  5471. for_each_online_cpu(i) {
  5472. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  5473. struct rq *rq = cfs_rq->rq;
  5474. struct rq_flags rf;
  5475. rq_lock_irq(rq, &rf);
  5476. cfs_rq->runtime_enabled = runtime_enabled;
  5477. cfs_rq->runtime_remaining = 0;
  5478. if (cfs_rq->throttled)
  5479. unthrottle_cfs_rq(cfs_rq);
  5480. rq_unlock_irq(rq, &rf);
  5481. }
  5482. if (runtime_was_enabled && !runtime_enabled)
  5483. cfs_bandwidth_usage_dec();
  5484. out_unlock:
  5485. mutex_unlock(&cfs_constraints_mutex);
  5486. put_online_cpus();
  5487. return ret;
  5488. }
  5489. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  5490. {
  5491. u64 quota, period;
  5492. period = ktime_to_ns(tg->cfs_bandwidth.period);
  5493. if (cfs_quota_us < 0)
  5494. quota = RUNTIME_INF;
  5495. else
  5496. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  5497. return tg_set_cfs_bandwidth(tg, period, quota);
  5498. }
  5499. long tg_get_cfs_quota(struct task_group *tg)
  5500. {
  5501. u64 quota_us;
  5502. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  5503. return -1;
  5504. quota_us = tg->cfs_bandwidth.quota;
  5505. do_div(quota_us, NSEC_PER_USEC);
  5506. return quota_us;
  5507. }
  5508. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  5509. {
  5510. u64 quota, period;
  5511. period = (u64)cfs_period_us * NSEC_PER_USEC;
  5512. quota = tg->cfs_bandwidth.quota;
  5513. return tg_set_cfs_bandwidth(tg, period, quota);
  5514. }
  5515. long tg_get_cfs_period(struct task_group *tg)
  5516. {
  5517. u64 cfs_period_us;
  5518. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  5519. do_div(cfs_period_us, NSEC_PER_USEC);
  5520. return cfs_period_us;
  5521. }
  5522. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  5523. struct cftype *cft)
  5524. {
  5525. return tg_get_cfs_quota(css_tg(css));
  5526. }
  5527. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  5528. struct cftype *cftype, s64 cfs_quota_us)
  5529. {
  5530. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  5531. }
  5532. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  5533. struct cftype *cft)
  5534. {
  5535. return tg_get_cfs_period(css_tg(css));
  5536. }
  5537. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  5538. struct cftype *cftype, u64 cfs_period_us)
  5539. {
  5540. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  5541. }
  5542. struct cfs_schedulable_data {
  5543. struct task_group *tg;
  5544. u64 period, quota;
  5545. };
  5546. /*
  5547. * normalize group quota/period to be quota/max_period
  5548. * note: units are usecs
  5549. */
  5550. static u64 normalize_cfs_quota(struct task_group *tg,
  5551. struct cfs_schedulable_data *d)
  5552. {
  5553. u64 quota, period;
  5554. if (tg == d->tg) {
  5555. period = d->period;
  5556. quota = d->quota;
  5557. } else {
  5558. period = tg_get_cfs_period(tg);
  5559. quota = tg_get_cfs_quota(tg);
  5560. }
  5561. /* note: these should typically be equivalent */
  5562. if (quota == RUNTIME_INF || quota == -1)
  5563. return RUNTIME_INF;
  5564. return to_ratio(period, quota);
  5565. }
  5566. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  5567. {
  5568. struct cfs_schedulable_data *d = data;
  5569. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5570. s64 quota = 0, parent_quota = -1;
  5571. if (!tg->parent) {
  5572. quota = RUNTIME_INF;
  5573. } else {
  5574. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  5575. quota = normalize_cfs_quota(tg, d);
  5576. parent_quota = parent_b->hierarchical_quota;
  5577. /*
  5578. * Ensure max(child_quota) <= parent_quota, inherit when no
  5579. * limit is set:
  5580. */
  5581. if (quota == RUNTIME_INF)
  5582. quota = parent_quota;
  5583. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  5584. return -EINVAL;
  5585. }
  5586. cfs_b->hierarchical_quota = quota;
  5587. return 0;
  5588. }
  5589. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  5590. {
  5591. int ret;
  5592. struct cfs_schedulable_data data = {
  5593. .tg = tg,
  5594. .period = period,
  5595. .quota = quota,
  5596. };
  5597. if (quota != RUNTIME_INF) {
  5598. do_div(data.period, NSEC_PER_USEC);
  5599. do_div(data.quota, NSEC_PER_USEC);
  5600. }
  5601. rcu_read_lock();
  5602. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  5603. rcu_read_unlock();
  5604. return ret;
  5605. }
  5606. static int cpu_stats_show(struct seq_file *sf, void *v)
  5607. {
  5608. struct task_group *tg = css_tg(seq_css(sf));
  5609. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5610. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  5611. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  5612. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  5613. return 0;
  5614. }
  5615. #endif /* CONFIG_CFS_BANDWIDTH */
  5616. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5617. #ifdef CONFIG_RT_GROUP_SCHED
  5618. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  5619. struct cftype *cft, s64 val)
  5620. {
  5621. return sched_group_set_rt_runtime(css_tg(css), val);
  5622. }
  5623. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  5624. struct cftype *cft)
  5625. {
  5626. return sched_group_rt_runtime(css_tg(css));
  5627. }
  5628. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  5629. struct cftype *cftype, u64 rt_period_us)
  5630. {
  5631. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  5632. }
  5633. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  5634. struct cftype *cft)
  5635. {
  5636. return sched_group_rt_period(css_tg(css));
  5637. }
  5638. #endif /* CONFIG_RT_GROUP_SCHED */
  5639. static struct cftype cpu_files[] = {
  5640. #ifdef CONFIG_FAIR_GROUP_SCHED
  5641. {
  5642. .name = "shares",
  5643. .read_u64 = cpu_shares_read_u64,
  5644. .write_u64 = cpu_shares_write_u64,
  5645. },
  5646. #endif
  5647. #ifdef CONFIG_CFS_BANDWIDTH
  5648. {
  5649. .name = "cfs_quota_us",
  5650. .read_s64 = cpu_cfs_quota_read_s64,
  5651. .write_s64 = cpu_cfs_quota_write_s64,
  5652. },
  5653. {
  5654. .name = "cfs_period_us",
  5655. .read_u64 = cpu_cfs_period_read_u64,
  5656. .write_u64 = cpu_cfs_period_write_u64,
  5657. },
  5658. {
  5659. .name = "stat",
  5660. .seq_show = cpu_stats_show,
  5661. },
  5662. #endif
  5663. #ifdef CONFIG_RT_GROUP_SCHED
  5664. {
  5665. .name = "rt_runtime_us",
  5666. .read_s64 = cpu_rt_runtime_read,
  5667. .write_s64 = cpu_rt_runtime_write,
  5668. },
  5669. {
  5670. .name = "rt_period_us",
  5671. .read_u64 = cpu_rt_period_read_uint,
  5672. .write_u64 = cpu_rt_period_write_uint,
  5673. },
  5674. #endif
  5675. { } /* Terminate */
  5676. };
  5677. struct cgroup_subsys cpu_cgrp_subsys = {
  5678. .css_alloc = cpu_cgroup_css_alloc,
  5679. .css_online = cpu_cgroup_css_online,
  5680. .css_released = cpu_cgroup_css_released,
  5681. .css_free = cpu_cgroup_css_free,
  5682. .fork = cpu_cgroup_fork,
  5683. .can_attach = cpu_cgroup_can_attach,
  5684. .attach = cpu_cgroup_attach,
  5685. .legacy_cftypes = cpu_files,
  5686. .early_init = true,
  5687. };
  5688. #endif /* CONFIG_CGROUP_SCHED */
  5689. void dump_cpu_task(int cpu)
  5690. {
  5691. pr_info("Task dump for CPU %d:\n", cpu);
  5692. sched_show_task(cpu_curr(cpu));
  5693. }
  5694. /*
  5695. * Nice levels are multiplicative, with a gentle 10% change for every
  5696. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  5697. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  5698. * that remained on nice 0.
  5699. *
  5700. * The "10% effect" is relative and cumulative: from _any_ nice level,
  5701. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  5702. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  5703. * If a task goes up by ~10% and another task goes down by ~10% then
  5704. * the relative distance between them is ~25%.)
  5705. */
  5706. const int sched_prio_to_weight[40] = {
  5707. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  5708. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  5709. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  5710. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  5711. /* 0 */ 1024, 820, 655, 526, 423,
  5712. /* 5 */ 335, 272, 215, 172, 137,
  5713. /* 10 */ 110, 87, 70, 56, 45,
  5714. /* 15 */ 36, 29, 23, 18, 15,
  5715. };
  5716. /*
  5717. * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
  5718. *
  5719. * In cases where the weight does not change often, we can use the
  5720. * precalculated inverse to speed up arithmetics by turning divisions
  5721. * into multiplications:
  5722. */
  5723. const u32 sched_prio_to_wmult[40] = {
  5724. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  5725. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  5726. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  5727. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  5728. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  5729. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  5730. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  5731. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  5732. };