algif_skcipher.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993
  1. /*
  2. * algif_skcipher: User-space interface for skcipher algorithms
  3. *
  4. * This file provides the user-space API for symmetric key ciphers.
  5. *
  6. * Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. */
  14. #include <crypto/scatterwalk.h>
  15. #include <crypto/skcipher.h>
  16. #include <crypto/if_alg.h>
  17. #include <linux/init.h>
  18. #include <linux/list.h>
  19. #include <linux/kernel.h>
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/net.h>
  23. #include <net/sock.h>
  24. struct skcipher_sg_list {
  25. struct list_head list;
  26. int cur;
  27. struct scatterlist sg[0];
  28. };
  29. struct skcipher_tfm {
  30. struct crypto_skcipher *skcipher;
  31. bool has_key;
  32. };
  33. struct skcipher_ctx {
  34. struct list_head tsgl;
  35. struct af_alg_sgl rsgl;
  36. void *iv;
  37. struct af_alg_completion completion;
  38. atomic_t inflight;
  39. size_t used;
  40. unsigned int len;
  41. bool more;
  42. bool merge;
  43. bool enc;
  44. struct skcipher_request req;
  45. };
  46. struct skcipher_async_rsgl {
  47. struct af_alg_sgl sgl;
  48. struct list_head list;
  49. };
  50. struct skcipher_async_req {
  51. struct kiocb *iocb;
  52. struct skcipher_async_rsgl first_sgl;
  53. struct list_head list;
  54. struct scatterlist *tsg;
  55. char iv[];
  56. };
  57. #define GET_SREQ(areq, ctx) (struct skcipher_async_req *)((char *)areq + \
  58. crypto_skcipher_reqsize(crypto_skcipher_reqtfm(&ctx->req)))
  59. #define GET_REQ_SIZE(ctx) \
  60. crypto_skcipher_reqsize(crypto_skcipher_reqtfm(&ctx->req))
  61. #define GET_IV_SIZE(ctx) \
  62. crypto_skcipher_ivsize(crypto_skcipher_reqtfm(&ctx->req))
  63. #define MAX_SGL_ENTS ((4096 - sizeof(struct skcipher_sg_list)) / \
  64. sizeof(struct scatterlist) - 1)
  65. static void skcipher_free_async_sgls(struct skcipher_async_req *sreq)
  66. {
  67. struct skcipher_async_rsgl *rsgl, *tmp;
  68. struct scatterlist *sgl;
  69. struct scatterlist *sg;
  70. int i, n;
  71. list_for_each_entry_safe(rsgl, tmp, &sreq->list, list) {
  72. af_alg_free_sg(&rsgl->sgl);
  73. if (rsgl != &sreq->first_sgl)
  74. kfree(rsgl);
  75. }
  76. sgl = sreq->tsg;
  77. n = sg_nents(sgl);
  78. for_each_sg(sgl, sg, n, i)
  79. put_page(sg_page(sg));
  80. kfree(sreq->tsg);
  81. }
  82. static void skcipher_async_cb(struct crypto_async_request *req, int err)
  83. {
  84. struct sock *sk = req->data;
  85. struct alg_sock *ask = alg_sk(sk);
  86. struct skcipher_ctx *ctx = ask->private;
  87. struct skcipher_async_req *sreq = GET_SREQ(req, ctx);
  88. struct kiocb *iocb = sreq->iocb;
  89. atomic_dec(&ctx->inflight);
  90. skcipher_free_async_sgls(sreq);
  91. kfree(req);
  92. iocb->ki_complete(iocb, err, err);
  93. }
  94. static inline int skcipher_sndbuf(struct sock *sk)
  95. {
  96. struct alg_sock *ask = alg_sk(sk);
  97. struct skcipher_ctx *ctx = ask->private;
  98. return max_t(int, max_t(int, sk->sk_sndbuf & PAGE_MASK, PAGE_SIZE) -
  99. ctx->used, 0);
  100. }
  101. static inline bool skcipher_writable(struct sock *sk)
  102. {
  103. return PAGE_SIZE <= skcipher_sndbuf(sk);
  104. }
  105. static int skcipher_alloc_sgl(struct sock *sk)
  106. {
  107. struct alg_sock *ask = alg_sk(sk);
  108. struct skcipher_ctx *ctx = ask->private;
  109. struct skcipher_sg_list *sgl;
  110. struct scatterlist *sg = NULL;
  111. sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
  112. if (!list_empty(&ctx->tsgl))
  113. sg = sgl->sg;
  114. if (!sg || sgl->cur >= MAX_SGL_ENTS) {
  115. sgl = sock_kmalloc(sk, sizeof(*sgl) +
  116. sizeof(sgl->sg[0]) * (MAX_SGL_ENTS + 1),
  117. GFP_KERNEL);
  118. if (!sgl)
  119. return -ENOMEM;
  120. sg_init_table(sgl->sg, MAX_SGL_ENTS + 1);
  121. sgl->cur = 0;
  122. if (sg)
  123. sg_chain(sg, MAX_SGL_ENTS + 1, sgl->sg);
  124. list_add_tail(&sgl->list, &ctx->tsgl);
  125. }
  126. return 0;
  127. }
  128. static void skcipher_pull_sgl(struct sock *sk, size_t used, int put)
  129. {
  130. struct alg_sock *ask = alg_sk(sk);
  131. struct skcipher_ctx *ctx = ask->private;
  132. struct skcipher_sg_list *sgl;
  133. struct scatterlist *sg;
  134. int i;
  135. while (!list_empty(&ctx->tsgl)) {
  136. sgl = list_first_entry(&ctx->tsgl, struct skcipher_sg_list,
  137. list);
  138. sg = sgl->sg;
  139. for (i = 0; i < sgl->cur; i++) {
  140. size_t plen = min_t(size_t, used, sg[i].length);
  141. if (!sg_page(sg + i))
  142. continue;
  143. sg[i].length -= plen;
  144. sg[i].offset += plen;
  145. used -= plen;
  146. ctx->used -= plen;
  147. if (sg[i].length)
  148. return;
  149. if (put)
  150. put_page(sg_page(sg + i));
  151. sg_assign_page(sg + i, NULL);
  152. }
  153. list_del(&sgl->list);
  154. sock_kfree_s(sk, sgl,
  155. sizeof(*sgl) + sizeof(sgl->sg[0]) *
  156. (MAX_SGL_ENTS + 1));
  157. }
  158. if (!ctx->used)
  159. ctx->merge = 0;
  160. }
  161. static void skcipher_free_sgl(struct sock *sk)
  162. {
  163. struct alg_sock *ask = alg_sk(sk);
  164. struct skcipher_ctx *ctx = ask->private;
  165. skcipher_pull_sgl(sk, ctx->used, 1);
  166. }
  167. static int skcipher_wait_for_wmem(struct sock *sk, unsigned flags)
  168. {
  169. long timeout;
  170. DEFINE_WAIT(wait);
  171. int err = -ERESTARTSYS;
  172. if (flags & MSG_DONTWAIT)
  173. return -EAGAIN;
  174. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  175. for (;;) {
  176. if (signal_pending(current))
  177. break;
  178. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  179. timeout = MAX_SCHEDULE_TIMEOUT;
  180. if (sk_wait_event(sk, &timeout, skcipher_writable(sk))) {
  181. err = 0;
  182. break;
  183. }
  184. }
  185. finish_wait(sk_sleep(sk), &wait);
  186. return err;
  187. }
  188. static void skcipher_wmem_wakeup(struct sock *sk)
  189. {
  190. struct socket_wq *wq;
  191. if (!skcipher_writable(sk))
  192. return;
  193. rcu_read_lock();
  194. wq = rcu_dereference(sk->sk_wq);
  195. if (wq_has_sleeper(wq))
  196. wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
  197. POLLRDNORM |
  198. POLLRDBAND);
  199. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  200. rcu_read_unlock();
  201. }
  202. static int skcipher_wait_for_data(struct sock *sk, unsigned flags)
  203. {
  204. struct alg_sock *ask = alg_sk(sk);
  205. struct skcipher_ctx *ctx = ask->private;
  206. long timeout;
  207. DEFINE_WAIT(wait);
  208. int err = -ERESTARTSYS;
  209. if (flags & MSG_DONTWAIT) {
  210. return -EAGAIN;
  211. }
  212. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  213. for (;;) {
  214. if (signal_pending(current))
  215. break;
  216. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  217. timeout = MAX_SCHEDULE_TIMEOUT;
  218. if (sk_wait_event(sk, &timeout, ctx->used)) {
  219. err = 0;
  220. break;
  221. }
  222. }
  223. finish_wait(sk_sleep(sk), &wait);
  224. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  225. return err;
  226. }
  227. static void skcipher_data_wakeup(struct sock *sk)
  228. {
  229. struct alg_sock *ask = alg_sk(sk);
  230. struct skcipher_ctx *ctx = ask->private;
  231. struct socket_wq *wq;
  232. if (!ctx->used)
  233. return;
  234. rcu_read_lock();
  235. wq = rcu_dereference(sk->sk_wq);
  236. if (wq_has_sleeper(wq))
  237. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  238. POLLRDNORM |
  239. POLLRDBAND);
  240. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  241. rcu_read_unlock();
  242. }
  243. static int skcipher_sendmsg(struct socket *sock, struct msghdr *msg,
  244. size_t size)
  245. {
  246. struct sock *sk = sock->sk;
  247. struct alg_sock *ask = alg_sk(sk);
  248. struct skcipher_ctx *ctx = ask->private;
  249. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(&ctx->req);
  250. unsigned ivsize = crypto_skcipher_ivsize(tfm);
  251. struct skcipher_sg_list *sgl;
  252. struct af_alg_control con = {};
  253. long copied = 0;
  254. bool enc = 0;
  255. bool init = 0;
  256. int err;
  257. int i;
  258. if (msg->msg_controllen) {
  259. err = af_alg_cmsg_send(msg, &con);
  260. if (err)
  261. return err;
  262. init = 1;
  263. switch (con.op) {
  264. case ALG_OP_ENCRYPT:
  265. enc = 1;
  266. break;
  267. case ALG_OP_DECRYPT:
  268. enc = 0;
  269. break;
  270. default:
  271. return -EINVAL;
  272. }
  273. if (con.iv && con.iv->ivlen != ivsize)
  274. return -EINVAL;
  275. }
  276. err = -EINVAL;
  277. lock_sock(sk);
  278. if (!ctx->more && ctx->used)
  279. goto unlock;
  280. if (init) {
  281. ctx->enc = enc;
  282. if (con.iv)
  283. memcpy(ctx->iv, con.iv->iv, ivsize);
  284. }
  285. while (size) {
  286. struct scatterlist *sg;
  287. unsigned long len = size;
  288. size_t plen;
  289. if (ctx->merge) {
  290. sgl = list_entry(ctx->tsgl.prev,
  291. struct skcipher_sg_list, list);
  292. sg = sgl->sg + sgl->cur - 1;
  293. len = min_t(unsigned long, len,
  294. PAGE_SIZE - sg->offset - sg->length);
  295. err = memcpy_from_msg(page_address(sg_page(sg)) +
  296. sg->offset + sg->length,
  297. msg, len);
  298. if (err)
  299. goto unlock;
  300. sg->length += len;
  301. ctx->merge = (sg->offset + sg->length) &
  302. (PAGE_SIZE - 1);
  303. ctx->used += len;
  304. copied += len;
  305. size -= len;
  306. continue;
  307. }
  308. if (!skcipher_writable(sk)) {
  309. err = skcipher_wait_for_wmem(sk, msg->msg_flags);
  310. if (err)
  311. goto unlock;
  312. }
  313. len = min_t(unsigned long, len, skcipher_sndbuf(sk));
  314. err = skcipher_alloc_sgl(sk);
  315. if (err)
  316. goto unlock;
  317. sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
  318. sg = sgl->sg;
  319. if (sgl->cur)
  320. sg_unmark_end(sg + sgl->cur - 1);
  321. do {
  322. i = sgl->cur;
  323. plen = min_t(size_t, len, PAGE_SIZE);
  324. sg_assign_page(sg + i, alloc_page(GFP_KERNEL));
  325. err = -ENOMEM;
  326. if (!sg_page(sg + i))
  327. goto unlock;
  328. err = memcpy_from_msg(page_address(sg_page(sg + i)),
  329. msg, plen);
  330. if (err) {
  331. __free_page(sg_page(sg + i));
  332. sg_assign_page(sg + i, NULL);
  333. goto unlock;
  334. }
  335. sg[i].length = plen;
  336. len -= plen;
  337. ctx->used += plen;
  338. copied += plen;
  339. size -= plen;
  340. sgl->cur++;
  341. } while (len && sgl->cur < MAX_SGL_ENTS);
  342. if (!size)
  343. sg_mark_end(sg + sgl->cur - 1);
  344. ctx->merge = plen & (PAGE_SIZE - 1);
  345. }
  346. err = 0;
  347. ctx->more = msg->msg_flags & MSG_MORE;
  348. unlock:
  349. skcipher_data_wakeup(sk);
  350. release_sock(sk);
  351. return copied ?: err;
  352. }
  353. static ssize_t skcipher_sendpage(struct socket *sock, struct page *page,
  354. int offset, size_t size, int flags)
  355. {
  356. struct sock *sk = sock->sk;
  357. struct alg_sock *ask = alg_sk(sk);
  358. struct skcipher_ctx *ctx = ask->private;
  359. struct skcipher_sg_list *sgl;
  360. int err = -EINVAL;
  361. if (flags & MSG_SENDPAGE_NOTLAST)
  362. flags |= MSG_MORE;
  363. lock_sock(sk);
  364. if (!ctx->more && ctx->used)
  365. goto unlock;
  366. if (!size)
  367. goto done;
  368. if (!skcipher_writable(sk)) {
  369. err = skcipher_wait_for_wmem(sk, flags);
  370. if (err)
  371. goto unlock;
  372. }
  373. err = skcipher_alloc_sgl(sk);
  374. if (err)
  375. goto unlock;
  376. ctx->merge = 0;
  377. sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
  378. if (sgl->cur)
  379. sg_unmark_end(sgl->sg + sgl->cur - 1);
  380. sg_mark_end(sgl->sg + sgl->cur);
  381. get_page(page);
  382. sg_set_page(sgl->sg + sgl->cur, page, size, offset);
  383. sgl->cur++;
  384. ctx->used += size;
  385. done:
  386. ctx->more = flags & MSG_MORE;
  387. unlock:
  388. skcipher_data_wakeup(sk);
  389. release_sock(sk);
  390. return err ?: size;
  391. }
  392. static int skcipher_all_sg_nents(struct skcipher_ctx *ctx)
  393. {
  394. struct skcipher_sg_list *sgl;
  395. struct scatterlist *sg;
  396. int nents = 0;
  397. list_for_each_entry(sgl, &ctx->tsgl, list) {
  398. sg = sgl->sg;
  399. while (!sg->length)
  400. sg++;
  401. nents += sg_nents(sg);
  402. }
  403. return nents;
  404. }
  405. static int skcipher_recvmsg_async(struct socket *sock, struct msghdr *msg,
  406. int flags)
  407. {
  408. struct sock *sk = sock->sk;
  409. struct alg_sock *ask = alg_sk(sk);
  410. struct skcipher_ctx *ctx = ask->private;
  411. struct skcipher_sg_list *sgl;
  412. struct scatterlist *sg;
  413. struct skcipher_async_req *sreq;
  414. struct skcipher_request *req;
  415. struct skcipher_async_rsgl *last_rsgl = NULL;
  416. unsigned int txbufs = 0, len = 0, tx_nents = skcipher_all_sg_nents(ctx);
  417. unsigned int reqlen = sizeof(struct skcipher_async_req) +
  418. GET_REQ_SIZE(ctx) + GET_IV_SIZE(ctx);
  419. int err = -ENOMEM;
  420. bool mark = false;
  421. lock_sock(sk);
  422. req = kmalloc(reqlen, GFP_KERNEL);
  423. if (unlikely(!req))
  424. goto unlock;
  425. sreq = GET_SREQ(req, ctx);
  426. sreq->iocb = msg->msg_iocb;
  427. memset(&sreq->first_sgl, '\0', sizeof(struct skcipher_async_rsgl));
  428. INIT_LIST_HEAD(&sreq->list);
  429. sreq->tsg = kcalloc(tx_nents, sizeof(*sg), GFP_KERNEL);
  430. if (unlikely(!sreq->tsg)) {
  431. kfree(req);
  432. goto unlock;
  433. }
  434. sg_init_table(sreq->tsg, tx_nents);
  435. memcpy(sreq->iv, ctx->iv, GET_IV_SIZE(ctx));
  436. skcipher_request_set_tfm(req, crypto_skcipher_reqtfm(&ctx->req));
  437. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  438. skcipher_async_cb, sk);
  439. while (iov_iter_count(&msg->msg_iter)) {
  440. struct skcipher_async_rsgl *rsgl;
  441. int used;
  442. if (!ctx->used) {
  443. err = skcipher_wait_for_data(sk, flags);
  444. if (err)
  445. goto free;
  446. }
  447. sgl = list_first_entry(&ctx->tsgl,
  448. struct skcipher_sg_list, list);
  449. sg = sgl->sg;
  450. while (!sg->length)
  451. sg++;
  452. used = min_t(unsigned long, ctx->used,
  453. iov_iter_count(&msg->msg_iter));
  454. used = min_t(unsigned long, used, sg->length);
  455. if (txbufs == tx_nents) {
  456. struct scatterlist *tmp;
  457. int x;
  458. /* Ran out of tx slots in async request
  459. * need to expand */
  460. tmp = kcalloc(tx_nents * 2, sizeof(*tmp),
  461. GFP_KERNEL);
  462. if (!tmp)
  463. goto free;
  464. sg_init_table(tmp, tx_nents * 2);
  465. for (x = 0; x < tx_nents; x++)
  466. sg_set_page(&tmp[x], sg_page(&sreq->tsg[x]),
  467. sreq->tsg[x].length,
  468. sreq->tsg[x].offset);
  469. kfree(sreq->tsg);
  470. sreq->tsg = tmp;
  471. tx_nents *= 2;
  472. mark = true;
  473. }
  474. /* Need to take over the tx sgl from ctx
  475. * to the asynch req - these sgls will be freed later */
  476. sg_set_page(sreq->tsg + txbufs++, sg_page(sg), sg->length,
  477. sg->offset);
  478. if (list_empty(&sreq->list)) {
  479. rsgl = &sreq->first_sgl;
  480. list_add_tail(&rsgl->list, &sreq->list);
  481. } else {
  482. rsgl = kmalloc(sizeof(*rsgl), GFP_KERNEL);
  483. if (!rsgl) {
  484. err = -ENOMEM;
  485. goto free;
  486. }
  487. list_add_tail(&rsgl->list, &sreq->list);
  488. }
  489. used = af_alg_make_sg(&rsgl->sgl, &msg->msg_iter, used);
  490. err = used;
  491. if (used < 0)
  492. goto free;
  493. if (last_rsgl)
  494. af_alg_link_sg(&last_rsgl->sgl, &rsgl->sgl);
  495. last_rsgl = rsgl;
  496. len += used;
  497. skcipher_pull_sgl(sk, used, 0);
  498. iov_iter_advance(&msg->msg_iter, used);
  499. }
  500. if (mark)
  501. sg_mark_end(sreq->tsg + txbufs - 1);
  502. skcipher_request_set_crypt(req, sreq->tsg, sreq->first_sgl.sgl.sg,
  503. len, sreq->iv);
  504. err = ctx->enc ? crypto_skcipher_encrypt(req) :
  505. crypto_skcipher_decrypt(req);
  506. if (err == -EINPROGRESS) {
  507. atomic_inc(&ctx->inflight);
  508. err = -EIOCBQUEUED;
  509. goto unlock;
  510. }
  511. free:
  512. skcipher_free_async_sgls(sreq);
  513. kfree(req);
  514. unlock:
  515. skcipher_wmem_wakeup(sk);
  516. release_sock(sk);
  517. return err;
  518. }
  519. static int skcipher_recvmsg_sync(struct socket *sock, struct msghdr *msg,
  520. int flags)
  521. {
  522. struct sock *sk = sock->sk;
  523. struct alg_sock *ask = alg_sk(sk);
  524. struct skcipher_ctx *ctx = ask->private;
  525. unsigned bs = crypto_skcipher_blocksize(crypto_skcipher_reqtfm(
  526. &ctx->req));
  527. struct skcipher_sg_list *sgl;
  528. struct scatterlist *sg;
  529. int err = -EAGAIN;
  530. int used;
  531. long copied = 0;
  532. lock_sock(sk);
  533. while (msg_data_left(msg)) {
  534. if (!ctx->used) {
  535. err = skcipher_wait_for_data(sk, flags);
  536. if (err)
  537. goto unlock;
  538. }
  539. used = min_t(unsigned long, ctx->used, msg_data_left(msg));
  540. used = af_alg_make_sg(&ctx->rsgl, &msg->msg_iter, used);
  541. err = used;
  542. if (err < 0)
  543. goto unlock;
  544. if (ctx->more || used < ctx->used)
  545. used -= used % bs;
  546. err = -EINVAL;
  547. if (!used)
  548. goto free;
  549. sgl = list_first_entry(&ctx->tsgl,
  550. struct skcipher_sg_list, list);
  551. sg = sgl->sg;
  552. while (!sg->length)
  553. sg++;
  554. skcipher_request_set_crypt(&ctx->req, sg, ctx->rsgl.sg, used,
  555. ctx->iv);
  556. err = af_alg_wait_for_completion(
  557. ctx->enc ?
  558. crypto_skcipher_encrypt(&ctx->req) :
  559. crypto_skcipher_decrypt(&ctx->req),
  560. &ctx->completion);
  561. free:
  562. af_alg_free_sg(&ctx->rsgl);
  563. if (err)
  564. goto unlock;
  565. copied += used;
  566. skcipher_pull_sgl(sk, used, 1);
  567. iov_iter_advance(&msg->msg_iter, used);
  568. }
  569. err = 0;
  570. unlock:
  571. skcipher_wmem_wakeup(sk);
  572. release_sock(sk);
  573. return copied ?: err;
  574. }
  575. static int skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
  576. size_t ignored, int flags)
  577. {
  578. return (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) ?
  579. skcipher_recvmsg_async(sock, msg, flags) :
  580. skcipher_recvmsg_sync(sock, msg, flags);
  581. }
  582. static unsigned int skcipher_poll(struct file *file, struct socket *sock,
  583. poll_table *wait)
  584. {
  585. struct sock *sk = sock->sk;
  586. struct alg_sock *ask = alg_sk(sk);
  587. struct skcipher_ctx *ctx = ask->private;
  588. unsigned int mask;
  589. sock_poll_wait(file, sk_sleep(sk), wait);
  590. mask = 0;
  591. if (ctx->used)
  592. mask |= POLLIN | POLLRDNORM;
  593. if (skcipher_writable(sk))
  594. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  595. return mask;
  596. }
  597. static struct proto_ops algif_skcipher_ops = {
  598. .family = PF_ALG,
  599. .connect = sock_no_connect,
  600. .socketpair = sock_no_socketpair,
  601. .getname = sock_no_getname,
  602. .ioctl = sock_no_ioctl,
  603. .listen = sock_no_listen,
  604. .shutdown = sock_no_shutdown,
  605. .getsockopt = sock_no_getsockopt,
  606. .mmap = sock_no_mmap,
  607. .bind = sock_no_bind,
  608. .accept = sock_no_accept,
  609. .setsockopt = sock_no_setsockopt,
  610. .release = af_alg_release,
  611. .sendmsg = skcipher_sendmsg,
  612. .sendpage = skcipher_sendpage,
  613. .recvmsg = skcipher_recvmsg,
  614. .poll = skcipher_poll,
  615. };
  616. static int skcipher_check_key(struct socket *sock)
  617. {
  618. int err = 0;
  619. struct sock *psk;
  620. struct alg_sock *pask;
  621. struct skcipher_tfm *tfm;
  622. struct sock *sk = sock->sk;
  623. struct alg_sock *ask = alg_sk(sk);
  624. lock_sock(sk);
  625. if (ask->refcnt)
  626. goto unlock_child;
  627. psk = ask->parent;
  628. pask = alg_sk(ask->parent);
  629. tfm = pask->private;
  630. err = -ENOKEY;
  631. lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
  632. if (!tfm->has_key)
  633. goto unlock;
  634. if (!pask->refcnt++)
  635. sock_hold(psk);
  636. ask->refcnt = 1;
  637. sock_put(psk);
  638. err = 0;
  639. unlock:
  640. release_sock(psk);
  641. unlock_child:
  642. release_sock(sk);
  643. return err;
  644. }
  645. static int skcipher_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
  646. size_t size)
  647. {
  648. int err;
  649. err = skcipher_check_key(sock);
  650. if (err)
  651. return err;
  652. return skcipher_sendmsg(sock, msg, size);
  653. }
  654. static ssize_t skcipher_sendpage_nokey(struct socket *sock, struct page *page,
  655. int offset, size_t size, int flags)
  656. {
  657. int err;
  658. err = skcipher_check_key(sock);
  659. if (err)
  660. return err;
  661. return skcipher_sendpage(sock, page, offset, size, flags);
  662. }
  663. static int skcipher_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
  664. size_t ignored, int flags)
  665. {
  666. int err;
  667. err = skcipher_check_key(sock);
  668. if (err)
  669. return err;
  670. return skcipher_recvmsg(sock, msg, ignored, flags);
  671. }
  672. static struct proto_ops algif_skcipher_ops_nokey = {
  673. .family = PF_ALG,
  674. .connect = sock_no_connect,
  675. .socketpair = sock_no_socketpair,
  676. .getname = sock_no_getname,
  677. .ioctl = sock_no_ioctl,
  678. .listen = sock_no_listen,
  679. .shutdown = sock_no_shutdown,
  680. .getsockopt = sock_no_getsockopt,
  681. .mmap = sock_no_mmap,
  682. .bind = sock_no_bind,
  683. .accept = sock_no_accept,
  684. .setsockopt = sock_no_setsockopt,
  685. .release = af_alg_release,
  686. .sendmsg = skcipher_sendmsg_nokey,
  687. .sendpage = skcipher_sendpage_nokey,
  688. .recvmsg = skcipher_recvmsg_nokey,
  689. .poll = skcipher_poll,
  690. };
  691. static void *skcipher_bind(const char *name, u32 type, u32 mask)
  692. {
  693. struct skcipher_tfm *tfm;
  694. struct crypto_skcipher *skcipher;
  695. tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
  696. if (!tfm)
  697. return ERR_PTR(-ENOMEM);
  698. skcipher = crypto_alloc_skcipher(name, type, mask);
  699. if (IS_ERR(skcipher)) {
  700. kfree(tfm);
  701. return ERR_CAST(skcipher);
  702. }
  703. tfm->skcipher = skcipher;
  704. return tfm;
  705. }
  706. static void skcipher_release(void *private)
  707. {
  708. struct skcipher_tfm *tfm = private;
  709. crypto_free_skcipher(tfm->skcipher);
  710. kfree(tfm);
  711. }
  712. static int skcipher_setkey(void *private, const u8 *key, unsigned int keylen)
  713. {
  714. struct skcipher_tfm *tfm = private;
  715. int err;
  716. err = crypto_skcipher_setkey(tfm->skcipher, key, keylen);
  717. tfm->has_key = !err;
  718. return err;
  719. }
  720. static void skcipher_wait(struct sock *sk)
  721. {
  722. struct alg_sock *ask = alg_sk(sk);
  723. struct skcipher_ctx *ctx = ask->private;
  724. int ctr = 0;
  725. while (atomic_read(&ctx->inflight) && ctr++ < 100)
  726. msleep(100);
  727. }
  728. static void skcipher_sock_destruct(struct sock *sk)
  729. {
  730. struct alg_sock *ask = alg_sk(sk);
  731. struct skcipher_ctx *ctx = ask->private;
  732. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(&ctx->req);
  733. if (atomic_read(&ctx->inflight))
  734. skcipher_wait(sk);
  735. skcipher_free_sgl(sk);
  736. sock_kzfree_s(sk, ctx->iv, crypto_skcipher_ivsize(tfm));
  737. sock_kfree_s(sk, ctx, ctx->len);
  738. af_alg_release_parent(sk);
  739. }
  740. static int skcipher_accept_parent_nokey(void *private, struct sock *sk)
  741. {
  742. struct skcipher_ctx *ctx;
  743. struct alg_sock *ask = alg_sk(sk);
  744. struct skcipher_tfm *tfm = private;
  745. struct crypto_skcipher *skcipher = tfm->skcipher;
  746. unsigned int len = sizeof(*ctx) + crypto_skcipher_reqsize(skcipher);
  747. ctx = sock_kmalloc(sk, len, GFP_KERNEL);
  748. if (!ctx)
  749. return -ENOMEM;
  750. ctx->iv = sock_kmalloc(sk, crypto_skcipher_ivsize(skcipher),
  751. GFP_KERNEL);
  752. if (!ctx->iv) {
  753. sock_kfree_s(sk, ctx, len);
  754. return -ENOMEM;
  755. }
  756. memset(ctx->iv, 0, crypto_skcipher_ivsize(skcipher));
  757. INIT_LIST_HEAD(&ctx->tsgl);
  758. ctx->len = len;
  759. ctx->used = 0;
  760. ctx->more = 0;
  761. ctx->merge = 0;
  762. ctx->enc = 0;
  763. atomic_set(&ctx->inflight, 0);
  764. af_alg_init_completion(&ctx->completion);
  765. ask->private = ctx;
  766. skcipher_request_set_tfm(&ctx->req, skcipher);
  767. skcipher_request_set_callback(&ctx->req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  768. af_alg_complete, &ctx->completion);
  769. sk->sk_destruct = skcipher_sock_destruct;
  770. return 0;
  771. }
  772. static int skcipher_accept_parent(void *private, struct sock *sk)
  773. {
  774. struct skcipher_tfm *tfm = private;
  775. if (!tfm->has_key && crypto_skcipher_has_setkey(tfm->skcipher))
  776. return -ENOKEY;
  777. return skcipher_accept_parent_nokey(private, sk);
  778. }
  779. static const struct af_alg_type algif_type_skcipher = {
  780. .bind = skcipher_bind,
  781. .release = skcipher_release,
  782. .setkey = skcipher_setkey,
  783. .accept = skcipher_accept_parent,
  784. .accept_nokey = skcipher_accept_parent_nokey,
  785. .ops = &algif_skcipher_ops,
  786. .ops_nokey = &algif_skcipher_ops_nokey,
  787. .name = "skcipher",
  788. .owner = THIS_MODULE
  789. };
  790. static int __init algif_skcipher_init(void)
  791. {
  792. return af_alg_register_type(&algif_type_skcipher);
  793. }
  794. static void __exit algif_skcipher_exit(void)
  795. {
  796. int err = af_alg_unregister_type(&algif_type_skcipher);
  797. BUG_ON(err);
  798. }
  799. module_init(algif_skcipher_init);
  800. module_exit(algif_skcipher_exit);
  801. MODULE_LICENSE("GPL");